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Abstract

In dynamical systems reconstruction (DSR) we
seek to infer from time series measurements a
generative model of the underlying dynamical
process. This is a prime objective in any scientific
discipline, where we are particularly interested in
parsimonious models with a low parameter load.
A common strategy here is parameter pruning, re-
moving all parameters with small weights. How-
ever, here we find this strategy does not work
for DSR, where even low magnitude parameters
can contribute considerably to the system dynam-
ics. On the other hand, it is well known that
many natural systems which generate complex
dynamics, like the brain or ecological networks,
have a sparse topology with comparatively few
links. Inspired by this, we show that geometric
pruning, where in contrast to magnitude-based
pruning weights with a low contribution to an
attractor’s geometrical structure are removed, in-
deed manages to reduce parameter load substan-
tially without significantly hampering DSR qual-
ity. We further find that the networks resulting
from geometric pruning have a specific type of
topology, and that this topology, and not the mag-
nitude of weights, is what is most crucial to per-
formance. We provide an algorithm that automati-
cally generates such topologies which can be used
as priors for generative modeling of dynamical
systems by RNNs, and compare it to other well
studied topologies like small-world or scale-free
networks.
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1. Introduction

In scientific settings we are commonly interested in the
dynamical rules that govern the temporal evolution of an
observed system. Recent data-driven deep learning ap-
proaches aim to infer (approximate) these from time series
measurements of the system under study, often based on
recurrent neural networks (RNNs) like LSTMs (Vlachas
et al., 2018; Hochreiter & Schmidhuber, 1997), reservoir
computers (Pathak et al., 2018; Platt et al., 2021), piecewise
linear RNNs (Durstewitz, 2017; Brenner et al., 2022; Hess
et al., 2023), or neural ordinary differential equations (Neu-
ral ODEs; Chen et al. (2018); Ko et al. (2023)). Producing
a generative model of the dynamical process that underlies
the observed time series, including its geometrical structure
in state space and its invariant (long-term) statistics, we call
dynamical systems (DS) reconstruction (DSR).

In science we usually prefer small models, with as few
relevant parameters as possible, to reduce training and
simulation times, and to ease subsequent model analysis
(interpretability). Magnitude-based parameter pruning is
a well established strategy in deep learning to carve out
such a low-dimensional (in parameter space) network
structure (Blalock et al., 2020). It is based on the insight
that successfully trained models often contain a ‘winning
ticket’, a small subnetwork with performance almost equal
to that of the full large network (Frankle & Carbin, 2019).
Here, however, we demonstrate that magnitude-based
parameter tuning does not work well for DSR. Instead,
we find that parameters even small in relative size could
substantially influence the dynamics of the trained model
(Fig. 1). This might be related to the fact that in dynamical
systems neighborhood relations (topological structure)
are often more important. Natural systems, like the brain
(Bullmore & Sporns, 2009; Pajevic & Plenz, 2012), climate
systems (Tziperman et al., 1997), or ecological and social
networks (Watts & Strogatz, 1998), rarely follow an
“all-to-all” connectivity, but have a well defined topology
owing to physical and spatial constraints on the system.
This suggests that deep learning models trained on time
series from natural systems may inherit similar organizing
principles, i.e. a low-dimensional parameter representation
is conceivable, but it may be less related to the relative size
of parameters.
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Here we demonstrate that this is indeed the case. In con-
trast to pruning by size, selecting parameters based on their
relevance for the invariant geometrical structure of the dy-
namical system enabled to profoundly sparsify recurrent
neural networks (RNNs) without considerably affecting per-
formance. Such geometry-pruned RNNs turned out to bear
a specific topology, which in itself was largely sufficient
for performance-preserving sparsification. We further find
that while more ‘traditional’ models of network topology,
like the Watts-Strogatz (Watts & Strogatz, 1998) or Albert-
Barabdsi (Barabasi & Albert, 1999) model, can also pro-
duce efficiency gains beyond magnitude-based or random
pruning, these are not quite as profound as those obtained
through our procedure.

2. Related Work

Dynamical Systems Reconstruction (DSR) In DSR we
aim to obtain from time series data a generative model that
is at least topologically conjugate to the flow of the un-
derlying true system on the domain observed (Durstewitz
et al., 2023), with the same invariant long-term properties,
including attractor geometry and temporal characteristics
(as assessed, e.g., through power spectra or auto-correlation
functions; Wood (2010); Platt et al. (2021); Brenner et al.
(2022); Mikhaeil et al. (2022); Platt et al. (2023)). The
forecasting ability of a model on its own is usually not
considered a viable performance criterion for DSR mod-
els, because in chaotic systems nearby trajectories diverge
exponentially fast and hence there is only a limited predic-
tion horizon (Wood, 2010; Koppe et al., 2019). Various
architectures and training algorithms have been proposed
for DSR, based on RNNs like LSTMs (Vlachas et al., 2018;
Hochreiter & Schmidhuber, 1997), piecewise-linear RNNs
(PLRNNSs; Koppe et al. (2019); Brenner et al. (2022); Hess
et al. (2023)), or reservoir computers (Pathak et al., 2018;
Platt et al., 2021), based on library methods (Brunton et al.,
2016; Champion et al., 2019; Messenger & Bortz, 2021),
or based on neural ordinary differential equations (Neural
ODEs; Chen et al. (2018); Karlsson & Svanstrom (2019);
Alvarez et al. (2020); Ko et al. (2023)). A variety of differ-
ent training strategies has been suggested for DSR models,
e.g. based on Expectation-Maximization (Voss et al., 2004;
Koppe et al., 2019) or on variational inference (Kramer
et al., 2022). However, the to date most effective training
algorithms rely on Backpropagation Through Time (BPTT)
(Rumelhart et al., 1986) combined with control-theoretic
forms of teacher forcing (TF; Williams & Zipser (1989)),
like sparse (Mikhaeil et al., 2022; Brenner et al., 2022) or
generalized (Hess et al., 2023) TF, that guarantee optimal
trajectory and gradient flows whilst training, and avoid ex-
ploding gradients even on chaotic systems. The role of
RNN topology in DSR has, however, not been studied yet,
providing one novel contribution of the present work.

