
Generalizable Recommender System

During Temporal Popularity Distribution Shifts

Hyunsik Yoo

University of Illinois

Urbana-Champaign

Urbana, IL, USA

hy40@illinois.edu

Ruizhong Qiu

University of Illinois

Urbana-Champaign

Urbana, IL, USA

rq5@illinois.edu

Charlie Xu

Amazon.com, Inc.

Seattle, WA, USA

caizhx@amazon.com

Fei Wang

Amazon.com, Inc.

Sunnyvale, CA, USA

feiww@amazon.com

Hanghang Tong

University of Illinois

Urbana-Champaign

Urbana, IL, USA

htong@illinois.edu

Abstract
Many modern recommender systems represent user and item at-

tributes as embedding vectors, relying on them for accurate rec-

ommendations. However, entangled embeddings often capture not

only intrinsic property factors (e.g., user interest in item property)

but also popularity factors (e.g., user conformity to item popular-

ity) indistinguishably. These embeddings, influenced by popularity

distribution, may face challenges when the popularity distribution

at test time differs from historical distribution. Existing remedies in

the literature involve disentangled embedding learning, which aims

to separately capture intrinsic and popularity factors, demonstrat-

ing plausible generalization during popularity distribution shifts.

However, we highlight that these methods often overlook a crucial

aspect of popularity shifts—their temporal nature—in both train-

ing and inference phases. To address this, we propose TTTTTTTTTTTTTTTTTemporal

PPPPPPPPPPPPPPPPPopularity distribution shift generalizABABABABABABABABABABABABABABABABABle recommender system

(TPAB), a novel disentanglement framework incorporating temporal

popularity. TPAB introduce a new (1) temporal-aware embedding

design for users and items. Within this design, (2) popularity coars-

ening and (3) popularity bootstrapping are proposed to enhance

generalization further. We also provide theoretical analysis showing
that the bootstrapping loss eliminates the effect of popularity on the
learned model. During inference, we infer test-time popularity and

corresponding embeddings, using them alongside property embed-

dings for prediction. Extensive experiments on real-world datasets

validate TPAB, showcasing its outstanding generalization ability

during temporal popularity distribution shifts.
1

CCS Concepts
• Information systems→ Data mining; • Computing method-
ologies→ Machine learning.

1
The GitHub repository is available at https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_https://github.com/hsyoo32/tpab_.

This work is licensed under a Creative Commons Attribution 4.0 International License.

KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1245-6/25/08

https://doi.org/10.1145/3690624.3709299

Keywords
recommender systems; temporal popularity distribution shifts; em-

bedding disentanglement

ACM Reference Format:
Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, and Hanghang Tong.

2025. Generalizable Recommender System During Temporal Popularity

Distribution Shifts. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.1 (KDD ’25), August 3–7, 2025,
Toronto, ON, Canada. ACM, New York, NY, USA, 11 pages. https://doi.org/

10.1145/3690624.3709299

KDD Availability Link: The source code of this paper has been made

publicly available at https://doi.org/10.6084/m9.figshare.28236941.

1 Introduction
To distill valuable insights from vast user-item interaction data,

contemporary recommender systems often leverage embedding-

based empirical risk minimization. They embed user preferences

and item properties within their representations, and then use those

embeddings to predict future interaction between users and items.

However, the prevalent mechanism, which employs a single em-

bedding for each entity (user or item) in the system, leads to the

entanglement of an item’s intrinsic property with its popularity

derived from the overall popularity distribution.
2
These entan-

glement approaches may perform well under the assumption of

an identical test distribution to historical training data, which un-

fortunately proves unrealistic [1, 18, 31, 35]. In reality, popularity

distribution continually evolves over time [32, 36, 37].
An effective remedy to this challenge has emerged through dis-

entanglement techniques [9, 27, 34, 35, 39], showcasing superiority

over entangled counterparts, including popularity debiasing meth-

ods [11, 40], during popularity distribution shifts. The core concept

involves disentangling intrinsic property factors and popularity fac-

tors by representing these distinct factors as separate embeddings.

Generally, two additional losses are employed for disentanglement,

focusing on (1) invariance learning and (2) geometric separation.

Various techinques for the former objective have been proposed,

2
Note that in the literature, the user-side counterparts of item property and

popularity are often denoted as user’s pure interest and conformity, respectively. For

brevity, we omit these concepts throughout the introduction.

https://github.com/hsyoo32/tpab_
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3690624.3709299
https://doi.org/10.1145/3690624.3709299
https://doi.org/10.1145/3690624.3709299
https://doi.org/10.6084/m9.figshare.28236941

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, & Hanghang Tong

such as popularity-aware negative item sampling/learning [39],

incorporating popularity as margins in the loss function [34], and

popularity-intervened embedding learning [35]. For the latter objec-

tive, manymethods aim to explicitlymaximize distance/discrepancy

metrics between property and popularity embeddings. They employ

different metrics such as L1 [39], L2 [39], Pearson correlation coef-

ficient [4], Maximum Mean Discrepancy (MMD) [22], and distance

correlation [27, 35, 39].

Despite these strides, our contention in this paper is that ex-

isting disentanglement methods often overlook a crucial aspect

of popularity shifts – their temporal nature. For example, in an e-

commerce system, seasonal changes naturally affect the popularity

distribution [35]. Also, while popular items may continue to gain

popularity, they can also be surpassed by “new kids on the block”

with better intrinsic quality over time [2, 7, 10]. Furthermore, some

items may experience a natural fade in popularity over time, be-

coming outdated. We provide empirical validation using real-world

datasets in Figure 1, which will be discussed further in Section 2.

However, such temporal dynamics of popularity are frequently

neglected by existing methods in both training and inference phases.
During training, popularity is viewed merely as static data derived

from historical records, which likely lead to suboptimal perfor-

mance of popularity embeddings for robustness in temporal pop-

ularity shifts [22, 34, 35, 39]. Moreover, in the complex temporal

setting, their use of geometric separation techniques to maximize

the distance between the two types of embeddings may compromise

the expressiveness of embeddings [4, 22, 35, 39].

Besides that, during the inference phase, they often exclusively

use property embeddings while disregarding popularity embed-

dings, which is suboptimal during temporal popularity shifts [34,

35]. This approach may be reasonable in case of uniform future

distribution where there are no relative popularity difference affect-

ing user behavior. However, in reality, it is reasonable to assume

that item popularity persists at any given time and can distinctly

influence user behavior, alongside the user’s inherent interest in the

item [36, 37]. For these reasons, a thoughtful approach is needed to

intelligently learn and utilize popularity embeddings that accurately

capture the temporal dynamics of popularity.

In this work, we aim to integrate the dynamic aspect of popular-

ity with disentanglement principles by designing a novel method,

TTTTTTTTTTTTTTTTTemporal PPPPPPPPPPPPPPPPPopularity distribution shift generalizABABABABABABABABABABABABABABABABABle recommender

system (TPAB). TPAB introduces three distinct technical aspects:

First, a new (1) temporal-aware embedding design for users and

items, where the popularity embeddings capture temporal popular-

ity and the item property embeddings capture intrinsic properties.

Within this embedding design, (2) popularity coarsening and

(3) popularity bootstrapping are proposed to further enhance

generalization ability of TPAB.
Popularity coarsening allows itemswith similar–not just identical–

popularity levels to share the same popularity embeddings, reducing

TPAB’s sensitivity to minor fluctuations in popularity. Popularity

bootstrapping involves an additional risk minimization loss that

replaces the popularity embedding with a randomly sampled pop-

ularity embedding, enhancing the invariance of property embed-

dings to the temporal popularity. Along with empirical evidence,

we provide theoretical analysis showing that this bootstrapping loss
effectively eliminates the effect of popularity on the learned model

Figure 1: Temporal popularity distribution shifts on four
real-world datasets. The shifts (i.e., Jensen-Shannon Diver-
gence (JSD)) between the initial and current stage (1,t) tend
to increase over time.

during training. Moreover, we observe that these ideas (2&3) reduce
the variance in risks across different time stages, further supporting

the rationale behind our algorithm design [15]. Finally, during in-

ference, we predict the next-time popularity by classic time-series

forecasting [36, 37], to derive test-time popularity embeddings for

items. These embeddings are utilized alongside property embed-

dings for prediction. Via extensive experiments with real-world

temporal datasets, we validate the strong generalization ability of

TPAB during temporal popularity shifts, and the effectiveness of

each of our algorithm designs.

In summary, the paper makes the following key contributions:

• Theory.We theoretically analyze the optimal solution for min-

imizing the bootstrapping loss. The analysis implies that the

bootstrapping loss helps eliminate the effect of popularity on the

learned model, and thus encourages property embeddings to be

invariant to temporal popularity embeddings, as desired.

• Algorithm. We propose a new method named TPAB, which
yields disentangled user/item embeddings with strong generaliza-

tion ability under temporal popularity distribution shifts. TPAB
incorporates three novel techniques: temporal-aware embedding

design, popularity coarsening, and popularity bootstrapping.

