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ABSTRACT

Despite significant progress has been made in image deraining, existing approaches
are mostly carried out on low-resolution images. The effectiveness of these methods
on high-resolution images is still unknown, especially for ultra-high-definition
(UHD) images, given the continuous advancement of imaging devices. In this
paper, we focus on the task of UHD image deraining, and contribute the first large-
scale UHD image deraining dataset, 4K-Rain13k, that contains 13,000 image pairs
at 4K resolution. Based on this dataset, we conduct a benchmark study on existing
methods for processing UHD images. Furthermore, we develop an effective and
efficient architecture (called UDR-Mixer) to better solve this task. Specifically,
our method contains two building components: a spatial feature rearrangement
layer that captures long-range information of UHD images, and a frequency feature
modulation layer that facilitates high-quality UHD image reconstruction. Extensive
experimental results demonstrate that our method performs favorably against the
state-of-the-art approaches while maintaining a lower model complexity. The code
and dataset will be available to the public.

1 INTRODUCTION

Single image deraining aims to remove the undesired degradation induced by rain streaks from input
images, enhancing its visual quality and improving the accuracy of perception system (Chen et al.,
2022b). In image deraininig, deep learning-based methods become predominate ones as the formation
of image deraining is quite simplified compared to the conventional prior-based methods (Luo et al.,
2015). One can choose deep models based on convolutional neural network (CNN) (Jiang et al.,
2020; Zamir et al., 2021; Yi et al., 2021) or Transformer architectures (Xiao et al., 2022; Chen et al.,
2023b;a; 2024) to directly estimate clear image from rainy one.

Among these approaches, most of them are trained and evaluated on low-resolution datasets (Chen
et al., 2023c). These commonly used benchmark datasets consist of 1K or even lower resolution
images, such as Rain200L/H (Yang et al., 2017) and Rain13k (Jiang et al., 2020), as illustrated in
Figure 1(a). Based on the existing empirical studies (Zhang et al., 2021; Wang et al., 2023; Li et al.,
2023), existing image deraining approaches trained on these low-resolution datasets are not likely to
generalize well on high-resolution images. However, few effort has been made in ultra-high definition
(UHD) image deraining due to the absence of UHD deraining dataset. As UHD devices have been
widely used, it is urgent and essential to build a high-resolution benchmark and pave the way for
future research in this field.

To explore the performance of existing approaches on UHD images, in this paper, we first establish a
large-scale dataset called 4K-Rain13k to benchmark existing methods. The proposed 4K-Rain13k
contains 13,000 rainy/rain-free image pairs at 4K resolution (3840 × 2160), with 12,500 pairs
allocated for training and 500 pairs for testing. Unlike existing datasets (Yang et al., 2017; Fu
et al., 2017; Zhang & Patel, 2018; Zhang et al., 2019; Jiang et al., 2020; Liu et al., 2021b) that
directly add rain streaks proportionally to clear images to synthesize rainy images, we observe that
geometric inconsistencies in the lengths and thicknesses of rain streaks between low-resolution and
high-resolution rainy images. In high-resolution UHD images, rain streaks typically appear longer
and slighter due to the increased pixel information, whereas in low-resolution images, the same length
of rain streaks may appear blurred into shorter or thicker lines due to fewer pixels. To this end, by
integrating geometric transformations (i.e., scaling) into the rain synthesis pipeline, we can enhance
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Figure 1: Comparisons on different benchmarks and methods. (a) As existing datasets have not
explored high-resolution images, particularly UHD images, our proposed 4K-Rain13k dataset will fill
the gap in this research. (b) Model complexity and performance comparisons of the proposed method
and other state-of-the-art models on the proposed 4K-Rain13k dataset in terms of PSNR, model
parameters and FLOPs. The area of each circle denotes the number of model parameters. Since most
approaches are unable to directly process UHD images, FLOP calculation is based on image sizes of
1024× 1024. Our method achieves a better trade-off between efficiency and performance.

the harmony and consistency of the synthesized images, enabling them to better reflect the attributes
of the original UHD image content. Based on this new dataset, we conduct extensive evaluations to
analyze the performance of existing methods.

Furthermore, we find that when dealing with UHD images, most state-of-the-art (SOTA) methods
often encounter memory overflow issues, making it difficult to perform full-resolution inference
on consumer-grade GPUs. This motivates us to develop an effective and efficient method tailored
for UHD image deraining. In this paper, we develop a simple yet effective architecture (called
UDR-Mixer) to better solve this task, rather than relying on the self-attention mechanism that is
computationally expensive in Transformers (Zamir et al., 2022). It is worth noting that our proposed
method can achieve full-resolution inference of UHD images on consumer-grade GPUs.