Pruning and Lottery Ticket Hypothesis Linked to
the double descent phenomenon (Belkin et al., 2019),
modern deep learning models are often extensively over-
parameterized, surpassing the interpolation threshold, which
leads to improved network trainability and expressiveness.
While smaller models with fewer parameters are generally
preferable for computational and memory reasons, and to
enhance interpretability, this becomes almost imperative for
these strongly over-parameterized systems. LeCun et al.
(1989) is one of the first studies that explored pruning net-
works in order to remove redundancies in parameters. Since
then it has been shown numerous times that in deep learning
architectures a non-trivial number of parameters remains es-
sentially unexploited (Han et al., 2015b;a), and a variety of
different pruning techniques have been developed (Blalock
et al., 2020), for instance, Hessian based approaches (Has-
sibi & Stork, 1992) or structured pruning (He & Xiao, 2023).
The most common and straightforward procedure, however,
remains pruning parameters based on their absolute value
(Blalock et al., 2020). This can be done in different ways,
for instance, pruning in a single step (Liu et al., 2018) or
iteratively (Han et al., 2015¢; Zhang et al., 2021). Hope
that this may work more generally is based on the so-called
lottery ticket hypothesis (LTH), which states (Frankle &
Carbin, 2019): “A randomly-initialized, dense neural net-
work contains a subnetwork that is initialized such that —
when trained in isolation — it can match the test accuracy
of the original network after training for at most the same
number of iterations.” Empirically this was verified for
feed-forward neural networks in image classification using
iterative magnitude pruning (Frankle & Carbin, 2019; Girish
et al., 2021), and has spawned a range of theoretical and
empirical follow-up studies (Malach et al., 2020b; Orseau
et al., 2020; Zhang et al., 2021; Sreenivasan et al., 2022;
Burkholz et al., 2022). Burkholz et al. (2022) even suggests
the existence of universal LTs that are winning tickets across
tasks. However, so far there is comparatively little work on
the LTH and pruning of RNNs (Yu et al., 2019; Liu et al.,
2021; Chatzikonstantinou et al., 2021).

Network Topology of Real World Systems Many com-
plex real-world systems have a characteristic network topol-
ogy (Watts & Strogatz, 1998; Albert & Barabasi, 2002),
for instance, a small-world topology shared by many bio-
logical and social systems (Kleinberg, 2000; Amaral et al.,
2000; Bassett & Bullmore, 2006; Rubinov et al., 2009; Mul-
doon et al., 2016), or a scale-free topology observed in brain
anatomy and dynamics (Beggs & Plenz, 2003; Eguiluz et al.,
2005; van den Heuvel et al., 2008; Rubinov et al., 2009).
Scale-free networks are characterized by the existence of
central nodes or ‘hubs’, possibly linked to a hierarchical or-
ganization in the system (Ravasz & Barabasi, 2003). While
sometimes the specific network topology may simply be
a result of the underlying physics (e.g., spatially restricted
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interaction patterns or physical barriers; Jiang & Claramunt
(2004)), in other instances they may bear specific functional
or biological advantages like minimizing wiring costs while
optimizing information transfer (Bullmore & Sporns, 2012),
or increasing efficiency (Zhang et al., 2009b).

Network Topology in RNNs Given the importance of
topological structure in real-world networks, inferring topol-
ogy directly from observed data is of particular interest
(Shandilya & Timme, 2011; Wang et al., 2016), although
not our focus here. Regarding the reverse direction, Emmert-
Streib (2006) were among the first to point out that RNN
topology also influences learning dynamics. This has been
particularly well studied in the context of reservoir com-
puters (RCs; Jaeger & Haas (2004)). Dutoit et al. (2009)
observed that pruning connections in the reservoir’s output
layer leads to improved generalization. Yin & Meng (2012)
adapt the structure of the dynamical reservoir to mirror that
of cortical networks, while Carroll & Pecora (2019) study
the influence of directedness of edges in RCs more generally.
Other authors (Li et al., 2020; Junior et al., 2020; Dale et al.,
2021) directly studied the impact of specific topologies,
like hub structure, directed acyclic graphs, or Erd6s—Rényi
graphs, on RC performance. Han et al. (2022) study gen-
eralization bounds for RCs initialized with different graph
structures. In contrast to our work here, however, all these
studies impose a specific, previously defined topology to
begin with, and do not examine structure or properties that
arise through training or pruning (in fact, recall that in RCs
the recurrent connectivity is fixed and not altered throughout
training). This question thus remains largely unexplored,
especially in the context of DSR. Small-world topology has,
however, been observed in task-optimized feedforward net-
works like MLPs or CNNs (You et al., 2020), associated
with superior performance.

3. Methodological Setting
3.1. DSR Model and Training

For our numerical studies we focus on a well established
SOTA model and training algorithm for DSR, the piecewise
linear recurrent neural network (PLRNN) first introduced
in (Durstewitz, 2017), but also checked LSTMs and vanilla
RNNSs to highlight that our results are more general. The
PLRNN is defined by

zi=Az_ 1+ Wop(M(zi-1)) +h+Cs,, ()

where M is a mean-centering operation (see Appx. A.1.1
and Brenner et al. (2022)), and with element-wise nonlin-
earity ¢(e) = ReLU(e) = max(0, e). The model describes
the temporal evolution of an M -dimensional latent state
vector, z; € RM, with linear self-connections in diagonal
matrix A € RM*M fyll weight matrix W € RM*M_

bias term h € RM, and possibly external inputs s; € RX
weighted by C € RM*X (the benchmarks we explore in
here, however, are all autonomous DS with s, = 0 V¢).!
The latent PLRNN is linked to the actually observed time
series X = {x1, ..., 7} through a decoder (observation)
model, in the simplest case given by a linear layer:

x; = Gx(2;) = Bz, )

where B € RY*M_ Numerous variations on this basic
model have been introduced and benchmarked on DSR
problems in the literature (Koppe et al., 2019; Brenner et al.,
2022; Hess et al., 2023), but here we will stick to this most
basic form to enhance interpretability of our results in graph-
theoretical language (but see Appx. A.1 for further details).
Of major importance in scientific settings, a crucial advan-
tage of model Eqn. 1 is that it allows for an equivalent
continuous-time formulation (i.e., as a system of ODEs;
Monfared & Durstewitz (2020)), and all its fixed points
and cycles can be exactly determined by efficient, often
linear-time, algorithms (Eisenmann et al., 2023).

In DSR, we would like to capture long-term statistical and
geometrical properties of the underlying DS, beyond mere
short-term forecasts (Platt et al., 2021; Durstewitz et al.,
2023; Platt et al., 2023). It turns out that the actual train-
ing algorithm is much more important for this than the
RNN architecture (Mikhaeil et al., 2022; Hess et al., 2023).
In particular, efficient training routines often implement
control-theoretic ideas like sparse (Mikhaeil et al., 2022) or
generalized (Hess et al., 2023) teacher forcing (STF, GTF)
that manage the exploding-&-vanishing gradient problem
even for chaotic systems with diverging trajectories. To
keep things simple, here we employ STF (Mikhaeil et al.,
2022; Brenner et al., 2022) with an identity mapping for the
observation model, i.e.

1, ifk=landk <N
0, else '

Ty = Lz, Iy = { 3)

STF then replaces the latent states zy , k < N, with ob-
servations xy j, sparsely at strategically chosen time points
t' € T = {nt + 1} with n € N (Mikhaeil et al., 2022),
thereby re-calibrating trajectories during training such that
relevant time scales are captured yet too wild divergence
and exploding gradients are prevented (for details see Appx.
A.1; note that no such forcing is used in the actual test or
generation phase).

! Also, mathematically, a non-autonomous system can always
be equivalently rewritten as an autonomous system (Zhang et al.,
2009a).

’In fact, as shown in Brenner et al. (2022) and Hess et al.
(2023), more complex PLRNN variants can be reformulated in
terms of Eqn. 1.
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3.2. Weight Pruning

We implement weight pruning (LeCun et al., 1989) by apply-
ing a mask m to the weight matrix W using element-wise
multiplication:

z1=Azi 1+ (mMmOW)p(M(zi—1))+h, @)

where m € {0, 1}M>M represents the network topology.
Pseudo-code for the iterative pruning procedure, retaining
initial parameters 6, but updating the mask in each iteration,
is given in Algorithm 1.