• Experiments. Extensive experiments on real-world temporal

recommendation datasets validate the effectiveness of TPAB,
showing an average increase of 8.33% compared to the best-

performing recent competitors.

2 Preliminary
In this section, we first present the key notations used throughout

the paper. Next, we discuss temporal popularity distribution shifts,

providing evidence of these shifts across four real-world datasets.

We then explore generalization in temporal popularity shifts and

the principles of disentanglement in recommender systems. Finally,

we formally define the problem we aim to address in the paper.

Notations. Table 1 outlines the main symbols employed in this

paper. Throughout the paper, we use bold upper-case letters for

matrices (e.g., Y), bold lower-case letters for vectors (e.g., r) and
calligraphic letters for sets (e.g., U). We use conventions similar

to NumPy [12] in Python for indexing. For example, Y[𝑖, 𝑗] is the
entry at the 𝑖-th row and the 𝑗-th column in matrix Y.

Generalizable Recommender System
During Temporal Popularity Distribution Shifts KDD ’25, August 3–7, 2025, Toronto, ON, Canada

For dataset representation at time stage 𝑡 ∀𝑡 ∈ {1, . . . ,𝑇 }, we
denoted it as D𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 }, whereU𝑡 stands for the user
set, I𝑡 for the item set, E𝑡 for the user-item interaction set, and

Y𝑡 for the user-item interaction matrix. The subscript 𝑡 signifies

the time stage 𝑡 . 3 We consider binary user-item interaction in this

work, where Y𝑡 [𝑢, 𝑖] = 1 indicates interaction between user 𝑢 and

item 𝑖 within the 𝑡-th time period, and 0 otherwise.

Real-world temporal popularity distribution shifts.We esti-

mate item popularity at time stage 𝑡 using the number of interac-

tions for each item: 𝑝𝑡
𝑖
= |E𝑡 (𝑖) |. Each time stage 𝑡 is considered a

distinct environment 𝑒𝑡 ∀𝑡 ∈ {1, . . . ,𝑇 } with varying popularity dis-
tributions [𝑚𝑡

1
, · · · ,𝑚𝑡| I𝑡 |], where𝑚

𝑡
𝑖
=

𝑝𝑡
𝑖∑

𝑗 ∈I𝑡 𝑝
𝑡
𝑗

, due to temporal

shifts over time. Earlier work [36] highlights persistent popularity

distribution shifts between consecutive stages, with the degree of

shift tending to increase over time.

As an empirical validation, we analyze whether temporal popu-

larity distribution shifts exist in the real-world datasets used in the

paper. We examined the shift between the initial and current stage

(1, 𝑡) using the Jensen-Shannon Divergence (JSD) as shown in Fig-

ure 1. The results indicate that JSD(1, 𝑡) tends to increase over time

on all datasets, showing clear evidence of popularity distribution

shifts over time.

Generalization in temporal shifts. Our objective is to ensure

the generalization ability of a model trained on historical data to

perform well in the future environment 𝑒𝑇+1, which is highly likely

to exhibit a changed popularity distribution. Specifically, the model

generates a top-𝑁 recommendation list [𝑖1, . . . , 𝑖𝑁] for each user 𝑢,

ranked by the predicted scores 𝑠𝑇+1
𝑢𝑖

,∀𝑖 , and this list should align

closely with the user’s actual decisions in the future environment.

Disentanglement principles. Drawing from prior disentangle-

ment methods [34, 35, 39], we identify two factors influencing

interaction label 𝑌 : (1) 𝑍prop: property factors related to user’s pure

interest in intrinsic item properties (2) 𝑍pop: popularity factors re-

lated to user’s conformity influenced by item popularity. Typically,

those factors are represented separately.

Problem definition. Our problem is formally defined as follows:

Problem 1 (Generalization in Temporal Popularity Distribution

Shifts). Input: a sequentially collected datasetD𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 },∀𝑡 ∈
{1, . . . ,𝑇 } and the popularity 𝑝𝑡

𝑖
of item 𝑖 at each time stage 𝑡 .

Output: an out-of-distribution generalizable model that delivers
high-quality recommendations in a future time stage with a different
popularity distribution from the past.

3 Proposed Framework
In this section, we propose TTTTTTTTTTTTTTTTTemporal PPPPPPPPPPPPPPPPPopularity distribution shift

generalizABABABABABABABABABABABABABABABABABle recommender system (TPAB), a novel recommender

system designed to maintain robustness against temporal popular-

ity distribution shifts. In summary, TPAB introduces three distinct

technical aspects. First, it employs (1) a temporal-aware disen-
tangled embedding framework for users and items, where the

popularity embeddings capture temporal popularity (Section 3.1).

3
Depending on the needs of the system or implementation, the time stage could

be either a specific time frame (e.g., daily, weekly, monthly) or until a specific number

of interactions has been collected.

Table 1: Main symbols used in this paper.

Symbol Description

D𝑡 Dataset collected at time stage 𝑡

U𝑡 , I𝑡 , E𝑡 Sets of users, items, and their interactions at time stage 𝑡

𝑈int,𝑈conf
Interest and conformity embeddings for a user, respectively

𝐼prop, 𝐼pop Property and popularity embeddings for an item, respectively

𝑠𝑢𝑖 Final recommendation score between 𝑢 and 𝑖

Lerm, Lboot
Empirical risk minimization and bootstrapping loss

𝑝𝑡
𝑖

Popularity of item 𝑖 at time stage 𝑡

𝐶 Temporal popularity coarsening function

𝐾 The number of categories for popularity coarsening

𝜆 Scaling parameter for L
boot

𝛼 Controlling parameter for next-time popularity forecasting

Figure 2: Dependencies of embeddings and scores in TPAB.

Then, within this framework, (2) popularity coarsening (Sec-

tion 3.2) and (3) popularity bootstrapping (Section 3.3) are pro-

posed to further enhance generalization. We also provide theoretical
analysis to demonstrate that the bootstrapping loss helps eliminate
the effect of popularity on the learned model. For training, TPAB
jointly employs the standard empirical risk minimization loss and

the bootstrapping loss (Section 3.4). During inference, TPAB first

derives test-time popularity embeddings for items and integrates

them with the property embeddings for future recommendations

(Section 3.5). The detailed training and inference procedures of

TPAB are elaborated in Algorithms 1 and 2, respectively.

3.1 Temporal-Aware Disentangled Embeddings
In most existing disentanglement methods, there is a prevailing

design principle to separate an item’s intrinsic property and its

popularity into distinct embeddings. Similarly, user representations

include counterparts for property and popularity: user interest in
item property and user conformity to popularity, respectively. One

of our key contributions extends beyond the conventional design

that primarily addresses static popularity by proposing a new disen-

tanglementmechanism that captures temporal popularity, separated
from the invariant property.

We formally define our embeddings of user/item for each inter-

action (𝑢, 𝑖, 𝑡) ∈ E𝑡 ∀𝑡 ∈ {1, . . . ,𝑇 } as follows:

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, & Hanghang Tong

• For an item 𝑖 , two embedding functions, 𝐼prop and 𝐼pop, capture

the item’s invariant property and changing popularity, respec-

tively. To distinguish these features, we propose using the item’s

popularity 𝑝𝑡
𝑖
at time stage 𝑡 as the categorical input for 𝐼pop,

while 𝐼prop takes the item ID as the input. Note that a popularity

integer value is used as categorical input, similar to ID, as done

in previous works [35]. Unlike those works, we use temporal

popularity 𝑝𝑡
𝑖
rather than global/static popularity 𝑝𝑖 . The overall

item representation is the concatenation of 𝐼prop and 𝐼pop.

• For a user 𝑢, two embedding functions for user interest and con-

formity,𝑈int and𝑈conf
, correspond to 𝐼prop and 𝐼pop, respectively.

Both take the user ID as input, reflecting the exact same architec-

ture but dependent on their item-side counterparts. We denote

them by different names to emphasize their semantics. The over-

all user representation is concatenation of𝑈int and𝑈conf
.

All aforementioned embedding functions (i.e., 𝐼prop, 𝐼pop,𝑈int, and

𝑈
conf

) are based on the same backbone recommendation model,

but only 𝐼pop takes temporal popularity 𝑝𝑡
𝑖
as input, which sim-

plifies our method. The backbone models can be any that encode

embedding vectors, such as MF [20] or LightGCN [8], and their

embedding dimensions are all 𝑑 . Then, we compute the user-item

recommendation score 𝑠𝑢𝑖 as follows:

𝑠𝑢𝑖 := ⟨𝑈int (𝑢) | |𝑈conf
(𝑢), 𝐼prop (𝑖) | |𝐼pop (𝐶 (𝑝𝑡𝑖))⟩, (1)

where || is a concatenation operator, ⟨·, ·⟩ is the dot product, and
𝐶 (𝑝𝑡

𝑖
) denote the coarsened temporal popularity. We will introduce

popularity coarsening in Section 3.2. Note that this final recom-

mendation score can also be interpreted as the sum of the property

factor score 𝑠
prop

𝑢𝑖
and the popularity factor score 𝑠

pop

𝑢𝑖
as follows:

𝑠𝑢𝑖 := 𝑠
prop

𝑢𝑖
+ 𝑠pop
𝑢𝑖

, (2)

𝑠
prop

𝑢𝑖
:= ⟨𝑈int (𝑢), 𝐼prop (𝑖)⟩, 𝑠

pop

𝑢𝑖
:= ⟨𝑈

conf
(𝑢), 𝐼pop (𝐶 (𝑝𝑡𝑖))⟩. (3)

𝑠
prop

𝑢𝑖
and 𝑠

prop

𝑢𝑖
represent how much the corresponding factors in-

fluence the user-item interaction. Refer to Figure 2 for a graphical

representation illustrating the dependencies between embeddings

and scores in TPAB.