The proposed UDR-Mixer consists of two parallel branches, each dedicated to exploring spatial and
frequency representations to complement each other. In the main branch, we construct spatial feature
mixing blocks (SFMB) as the core components, establishing global information perception through a
simple yet effective feature rearrangement mechanism. Unlike strategies based on single-view spatial
region rearrangement (Guo et al., 2022; Yu et al., 2022a), we recursively encode the entire image from
different perspectives in multi-stage dimensional transformations and correlate multi-view features by
permuting the tensor to better capture long-range pixel dependencies in UHD images. Simultaneously,
we introduce an auxiliary branch composed of frequency feature mixing blocks (FFMB) to facilitate
high-quality restoration of UHD images. Figure 1(b) illustrates that our method achieves favorable
performance with a better trade-off between efficiency and performance.

The main contributions of this paper are summarized as follows:

• We propose the first high-quality UHD image deraining dataset (4K-Rain13k). Based on
this dataset, we conduct a benchmark evaluation on existing methods for processing UHD
images.

• We develop the spatial feature mixing block and the frequency feature mixing block to
handle UHD images efficiently and formulate them into an end-to-end trainable network
(UDR-Mixer) based on a dual-branch architecture for UHD image deraining.

• We quantitatively and qualitatively evaluate the proposed method on the proposed 4K-
Rain13k dataset as well as real-world UHD images. Experimental results demonstrate that
our approach achieves a favorable trade-off between performance and model complexity.
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2 RELATED WORK

Single image deraining. When we revisit this field of single image deraining, numerous deraining
approaches and benchmark datasets have been proposed in recent years with demonstrated suc-
cess (Chen et al., 2023c). Several classic benchmark datasets are widely adopted to evaluate single
image deraining performance, such as Rain200L/H (Yang et al., 2017), DID-Data (Zhang & Patel,
2018), DDN-Data (Fu et al., 2017) and Rain13k (Jiang et al., 2020). These early benchmark datasets
consist of lower resolution images (1K or less). However, in this field, there is a lack of exploration
specifically for higher resolution images, particularly UHD images. Furthermore, when dealing with
UHD images, existing SOTA methods frequently encounter memory overflow issues, preventing
them from conducting full-resolution inference on consumer-grade GPUs.

UHD image processing. With the development of photography equipment, UHD image processing
has emerged as a new research trend in recent years (Zheng et al., 2021; Yu et al., 2022b; Wu et al.,
2024). Zheng et al. (Zheng et al., 2021) formulated the UHD image dehazing network using multi-
guide bilateral learning. Zhang et al. (Zhang et al., 2021) explored the task of image super-resolution
for UHD resolutions, and further created two large-scale image datasets, UHDSR4K and UHDSR8K.
Ren et al. (Ren et al., 2023) developed a multi-scale separable network to address UHD deblurring
problem. The UHD low-light image enhancement task has also received increasing attention from
researchers, and representative datasets include UHD-LOL (Wang et al., 2023) and UHD-LL (Li
et al., 2023). Beyond that, other related tasks have focused on the application of UHD images, e.g.,
reflection removal and HDR reconstruction (Zheng et al., 2021). To the best of our knowledge, we
first focus on the task of removing rain from UHD images, and we propose both a benchmark dataset
and a baseline method.

Vision MLP. Given the high computational cost of self-attention mechanism in vision Transform-
ers (ViT), several researchers have designed efficient vision models comprising solely multi-layer
perceptrons (MLPs). For example, MLP-Mixer (Tolstikhin et al., 2021) utilizes a straightforward
token-mixing MLP instead of self-attention in ViT, leading to an all-MLP network. It employs
token-mixing MLP to capture token relationships and channel-mixing MLP to capture channel
relationships. Afterwards, some studies further improve the performance of MLP-based models by
designing other architectures, such as gMLP (Liu et al., 2021a) and Hire-MLP (Guo et al., 2022).
Recently, Tu et al. (Tu et al., 2022) formulated a multi-axis MLP-based framework MAXIM for
image processing tasks. Wu et al. (Wu et al., 2024) developed an efficient MixNet for UHD low-light
image enhancement by modeling global and local feature dependencies. Inspired by these works, we
leverage the vision MLP-like architecture to flexibly handle UHD image deraining.