Algorithm 1 Pruning algorithm

Input : Initial model f(x;0y = {Ag, Wy, ho})
with initial parameters 6

Output : Mask m of pruned network

Initialize m}j =1Vi,j€]l,.., M]

for k < 1ton do

1. Train model f (; 0y = {Ag, m" ® Wy, ho})
for j epochs, yielding parameters 6

2. Remove p% of parameters w;; € 6 based on
their contribution I, to model performance,
resulting in mask m*+!

3. Reset parameters to Og

end

Traditionally in pruning procedures, importance Iy, of a
parameter is simply measured by its absolute magnitude,
i.e. Iy, = |0;|]. As we find below that weight magnitude is
only weakly correlated with DSR performance, we intro-
duce geometric pruning as a means to examine 1) whether
a significant sparsification of the network is possible in this
context, and 2) which parameters do have a significant im-
pact. In geometric pruning we iteratively, using the same
protocol as in Algorithm 1, remove those connections that
have the least impact on attractor geometry in state space
(Fig. 1). Since in DSR we are interested in obtaining a
generative model that has the same long-term temporal be-
havior and geometrical structure in state space as the true
underlying DS, this is a direct indicator of DSR quality. For-
mally we define it through the same measure that has been
used to assess geometrical agreement, a Kullback-Leibler
(KL) divergence in the system’s state space (Koppe et al.,
2019; Hess et al., 2023), namely

IGi = ‘KL(ptrue(w)||p;;n($|z))
—KL(ptrue(@)Ipgen (®|2))]

where pyue(x) is the limit set distribution across state
space of the ground truth trajectories, pgen(|2) the cor-
responding full model-generated trajectory distribution, and

®

Pyen(x|2) the model generated distribution with parameter
0; removed. In low-dimensional spaces this KL divergence
can be approximated by simply discretizing (binning) the
space, while in higher-dimensional spaces a Gaussian mix-
ture model approximation is usually employed (see Appx.
A.3 and Brenner et al. (2022) for details). As illustrated in
Fig. 1, in geometric pruning Iy, naturally picks out those
weight parameters which contribute the least to attractor
geometry. Computing this measure is generally costly and
pruning through this procedure may thus not always be fea-
sible in practical settings. However, here it mainly served to
study resulting network topologies, based on which initial-
ization templates can be constructed (see sect. 4.4).
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Figure 1. a) Illustration of geometry-based pruning. Top shows
the (ground truth) iconic Lorenz-63 (Lorenz, 1963) chaotic at-
tractor (blue) and an optimal PLRNN reconstruction (red), while
below three reconstructions are shown with a single weight pa-
rameter removed with high (leftmost), medium (center) or low
(rightmost) influence on attractor geometry. Measure for geomet-
rical (dis)agreement (Dysp) on top of each graph, and geometric
importance score and magnitude of pruned parameter indicated
below. b) Weight parameters with large (A Dy > 0.1) vs. low
(ADys < 0.1) impact on geometrical reconstruction quality do
not substantially differ in absolute magnitude. ¢) Change in geo-
metrical disagreement (A Dy;sp) vs. weight magnitude for PLRNNs
trained on the Lorenz-63. Note there is no discernible trend for
larger weights to associate with stronger effects on attractor ge-
ometry. d) The effects of weight removal on A Dy, are largely
additive, with simultaneous removal of two weights having about
the same effect as the sum of the individual weight effects.
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3.3. Analysis of Network Topology

A graph G = (V, E) consists of a set of nodes V(G) =
{v;}, i € 1,...,n, and a set of edges E(G) = {e;;} (or
links) between nodes (Diestel, 2005). Network topology
focuses on abstract structural properties of such graphs, as
specified through the adjacency matrix A*4, which codes
the existing links (and their direction) between any two
nodes. In our case it is given by the pruning mask A4 = m.
The type of graph and its tendency to form highly connected
hubs is determined by its degree distribution P(k), where
the degree k refers to the number of connections a node
receives (Diestel, 2005). The two most important statistical
quantities describing the properties of a graph, which we
will use here, are, first, the mean average path length L
defined as the minimum path length between two nodes
averaged over all pairs of nodes (Watts & Strogatz, 1998):

1
L(G) = ———> d(v;,v)) , (6)
n(n —1) &~
i#£]
where d(v;,v,) is the geodesic distance between node v;
and node v; in a graph with n nodes. Second, the clustering
of nodes is calculated as (Fagiolo, 2007)

LN (A% (AT

(N

i=1

where A% is the adjacency matrix of the graph. The cluster-
ing C(G) gives the ratio between the number of all triangle
connections (i.e., where two neighbors of a chosen node
v; are also directly connected) and the total theoretically
possible number of triangles 7;. Details on these measures
can be found in Appx. A.5.

Based on such a topological characterization of network
graphs obtained through geometric pruning of trained
PLRNNS, in sect. 4.4 we derive an algorithm that creates
an adjacency matrix A*J with the desired properties which
can be used as a mask m in Eqn. 4. Fig. 2 illustrates the
general approach. We compare its reconstruction perfor-
mance with common network structures from graph theory,
like the Erd6s—Rényi model (Erdos & Rényi, 1959) gener-
ating random graphs, the Watts-Strogatz model (Watts &
Strogatz, 1998) known for its small-world properties, or the
Barabasi-Albert model (Barabasi & Albert, 1999; Albert &
Barabasi, 2002) producing central hub topologies.

4. Results

4.1. Performance Evaluation

We used well-established performance criteria to evaluate
the DS reconstruction quality of trained networks (Koppe
et al., 2019; Brenner et al., 2022; Hess et al., 2023). Be-
cause of exponential trajectory divergence in chaotic sys-
tems, mean-squared prediction errors are only of limited

use as they may become large quickly even for well-trained
systems (Wood, 2010; Mikhaeil et al., 2022).3 Instead, we
focus on the geometrical agreement between true and recon-
structed attractors as quantified through a Kullback-Leibler
divergence (Dysp) as suggested in (Koppe et al. (2019); see
also Appx. A.3), and on the long-term femporal agreement
between true and reconstructed (generated) time series as-
sessed by the average dimension-wise Hellinger distance
(Dpy) between true and reconstructed power spectra (equiva-
lently, autocorrelation coefficients may be used; see Appx.
A.3 for more details). Note that while Dy, and Dy will be
correlated in good reconstructions, they assess fundamen-
tally different, complementary aspects of the dynamics.

