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Abstract

Eye tracking data during reading is a useful
source of information to understand the cogni-
tive processes that take place during language
comprehension processes. Different languages
account for different cognitive triggers, how-
ever there seems to be some uniform indicators
across languages. In this paper, we describe
our submission to the CMCL 2022 shared task
on predicting human reading patterns for multi-
lingual dataset. Our model uses text represen-
tations from transformers and some hand engi-
neered features with a regression layer on top
to predict statistical measures of mean and stan-
dard deviation for 2 main eye-tracking features.
We train an end-to-end model to extract mean-
ingful information from different languages
and test our model on two separate datasets.
We compare different transformer models and
show ablation studies affecting model perfor-
mance. Our final submission ranked 4th place
for SubTask-1 and 1st place for SubTask-2 for
the shared task.

1 Introduction

Eye tracking provides an accurate millisecond
record of where people are looking while read-
ing and is useful for descriptive study of language
processing and understanding of the cognitive pro-
cessing of brain related to reading. Eye movements
are many times language-specific because they de-
pend on structure and ordering of words which are
language dependent, however some features tend
to be stable and universal and can be observed in all
languages. Modeling of human reading has been
widely explored in psycholinguistics. The ability to
accurately predict eye tracking between languages
pushes this field forward, facilitating comparisons
between models and analysis of their various func-
tions.

In this paper, we compare our eye-tracking pre-
diction results with some simple baselines using
token-level features, which we improve upon with

our zero shot cross lingual model which we have
described in section 3.

2 Task Description

2.1 Problem Statement
In this section we briefly describe the task at hand
which is the challenge of predicting eye-tracking
features recorded during sentence processing of
multiple languages. This task is more complex
as compared to previous editions of the shared
task due to changes made compared to the pre-
vious edition (Hollenstein et al., 2021); (i) Mul-
tilingual data: We use an eye movement dataset
with sentences from six languages (Chinese, Dutch,
English, German, Hindi, Russian) and (ii) Eye-
tracking features: To take into account the indi-
vidual differences between readers, the task is not
limited to predict the mean eye tracking features
across readers, but also the standard deviation of
the feature values. The task details can be found in
Hollenstein et al. (2022).

We formulate the task as a regression task to
predict 2 eye-tracking features and the correspond-
ing standard deviation across readers. The targets
are briefly described here: first fixation duration
(FFDAvg), the duration of the first fixation on the
prevailing word; standard deviation (FFDStd)
across readers; total reading time (TRTAvg), the
sum of all fixation durations on the current word,
including regressions; standard deviation (TRT-
Std) across readers.

The shared task is modelled as two related sub-
tasks of increasing complexity :

Subtask 1: Predict eye-tracking features for sen-
tences of the 6 provided languages

Subtask 2: Predict eye-tracking features for sen-
tences from a new surprise language

2.2 Related Work
Multiple deep learning approaches have been ex-
plored in the past on cognitive modelling with lin-



Training Set Dev Set Test Set

Name Abbreviation Language Subjects Sentences Tokens Sentences Tokens Sentences Tokens Source

Beijing Sentence Corpus BSC ZH 60 120 1355 7 82 23 248 Pan et al. (2021)

Postdam-Allahabad Hindi Eye-
tracking Corpus

PAHEC HI 30 122 2021 7 142 24 433 Husain et al. (2015)

Russian Sentence Corpus RSC RU 84 115 1140 7 59 22 218 Laurinavichyute et al. (2019)

Provo Corpus Provo EN 30 107 2067 6 152 21 440 Luke and Christianson (2018)

ZuCo 1.0 Corpus (NR) ZuCo1 EN 12 240 5235 15 269 45 994 Hollenstein et al. (2018)

ZuCo 2.0 Corpus (NR) ZuCo2 EN 18 279 5398 17 303 53 1127 Hollenstein et al. (2019)

GECO Corpus (Dutch L1 part) GECO-NL NL 18 640 7462 40 405 120 1475 Cop et al. (2017)

Potsdam Textbook Corpus PoTeC DE 75 80 1463 5 139 16 293 Jäger et al. (2021)