3 UHD IMAGE DERAINING DATASET CONSTRUCTION

To evaluate the performance of existing approaches on the UHD image deraining problem, we first
create a large-scale benchmark dataset named 4K-Rain13k. We note that existing low-resolution
rain datasets (Yang et al., 2017; Fu et al., 2017; Zhang & Patel, 2018; Zhang et al., 2019; Jiang
et al., 2020; Liu et al., 2021b) simply add rain streaks into the clear backgrounds to obtain rainy
images. However, this copy-and-pasting approach is not suitable for synthesizing UHD rainy images
due to the geometric inconsistency between the low-resolution and high-resolution image synthesis
processes. Thus, we develop an effective method for synthesizing rainy images tailored for UHD
images, aiming to achieve more realistic visual effects. Our method involves background collection,
rain streak generation and geometric transformation, which will be presented below.

Background collection. We collect numerous clear backgrounds using a Python program based on
Scrapy to download high-resolution images from the web and various devices. Our ground-truths
includes a wide range of typical daytime and nighttime scenes in urban locations (e.g., buildings,
streets, cityscapes) as well as natural landscapes (e.g., lakes, hills, and vegetations).

Rain streak generation. The diversity and fidelity of rain play crucial roles in the synthesis of rain
streaks. Instead of using Photoshop software to render rain streaks, we synthesize corresponding rainy
images by modeling the generation of rain streaks as a motion blur process to ensure diversity. In
addition, we take into account the transparency of rain layer to ensure fidelity through alpha blending.

Geometric transformation. In fact, there is an easily overlooked problem of geometric inconsistency
in the synthesis of low resolution and high-resolution rainy images, with noticeable discrepancies in
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Table 1: Comparison between existing image deraining datasets and our
proposed 4K-Rain13k dataset. ‘Number’: the number of paired images.
‘Resolution’: the average resolution of the dataset.

Dataset Year Number Avg. Resolution
Rain200L/H (Yang et al., 2017) 2017 2.0K 435× 366

DDN-Data (Fu et al., 2017) 2017 13.0K 489× 428
DID-Data (Zhang & Patel, 2018) 2018 13.2K 512× 512

Rain800 (Zhang et al., 2019) 2019 0.8K 518× 419
SPA-Data (Wang et al., 2019) 2019 29.5K 256× 256
Rain13k (Jiang et al., 2020) 2020 13.7K 482× 419

RainDirection (Liu et al., 2021b) 2021 3.3K 1945× 1444
RainDS (Quan et al., 2021) 2021 1.4K 818× 460
GT-RAIN (Ba et al., 2022) 2022 31.5K 666× 339

LHP-Rain (Guo et al., 2023) 2023 1.0M 1920× 1080
HQ-RAIN (Chen et al., 2023c) 2023 5.0K 1367× 931

4K-Rain13k (Ours) 2024 13.0K 3840× 2160

R
ai

n1
3k

4K
-R

ai
n1

3k

Figure 2: Sample images
from the Rain13k dataset (Jiang
et al., 2020) and our 4K-Rain13k
dataset.

the length and thickness of rain streaks. Specifically, in high-resolution 4K images, with more pixel
information available, rain streaks tend to appear longer and slighter as each rain-effected region can
be accurately represented. In low-resolution images with fewer pixels, rain streaks of the same length
may appear shorter or thicker due to blurring, resulting in a rougher and more ambiguous appearance.

To this end, we introduce geometric transformation operations to adjust the scale of rain streaks
on the UHD images. By applying simple geometric transformations such as scaling, we aim to
harmonize the proportions and sizes of rain streaks in the synthesized images with those observed in
the high-resolution 4K images. This step helps alleviate the geometric disparities caused by varying
image resolutions, ensuring that the rain streak patterns maintain their intended appearance and
spatial relationships during the image synthesis process. We present sample images in Figure 2.

Benchmark statistics. Our proposed 4K-Rain13k dataset contains 12,500 synthetic training pairs and
500 test images at 4K resolution (3840× 2160). The training and test partitions are distinct in terms
of their scenes and data, with no overlap. Table 1 presents a comparison between our dataset and
existing public datasets. Following (Chen et al., 2023c), we utilize the Kullback-Leibler divergence
(KLD), also known as relative entropy, to quantify the difference between the distribution of synthetic
images and real images. Due to limited space, we provide the analysis results in the Appendix A.3.
The results show that our 4K-Rain13k dataset is closer to the distribution of real-world rainy scenes.