4.2. Geometry-Based, but not Magnitude-Based,
Pruning Allows for Substantial Reduction in
Network Size

Figs. 1b & c show that there is hardly any (or at most
very small) difference in the absolute magnitude of PLRNN
connection weights contributing substantially vs. essentially
non-contributing to geometric reconstruction quality (see
Fig. AG6b for a further example), regardless of whether
several weights are removed individually or simultaneously
(Fig. 1d, Fig. A6a). This raises the question of whether the
parameter size of RNNs trained for DSR can be reduced
beyond what would be expected by just random removal of
connections. Using geometric pruning, however, we found
that reductions by up to 95% for some systems are indeed
possible (Fig. 3). More specifically, we evaluated DSR
performance on several DS benchmarks for three different
iterative pruning protocols (Algorithm 1; Fig. 3). First, the
Lorenz-63 model of atmospheric convection, proposed by
Edward Lorenz (Lorenz, 1963), produces a chaotic attractor
with iconic butterfly-wing structure (Fig. 1) and is probably
the most commonly employed benchmark in this whole
literature. Second, we use a simplified biophysical model of
a bursting neuron (Durstewitz, 2009) which produces fast
spiking (action potential) activity on top of a slow oscillation
(see Fig. A3), thus featuring two widely different time
scales. It has been previously used to evaluate DSR models
(Brenner et al., 2022), and can also generate chaotic activity
within some parameter regimes (Durstewitz, 2009), but was
employed here as an example of a system with a complex
(multi-period) limit cycle as in previous work. Third, as
a real-world example, we used human electrocardiogram
(ECG) data bearing signatures of chaos, with a positive
maximum Lyapunov exponent (see Hess et al. (2023)). We
also tested DSR on the Réssler attractor (Rdssler, 1976), a
simplification of the Lorenz-63 system, on the Lorenz-63

3Counterintuitively, as exemplified in Koppe et al. (2019), they
can even become larger for perfect than for poorer reconstructions,
because in the longer run only the mean may be well predictable
for chaotic systems.
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Figure 2. Approach for translating graph-topological properties of trained networks into a general scheme to be used as topological prior.
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Figure 3. Quantification of DS reconstruction quality in terms of attractor geometry disagreement (Dyp, left column) and disagreement
in long-term temporal structure (Dy, right column) as a function of network pruning (x-axis, exponential scale) and different pruning
criteria. Error bars = SEM.
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system with high levels of observation noise (25%), and on
the Lorenz-96 model (Lorenz, 1996), a higher-dimensional
spatial extension of the earlier Lorenz-63 model which also
produces (highly) chaotic behavior for the parameter setup
chosen here (we use a 5d system in our experiments, Fig.
A2; see Appx. A.2 for details on all models, and Appx. A.1
for detailed hyper-parameter settings used in RNN training).

Fig. 3 illustrates DSR performance on the Lorenz-63, the
bursting neuron, and the ECG benchmarks as a function
of network size, i.e. percentage of pruned parameters, for
magnitude- compared to geometry-based pruning (results
for all other benchmarks are in Fig. A8). As a baseline, we
also included a random pruning protocol, where parame-
ters for removal were just chosen at random. In agreement
with the observations in Fig. 1, we found that, on aver-
age, for all benchmarks, and for both the geometrical and
temporal (dis)agreement measure, the effects of magnitude-
based pruning essentially were not that much different than
if weights were removed just randomly (statistically, by
repeated measures ANOVAs, the differences were indeed
insignificant in 5/10 comparisons across both Dy, and Dy,
and significant in the remaining 5/10 cases, but with random
better than magnitude in one of these). This confirms that
the absolute size of a weight parameter is less indicative of
its contribution to RNN performance. Yet, using geometric
pruning, network size in general could be reduced substan-
tially beyond that of random pruning (significantly so in all
10/10 cases, p < 0.03), with sometimes just about 5% of
the weight parameters sufficient to optimally reconstruct the
ground truth DS. This was apparent not only in the geomet-
rical measure Dy, (left column in Fig. 3), but also in the
temporal (dis)agreement measure Dy (right column in Fig.
3) which was not a criterion used in the pruning process (as
well as in short-term prediction errors, see Fig. A10).

Furthermore, these effects were present across networks
of different initial sizes (Fig. A7): Specifically, while the
LTH suggests starting with strongly over-parameterized sys-
tems to enhance the chances for a winning ticket, which
then naturally can be substantially pruned down (Frankle &
Carbin, 2019; Frankle et al., 2020; Malach et al., 2020a), the
differences between geometry- and magnitude-based prun-
ing persisted in much smaller networks (Fig. A7). Finally,
similar results were obtained for other types of RNN archi-
tectures (LSTMs: Fig. 3, bottom; vanilla RNNs: Fig. A9),
implying that these observations are not specific to PLRNNs
but more general. For LSTMs we furthermore observed that
geometrical pruning identified the relevance of the model’s
different weight matrices to the performance, leading to
interpretable results in terms of the inter-cell connectivity
(Fig. A12). We conclude that a substantial reduction in pa-
rameter set size is indeed possible, but not so much based on
the more traditional criterion of weight magnitude (Blalock
et al., 2020).

4.3. Network Topology, not Weight Configuration is
Essential to Performance

The LTH poses that it is the topology of an embedded subnet-
work m in conjunction with a specific random initialization
of model parameters 6 of this subnetwork which is crucial
for its success. The fact that absolute weight magnitude
plays less of a role in performance already sheds doubt on
this idea in the context of DSR. To more explicitly test this
and disentangle the contributions of mask m and weights
6 to the DSR of geometrically pruned networks, we re-
sampled network parameters 0, ~ N(0,02I) with a fixed
mask m from the very same distribution, from which the
initial estimate 6y had been drawn, and compared this to
the standard LTH case where 6 is fixed after the initial
draw. We found that the influence of the network topology,
given by the mask m, far outweighed the importance of
the specific initial weight vector 8y: Redrawing 6, from
scratch vs. fixing it to the initial 8y did not make much
difference for DSR performance (Fig. 4; see also Fig. All
for the same results on D), highlighting the crucial role
network topology plays in the context of DSR. This is good
news: in the ‘classical’ LTH, masks and weight distributions
are tied in a specific way and therefore hard to disentangle.
This in turn implies that the specific configuration that led
to the winning ticket is difficult to reverse-engineer, and
hence computationally costly iterative pruning schemes are
required. However, given that in our case performance gains
are primarily driven by topological structure and not param-
eter distribution, this structure can be distilled from trained
RNNs and reverse-engineered with tools well-known from
graph theory, as discussed next.
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Figure 4. Difference in Dy, when using the initial weights 6 and
reinitialized weights 6, shows there is no strong or consistent in-
fluence of the specific weight initialization. Error bands = standard
deviation.
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4.4. Distilling Network Topology for Enhanced DSR
Training

Next, we analyzed the topological properties of geometry-
pruned networks in order to identify the crucial features that
led to superior performance.* We find that these topologies
contain both hub-type as well as small-world characteristics
(Fig. 5; details in Appx. A.5, see Fig. A18 for specific
examples of the different network topologies): As typical
for small-world networks like the Watts-Strogatz model,
geometrically pruned RNNs were characterized by a small
average path length L (Fig. 5c; see Fig. A16 for similar
effects in larger networks) as well as a high clustering co-
efficient C' (Fig. 5d, Fig. A16). At the same time, as in
scale-free networks like the Barabdasi-Albert model (Fig.
A18), geometrically pruned RNNs bear a hub-like struc-
ture with a few highly connected network nodes (Fig. Sa,
Fig. A16). We combined these features into an algorithm

0
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Erdés-Rényi 0.35 @l Hidden nodes
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pruned pruned

Figure 5. Graph properties of geometrically pruned, Barabdsi-
Albert (BA), Watts-Strogatz (WS), and Erd6s—Rényi (ER) net-
works, with 92.4% of parameters removed and averaged across all
datasets with M = 50. a) Cumulative degree distribution F'(k’)
as a function of normalized degree k' = %, separated accord-
ing to in- and out-degree (for geometrically pruned network). b)
Comparison of degree distributions P(k’) for readout vs. hidden
nodes of geometrically pruned networks. ¢) Average path lengths
L for all four network topologies. Note that Erd6s—Rényi graphs
are not a naive baseline here, but are also known to have small path
length (Watts & Strogatz, 1998). d) Clustering coefficients C' for
the same. See also Fig. A16.