3.2 Popularity Coarsening
Based on such embedding design leveraging the temporal popu-

larity, we propose a new technique of popularity coarsening with

exponential bucketing for 𝐼pop. This technique offers two key ad-

vantages: (1) reducing the model’s sensitivity to item popularity

and (2) mitigating size differences between different buckets.

First, we define the coarsening function that maps each popular-

ity 𝑝𝑡
𝑖
to𝐾 categories (i.e., bucketing), where𝐾 is a hyperparameter:

𝐶 (𝑝𝑡𝑖) := 𝑘 if 𝑝
𝑘−1
𝐾

max
< 𝑝𝑡𝑖 ≤ 𝑝

𝑘
𝐾
max

, ∀𝑘 ∈ {1, . . . , 𝐾}, (4)

where 𝑝max represents the maximum temporal popularity (i.e.,

𝑝max = max(𝑝𝑡
𝑖
)). Then, we use this coarsened popularity ID (i.e., 𝑘)

as an input for the popularity embedding as 𝐼pop (𝐶 (𝑝𝑡𝑖)). This coars-
ening encourages TPAB to be less sensitive to minor fluctuations

in item popularity, thus enhancing generalizability on unseen data.

Without coarsening, items with “same” popularity share the same

popularity embeddings. However, with coarsening, items with a

“similar” level of popularity share the same popularity embeddings.

Algorithm 1 Training procedure of TPAB

1: Input: Coarsening parameter 𝐾 , scaling parameter 𝜆, popu-

larity trend drift parameter 𝛼 , the number of negative items

𝑛 for L
bpr

and L
boot

, input dataset D𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 }𝑇𝑡=1,
initialized model parametersW = {𝑈int,𝑈conf

, 𝐼prop, 𝐼pop}
2: Output: Updated model parametersW
3: Set 𝑝𝑡

𝑖
← |E𝑡 (𝑖) |,∀𝑖 ∈ I𝑡 ,∀𝑡 = 1, · · · ,𝑇

4: for each epoch do
5: for mini-batch B obtained from E do
6: Negative set N← {};
7: for user-item interaction (𝑢, 𝑖) ∈ B do
8: Sample 𝑛 negative items as N𝑢𝑖 ;
9: Update N← N ∪ {(𝑢, 𝑖′)}𝑖′∈N𝑢𝑖 ;
10: end for
11: Compute the ERM loss L

bpr
with B ∪N by Eq. (9);

12: Randomly sample R← {(𝑢, 𝑖, 𝑝′)} (𝑢,𝑖) ∈B∪N ;
13: Compute the bootstrapping loss L

boot
with R by

Eq. (10);

14: UpdateW based onL
bpr
+𝜆L

boot
via gradient descent;

15: end for
16: end for

Algorithm 2 Inference procedure of TPAB

1: Input: Temporal item popularity 𝑝𝑡
𝑖
, trained parametersW

2: Output: Top-𝑁 recommendation lists

3: Predict 𝑝𝑇+1
𝑖
← 𝑝𝑇

𝑖
+ 𝛼 (𝑝𝑇

𝑖
− 𝑝𝑇−1

𝑖
);

4: for user 𝑢 ∈ U do
5: 𝑆𝑇+1

𝑢𝑖
←⟨𝑈int (𝑢) | |𝑈conf

(𝑢), 𝐼prop (𝑖) | |𝐼pop (𝐶 (𝑝𝑇+1𝑖
))⟩,∀𝑖 ∈I;

6: Generate top-𝑁 recommendation list for 𝑢 based on 𝑆𝑇+1
𝑢𝑖

;

7: end for

Second, we choose exponential bucketing over uniform bucket-

ing (i.e., 𝐶 (𝑝𝑡
𝑖
) :=𝑘 if

𝑝max · (𝑘−1)
𝐾

< 𝑝𝑡
𝑖
≤ 𝑝max ·𝑘

𝐾
, ∀𝑘 ∈ {1, . . . , 𝐾}) to

address the size difference across different popularity buckets. This

size difference is a noticeable problem, even without coarsening,

due to the typical long-tail distribution of item popularity, where

there are many unpopular items and few popular items [4, 23] (e.g.,

the number of items with 𝑝 = 5 is much larger than the number of

items with 𝑝 = 50). Our coarsening addresses this size difference

by exponentially grouping popularity levels (e.g., 𝑝 = 5 ∼ 10 is

grouped by 𝑘 = 2, and 𝑝 = 10 ∼ 50 is grouped by 𝑘 = 3).

Based on our scoring mechanism with coarsened temporal popu-

larity (Eq. (1)), which reduces TPAB’s sensitivity tominor popularity

fluctuations, we can use any empirical risk minimization (ERM)

loss such as Bayesian Personalized Ranking (BPR) or Sampled Soft-

max loss. In this work, owing to its efficiency and consistency with

our theory on bootstrapping loss, we use BPR loss, denoted as

L
bpr
({𝑠𝑢𝑖 }𝑢∈U,𝑖∈I), which will be detailed in Section 3.4

3.3 Popularity Bootstrapping
While the embedding design with coarsened temporal popularity

enhances the generalizability of TPAB on future data, the disentan-

glement between property and popularity factors may still be sub-

optimal when only using the standard empirical risk minimization

Generalizable Recommender System
During Temporal Popularity Distribution Shifts KDD ’25, August 3–7, 2025, Toronto, ON, Canada

loss (L
bpr

). To address this, we propose the concept of popularity
bootstrapping, which enhances the invariance of property embed-

dings to the popularity. Specifically, we design an additional risk

minimization loss that replaces the temporal popularity embedding

with a randomly sampled temporal popularity embedding, defined

as follows:

L
boot

:= L
bpr
({𝑠𝑢𝑖 |𝑝′}𝑢∈U,𝑖∈I), (5)

𝑠𝑢𝑖 := ⟨𝑈int (𝑢) | |𝑈conf
(𝑢), 𝐼prop (𝑖) | |𝐼pop (𝐶 (𝑝′))⟩. (6)

where 𝑝′ denotes a randomly sampled popularity of an arbitrary

item at an arbitrary time stage, and thus,𝐶 (𝑝′) represents randomly

sampled coarsened popularity from a sample size of 𝐾 . Optimiz-

ing L
boot

encourages 𝐼prop to more accurately learn intrinsic item

properties that remain invariant to the temporal popularity 𝐼pop.

Beyond intuition, we provide theoretical analysis on the effect of

the bootstrapping loss in the training of TPAB.

Theorem 3.1 (Bootstrapping Loss). For simplicity, let 𝑝 denote
𝐶 (𝑝), which represents coarsened popularity from a sample size of 𝐾 .
Given a triplet for the BPR loss (𝑢, 𝑖1, 𝑖2), where 𝑖1 is a positive item and
𝑖2 is a negative item, let 𝑠1 (𝑝1) = 𝑠prop

1
+𝑠pop𝑝1

be the true score based on
the true popularity 𝑝1 of the positive pair (𝑢, 𝑖1), and 𝑠1 (𝑝′

1
) = 𝑠prop

1
+

𝑠
prop
2

be the predicted score based on randomly sampled popularity
𝑝′
1
. Similarly, we define 𝑠2 (𝑝2) and 𝑠2 (𝑝′

2
) for negative pair (𝑢, 𝑖2).

Assuming that the user chooses either 𝑖1 and 𝑖2 with probability
𝜎 (𝑠1 (𝑝1) − 𝑠2 (𝑝2)) and 𝜎 (𝑠2 (𝑝2) − 𝑠1 (𝑝1)), respectively, the optimal
solution for minimizing the bootstrapping loss is given by:

𝑠
prop
1
− 𝑠prop

2
= log

E𝑝1,𝑝2 𝜎 (𝑠1 (𝑝1) − 𝑠2 (𝑝2))
E𝑝1,𝑝2 𝜎 (𝑠2 (𝑝2) − 𝑠1 (𝑝1))

; (7)

𝑠
pop
𝑝′
1

= 𝑠
pop
𝑝′
2

, ∀𝑝′
1
, 𝑝′

2
. (8)

Proof is in Section A. Theorem 3.1 presents two conclusions.