4 PROPOSED UDR-MIXER

In this section, we develop an effective and efficient method (called UDR-Mixer) for UHD image
deraining. We first describe the overall pipeline, and then present the details of two main components,
i.e., spatial feature mixing blocks (SFMB) and frequency feature mixing blocks (FFMB).

4.1 OVERALL PIPELINE

As shown in Figure 3, UDR-Mixer is an end-to-end dual-branch parallel network architecture that
models UHD images by exploring both spatial and frequency domain information. Specifically, we
first embed an input rainy image Irain ∈ RH×W×3 into the feature space F0 ∈ RH×W×C through a
3× 3 convolution layer, where H , W and C represents the height, width, and channel, respectively.
To reduce computational complexity in high-resolution images, following previous studies (Li et al.,
2023; Wu et al., 2024), we employ a PixelUnshuffle operation to downsample the features to 1/4 of
the original resolution. Then, the low-level features are processed by an encoder-decoder network
consisting of Ni SFMBs with a 2× downsample operation and a 2× upsample operation to produce
output features.

To alleviate the issue of losing image details caused by straightforward downsampling operations,
we further introduce an auxiliary branch to help UHD image reconstruction. Specifically, we stack
Ni FFMBs to excavate the frequency information of the full-resolution UHD image. Then, the
learned deep features are fed to the decoder network of the main branch for guiding latent clear
image restoration. Finally, the output features are obtained to estimate the derained image using a
3× 3 convolutional layer followed by a PixelShuffle operation. To supervise the training process, we
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Figure 3: The overall architecture of the proposed UDR-Mixer for UHD image deraining, which
mainly contains pixel unshuffle/shuffle operations and MLP-based components, i.e., spatial feature
mixing blocks (SFMB) and frequency feature mixing blocks (FFMB).

employ the L1 loss as the objective function:
L = ∥Iderain − Igt∥1 , (1)

where Igt denotes the ground-truth image, and ∥ · ∥1 denotes the L1-norm.

4.2 SPATIAL FEATURE MIXING BLOCK

Inspired by MLP-Mixer (Tolstikhin et al., 2021), we introduce a new backbone module to encode
feature information. Firstly, we develop a simple yet effective SFMB to aggregate global spatial
information. Given the input feature Xl−1 ∈ RH×W×C , the proposed SFMB can be formulated as:

X′
l = Xl−1 + SFRL (LN (Xl−1)) ,

Xl = X′
l + FFL (LN (X′

l)) ,
(2)

where LN refers to the layer normalization. X′
l and Xl are output feature from the spatial feature

rearrangement layer (SFRL) and feed-forward layer (FFL).

Spatial feature rearrangement layer. To model global spatial information with lower computational
costs, we develop a SFRL based on continuous rearrangements and channel-mixing MLPs. Different
from Hire-MLP (Guo et al., 2022) that utilizes region rearrangement strategy, we introduce a more
flexible mechanism via dimension transformation operations, which directly considers the spatial
properties between pixels in 3D feature maps. This enables the model to progressively capture global
features across the entire image by scrolling, thereby establishing a gradual perception of long-range
information from UHD images (see Figure 3). Specifically, we first normalize the input features, and
then perform multi-stage dimension transformations to rotate the spatial perspective of the tensor
across three dimensions of H , W and C. Here, the 3D feature map undergoes recursive encoding from
(C,H,W ) to (H,W,C) and then to (W,C,H), enabling the capture of global spatial information
through multi-view dimensions. Finally, we adjust the feature map to the original resolution, and
interact with the input features to activate useful features. Mathematically, given an input feature F0,
the feature propagation process of SFRL can be expressed as:

Fl = Interpolate (F0) ,

F′
l = [P (GELU (MLP (Fl)))]×2 + P (Sigmoid (MLP (Fl))) ,

F̂l = Interpolate (F′
l)⊙ F0,

(3)
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where Interpolate(·) and P(·) denote the interpolation and permute functions. GELU(·) and
Sigmoid(·) represents GELU and Sigmoid functions. MLP is a 1× 1 convolution layer. ⊙ represents
element-wise multiplication.

Feed-forward layer. Similar to vision Transformer (ViT) (Sharir et al., 2021), FFL performs
dimension reduction and non-linear transformations. Here, we adopt a FFL to transform features into
compact representations, which is defined as follows:

Fl = Conv1×1 (GELU (Conv3×3 ((F0)))) , (4)

where Conv3×3 is a 3× 3 convolution layer. The initial 3× 3 convolution is used to enhance locality
and increase the number of channels for channel mixing. The later 1× 1 convolution is adopted for
reducing the channels back to the original input dimension.