(Algorithm 2) that automatically produces RNN connectiv-
ity structures with these desired properties, which we call
‘GeoHub’ (for geometrically-pruned-hub network).

In Fig. 6 we compare the DSR performance of RNNs trained
with GeoHub topology to those based on the classical Watts-
Strogatz and Barabdsi-Albert models. As evident, GeoHub-

“Recall that well trained but unpruned RNNs always have full,
all-to-all connectivity.

Algorithm 2 GeoHub network algorithm
Input

:Number of nodes n, mean in- and out-degree
k, dimension N of the data
Output : GeoHub graph G(V, E)

G < fully connected graph with N nodes
Add n — N nodes
for i < 1ton do

for + 1tok/2do
Select node v; with probability

= v (K +k/2), ifjel .. N
’ %k;n ifjeN+1,..,n
where N is a normalization factor (see Appx.
AlS)
E<+ FEU {eij}

end
end
fori <+ 1tondo

for! + 1tok/2do
Select node v; with probability
pj = w (K" + k5" + k/4)
with normalization A/
E+ FEU {6]'1‘}
end

end

based networks perform best on all three benchmark setups
employed in this comparison, whether chaotic (Lorenz-63),
complex but non-chaotic (bursting neuron), or real-world
ECG data, closely followed by RNNs with a Barabdsi-Albert
graph (see Fig. A13 for comparisons on other benchmarks).
As a further baseline, we also included RNNs based on an
Erdés—Rényi random graph in this comparison. Surprisingly,
although small-world features appeared to be necessary to
move DSR performance beyond that obtained by the scale-
free Barabasi-Albert structure alone, a pure small-world
structure (Watts-Strogatz model) actually appeared to di-
minish performance compared to the Erd6s—Rényi graph
models. Finally, we observed that RNNs initialized with
optimal topology do not only outperform other graph struc-
tures, but also train significantly faster, i.e. reach satisfying
DSR performance in fewer epochs than other topologies, as
illustrated in Fig. 7.

In summary, our results show that the best performing graph
model is the one which replicates the topology empirically
obtained through geometry-based pruning, and that initial-
izing based on this topology alone yields sparse networks
with performance rivaling that of fully connected RNNs.

5. Conclusions

In this work we reported on a surprising observation: Setting
up the right network topology alone is sufficient to produce
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Figure 6. Reconstruction results in terms of state space divergence
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Barabasi-Albert, and Watts-Strogatz graph algorithms are de-
scribed in detail in A.6. Error bars = SEM.
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Figure 7. Epoch at which reasonable DSR performance (Dysp, <
1.0) is obtained for the different network topologies when trained
on the Lorenz-63. Each network contains =~ 300 parameters.

a highly sparsified generative RNN which recapitulates the
geometrical and temporal properties of observed DS about
as well as a fully parameterized network. Beyond proper
network topology, neither the specific parameter initializa-
tion, nor their absolute magnitude, were that crucial to DSR
performance. Such networks, as obtained by geometric
pruning, with a mixture of hub-type and small-world charac-
teristics, not only profoundly reduce parameter and memory
load, but also train much faster than comparably sized RNNs
with random topology. Since we observed this for a diverse
set of benchmarks, both chaotic and non-chaotic, low- and
higher-dimensional, evolving on multiple time scales, as
well as for different types of RNNs, these results appear

to be more general, although follow-up studies to confirm
this for a wider range of systems and NN architectures are
desirable.

Our results suggest a new type of LTH (Frankle & Carbin,
2019) in the context of DSR, where the winning tickets in
largely over-parameterized networks depend less on spe-
cific weights but more on abstract topological features. It
remains to be examined why exactly this is the case, how
widely this holds, and whether the type of topology will be
similar across different systems. For instance, the LTH so
far has been mainly explored in the context of feed-forward
architectures like CNNs. Is recurrence in the network a
crucial feature and do our results therefore also generalize
to other sequence and time series models? Or is it specific to
the DSR problem, where we also want to capture geometric
and long-term temporal properties of the data-generating
system? Since many real-world systems (on which many of
the benchmarks are based) have specific topological prop-
erties due to physical constraints, like scale-free or small-
worldness, it is also conceivable that for DSR optimal RNN
structure to some extent mirrors this empirical observation.
It would be interesting to explore whether these results hold
beyond the natural science domain, in areas like NLP for
instance.

Finally, note that geometric pruning here mainly served as a
tool to examine topological factors important in DSR. How-
ever, computationally efficient implementations of it, which
make this technique directly applicable, are also conceivable,
e.g. based on efficient (dimension-wise and parallelizable)
proxies for Dy;,. There is also room for improvement, for
instance by incorporating invariant temporal structure into
the pruning process.

Software and Data

All code created is available at https://github.com/
DurstewitzLab/RNNtopoDSR.
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A. Appendix
A.1. Methodological Details
A.1.1. MEAN-CENTERED PLRNN

Layer normalization is often beneficial for training RNNs (Ba et al., 2016) and has been modified for PLRNNs in order
to retain their piecewise linear structure (Brenner et al., 2022). Brenner et al. (2022) observed that mean-centering before
applying the nonlinearity at each time step is already sufficient to obtain the usual performance boosts, implemented as

M
1
M(zi-1) = 21 — -1 = 201 = 147 >z, ®

i=1

where 1 € RM is a vector of ones. Since mean-centering is linear, it can be rewritten as a matrix multiplication with the
latent state vector,

M—-1 -1 ... -1
1 -1 M-1 ... -1

A.1.2. BPTT + IDENTITY-TF

Training RNNs via BPTT runs into the exploding & vanishing gradient problem, which is aggravated when training on
chaotic systems (Mikhaeil et al., 2022). Mikhaeil et al. (2022); Brenner et al. (2022) suggested STF as a remedy, which in
the case of a direct (identity) mapping from a subset of latent states to the observed time series values takes a particularly
simple form. Let X = {x;} be the observed time series, and Z = {z;} the RNN latent states. We then create a control
series Z by inverting the observation model, which in identity-TF simply comes down to

fork < N
zt,k{x”“ rr= (10)

Zt g, fork>N

i.e. the z; are just the latent states with the first N components replaced by the actual observations. In STF, the latent states
z; are replaced by the control states Z; sparsely at times 7 = {n7 + 1}, n € N, separated by an interval 7:

o {PLRNN(it_l), ifter an

PLRNN (z4_1), else

where this forcing is always applied after calculating the loss. To allow the system to capture relevant time scales while
avoiding divergence, ideally the forcing interval 7 is chosen according to the predictability time based on the system’s
maximum Lyapunov exponent (Mikhaeil et al., 2022), but here we simply determined the optimal 7 by grid search as in
(Brenner et al., 2022). Importantly, STF is only applied during model training and not at test time.