First, Eq. (7) shows that only property scores affect the equation,

with no influence from popularity scores. Second, Eq. (8) shows

that popularity scores are the same for every possible popularity

value, implying that the bootstrapping loss effectively eliminates

the effect of popularity on the learned model. Thus, when jointly

used with our ERM loss, which aims to accurately learn both prop-

erty and popularity embeddings, and when employing temporal

popularity, the bootstrapping loss promotes invariance of the prop-

erty embeddings to temporal popularity changes. In Section 4.3, we

empirically verify the effectiveness of the bootstrapping loss.

3.4 Training Protocol
Our BPR loss [20], which we use as ERM loss, is defined as follows:

L
bpr

:= − 1

|E |
∑︁

(𝑢,𝑖,𝑡) ∈E

1

|N𝑢𝑖 |
∑︁

𝑖′∈N𝑢𝑖
log(𝜎 (𝑠𝑢𝑖 − 𝑠𝑢𝑖′)), (9)

where 𝜎 (·) is the sigmoid function, and N𝑢𝑖 is a set of sampled

negative items for (𝑢, 𝑖). By optimizing L
bpr

, 𝐼prop and 𝐼pop become

adept at capturing intrinsic item characteristics and temporal popu-

larity, respectively. We let the user representations (𝑈int and 𝑈conf
)

naturally adapt to their corresponding item-side counterparts.

To be specific, L
boot

(Eq. (5)) is formulated as follows:

L
boot

:= − 1

|E |
∑︁

(𝑢,𝑖,𝑡) ∈E

1

|N𝑢𝑖 |
∑︁

𝑖′∈N𝑢𝑖
log(𝜎 (𝑠𝑢𝑖 − 𝑠𝑢𝑖′)), (10)

where the only difference from L
bpr

is the use of bootstrapped

scores for both positive and negative items.

For our final loss, we jointly use Lerm and L
boot

as follows:

L := L
bpr
+ 𝜆L

boot
, (11)

where 𝜆 is a scaling parameter that controls the degree of the

bootstrapping loss. By training the final loss in Eq. (11), TPAB
achieves the disentangled user/item embeddings that generalize

well during temporal popularity distribution shifts.

Remark (variance in risks). Note that [15] demonstrated the

benefits of equalizing training risks (e.g., loss value) across differ-

ent environments for enhanced generalization. Guided by these

insights, in Section 4.4, we present evidence of the effectiveness of

our popularity coarsening (Eq. (4)) and bootstrapping (Eq. (5)) not

only in the overall accuracy but also in the reduction of variance in

risks. In essence, both techniques encourage items across different

time stages to share the popularity embeddings, by imposing coars-

ening and bootstrapping (randomness), which may lead to smaller

variances and thereby indicate enhanced generalization ability.

3.5 Inference Protocol
For inference, we first infer the next-time popularity 𝑝𝑇+1

𝑖
for ev-

ery item 𝑖 using classic time-series forecasting, following previous

works [36, 37]:

𝑝𝑇+1𝑖 := 𝑝𝑇𝑖 + 𝛼 (𝑝
𝑇
𝑖 − 𝑝

𝑇−1
𝑖), (12)

where 𝛼 is a hyperparameter that controls the popularity trend drift.

With this predicted popularity, we get the next-time popularity

embedding of 𝑖 as follows: 𝐼pop (𝐶 (𝑝𝑇+1𝑖
)). Note that if the predicted

popularity exceeds the maximum popularity 𝑝max, we approximate

it to 𝑝max.

Then, the top-𝑁 recommendation list for each user is generated

based on predicted scores as follows:

𝑠𝑇+1𝑢𝑖 := ⟨𝑈int (𝑢) | |𝑈conf
(𝑢), 𝐼prop (𝑖) | |𝐼pop (𝐶 (𝑝𝑇+1𝑖))⟩. (13)

By uniquely and accurately capturing item property and temporal

popularity in representations, our model achieves strong out-of-

distribution generalization in the temporal popularity distribution

shifts, as we will demonstrate in Section 4.

Complexity analysis. Our bootstrapping loss introduces only

a marginal increase in the time complexity to the ERM loss. As-

suming we employ MF [20] as the base recommendation model

with user/item sub-embeddings of dimensionality 𝑑 , the time com-

plexity of minimizing L
bpr

is O(|E|𝑛𝑑), where 𝑛 represents the

number of negative items. Given that the bootstrapping loss L
boot

shares the same structure as L
bpr

, differing only in the randomly

sampled popularity 𝑝′, the time complexity of minimizing it re-

mains O(|E|𝑛𝑑). The time complexity for computing the temporal

popularity 𝑝𝑡
𝑖
:= |E𝑡 (𝑖) |,∀𝑖 ∈ I𝑡 ,∀𝑡 = 1, · · · ,𝑇 , is O(|I|𝑇), and

computing the next-time popularity 𝑝𝑇+1
𝑖

is O(|I|). Both are neg-

ligible compared to that of the losses and require only a one-time

pre-computation before model training.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, & Hanghang Tong

4 Experiments
We design experiments to answer the key research questions (RQs):

RQ1. To what extent does TPAB outperform its competitors?

RQ2. How does each design in TPAB enhance generalization?

RQ3. How does geometric separation affect embeddings of TPAB?
RQ4. How sensitive is TPAB to its hyperparameter?

RQ5. How time-efficient is TPAB compared to its competitors?

4.1 Experimental Settings
4.1.1 Datasets. We use the following real-world temporal datasets.

• Micro-video [37]: This dataset is an industrial dataset collected

from a micro-video APP. It contains 210, 550 interactions be-

tween 25, 871 users and 44, 503 micro-videos over one month.

Specifically, it sets Y[𝑢, 𝑖] = 1 if user 𝑢 played a micro-video 𝑖 for

durations exceeding 8 seconds, and Y[𝑢, 𝑖] = 0 otherwise.

• KuaiRand4: This popular video recommendation dataset con-

tains 621, 064 click interactions on 7, 076 movies by 22, 128 users

over one month.

To simulate temporal popularity distribution shifts, we first sort

the interactions chronologically and then partition them into train-

ing, validation, and testing sets with a ratio of 8:1:1. We then further

split the training set into 8 time stages, each with an equivalent time

range. This process yields {D1, · · · ,D𝑇 ,Dval
,Dtest}, where 𝑇 = 8.

As Figure 1 shows, the test and training popularity distributions

are not identical, reflecting temporal distribution shifts.

Additionally, to test the model’s generalizability over longer time

periods, we show results on larger/longer datasets Amazon-book
and Yelp2022, which span 17 years and 10 years, in Appendix B.

4.1.2 Compared methods. To ensure the independence of TPAB’s
effectiveness from the base recommender system used, we use two

base models, Matrix Factorization (MF) [20] and LightGCN [8], both

with the Bayesian Personalized Ranking (BPR) loss [20].

We compare TPABwith other competitors designed to generalize

well in unseen popularity distribution shifts. The competitors fall

into two categories. First, the (entangled) competitors leveraging

temporal popularity include:

• PDA (Popularity-bias deconfounding/adjusting) [36]: Thismethod

estimates future popularity for each item to recalibrate user-item

matching scores in both the training and inference phases.

• PDRO (Popularity-aware distributionally robust optimization) [37]:

Building on the PDA approach, this method incorporates tempo-

ral popularity into the group-DRO [29] for recommendations.

Second, the disentangled competitors are all based on two em-

beddings for users and items, similar to TPAB. However, they only

consider the static popularity, while TPAB considers temporal the

dynamics in popularity. Those competitors are listed as follows:

• DICE [39]: This method aims for disentanglement based on

popularity-aware negative item sampling/learning.

• Margin [34]: This method achieves disentanglement by incorpo-

rating popularity factors as margins in the loss function based

on property factors. It only uses invariant interest/property em-

beddings for inference.

4
https://kuairand.com/.

• InvCF [35]: This method aims for disentanglement based on

representation augmentation and disentanglement modules. It

only uses invariant interest/property embeddings for inference.

• DCCL [38]: This method achieves disentanglement based on

popularity-aware augmentation and contrastive learning.

Additionally, we conduct an ablation study of TPAB, which uti-

lizes three distinct technical aspects: (1) temporal-aware disen-

tangled embeddings, (2) popularity coarsening, and (3) popularity

bootstrapping. Each of these techniques is orthogonal to the others,

meaning that any can be independently toggled on or off within

TPAB. 5 We introduce three variants of TPAB as follows:

• TPAB-T: TPAB uses static/global popularity 𝑝𝑖 for each item,

instead of temporal popularity 𝑝𝑡
𝑖
.

• TPAB-C: TPAB without the popularity coarsening (𝐶 (·)).
• TPAB-B: TPAB without the popularity bootstrapping (L

boot
).

4.1.3 Evaluation. We employ the all-item-ranking method (i.e., us-

ing all items that a user did not interact with as candidate items

for recommendation) to assess the top-𝑁 recommendation accu-

racy [14]. Our evaluation metrics include Recall@𝑁 and NDCG@𝑁

(normalized discounted accumulated gain), where 𝑁 = 10 or 20.

4.1.4 Implementation details. For all comparedmethods, we ensure

consistency by employing one negative user-item pair for each

positive user-item pair in BPR loss, setting the learning rate to

0.001, and applying L2 regularization of 0.0001. Model parameters

are updated using the Adam optimization algorithm [13]. For the

implementation details of all the competitors, refer to Appendix D.