4.3 FREQUENCY FEATURE MIXING BLOCK

We note that existing methods (Wang et al., 2023; Li et al., 2023; Ren et al., 2023; Wu et al., 2024)
mostly employ direct downsampling of UHD images to create low-resolution versions, aiming to
reduce computational burden. In such cases, the full-resolution restoration process is predominantly
governed by information learned solely from the low-resolution images, resulting in suboptimal
performance and a tendency to lose high-frequency details, which are abundant in UHD images. To
this end, we develop the FFMB as a unit for the auxiliary branch. It leverages the frequency domain
information of the full-resolution images and guides the decoding restoration process of the main
branch composed of SFMB. Given the input feature Yl−1 ∈ RH×W×C , the proposed FFMB can be
formulated as:

Y′
l = Yl−1 + FFML (LN (Yl−1)) ,

Yl = Y′
l + FFL (LN (Y′

l)) ,
(5)

where Y′
l and Yl are output feature from the frequency feature modulation layer (FFML) and FFL.

The structure of FFL remains the same as that in SFMB.

Frequency feature modulation layer. According to the convolution theorem, convolution in
one domain is mathematically equivalent to the Hadamard product in its corresponding Fourier
domain (Huang et al., 2023). This also motivates us to introduce a FFML for implementing frequency-
space manipulation. Given an input feature F0, we employ Fast Fourier Transform (FFT) to obtain
the corresponding frequency representations. Then, we adopt two stacks of MLP layers with a ReLU
layer in between. Finally, we perform an inverse FFT and interact with the input features to obtain
updated feature representations in the original latent space. This process can be formulated as:

Fl = F−1 (MLP (ReLU (MLP (F (F0))))) ,

F̂l = Fl ⊙ F0,
(6)

where F(·) denotes the FFT and F−1(·) denotes the inverse FFT.

5 EXPERIMENTS

In this section, we first present the experimental settings of our proposed UDR-Mixer. Then we
conduct a benchmark study on our method and other comparative methods. More results can be
found in the supplementary material. The code and dataset will be available to the public.

5.1 EXPERIMENTAL SETTINGS

Implementation details. In our model, {N1, N2, N3} are set to {2, 2, 4}. The initial number of
feature channels for the main and auxiliary branches is set to 48 and 64, respectively. We conduct
model training on four NVIDIA GeForce RTX 3090 GPUs with 24GB memory. In total, we perform
500 epochs of training. During the training, we adopt the Adam optimizer with a learning rate of
2× 10−4. The patch size is set to be 768× 768 pixels and the batch size is set to be 8. To augment
the training data, we apply random horizontal and vertical flips. For testing UHD images, we use one
NVIDIA TESLA V100 with 32GB memory.

6
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Table 2: Quantitative evaluations on the proposed 4K-Rain13k dataset. “Params” and “FLOPs”
represent the number of trainable model parameters (in M) and FLOPs (in G), respectively. The
results of FLOPs are tested on the images with 1024× 1024 pixels.

Methods Venue
4K-Rain13k Complexity

PSNR ↑ SSIM ↑ MSE ↓ Params FLOPs
Rainy input 21.14 0.7594 812.98 - -
Prior-based methods DSC (Luo et al., 2015) ICCV’15 22.93 0.6299 498.63 - -

CNN-based methods

LPNet (Fu et al., 2019) TNNLS’19 27.86 0.8924 171.33 0.03 57.1
JORDER-E (Yang et al., 2019) TPAMI’19 31.01 0.9119 104.30 4.21 4363.3
RCDNet (Wang et al., 2020) CVPR’20 31.41 0.9215 95.01 3.17 3400.3
SPDNet (Yi et al., 2021) ICCV’21 32.38 0.9233 77.49 3.04 1428.8

Transformer-based methods

IDT (Xiao et al., 2022) TPAMI’22 32.91 0.9479 57.04 16.41 -
Restormer (Zamir et al., 2022) CVPR’22 33.70 0.9344 58.98 26.12 2478.1
DRSformer (Chen et al., 2023b) CVPR’23 33.47 0.9329 62.91 33.65 3887.8
UDR-S2Former (Chen et al., 2023a) ICCV’23 33.36 0.9458 50.69 8.53 395.8

Ours UDR-Mixer - 34.30 0.9505 42.03 4.90 200.1

(a) Rainy input (b) JORDER-E (c) RCDNet (d) SPDNet (e) IDT

(f) Restormer (g) DRSformer (h) UDR-S2Former (i) Ours (j) Ground truth

Figure 4: Visual quality comparison on the 4K-Rain13k dataset. Compared with the derained results
in (b)-(h), our method recovers a high-quality image with clearer details.