A.1.3. TRAINING PROTOCOL

Given a time series {x1.7} from a DS, we train the model using BPTT + identity-STF. For each training epoch we sample
gp ) = T, . 5 where t, € [1,T — T] is chosen randomly. These subsequences
p-tp

several subsequences of length T, & 7

s
{:Tcip %} . are then arranged into a batch of size S. On each sequence, the PLRNN is initialized with the first forcing
T e
(p)

signal 251) ), and from there forward-iterated in time, yielding predictions {é;p)f} = {z o0 F 1N

} using Eqn. 1. The loss is
then computed as the MSE between predicted and ground truth time series

2

(12)

s T
a— 2 .

Luse ({203} {2t} }) = S(T11) >3 [a -

p=1t=2

We took rectified adaptive moment estimation (RADAM) (Liu et al., 2020) as the optimizer, using L = 50 batches of
size S = 16 in each epoch. We chose M = {50,100, 100, 50,100}, = = {16, 10, 5,8,8}, T' = {200, 50, 50, 300, 200},
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Nsarr = {1072,1073,1073,5-1073,5 - 1073}, and epochs = {2000, 3000, 4000, 3000, 3000} for the {Lorenz-63, ECG,
Bursting Neuron, Rossler, Lorenz-96}, respectively, and 7e,q = 1075 for all settings. Parameters in W were initialized
using a Gaussian initialization with ¢ = 0.01, h simply as a vector of zeros, and A as the diagonal of a normalized
positive-definite random matrix (Brenner et al., 2022; Talathi & Vartak, 2016). Across all training epochs of a given run, we
consistently (for all comparisons and protocols) selected the model with the lowest Dy, Failed trainings (yielding NaN
entries) were discarded. Failures in training were indeed much more common for the random and magnitude-based pruning
protocols, further reinforcing our points about the importance of network graph topology.

The vanilla RNN used is given by
zZt = (ﬁ(WZt,l + CIBt + b) . (13)

The LSTM architecture is defined by (Hochreiter & Schmidhuber, 1997)
fi=0Wyszi 1+ Crxy 1 +by),

it =0W;z1_1 +Cizy_1 + b;) ,
o, =0(Wyzi—1+ Coxi—1 + b,) ,

- (14)
¢ = tanh(Wez;—1 + Cewy—1 + b.) ,
c=ftOc 1+ 0¢,
z; = 0; ® tanh(¢y) ,
where o (-) is the standard sigmoid function. For both these architectures, a linear observation model
Ty = th +h (15)

was used. Models were trained via standard BPTT (Rumelhart et al., 1986) with MSE loss, using the ADAM optimizer
(Kingma & Ba, 2015). For both architectures batch size was S = 16, with L = 20 batches per epoch, M = 50, T' = 200,
Nstart = 1073, Nend = 1076, and epochs = 500. All weight parameters were initialized using a Gaussian scheme with
o = 0.01, and biases as vectors of zeros. The B matrix of the observation model was initialized using glorot-uniform
initialization (Glorot & Bengio, 2010). Like for the PLRNN, pruning was applied to all weight matrices W, C (for vanilla
RNN), and W;, W;, W, W, Cy, C;, C,, C. (for LSTM).
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A.2. Details on the Benchmark Datasets

From all benchmark systems, as detailed below, trajectories of 10° time steps were drawn for training, all dimensions were
individually standardized, and Gaussian observation noise was added (Lorenz-63: 5%, Lorenz-96: 1%, Bursting Neuron:
2%, Rossler: 5%, ECG: 5%). All systems (except for the human ECG data) were numerically integrated using a fourth-order
Runge-Kutta scheme (Stoer & Bulirsch, 2002).

A.2.1. LORENZ-63 SYSTEM

The Lorenz-63 system, introduced by Edward Lorenz in 1963 (Lorenz, 1963) as a model of atmospheric convection, is given
by

dx

3 =2 (16)
dy

5 =2~y

dz

E —l‘y_ﬁZ,

where o, p, 3, are parameters that control the behavior of the system (set to o = 10, § = %, and p = 28 here, within the
chaotic regime). The Lorenz-63 is one of the most popular examples in chaos theory and in the literature on dynamical
systems reconstruction. Here we solved this system with integration time step At = 0.01. See Fig. A1 for an illustration.

2
1
==ground truth & 0
—generated -3

0 500 1000 1500 2000

t
® :§
0 500 1000 1500 2000

t

Figure Al. State space (left) and time graphs (right) for Lorenz-63 system with 0 = 10, 8 = % and p = 28 (blue), and a PLRNN
reconstruction (red). Note that despite the essentially perfect reconstruction in state space, the Lorenz system’s positive Lyapunov
exponent causes the true and reconstructed trajectories to eventually diverge (yet their temporal structure remains the same).
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A.2.2. LORENZ-96 SYSTEM

The spatially extended Lorenz-96 system (Lorenz, 1996) is defined by

dz i
dt

= (Tit1 — Ti—2)Tic1 — x; + F, a7

with system variables z;, ¢ = 1,..., N, and forcing term F' (where F' = 8 puts the system into the chaotic regime).
Furthermore, cyclic boundary conditions are assumed with z_1 = xny_1, 9 = ZN, Tny4+1 = 1, and At = 0.04 is used for

numerical integration. Fig. A2 provides an illustration.
2
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Figure A2. Illustration of the Lorenz-96 system (/N = 5, F' = 8), with spatiotemporal evolution on the left and single time series on the
right.
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A.2.3. BURSTING NEURON MODEL

The simplified 3d biophysical model of a neuron used here is defined by (Durstewitz, 2009)

—Cm% = gL(V - EL) + gNamoo(V)(V — ENa) + gKn(V - EK)
+gmh(V = Ex) + gnarpa(l +0.33e7 09V "NV — Exarpa)
dh heo(V) —h (18)
a o
dn  n.(V)—n
P

where V' is the membrane voltage and n, h, are so-called gating variables controlling current flux through voltage-gated
ion channels with vastly different time constants. Specifically, we used a standard set for the parameters which produces
bursting activity (fast spikes riding on top of slow oscillations, see Fig. A3):

Cp =6uF, gr =8mS, Er, = —80mV, gy, = 20mS
ENa = GOmV, VhNa = —QOmV, kNa, = 15, JgK = IOmS,

19
Ex = -90mV, Vg = =26mV, kg =5, 7, = lms, gy = 25mS 19
VhM = —15mV, kM = 5, Th = 200ms,gNMDA =10.2mS
The limit values of the ionic gating variables are given by
V —{Vina, Vik, VhM})
Moo, Noos Reo } = O , 20
{ } ( {kNaa ka kM} ( )

where o(+) is the common sigmoid function.
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Figure A3. lllustration of the biophysical neuron activity (blue; Durstewitz (2009)) and a reconstruction using the PLRNN (red). Left:
state space; right: time graphs. As this system is non-chaotic, true and reconstructed trajectories precisely overlap.
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A.2.4. ROSSLER SYSTEM