For TPAB, we choose 𝐾 values from [20, 40, 60] and 𝜆 values

from [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]. Specifically, we set 𝐾 = 20 and

𝜆 = 1.0 for Micro-video in all cases, 𝐾 = 60 and 𝜆 = 3.0 for MF-

based models on KuaiRand, and 𝐾 = 20 and 𝜆 = 2.0 for LightGCN-

based models on KuaiRand (See Section 4.5). We also maintain 𝛼 =

0.2 in all scenarios, in line with previous research [37]. To ensure

reproducibility, we utilize a random seed during experimentation

and report the mean and standard deviation values from five runs.

We will release the source code upon the publication of the paper.

4.2 Main Results
To answer RQ1, we compare TPAB with seven competitors, evalu-

ating their recommendation performance in temporal popularity

distribution shifts. Table 2 shows the results across various metrics,

base recommendation models, and datasets. Boldface and under-

lined values signify the best and second-best performances in each

column for each base model.

First, no single competitor consistently outperforms others; the

best one varies based on metrics, base models, and datasets. How-

ever, TPAB consistently outperforms all competitors, with an av-

erage improvement of 8.33% over the best competitor in each case

(spec., 12.43%, 9.38%, 10.84% over PDA, DICE, DCCL, respectively).
These results underscore TPAB as effective in tackling the out-of-

distribution generalization challenge posed by temporal popularity

distribution shifts.

Temporal popularity-aware competitors (PDA and PDRO) lever-
age the concept of calibrating original recommendation scores with

5
For instance, even without coarsening, TPAB still employs temporal popularity

as a categorical input for popularity embedding functions, as detailed in Section 3.1.

https://kuairand.com/

Generalizable Recommender System
During Temporal Popularity Distribution Shifts KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 2: Recommendation performance of TPAB and seven competitors using MF and LightGCN (LGCN) base models. TPAB
consistently outperforms all competitors across all metrics on both datasets, showcasing its superior generalization ability.

Models Micro-video KuaiRand
Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@10 NDCG@10 Recall@20 NDCG@20

MF

Vanilla 0.0755±0.0023 0.0532±0.0021 0.1139±0.0021 0.0656±0.002 0.0642±0.001 0.0426±0.0005 0.1111±0.0016 0.0581±0.0007

PDA 0.0757±0.0022 0.0531±0.0016 0.1143±0.0023 0.0657±0.0019 0.065±0.0014 0.0431±0.0008 0.1126±0.0014 0.0588±0.0009

PDRO 0.073±0.0016 0.0516±0.0008 0.112±0.0013 0.0642±0.0008 0.0586±0.0021 0.0386±0.0015 0.1016±0.0028 0.0529±0.0017

DICE 0.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.00270.0792±0.0027 0.0579±0.0022 0.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.0030.1144±0.003 0.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.00240.0693±0.0024 0.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.00130.0713±0.0013 0.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.00060.0471±0.0006 0.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.00250.1212±0.0025 0.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.00090.0637±0.0009

Margin 0.0611±0.0021 0.0426±0.0007 0.0926±0.0035 0.0528±0.001 0.0558±0.001 0.0378±0.001 0.0937±0.0009 0.0503±0.0008

InvCF 0.0759±0.0025 0.0534±0.0016 0.116±0.0021 0.0665±0.0016 0.0576±0.0007 0.0384±0.0007 0.0987±0.0016 0.0522±0.0009

DCCL 0.0768±0.0017 0.0545±0.0014 0.1163±0.0019 0.0674±0.001 0.0683±0.0013 0.0454±0.0009 0.118±0.0017 0.0619±0.0011

TPAB 0.0829±0.0021 0.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.00230.0578±0.0023 0.1238±0.0036 0.0712±0.0027 0.0827±0.001 0.0549±0.0004 0.138±0.0019 0.0732±0.0005
Imp. / best 4.67% -0.17% 6.45% 2.74% 15.15% 15.92% 13.86% 14.76%

LGCN

Vanilla 0.0857±0.0024 0.0591±0.0018 0.1274±0.0029 0.0724±0.0019 0.0746±0.0003 0.0497±0.0003 0.1281±0.0012 0.0672±0.0005

PDA 0.0865±0.0026 0.0593±0.0019 0.1278±0.0032 0.0726±0.002 0.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.00060.0768±0.0006 0.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.00030.0513±0.0003 0.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.0010.1306±0.001 0.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.00030.069±0.0003

PDRO 0.0867±0.0011 0.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.00080.0599±0.0008 0.1264±0.0021 0.0728±0.0011 0.0749±0.0006 0.05±0.0003 0.1272±0.0005 0.0672±0.0002

DICE 0.0855±0.0009 0.0591±0.0013 0.1283±0.0025 0.0728±0.0016 0.0751±0.0006 0.05±0.0002 0.1283±0.0005 0.0674±0.0002

Margin 0.0788±0.0018 0.0537±0.0004 0.1152±0.0019 0.0656±0.0004 0.0647±0.001 0.0432±0.0005 0.1114±0.0006 0.0585±0.0003

InvCF 0.0875±0.0014 0.0593±0.0014 0.1278±0.0014 0.0723±0.0013 0.0742±0.0003 0.0496±0.0002 0.1271±0.0006 0.067±0.0002

DCCL 0.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.0020.0877±0.002 0.0599±0.0012 0.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.00190.1301±0.0019 0.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.0010.0737±0.001 0.0743±0.0002 0.0495±0.0001 0.1277±0.0006 0.067±0.0002

TPAB 0.0896±0.0018 0.0616±0.0013 0.1336±0.0017 0.0759±0.0013 0.0864±0.0003 0.0569±0.0003 0.147±0.0008 0.0769±0.0004
Imp. / best 2.17% 2.84% 2.69% 2.99% 12.50% 10.92% 12.56% 11.45%

Figure 3: Ablation study of TPAB w.r.t. recommendation ac-
curacy. Each component—temporal popularity, popularity
coarsening, and popularity bootstrapping—is effective.When
employed together, TPAB achieves the best accuracy.

predicted next-time popularity, and we empirically observe that

such concept contributes significantly to their performance. How-

ever, their entangled embeddings of user/item may indiscriminately

prioritize potential popular items, lacking a clear distinction be-

tween user interest in item property and user conformity to item

popularity. This limitation hampers their generalization ability in

scenarios with unseen popularity distribution shifts.

Conversely, disentanglement-based competitors (DICE, Margin,
InvCF, and DCCL), while attempting to separate intrinsic prop-

erty factors from popularity factors, neglect temporal dynamics in

popularity, leading to suboptimal generalization during temporal

distribution shifts. TPAB successfully integrates temporal popu-

larity with disentanglement principles, based on temporal-aware

embeddings, popularity coarsening, and bootstrapping.

Figure 4: Ablation study of TPABw.r.t. variance in risks across
time stages. Popularity coarsening and bootstrapping reduces
variance, supporting their effectiveness in enhancing gener-
alization of TPAB.

4.3 Ablation Studies
To answer RQ2, we conduct a detailed exploration of the impact of

the use of temporal popularity embeddings (𝑝𝑡
𝑖
), popularity coars-

ening (Eq. (4)) and popularity bootstrapping (Eq. (5)). Specifically,

we compare TPAB with its three variants (TPAB-T, TPAB-C, TPAB-
B), as outlined in Section 4.1.2, evaluating both recommendation

accuracy and variance in risks across different time stages.

4.3.1 Accuracy. Figure 3 shows that TPAB consistently and sig-

nificantly outperforms TPAB-T, TPAB-C, and TPAB-B, indicating
that the use of temporal popularity, popularity coarsening, and

popularity bootstrapping each contribute to enhancing the gener-

alization ability of TPAB. Here is a possible explanation for each

result: Coarsening helps reduce TPAB’s sensitivity to minor fluctua-

tions in popularity. The bootstrapping loss promotes the invariance

of property embeddings to popularity embeddings, as demonstrated

by the Theorem 3.1 on bootstrapping loss. Moreover, using temporal

popularity instead of global/static popularity allows the coarsening

and bootstrapping to consider temporal dynamics in popularity.

4.3.2 Variance. Note that [15] demonstrated that equalizing train-

ing risks across different environments enhances generalization.

Guided by these insights, we assess the variance in recommendation

scores across different time stages for TPAB and its two variants,

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, & Hanghang Tong

Figure 5: Comparison of disentanglementmethods with vary-
ing weights of the geometric separation. While Classic oc-
casionally benefits from this technique, it harms the expres-
siveness of embeddings in TPAB.

Table 3: Efficiency comparison of the average running time
(seconds) per epoch for TPAB and seven competitors.