Copenhagen Corpus CopCo DA - - - - - 402 6767 -

Table 1: Overview of the selected datasets

guistic perspective on English datasets ZuCo (Hol-
lenstein et al., 2018, 2019) and Provo(Luke and
Christianson, 2018). Salicchi and Lenci (2021)
uses cosine similarity and surprisal within regres-
sion architecture to model the surprisal character-
istic of a new word. Li and Rudzicz (2021); Yu
et al. (2021) use the transformer methods to extract
the linguistic embeddings; the former applying en-
sembling methods while the latter using surface,
linguistic and behavioral features in combination
with the linguistic embeddings.

2.3 Dataset

The dataset comprises of the eye-tracking data
recorded during natural reading from 8 datasets in
6 languages. The training data contains 1703 sen-
tences, the development set contains 104 sentences,
and the test set 324 sentences. The data provided
contains scaled features in the range between 0 and
100 to facilitate evaluation via the mean absolute
average (MAE). The eye-tracking feature values
are averaged over all readers.

The detailed dataset information about the num-
ber of sentences in each datasource and the token-
wise information is shown in table 1.

3 Our Approach

Our models heavily use contextualised embeddings
extracted from the pretrained models based on
transformer architecture (Vaswani et al., 2017).
We experiment on the training dataset with mul-
tilingual transformer models which are briefly de-
scribed below :

mBERT (Devlin et al., 2019) a deep contextual
representation based on a series of transformers
trained by a self-supervised objective with data
from Wikipedia in 104 languages. It has been
trained with masked language modelling objective

and training makes no use of explicit cross-lingual
signal.

XLM (Lample and Conneau, 2019) is a
Transformer-based model that, like BERT, is
trained with the masked language modeling (MLM)
objective. Additionally, XLM is trained with a
Translation Language Modeling (TLM) objective
in an attempt to force the model to learn similar
representations for different languages.

XLM-RoBERTa (Conneau et al., 2020) uses
self-supervised training techniques to achieve state-
of-the-art performance in cross-lingual understand-
ing. It is trained on unlabeled text in 100 languages
extracted from CommonCrawl datasets.

These transformer methods use either WordPiece
or BytePair model for tokenization, due to which
we use only the first token embedding of the tok-
enized word by these methods. We use the above
three tranformer models and attach the extracted
output embeddings from these models to the manu-
ally constructed features which we have described
in 3.1. The entire model architecture is explained
in Figure 1.

3.1 Features

Along with the encoder representations from the
multilingual transformer models, we use 3 addi-
tional features, which we use to help us provide
information to our embeddings. We discard other
features like POS-Tag and word_freq, due to
non-uniformity in cross-lingual setting and unavail-
ability of reliable and enormous word-frequency
list for some of the languages which could reduce
the performance and create bias for some languages
during training time.

The first two length based features use word divi-
sion information and the word length information.
During neurological processing of language, brain
takes up dual pathways to process a word as shown



Sample Text  
सुनीत ने दो त�ीर� पेश की।ं

▁सुन '◌ीत ▁ने ▁दो ▁त�ीर� ▁पेश ▁की '◌ं । </s><s>
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Figure 1: Model Representation

in MacGregor and Shtyrov (2013). The third fea-
ture is based on the relative length of the word as
compared to preceding word.

tok_len : This feature is length of the parts of
words when the word is tokenized measured in
number of parts, which focuses on the complexity
of the word based on length as cognitively longer
words as processed.

word_char_len : This second feature is based
on the apparent space taken up by the word evalu-
ated by the number of characters it takes up when
represented in UTF-8 format. This feature is in-
spired by studies shown in Joseph et al. (2009).

rel_len: The third feature is the relative length
of the word as compared to its preceding word.
This can capture a sense of ease in reading a short
word immediately after reading a word with great
character length. For starting words of the sentence,
we take the previous word length as zero.