Compared methods. We compare our approach with prior-based algorithms (i.e., DSC (Luo
et al., 2015)), CNN-based networks (i.e., LPNet (Fu et al., 2019), JORDER-E (Yang et al., 2019),
RCDNet (Wang et al., 2020), SPDNet (Yi et al., 2021)), and Transformer-based models (i.e.,
IDT (Xiao et al., 2022), Restormer (Zamir et al., 2022) , DRSformer (Chen et al., 2023b), and
UDR-S2Former (Chen et al., 2023a)). For fair comparison, we utilize the official released code of
these approaches. All deep learning-based methods are retrained on the proposed 4K-Rain13k dataset
with their default settings for an equal number of epochs. We uniformly select the weights from their
final training epoch for testing purposes. Note that for some approaches (JORDER-E (Yang et al.,
2019), RCDNet (Wang et al., 2020), SPDNet (Yi et al., 2021), Restormer (Zamir et al., 2022), and
DRSformer (Chen et al., 2023b)), we are unable to infer full-resolution results on UHD images. Fol-
lowing previous UHD studies (Zheng et al., 2021; Li et al., 2023), we adopt a splitting-and-stitching
strategy, which involves splitting the input into multiple patches and then stitching the results together.

Evaluation metrics. For the 4K-Rain13k benchmark with ground truth images, we employ full-
reference metrics PSNR (Huynh-Thu & Ghanbari, 2008), SSIM (Wang et al., 2004) and MSE to
evaluate the image quality of each restored results. For the real-world scenes without ground truth
images, we adopt the non-reference metrics NIQE (Mittal et al., 2012a), PIQE (Venkatanath et al.,
2015), and BRISQUE (Mittal et al., 2012b). Higher PSNR and SSIM values signify better restoration
quality, while lower MSE, NIQE, PIQE and BRISQUE scores indicate better perceptual quality. We
also test the trainable parameters and FLOPs to analyze the computational complexity of the model.

5.2 COMPARISONS WITH THE STATE OF THE ART

Evaluations on the proposed 4K-Rain13k. Table 2 presents the quantitative results of different
approaches on the proposed 4K-Rain13k dataset. It can be observed that our proposed UDR-Mixer
achieves the highest PSNR and SSIM values while maintaining the lowest MSE value, indicating the
superiority of our method in rain removal from UHD images. Specifically, our method outperforms
the state-of-the-art UDR-S2Former (Chen et al., 2023a) by 0.94dB in terms of PSNR, while utilizing
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Table 3: Quantitative evaluations on real rainy images. For all methods, we use the pre-trained models
from the 4K-Rain13k dataset to evaluate the image deraining capabilities in real-world scenarios.

Methods Input RCDNet SPDNet IDT Restormer DRSformer UDR-S2Former Ours
NIQE ↓ 8.208 9.997 9.917 9.067 8.636 8.493 8.104 7.509
PIQE ↓ 54.863 63.816 64.774 55.049 60.335 60.441 55.204 53.104

BRISQUE ↓ 67.855 71.967 67.461 67.100 65.102 63.823 65.177 53.192

Table 4: Quantitative evaluations on the RainDS-RS dataset, which contains Syn-RS and Real-RS.

Methods JORDER-E MSPFN MPRNet Uformer Restormer IDT UDR-S2Former Ours
PSNR ↑ 30.11 32.53 34.05 33.79 34.41 34.56 35.15 35.72
SSIM ↑ 0.819 0.851 0.859 0.851 0.861 0.863 0.867 0.868

(a) Rainy input (b) SPDNet (c) Restormer (d) DRSformer (e) UDR-S2Former (f) Ours

Figure 5: Visual quality comparison on a real-world UHD rainy image from the collected 4K-
RealRain. Compared with the derained results in (b)-(e), our method recovers a clearer image.

fewer network parameters and lower FLOPs. This advantage is even more pronounced compared to
other heavy models such as Restormer (Zamir et al., 2022) and DRSformer (Chen et al., 2023b). In
other words, our proposed method achieves a better trade-off between restoration performance and
model efficiency. In Figure 4, we further present the visual results of different methods. We observe
that CNN-based methods struggle to recover texture details, such as those in building areas, under the
influence of densely packed rain streaks. Additionally, despite its ability to model global information,
UDR-S2Former (Chen et al., 2023a), as a Transformer-based method, still exhibits sensitivity to
spatially-long rain streaks present in UHD images, resulting in residual rain artifacts. In contrast, our
approach produces clearer images while preserving high-frequency information. This is attributed to
the complementary advantages of dual domain branches in our UDR-Mixer.