Models Vanilla PDA PDRO DICE Margin DCCL InvCF TPAB

Runtime (s) 10.14 10.85 20.70 15.62 15.73 15.84 15.84 13.06

TPAB-C and TPAB-B, in Figure 4 (refer to the legend for specific

numbers). Lower variance indicates greater equality. The results

consistently show that, after convergence, TPAB has the lowest

variance on both datasets. This aligns with the observed trend in

the recommendation accuracy, further supporting the effectiveness

of popularity coarsening and bootstrapping in enhancing general-

ization ability. We attribute the smaller variances to the fact that

both techniques encourage items across different time stages to

share the same popularity embeddings.

4.4 Analysis on Geometric Separation
As noted in Section 1, in addition to the ERM loss and the invari-

ance learning loss, many disentanglement methods utilize geo-

metric separation for orthogonality disentanglement between two

types of embeddings for users (𝐼prop and 𝐼pop); and items (𝑈int and

𝑈
conf

) [35, 39]. Specifically, it maximizes the distance metric (e.g.,

L1, L2, and distance correlation [24, 25]) between these two types of

embeddings. To answer RQ3, we investigate the impact of such geo-

metric separation to the expressiveness of embeddings of TPAB and

Classic, the latter representing the conventional disentanglement

approach using only L
bpr

with global/static popularity 𝑝𝑖 . We test

varying regularization weights [0, 0.001, 0.01, 0.1] and use distance

correlation as the metric [35, 39]. The results are in Figure 5.

The results show that while Classic occasionally benefits from

the separation effect, TPAB degrades with its use. Note that geomet-

ric separation acts as "regularization," which, although potentially

beneficial for disentanglement when applied judiciously, can limit

the expressiveness of embeddings in any disentanglement method,

including Classic. However, for TPAB, it constrains the expressive-
ness of embeddings in most scenarios, suggesting that geometric

separation is not advisable for TPAB. Moreover, the performance of

TPAB without geometric separation already exceeds that of Clas-
sic even when enhanced with separation. This suggests that TPAB
effectively disentangles invariant property embeddings and tem-

poral popularity embeddings through temporal-aware popularity

coarsening and bootstrapping.

Figure 6: Performance of TPAB with varying 𝜆. Using the
bootstrapping loss consistently enhances generalization. Ini-
tially, performance sharply increases with increasing 𝜆 val-
ues, then stabilizes or slightly declines thereafter.

Figure 7: Performance of TPAB with varying 𝐾 . Setting 𝐾
either too high or too low leads to suboptimal performance
due to overly weak or high coarsening effects, respectively.

4.5 Hyperparameter Analysis
To answer RQ4, we examine the impact of hyperparameters 𝜆 (the

scaling parameter for the bootstrapping lossL
boot

) and𝐾 (the num-

ber of buckets for popularity coarsening) on the recommendation

performance of TPAB.

4.5.1 Bootstrapping scaling parameter 𝜆. We show the recommen-

dation accuracy of TPAB with varying 𝜆 values [0, 0.5, 1.0, 1.5, 2.0,

2.5, 3.0] in Figure 6. Note that when 𝜆 = 0, TPAB does not use L
boot

.

The results indicate that incorporating L
boot

alongside L
bpr

con-

sistently leads to better generalization in all cases. Specifically, on

Micro-video, optimal performance occurs at 𝜆 = 1.0, with a slight

decline thereafter, possibly due to excessive bootstrapping (ran-

domness). Similarly, on the KuaiRand dataset, accuracy increases

sharply at 𝜆 = 1.5 and 𝜆 = 0.5 for MF and LightGCN-based models,

respectively, and then stabilizes.

4.5.2 Coarsening parameter𝐾 . We show the performance of TPAB
with varying 𝐾 values [2, 5, 10, 20, 40, 60, 80, 100] in Figure 7.

The results show that values around 𝐾 = 20 consistently performs

best in most cases, especially compared to when k is too small

or too large. This suggests that setting 𝐾 too high results in a

weak coarsening effect, while setting it too low, such as 𝐾 = 2,

results in overly strong coarsening with only two popularity levels.

Generalizable Recommender System
During Temporal Popularity Distribution Shifts KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Thus, selecting the appropriate level of coarsening requires careful

consideration.

We acknowledge some erratic behavior in the intermediate re-

sults. However, it is notable that 𝐾 = 20 significantly outperforms

cases without coarsening (i.e., TPAB-C). Preliminary experiments

also show that 𝐾 > 100 results in a performance drop, highlighting

a trend of diminishing performance as 𝐾 becomes excessively large.

An exception is observed in KuaiRand, particularly in MF, likely

due to its lower long-tailness (head-tail ratio of 1.57 compared to

<1.0 in other datasets) and higher maximum temporal popularity

(e.g.,𝑚𝑎𝑥 (𝑝𝑡
𝑖
) = 2678), indicating extreme hubs. The current ex-

ponential partitioning may be less effective here, so 𝐾 should be

carefully selected based on dataset characteristics.

4.6 Time-efficiency Results
To answer RQ5, we show the average running time per epoch

(seconds) for TPAB and seven competitors using MF as backbones

in Table 3. Disentanglement-based methods (i.e., DICE, Margin,
InvCF, DCCL, TPAB) are slightly slower than the Vanilla method.

PDRO is the slowest due to its group-based distributionally robust

optimization. As shown in the complexity analysis in Section 3.5,

TPAB’s L
boot

shares the same structure as L
bpr

, differing only

in the randomly sampled popularity 𝑝′. Without more complex

invariance learning or additional geometric separation, TPAB does

not add significant computation to Vanilla.

5 Related Works
Temporal popularity distribution shifts. In real-world recom-

mendation scenarios, changing popularity distributions over time

can lead to variations in training and test set distributions, impact-

ing model performance. While classic debiasing techniques, such as

reweighting [11, 28], and regularization [5, 40], have been proposed,

recent works specifically focus on addressing out-of-distribution

generalization ability for future online service through the concept

of Distributionally Robust Optimization (DRO) [3, 17, 21]. For in-

stance, [30] uses DRO for better distribution adaptation by estimat-

ing the nominal distribution from input data and optimize themodel

within a robust radius. Another study [29] applies group-DRO, em-

phasizing the optimization of the worst user group performance,

addressing both fairness and the recommendation quality.

While these methods address out-of-distribution generalization,

they often neglect the temporal dynamics of popularity during

method design. To address this, a recent work [37] proposes a new

DRO objective that considers temporal popularity. It also utilizes

recalibration of recommendation scores based on predicted next-

time popularity following [36]. However, challenges persist as these

methods may indiscriminately prioritize potential popular items

due to entangled user/item embeddings, lacking a clear separation

between intrinsic property factors and popularity factors.

Disentangled representation learning. Disentanglement meth-

ods aim to separate intrinsic property and popularity factors, offer-

ing effective solutions for generalization during popularity distri-

bution shifts. Typically, they pursue two types of disentanglement

objectives: (O1) invariance learning and (O2) geometric separation.

For (O1), [39] uses popularity-aware negative item sampling, [4]

employs co-training of unbiased and biased models, [34] quantifies

popularity bias and uses these biases as margins for their loss func-

tion, and [35] uses techniques like representation augmentation to

learn invariant embeddings. As for (O2), different geometric sepa-

ration techniques are employed to maximize the discrepancy (e.g.,

L1 [39], L2 [39], Pearson correlation coefficient [4], and distance

correlation [27, 35, 39]) between the two types of embeddings. How-

ever, all these methods lack consideration for temporal dynamics

in popularity. Our approach, TPAB, effectively integrates tempo-

ral popularity with disentanglement using novel techniques like

temporal embeddings, popularity coarsening, and bootstrapping.

Sequential recommender. We also discuss the distinctions be-

tween TPAB and sequential recommender systems in Appendix E.

6 Conclusion
In this paper, we observe that while existing disentanglement meth-

ods have advanced in separating intrinsic property and popularity

to enhance generalization, they often overlook the temporal na-

ture of popularity shifts. To address this gap, we propose TPAB,
a novel disentanglement method that integrates temporal popu-

larity dynamics, based on temporal-aware embeddings, popularity

coarsening, and bootstrapping. We also offer a theoretical analysis

showing that the bootstrapping loss promotes the invariance of

property embeddings to temporal popularity changes. During infer-

ence, TPAB utilizes both derived next-time popularity embeddings

and property embeddings. Extensive experiments on real-world

temporal datasets validate the strong generalizability of TPAB dur-

ing temporal popularity distribution shifts.

Acknowledgments
This work is supported by NSF (2416070), NIFA (2020-67021-32799),

and IBM-Illinois Discovery Accelerator Institute. The content of the

information in this document does not necessarily reflect the posi-

tion or the policy of the Government, and no official endorsement

should be inferred. The U.S. Government is authorized to reproduce

and distribute reprints for Government purposes notwithstanding

any copyright notation here on.

References
[1] Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. 2021. Ee-net:

Exploitation-exploration neural networks in contextual bandits. arXiv preprint
arXiv:2110.03177 (2021).

[2] Albert-László Barabási. 2003. Linked: The new science of networks.

[3] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg,

and Gijs Rennen. 2013. Robust solutions of optimization problems affected by

uncertain probabilities. Management Science 59, 2 (2013), 341–357.
[4] Zhihong Chen, Jiawei Wu, Chenliang Li, Jingxu Chen, Rong Xiao, and Binqiang

Zhao. 2022. Co-training disentangled domain adaptation network for leveraging

popularity bias in recommenders. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval. 60–69.