The Rossler system, introduced by Otto Rossler in 1976 (Rossler, 1976) is a model that produces chaotic dynamics with
nonlinearity in only one state variable, given by

dz

i y—=2 ey
d

k]

d

d—j:b—l—z(:c—c),

where a, b, ¢, are parameters that control the behavior of the system (set to a = 0.2, b = 0.2, and ¢ = 5.7 here, within the
chaotic regime). Here we solved this system with integration time step At = 0.08. See Fig. A4 for an illustration.
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Figure A4. State space (left) and time graphs (right) for Rossler system with ¢ = 0.2, b = 0.2, and ¢ = 5.7 (blue), and a PLRNN
reconstruction (red). Note that despite the essentially perfect reconstruction in state space, the Rossler system’s positive Lyapunov
exponent causes the true and reconstructed trajectories to eventually diverge (yet their temporal structure remains the same).
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A.2.5. ELECTROCARDIOGRAM (ECG) DATA

Electrocardiogram (ECG) time series were taken from the PPG-DaLiAdataset (Reiss et al., 2019). Using a sampling
frequency of 700H z, this translates to a recording duration of 600 seconds resulting in a time series spanning 7" = 419, 973
time points. The data were initially smoothed by applying a Gaussian filter (with 0 = 6,1 = 8¢ + 1 = 49). The time series
is then standardized, followed by a delay embedding, using the DynamicalSystems. j1 Julia library with embedding
dimension m = 5. In our experiments we use the first 7' = 100, 000 samples (approximately 143 seconds).
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Figure AS. Ilustration of a DS reconstruction of human ECG, with spatiotemporal evolution of delay-embedded time series (top panels)
and single voltage signal (bottom). Note that the ECG signal is slightly chaotic (Hess et al., 2023), ultimately leading to divergence.
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A.3. Evaluation Measures

To measure the geometrical (dis)agreement Dy, between true and model-generated attractors we use a Kullback-Leibler
divergence, as first suggested in (Koppe et al., 2019). It assesses the overlap between the true distribution pyyye(x) of
trajectory points, and the distribution generated by the model pye,, (x|2), as

KL (porue (@) [pgen (@]2)) = / Porue(@) log p(fl"'z))dm 22)

Practically, this is evaluated by binning space into &% bins, with & = 30 bins per dimension for N = 3 and k = 8 for
N = 5, estimating the occupation probabilities through the relative frequencies

Di = (23)

where n; is the number of time points falling into bin ¢, and taking

pt
stsp ~ Zptrue i rueit (24

gen;i

To assess the agreement in long-term temporal structure between true and reconstructed systems, the Hellinger distance Dy
between power spectra f;(w) and g;(w) of the true and generated time series, respectively, are computed separately for each
dimension ¢ (Mikhaeil et al., 2022; Hess et al., 2023). It is defined as

(fz( z \/1 - / \/ gz dw (25)

Power spectra are computed through the Fast Fourier Transform, slightly smoothed using a Gaussian kernel, and normalized
(see Hess et al. (2023) for details). The total measure Dy is then defined as the average across all dimension-wise distances

H(fi(w),gi(w))-

A.4. Further Results
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Figure A6. a) Weights with large (A Dy, > 0.1) vs. low (A Dy, < 0.1) impact on geometrical reconstruction quality when removing 3
weights simultaneously in each iteration. b) Change in geometrical agreement (A D) as a function of pruned weight magnitude for
PLRNN:S trained on human ECG, cf. Fig lc.
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Figure A7. Same as Fig. 3 for PLRNNSs of different (smaller) network (latent space) size (Fig. 3 was produced for M = 50). Error bars =
SEM.
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Figure A8. Same as Fig. 3 for the chaotic Rossler system (top row), the chaotic Lorenz-96 system (center), and the chaotic Lorenz-63
system with high (25%) noise level (bottom). Error bars = SEM.

23



Optimal Recurrent Network Topologies for Dynamical Systems Reconstruction
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Figure A9. Same as Fig. 3 for a vanilla RNN, 2z; = ¢(Wz2:_1 4+ Cx: + b) with &; = Bz; + h. Error bars = SEM.
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Figure A10. Quantification of DS reconstruction quality in terms of the mean-squared 20-step-ahead prediction error as a function of
network pruning (x-axis, exponential scale) and different pruning criteria for the Lorenz-63, bursting neuron, and ECG. Error bars = SEM.
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Figure Al1l. Same as Fig. 4 for Dy: Difference in Dy when using the initial weights 8¢ and reinitialized weights 6., shows there is no
notable influence of the specific weight initialization.
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C; C; C. c,

w, W, w, w,

Figure A12. LSTM pruning masks for all types of LSTM weight matrices (input, forget, cell state, and output): Geometry-based pruning
is able to identify the relevance of different weight matrices to the performance, therefore excluding W;, W, W, from the model,
leading to interpretable pruning results in terms of inter-cell connections and their links to observable outputs.
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Figure A13. Reconstruction results in terms of state space divergence Dyp as a function of network sparsity s = 1 — % for Erd6s—Rényi,
Barabasi-Albert, Watts-Strogatz and GeoHub graph algorithms. Error bars = SEM.

A.5. Network Topology
A.5.1. GRAPH PROPERTIES

When characterizing graphs, we seek properties that are preserved under different isomorphisms. A fundamental characteris-
tic is the degree distribution P(k), where the degree is the number of connections associated with a node, which may be
further distinguished into incoming (k") and outgoing connections (k°“*). Two major types of graphs are single-scale and
scale-free graphs, where the latter is surprisingly common in many real-world systems (Barabdsi & Albert, 1999). While
single-scale graphs are often well captured by the binomial or Poisson distribution, P (k) in scale-free graphs follows a
power law

Plk) k™7 . (26)
Such graphs are characterized by the presence of many nodes with low and a few nodes with high degrees, often referred to
as hubs.

Many algorithms exist for finding the shortest path between two nodes in a graph, as required to compute the mean average
path length L(G) in Eqn. 6. Here we use the Floyd-Warshall algorithm (Floyd, 1962; Warshall, 1962). While originally the
clustering coefficient C'(G), as used in Eqn. 7, was defined only for undirected graphs (Watts & Strogatz, 1998), here we
use the formulation proposed in (Fagiolo, 2007) which considers the more general case with directed edges. When two
neighbors of a node v; are connected by any type of edge, they form a triangle. The number of directed triangles ¢; formed
by all neighbors of v; can be calculated from the adjacency matrix A% as (Fagiolo, 2007)

Z Z adj + Aad_] Aad_] + Aadj)<AadJ + Aadj) (Aadj + (Aadj)T) 3 . (27)

hi i
The total number of p0531ble triangles 7; is given by (Fagiolo, 2007)

T; = k(KT — 1) — 2k, (28)

7
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where k{°t = k24t + k™ is the total degree and k]~ is the number of bilateral edges connected to node v;. The ratio of these
two quantities yields the clustering coefficient of a node v;,

. T
(4% 4 (4%)")3
C— 2
= ST 1) - 247 2

and the average across all nodes yields Eqn. 7 in sect. 3.3 (Watts & Strogatz, 1998). Intuitively, this quantity measures how
likely it is that any two neighbors of a given node are also immediate neighbors. Based on these quantities, Watts & Strogatz
(1998) introduced the idea of small-world graphs, which are characterized by a high clustering coefficient yet short average
path length. To measure the small-worldness of any graph, these characteristics can be combined in a single measure called
the small-world index SWI (NEAL, 2017). Its definition requires a reference, for which Erd6s—Rényi random graphs (Erdos
& Rényi, 1959) and ring lattice graphs are used. Random graphs have a short average path length L,. and a low clustering
coefficient C,., while, on the contrary, lattice graphs have a high average path length L; and high clustering coefficient Cj.
Based on these one defines

L-L, C-C,

SWI = . .
L.—L C-C,

(30)

This measure is thus normalized and further clipped into the range 0 < SWI < 1, where a value close to 1 indicates higher
small-worldness.