Evaluations on real 4K rainy images. To further evaluate the generalization capability of various
deraining methods in real rainy scenes, we collect 320 real 4K rainy images from the Internet and
real-world sources, referred to as 4K-RealRain. These scenes mostly originate from high-definition
captures using smartphones. The quantitative results for different methods are reported in Table 3.
Clearly, our method achieves the lowest values across three metrics: NIQE, PIQE, and BRISQUE.
This indicates that, compared to other models, the output results from our UDR-Mixer exhibit clearer
content and better perceptual quality in real rainy scenes. Figure 5 displays a comparison of visual
results. Our method effectively removes most rain streaks and exhibits visually pleasing restoration
effects, indicating its capability to generalize well to unseen real-world data types.

Evaluations on low-resolution benchmarks. We further validate the scalability of our method
on low-resolution benchmarks. Following (Chen et al., 2023a), we conduct experiments on the
RainDS-RS dataset (Quan et al., 2021), which contains Syn-RS and Real-RS subnets. Here, we adjust
our UDR-Mixer model for a fair comparison. Specifically, we remove the pixel unshuffle/shuffle
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Table 5: Ablation comparison on different variants of our UDR-Mixer on the 4K-Rain13k dataset.

Methods
SFMB

FFMB PSNR SSIMSpatial
Shift

H-Region
Rearrange

W-Region
Rearrange

Dimension Rearrange
Stage-1 Stage-2 Stage-3

(i) 33.41 0.9417
(ii) " 33.65 0.9433
(iii) " 34.09 0.9437
(iv) " 33.74 0.9413
(v) " 32.41 0.9394
(vi) " " 32.50 0.9409
(vii) " " " 34.15 0.9465

(viii, Ours) " " " " 34.30 0.9505

operations used for UHD images in the main branch, while keeping other components consistent. For
distinction, we name it UDR-Mixer-L. According to the quantitative results in Table 4, our proposed
method not only demonstrates satisfactory deraining effects on 4K images but also proves effective in
low-resolution scenes.

We also validate the generalization performance of different methods on an existing real low-resolution
rainy dataset, RE-RAIN (Chen et al., 2023c). Visual results presented in Figure 6 indicate that the
restoration results of most methods still exhibit varying degrees of rain residue. We observe that
while most Transformer-based methods exhibit competitive performance on synthetic datasets, their
deraining ability significantly decreases in real-world scenes. In contrast, our UDR-Mixer not
only demonstrates satisfactory deraining effects on 4K images but also proves effective in real low-
resolution scenes. Due to the flexibility of the proposed SFRL, our proposed method can be better
applied to real rain scenarios across diverse image resolutions.

5.3 ABLATION STUDY

We conduct ablation studies to examine the effect of our method, training all variant models under
same settings on the 4K-Rain13k dataset to ensure fairness.

Effectiveness of rearrange strategy in SFMB. We first replace the proposed SFMBs with residual
blocks that have comparable parameters as the baseline model (i). Table 5 shows that our method
improves restoration performance better compared to the baseline model by introducing SFMB. The
feature rearrangement strategy is a critical component of our proposed SFMB. Here, we compare
with recent MLP-based feature rearrangement methods, including spatial shift (Yu et al., 2022a),
height-direction region rearrange and width-direction region rearrange (Guo et al., 2022). Compared
to methods (ii-iv), our dimension rearrangement approach yields superior quantitative results. The
visual results in Figure 7 (b-d) and (f) also demonstrate that our method not only effectively removes
complex rain streaks but also better preserves the fine details of the image. The reason behind
this lies in our method implicitly enhancing the capture of multi-view features through dimension
transformation, making it more suitable for modeling long-range spatial relationships in UHD images.

Effect of the number of permute stages. We further analyze the effect of the number of permute
stages in the SFMB. Note that we utilize Permute operations to rotate rotate 3D feature maps between
adjacent stages. When stage=1, the model (v) can only capture the single-view features. We find that
through multiple stages of recursive encoding, features learned from three perspectives are effectively
correlated, thus aiding in further boosting the image restoration performance.