[5] Zhihong Chen, Rong Xiao, Chenliang Li, Gangfeng Ye, Haochuan Sun, and

Hongbo Deng. 2020. ESAM: Discriminative Domain Adaptation with Non-

Displayed Items to Improve Long-Tail Performance. Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (2020). https://api.semanticscholar.org/CorpusID:218763654

[6] Sung Min Cho, Eunhyeok Park, and Sungjoo Yoo. 2020. MEANTIME: Mixture of

attention mechanisms with multi-temporal embeddings for sequential recom-

mendation. In Proceedings of the 14th ACM Conference on recommender systems.
515–520.

[7] Evert Gummesson. 2007. Case study research and network theory: birds of a

feather. Qualitative Research in Organizations and Management: An International
Journal 2, 3 (2007), 226–248.

[8] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

https://api.semanticscholar.org/CorpusID:218763654

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, & Hanghang Tong

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[9] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo

Rezende, and Alexander Lerchner. 2018. Towards a definition of disentangled

representations. arXiv preprint arXiv:1812.02230 (2018).
[10] Hawoong Jeong, Zoltan Néda, and Albert-László Barabási. 2003. Measuring

preferential attachment in evolving networks. Europhysics letters 61, 4 (2003),
567.

[11] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2016. Unbi-

ased Learning-to-Rank with Biased Feedback. Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining (2016). https://api.

semanticscholar.org/CorpusID:300418

[12] Diederik P Kingma and Jimmy Ba. 2011. Adam: A method for stochastic opti-

mization. Computing in science & engineering 13 (2011), 22–30.

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[14] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recom-

mendation. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining. 1748–1757.

[15] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan

Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville. 2021. Out-of-

distribution generalization via risk extrapolation (rex). In International Conference
on Machine Learning. PMLR, 5815–5826.

[16] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time interval aware self-

attention for sequential recommendation. In Proceedings of the 13th international
conference on web search and data mining. 322–330.

[17] Fengming Lin, Xiaolei Fang, and Zheming Gao. 2022. Distributionally robust

optimization: A review on theory and applications. Numerical Algebra, Control
and Optimization 12, 1 (2022), 159–212.

[18] Yunzhe Qi, Yikun Ban, and Jingrui He. 2023. Graph neural bandits. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
1920–1931.

[19] Ahmed Rashed, Shereen Elsayed, and Lars Schmidt-Thieme. 2022. Context and

attribute-aware sequential recommendation via cross-attention. In Proceedings of
the 16th ACM Conference on Recommender Systems. 71–80.

[20] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[21] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. 2019.

Distributionally robust neural networks for group shifts: On the importance

of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731
(2019).

[22] Paras Sheth, Ruocheng Guo, Kaize Ding, Lu Cheng, K Selçuk Candan, and Huan

Liu. 2022. Causal disentanglement with network information for debiased rec-

ommendations. In International Conference on Similarity Search and Applications.
Springer, 265–273.

[23] Harald Steck. 2011. Item popularity and recommendation accuracy. In Proceedings
of the fifth ACM conference on Recommender systems. 125–132.

[24] Gábor J Székely and Maria L Rizzo. 2009. Brownian distance covariance. The
annals of applied statistics (2009), 1236–1265.

[25] Gábor J Székely, Maria L Rizzo, and Nail K Bakirov. 2007. Measuring and testing

dependence by correlation of distances. (2007).

[26] Viet Anh Tran, Guillaume Salha-Galvan, Bruno Sguerra, and Romain Hennequin.

2023. Attention mixtures for time-aware sequential recommendation. In Proceed-
ings of the 46th International ACM SIGIR Conference on Research and Development
in Information Retrieval. 1821–1826.

[27] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng

Chua. 2020. Disentangled Graph Collaborative Filtering. Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (2020). https://api.semanticscholar.org/CorpusID:220347145

[28] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2019. Doubly Robust Joint

Learning for Recommendation on Data Missing Not at Random. In International
Conference on Machine Learning. https://api.semanticscholar.org/CorpusID:

174800959

[29] Hongyi Wen, Xinyang Yi, Tiansheng Yao, Jiaxi Tang, Lichan Hong, and Ed H Chi.

2022. Distributionally-robust Recommendations for Improving Worst-case User

Experience. In Proceedings of the ACM Web Conference 2022. 3606–3610.
[30] Zhengyi Yang, Xiangnan He, Jizhi Zhang, Jiancan Wu, Xin Xin, Jiawei Chen, and

Xiang Wang. 2023. A generic learning framework for sequential recommenda-

tion with distribution shifts. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 331–340.

[31] Hyunsik Yoo, Yeon-Chang Lee, Kijung Shin, and Sang-Wook Kim. 2023. Disen-

tangling Degree-related Biases and Interest for Out-of-Distribution Generalized

Directed Network Embedding. In Proceedings of the ACM Web Conference 2023.
231–239.

[32] Hyunsik Yoo, Zhichen Zeng, Jian Kang, Ruizhong Qiu, David Zhou, Zhining

Liu, Fei Wang, Charlie Xu, Eunice Chan, and Hanghang Tong. 2024. Ensuring

user-side fairness in dynamic recommender systems. In Proceedings of the ACM

on Web Conference 2024. 3667–3678.
[33] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung

Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive

learning for recommendation. In Proceedings of the 45th international ACM SIGIR
conference on research and development in information retrieval. 1294–1303.

[34] An Zhang, Wenchang Ma, Xiang Wang, and Tat-Seng Chua. 2022. Incorporating

bias-aware margins into contrastive loss for collaborative filtering. Advances in
Neural Information Processing Systems 35 (2022), 7866–7878.

[35] An Zhang, Jingnan Zheng, XiangWang, Yancheng Yuan, and Tat-Seng Chua. 2023.

Invariant Collaborative Filtering to Popularity Distribution Shift. In Proceedings
of the ACM Web Conference 2023. 1240–1251.

[36] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui

Ling, and Yongdong Zhang. 2021. Causal intervention for leveraging popularity

bias in recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 11–20.

[37] Jujia Zhao, Wenjie Wang, Xinyu Lin, Leigang Qu, Jizhi Zhang, and Tat-Seng

Chua. 2023. Popularity-aware Distributionally Robust Optimization for Recom-

mendation System. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management. 4967–4973.

[38] Weiqi Zhao, Dian Tang, Xin Chen, Dawei Lv, Daoli Ou, Biao Li, Peng Jiang, and

Kun Gai. 2023. Disentangled causal embedding with contrastive learning for

recommender system. In Companion Proceedings of the ACMWeb Conference 2023.
406–410.

[39] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.

Disentangling user interest and conformity for recommendation with causal

embedding. In Proceedings of the Web Conference 2021. 2980–2991.
[40] Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee.

2021. Popularity-Opportunity Bias in Collaborative Filtering. Proceedings of
the 14th ACM International Conference on Web Search and Data Mining (2021).

https://api.semanticscholar.org/CorpusID:232073630

A Proof of Theorem on Bootstrapping
Proof of Theorem 3.1. Recall that 𝑝 represents coarsened pop-

ularity, indicating 𝐾 popularity buckets. The user chooses either 𝑖1
and 𝑖2 with probability 𝜎 (𝑠1 (𝑝1) − 𝑠2 (𝑝2)) and 𝜎 (𝑠2 (𝑝2) − 𝑠1 (𝑝1)),
respectively. Lastly, let𝑈 be the uniform sampling distribution of

possible 𝑝 . Under this setting,

L
boot

= E
𝑝1,𝑝2∼𝑃, 𝑝′

1
,𝑝′

2
∼𝑈

[
(−𝜎 (𝑠1 (𝑝1) − 𝑠2 (𝑝2)) log𝜎 (𝑠1 (𝑝′1) − 𝑠2 (𝑝

′
2
)))

− (𝜎 (𝑠2 (𝑝2) − 𝑠1 (𝑝1)) log𝜎 (𝑠2 (𝑝′2) − 𝑠1 (𝑝
′
1
)))

]
, (14)

where 𝑝1 and 𝑝2 are true popularity and 𝑝′
1
and 𝑝′

2
are uniformly

and randomly sampled popularity due to the bootstrapping strat-

egy; and 𝜎 (·) is a sigmoid function. Since (𝑝′
1
, 𝑝′

2
) has 𝐾2

combina-

tions, we further have the following:

L
boot

=

− 1

𝐾2

∑︁
𝑝′
1
,𝑝′

2

(
E

𝑝1,𝑝2∼𝑃
[𝜎 (𝑠1 (𝑝1) − 𝑠2 (𝑝2))] log𝜎 (𝑠prop

1
− 𝑠prop

2
+ 𝑠pop

𝑝′
1

− 𝑠pop
𝑝′
2

)

+ E
𝑝1,𝑝2∼𝑃

[𝜎 (𝑠2 (𝑝2) − 𝑠1 (𝑝1))] log𝜎 (𝑠prop
2
− 𝑠prop

1
+ 𝑠pop

𝑝′
2

− 𝑠pop
𝑝′
1

)
)
.