3.2 Baselines

We start by implementing some simple baselines us-
ing token-level features using length based ideas as
word-length is a commonality which can be found
in multilingual settings which we described in sec-
tion 3.1. We start with a median baseline model
which takes the median of all the training token la-
bels, instead of using an average baseline to prevent
offsetting the predictions by a language with higher
or lower valued variables. Along with the median
baseline , we also use 5 commonly used machine

learning regression models (i) Linear Regression
(lr) ,(ii) Support Vector Regression (svr),(iii) Gradi-
ent Boosting Methods (lgbm, xgboost) , (iv) Multi-
Layer Perceptron (MLPRegressor) as our baselines.
These baselines do not contain any contextual in-
formation.

3.3 Implementation and Hyperparameter
Details

The models were trained with MSE(mean squared
error) as loss function and the final evaluation was
done using MAE(Mean Absolute Error) measure.
For the baseline, models were trained taking each
label as a regression target variable to remove label
correlation if a regressor performs poorly in a multi
output regression setting, while when using trans-
former based models, we trained a single model
with a 4 length output regressor head which cor-
responded each to the final output target variables.
Before the final regression layer, we used a hidden
linear layer after the embedding output. The model
evaluation for task submission was done using dev
set after every epoch to measure the performance
improvement and prevent overfitting. The imple-
mentation can be found here 1.

The details of the hyperparameters used for the
training are given in table 4.

1https://github.com/hvarS/CMCL-2022

https://github.com/hvarS/CMCL-2022


Dev Set Test Set - SubTask1 Test Set - SubTask2

Model FFDAvg FFDStd TRTAvg TRTStd Overall FFDAvg FFDStd TRTAvg TRTStd Overall FFDAvg FFDStd TRTAvg TRTStd Overall
Baselinemedian 5.931 2.578 8.999 5.886 5.848 5.448 2.440 8.361 5.661 5.478 3.459 2.436 6.524 5.857 4.569
Baselinelr 5.615 2.570 8.574 5.768 5.632 5.243 2.465 8.289 5.750 5.437 4.755 3.002 8.721 7.252 5.932
Baselinesvr 5.203 2.492 8.118 5.650 5.366 4.848 2.356 7.700 5.465 5.092 3.580 2.399 6.588 5.798 4.591
Baselinelgbm 5.209 2.528 8.004 5.534 5.319 4.835 2.415 7.869 5.584 5.176 4.390 2.966 8.407 7.127 5.723
BaselineMLPRegressor 5.268 2.531 8.195 5.701 5.423 4.914 2.418 7.972 5.734 5.260 4.315 2.904 8.136 7.328 5.671
Baselinexgboost 5.210 2.532 8.050 5.566 5.340 4.834 2.413 7.871 5.591 5.178 4.302 2.942 8.337 7.106 5.672
mBERTuncased 5.014 2.512 7.981 5.523 5.257 4.795 2.325 7.267 5.409 4.949 3.756 3.012 5.578 5.841 4.546
mBERTcased 5.025 2.492 8.011 5.498 5.369 4.801 2.413 7.342 5.124 4.920 3.754 3.056 5.579 5.764 4.538
XLM100 4.914 2.584 8.134 5.512 5.286 4.902 2.425 7.814 5.414 5.138 3.331 2.944 5.448 5.798 4.380
XLM-RoBERTabase 4.892 2.486 8.231 5.504 5.278 4.745 2.327 7.321 5.738 5.031 3.214 2.987 5.556 5.666 4.355
XLM-RoBERTalarge 4.845 2.482 7.943 5.491 5.215 4.738 2.364 7.268 5.223 4.898 2.945 2.726 5.602 5.654 4.232

Table 2: MAE results on the dev and test set. Bold entries are the best performing models for that particular target