A.5.2. GRAPHS OBTAINED FROM GEOMETRY-BASED PRUNING

The graph structure of pruned PLRNNS is given through their pruning masks m. Investigating the complementary cumulative
degree distribution in m on a logarithmic scale (Fig. 5a) reveals a scale-free distribution, indicating the existence of hubs.
Those hubs are primarily associated with PLRNN nodes that directly link to the outputs (observations) via the identity
mapping used here (see Eqn. 3 and sect. 3.1), see Fig. 5b. The difference between the k%"~ and the k°“!-distribution
furthermore indicates directedness of the edges, i.e. directed information flow. The pruned PLRNNSs also exhibit properties
of small-world graphs with a higher clustering C' and a path length L not exceeding the one of random graphs (Fig. A14
left), and as evidenced by the SWI (Eqn. 30; Fig. A14 right). Algorithm 2 implements a procedure that respects all these
properties, namely directedness in edges, hub nodes preferentially associated with in-going connections and, mainly, for all
output units, and small-worldness.
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Figure A14. Average path length L (left), clustering coefficient C (center) and SWI (right) for the PLRNN topologies obtained through
geometry-based pruning, as a function of the % of weights remaining, and for the different benchmarks used in here. Random graph for
comparison in red. Note that x-axes are on an exponential scale for better visualization.

In more detail, since the network topologies obtained by pruning highlight an important difference between readout nodes
and hidden nodes, we start constructing the graph by a fully connected model with readout dimension N. Due to the strong
hub characteristics we expand this network based on the preferential attachment mechanism of the Barabdsi-Albert model.
To endow specifically the readout nodes with hub-like features, the probability of connecting to these nodes is increased by
aterm k" = % S ki™ as observed empirically. To introduce directness within the graph, we further decouple the
generation of incoming and outgoing edges, establishing incoming edges first. The probability for a random node connecting
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to node v; is thus given by

1 y 1 y . .
pin = N (k%n+§k},’l’€an), ifiel,..,N 31)
! x4 kin ifie N+1,..,n
where the normalization is N' = Z?Zl k;” + %k;ﬁmn. In a next step, for each node outgoing edges are created, taking
the already established structure into account. To prevent strong hub formation in outgoing edges, a term proportional to
kowt = % o, k2“t, related to the empirically observed out-degree, is added, equalizing the connection probabilities p;.

Specifically, the probability for a random node to receive a connection from node v; is given by

1 ; 1
=5 (k” + R+ 4k%‘£an) : (32)

where the normalization is N = > (k%" 4 k") + §ko, . (For numerical stability, a constant 0.05 is added to each

ki and k2*'.) The algorithm is described in detail in Algorithm 2. The user needs to specify a hyperparameter k that
determines the number of edges connected to a node, based on which the mean in-degree k', .. and mean out-degree k9%
required for calculating the probabilities is exactly given, making the calculations tractable. Using this model, we are able to
generate graphs that fulfill the characteristics found empirically as described further above.
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Figure A15. Distribution of the SWI, Eqn. 30, for the GeoHub graph (blue) and the Barabdsi-Albert model (red), for n = 100 and
5~ 90%.
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Figure A16. Same as Fig. 5 for network size M = 100.

27



Optimal Recurrent Network Topologies for Dynamical Systems Reconstruction

100% weights remaining

64% weights remaining

41% weights remaining

Dy =005 Dy, = 0.04 D,,,=0.05
2 2 2
1 1 1
[N 0 0 0
-1 1 -1
-2 - 123 -2 L 3 -2 3
1012 —7(1 1012 _jq- 1012 —iq'
) Y y
€T T T
13% weights remaining 9% weights remaining 4% weights remaining
Dyyyp = 0.1 Dy, = 0.28 D, —1.07
2 2
1 1
[N 0 0
-1 1
-2 123 -2 12
-2 K -2 "
oy A o A
Yy Y

8

3% weights remaining

T

2% weights remaining

1% weights remaining

D, ~1.18 D,,, —4.25 D, ~13.79
2
1
v 0
-1
-2 3
Loy A

xT

Figure A17. Example reconstructions of the Lorenz-63 at different levels of geometry-based parameter pruning, with an indication of
reconstruction quality as measured by Dy, on top.
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A.6. Graph Algorithms

A.6.1. ERDOS-RENYI MODEL

Algorithm A1 produces an undirected Erd6s-Rényi random graph, where edges are chosen uniformly at random. Required
inputs are the number of nodes n and the requested number of edges k.

Algorithm A1 Erd6s—Rényi model
Input :Number of nodes n, number of edges k
Output : ErdGs-Rényi graph G(V, E)
G + empty graph with |V| =n and |E| =0
while |E| < k do
Choose a random pair of nodes v; and v; from G
if €ij ¢ FE then
| E=EU{ey)
end
end

A.6.2. WATTS-STROGATZ MODEL

The Watts-Strogatz model yields undirected small-world graphs. For constructing such a graph the number of nodes n, the
desired degree k, and the rewiring probability p need to be specified.

Algorithm A2 Watts-Strogatz

Input :Number of nodes n, number of edges k, rewiring probability p
Output : Watts-Strogatz graph G(V, E)

G <+ ring lattice with n nodes, each connected to its k£ nearest neighbors
for i < 1tondo
forj<i+1toi+k/2do
| G <« rewire edge e;; with probability p
end
end
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A.6.3. BARABASI-ALBERT MODEL

The Barabdsi-Albert algorithm generates undirected graphs with a preferential attachment mechanism. The probability p; of
adding an undirected edge to a node v; is given by

ki
e i (33)
' Z]:l k]
which leads to hub-like structures with scale-free degree distribution. The algorithm starts with a fully connected graph with
n nodes, and then iteratively adds n — k nodes which are attached to the k existing nodes with probability Eqn. 33.

Algorithm A3 Barabdsi-Albert

Input :Number of nodes n, number of edges k
Output : Barabdsi-Albert graph G(V, E)

G + graph with k nodes fully connected
fori < k+1tondo
Add node v;

for [ <— 1to k do
Select node v; with probability p; =
E+ FU {eij}
end
end

kj
Zh, kn
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Figure A18. Example graph topologies with network sparsity of 85%. Hubs with > 6 connections are marked in red.
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