(15)

The optimal solution of the system in the form of −𝑎 log𝑥 − (1 −
𝑎) log(1 − 𝑥) is 𝑥 = 𝑎. Therefore, the optimal solution of the above

optimization is:

𝜎 (𝑠prop
1
− 𝑠prop

2
+ 𝑠pop

𝑝′
1

− 𝑠pop
𝑝′
2

) = E
𝑝1,𝑝2∼𝑃

[𝜎 (𝑠1 (𝑝1) − 𝑠2 (𝑝2))], ∀𝑝′1, 𝑝
′
2
.

(16)

Solving the equations above gives the following optimal solution:

𝑠
prop

1
− 𝑠prop

2
= log

E𝑝1,𝑝2 𝜎 (𝑠1 (𝑝1) − 𝑠2 (𝑝2))
E𝑝1,𝑝2 𝜎 (𝑠2 (𝑝2) − 𝑠1 (𝑝1))

; 𝑠
pop

𝑝′
1

= 𝑠
pop

𝑝′
2

, ∀𝑝′
1
, 𝑝′

2
.

(17)

https://api.semanticscholar.org/CorpusID:300418
https://api.semanticscholar.org/CorpusID:300418
https://api.semanticscholar.org/CorpusID:220347145
https://api.semanticscholar.org/CorpusID:174800959
https://api.semanticscholar.org/CorpusID:174800959
https://api.semanticscholar.org/CorpusID:232073630

Generalizable Recommender System
During Temporal Popularity Distribution Shifts KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 5: Performance comparison of TPAB and seven com-
petitors using SimGCL backbone on Micro-video dataset.

R@10 N@10 R@20 N@20

SimGCL

Vanilla 0.0863 0.0598 0.1261 0.0727

PDA 0.0875 0.0604 0.126 0.0729

PDRO 0.0863 0.0598 0.1253 0.0723

DICE 0.0846 0.0585 0.1265 0.0719

Margin 0.0788 0.054 0.1142 0.0653

InvCF 0.0869 0.0597 0.1288 0.0731

DCCL 0.08880.08880.08880.08880.08880.08880.08880.08880.08880.08880.08880.08880.08880.08880.08880.08880.0888 0.06040.06040.06040.06040.06040.06040.06040.06040.06040.06040.06040.06040.06040.06040.06040.06040.0604 0.13030.13030.13030.13030.13030.13030.13030.13030.13030.13030.13030.13030.13030.13030.13030.13030.1303 0.07400.07400.07400.07400.07400.07400.07400.07400.07400.07400.07400.07400.07400.07400.07400.07400.0740

TPAB 0.0902 0.0616 0.1315 0.0751

Table 4: Performance comparison of TPAB and seven com-
petitors on Yelp2022 and Amazon-book datasets.

R@10 N@10 R@20 N@20

Yelp

Vanilla 0.0193 0.0151 0.0337 0.0197

PDA 0.0198 0.0153 0.0342 0.0199

PDRO 0.016 0.0123 0.0281 0.0161

DICE 0.02080.02080.02080.02080.02080.02080.02080.02080.02080.02080.02080.02080.02080.02080.02080.02080.0208 0.01670.01670.01670.01670.01670.01670.01670.01670.01670.01670.01670.01670.01670.01670.01670.01670.0167 0.03510.03510.03510.03510.03510.03510.03510.03510.03510.03510.03510.03510.03510.03510.03510.03510.0351 0.02110.02110.02110.02110.02110.02110.02110.02110.02110.02110.02110.02110.02110.02110.02110.02110.0211

Margin 0.0123 0.01 0.0228 0.0132

InvCF 0.0194 0.0149 0.0335 0.0195

DCCL 0.0187 0.0148 0.0326 0.0192

TPAB 0.0232 0.0179 0.04 0.0232

Amazon

Vanilla 0.0239 0.0156 0.04 0.0207

PDA 0.0232 0.0151 0.0389 0.0201

PDRO 0.0202 0.0129 0.0341 0.0173

DICE 0.0250.0250.0250.0250.0250.0250.0250.0250.0250.0250.0250.0250.0250.0250.0250.0250.025 0.01640.01640.01640.01640.01640.01640.01640.01640.01640.01640.01640.01640.01640.01640.01640.01640.0164 0.04140.04140.04140.04140.04140.04140.04140.04140.04140.04140.04140.04140.04140.04140.04140.04140.0414 0.02160.02160.02160.02160.02160.02160.02160.02160.02160.02160.02160.02160.02160.02160.02160.02160.0216

Margin 0.0148 0.0091 0.0235 0.0118

InvCF 0.0232 0.0152 0.0382 0.0199

DCCL 0.0239 0.0156 0.0399 0.0207

TPAB 0.0317 0.0213 0.0519 0.0275

□

B Longer/larger Datasets
We have conducted comparative experiments on two larger and

longer datasets that are widely used: Yelp2022 and Amazon-book.

• Yelp2022
6
: It contains approximately 2M ratings from 80K users

to 75K businesses (e.g., restaurants). Time span is 10 years from

2012-01-01 to 2022-01-19. Note that we sampled the most recent

10 year for this dataset.

• Amazon-book
7
: It contains around 2M ratings from 65K to 88K

book products. Time span is 17 years from 1997-01-31 to 2014-

07-23)

These datasets validate the model’s generalizability over longer

periods, with test data spanning around 1.7 and 1 year, respectively.

The results, presented in Table 4 consistently show that TPAB

outperforms all seven competitors on both datasets, showing that

TPAB is also generalizable over longer time periods.

C Additional Backbone
We compare TPAB with seven competitors using simGCL [33],

a recent and advanced recommendation backbone, on the Micro-

video dataset. The results show that TPAB consistently outperforms

all competitors.

D Implementation Details
For PDA and PDRO, we select the popularity weighting parameter𝛾

from [0, 2, 4, 6, 8]. We also adhere to the suggested hyperparameters

for PDRO. For DICE, Margin, InvCF, and DCCL, each method

utilizes a scaling parameter for its respective invariance learning

loss. We vary this parameter across the values [0, 0.01, 0.05, 0.1,

0.5, 1]. Additionally, we adjust the scaling parameter for geometric

separation from the range [0, 0.001, 0.01, 0.1, 1.0].

6
https://www.yelp.com/dataset.

7
https://cseweb.ucsd.edu/ jmcauley/datasets/amazon/links.html.

E Discussion on Sequential Models
We clarify the distinctions between TPAB and sequential recom-

mender systems.

First, TPAB differs fundamentally in problem setting. Sequential

recommendation systems typically use a user’s item sequence as in-

put, focusing on modeling sequential patterns and dependencies. In

contrast, TPAB is a general two-tower recommender that explicitly

learns separate user and item embeddings, where modeling item

sequences for each user is unnecessary.

Second, while item sequences exist for each user, applying TPAB

to a sequential setting is not straightforward and requires additional

considerations. Sequential models generally learn entangled em-

beddings for items and user-item sequences, where item properties

and popularity are intertwined. Such models cannot disentangle

static/invariant item properties from dynamic/variant popularity,

which is central to TPAB’s design rationale.

A potential approach to learning disentangled item embeddings

in a sequential setting might involve learning separate property

and popularity embeddings, either through a separate attention

network or within a unified attention framework. However, this

has several limitations: (1) Most importantly, item property em-

beddings would implicitly capture both sequential patterns and

popularity shifts, which contradicts TPAB’s core idea of maintain-

ing static/invariant property embeddings independent of popularity

changes. (2) While temporal item popularity embeddings could be

learned, no user conformity embedding is involved, preventing

personalization for users. For example, if users 𝑢1 and 𝑢2 have the

same popularity sequence, they would have the same predicted

popularity score, whereas TPAB can assign different scores based

on user-side conformity embeddings.

Third, some existing sequential methods [6, 16, 19, 26] incorpo-

rate the time context of user-item interactions or the time interval

between items in the sequence. However, they do not disentangle

property and popularity embeddings and thus do not explicitly

capture temporal popularity. Even if they attempt this, they tend

to preserve sequential patterns of popularity rather than capturing

distinct popularity at different time stages.

https://www.yelp.com/dataset
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html

	Abstract
	1 Introduction
	2 Preliminary
	3 Proposed Framework
	3.1 Temporal-Aware Disentangled Embeddings
	3.2 Popularity Coarsening
	3.3 Popularity Bootstrapping
	3.4 Training Protocol
	3.5 Inference Protocol

	4 Experiments
	4.1 Experimental Settings
	4.2 Main Results
	4.3 Ablation Studies
	4.4 Analysis on Geometric Separation
	4.5 Hyperparameter Analysis
	4.6 Time-efficiency Results

	5 Related Works
	6 Conclusion
	Acknowledgments
	References
	A Proof of Theorem on Bootstrapping
	B Longer/larger Datasets
	C Additional Backbone
	D Implementation Details
	E Discussion on Sequential Models