SubTask-1 SubTask-2

Model Version FFDAvg FFDStd TRTAvg TRTStd FFDAvg FFDStd TRTAvg TRTStd

XLM-RoBERTalarge 4.738 2.364 7.268 5.223 2.945 2.726 5.602 5.654

- tok_len 4.746 2.486 7.314 5.463 2.944 2.692 5.605 5.640
- word_char_len 4.976 2.484 7.454 5.478 3.014 2.696 5.712 5.642
- rel_len 4.787 2.486 7.457 5.466 3.121 2.703 6.241 5.644
- tok_len,word_char_len 5.012 2.427 7.785 5.421 3.154 2.710 6.785 5.546
- tok_len,rel_len 5.097 2.497 7.854 5.601 3.564 2.731 6.645 5.645
- word_char_len,rel_len 5.124 2.492 7.771 5.671 3.452 2.722 6.621 5.664
- tok_len,word_char_len,rel_len 5.465 2.488 8.370 5.684 4.371 2.744 7.186 5.678

Table 3: Feature Importance Ablation Study. The best performing model XLM-RoBERTa is taken for ablation

Parameter Value

Optimizer AdamW
Warm-Up Steps (%) 10%
epochs 100
learning rate 5e-2
weight decay 1e-2
dropout 0.5
batch size 64
hidden layer size 1024

Table 4: Hyperparameter Details

4 Results and Discussion

Table 2 shows the evaluation results on the dev set
and the two test sets for SubTask-1 and SubTask-2
respectively based on MAE on the 4 target vari-
ables. Our transformer based models strongly out-
performed the baseline approaches. The best per-
forming model was XLM-RoBERTalarge model,
edging over the transformer models. mBERT
model performed better than the XLM model
on SubTask-1, but XLM outperforms the former
on SubTask-2, suggesting better zero shot perfor-
mance of XLM for this subtask. Also, the large
models tended to perform better than their base
counterpart implying higher parameter count re-
sulted in better cross-lingual and zero shot cross-
lingual performance. Also since originally the
XLM-RoBERTa, mBERT and XLM models were

trained for masked language modelling purpose,
they have inherent inner representations of over
100 languages which helps in cross-lingual down-
stream tasks. One possible reason that mBERT
performs better than XLM on SubTask-1 could be
that XLM models are used for general sentence
representations which mBERT identifies language
from context and infers accordingly. For the same
mentioned reason, it is possible that XLM performs
better in zero shot setting.

4.1 Feature Importance

To evaluate the effectiveness of the engineered
features ; tok_len, word_char_len and
rel_len, an ablation study was conducted us-
ing the best performing model. We employ the
strategy similar to used in Oh (2021); the three in-
put features were ablated by simply replacing them
with zeros during inference, which allowed us to
effectively analyse the influence of these additional
features. Table 3 shows the effects of model perfor-
mance without the permutation of the engineered
features.

Ablations on the external features show that
these features affect the mean (µ) feature values,
specifically the FFDAvg and the TRTAvg, indicat-
ing that these external features influence the final
model performance for target mean values while
the contextualised embedding portion takes care
of the standard deviation (σ) of the targets. It can
be observed that the word_char_len feature af-



fects the target FFDAvg value to a large extent,
while rel_len clearly affects the model perfor-
mance on SubTask-2. One of the possible reasons
could be the infusion of previous word contextual
knowledge captured by rel_len. Also, the fea-
ture tok_len in combination with other features
also improves the model performance, which may
indicate it being not a very strong sole indicator.

5 Conclusion and Future Work

In this paper, we presented our approach to the
CMCL 2022 Shared Task on eye-tracking data pre-
diction. Our models use the fusion model that
involve using the multilingual contextualized token
representations using transformer architecture and
attaching input features that we created that aid
the model performance in predicting eye tracking
features. This approach helped us become lan-
guage agnostic which essentially helped the model
to perform well in the zero shot cross-lingual set-
ting in Subtask-2. Our best model based on XLM-
RoBERTa outperforms the baseline and is also com-
petitive with other systems submitted to the shared
for both SubTask-1 and SubTask-2. Although the
embeddings from large language models as shown
previously work fairly well as they consider the
context of the sentence into consideration as well,
possibly they can be improved further if take into
consideration the surprisal index which would pos-
itively correlate with the reading time and fixation
duration as shown in Salicchi and Lenci (2021).
In future, we aim to use more etymological fea-
tures based on shared language history and also use
the cross language lexical similarity index when
predicting in cross lingual setting .
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