Effectiveness of FFMB. The FFMB in the auxiliary branch is used to better explore frequency infor-
mation in our UDR-Mixer for high-quality UHD image restoration. To demonstrate the effectiveness
of this branch, we remove this component and investigate its influence in Table 5. In comparison to
our approach, the restoration performance of model (vii) is suboptimal. In addition, Figures 7 (e) and
(f) also show that our method generates much clearer details.

5.4 DISCUSSIONS WITH THE CLOSELY-RELATED METHOD

We note that the recent method MAXIM (Tu et al., 2022) proposes a multi-axis MLP based architec-
ture to solve imgae deraining. Different from MAXIM that employs the multi-axis gated strategy, our
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(a) Rainy input (b) DSC (c) LPNet (d) JORDER-E (e) RCDNet

(f) SPDNet (g) Restormer (h) DRSformer (i) UDR-S2Former (j) Ours

Figure 6: Visual quality comparison on a real low-resolution rainy image from the RE-RAIN dataset.
Compared with the derained results in (b)-(i), our method recovers a clearer image. Zooming in the
figures offers a better view at the deraining capability.

Table 6: Comparison of generalization results between our method and MAXIM (Tu et al., 2022) on
real rainy images.

Methods NIQE↓ PIQE↓ BRISQUE↓ Params FLOPs
MAXIM 4.564 12.567 23.929 14.1M 216G

UDR-Mixer-L 4.384 7.160 21.885 2.6M 65G

(a) Rainy input (b) Spatial shift (c) H-region RR (d) W-region RR (e) w/o FFMB (f) Ours

Figure 7: Visual comparison on the rearrange strategy in SFMB (b-d) and the proposed FFMB (e).

method utilizes a simple yet effective dimension rearrange mechanism to capture spatial information.
First, we report the model complexity in Table 6. Compared to MAXIM, our UDR-Mixer-L achieves
a 81.6% reduction in model parameters while decreasing FLOPs by 69.9%. Note that as the training
code of MAXIM is not available, we do not benchmark this approach on our proposed 4K-Rain13k.
Since the testing code of MAXIM and the pre-trained model on the Rain13k dataset (Jiang et al.,
2020) are available, we compare their generalization ability of MAXIM and our method in real rainy
scenes. As shown in Table 6, the rain removal results obtained by our method have better visual
quality. More visual comparison results are provided in the Appendix A.11.

6 CONCLUDING REMARKS

This paper explores the task of UHD image deraining for the first time and proposes a high-quality
dataset 4K-Rain13k to facilitate the performance comparison. Furthermore, we develop an effi-
cient method UDR-Mixer for UHD image deraining. Our approach utilizes a dimension rearrange
mechanism to establish the global spatial context of UHD images and combines it with the original
frequency representation of UHD images to help image restoration. The benchmark results show that
our model achieves a favorable trade-off between performance and model complexity.

Limitations. Although our method achieves favorable performance, it fails to handle the presence of
fog-like rain accumulation in real rainy scenes. Future work will consider expanding 4K data with
veiling effect and introducing physical models to guide enhancing the quality of image reconstruction.
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS ON DATASET CONSTRUCTION

Rain Streak Generation. We model the generation of rain streak layers as a motion blur process,
leveraging two essential characteristics of rain streaks: their repeatability and directionality. Formally,
this can be represented as:

S = K(l, θ, w) ∗N(n), (7)

where N represents the rain mask derived from random noise n, where we utilize uniform random
numbers combined with thresholds to adjust the noise level. The parameters l and θ correspond to
the length and angle of the motion blur kernel K ∈ Rp×p. Additionally, a rotated diagonal kernel
is applied with Gaussian blur to control the rain streak thickness w. The values for noise quantity
n, rain length l, rain angle θ, and rain thickness w are sampled from the ranges [100, 300], [20, 40],
[40◦, 120◦], and [3, 7], respectively. The symbol ∗ denotes the spatial convolution operator.
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𝛼 = 0.6 𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9

Figure 8: The effect of the blending ratio on the quality of the dataset.

Geometric Transformation. In the physical world, rain streaks are naturally fine and elongated,
reflecting their slender geometry and high-speed movement. In high-resolution 4K images, with
the increased pixel density and more detailed spatial representation, these characteristics can be
captured more accurately. Each rain-affected region is represented with greater precision, allowing
the streaks to appear longer and thinner, consistent with their real-world appearance. Conversely,
in low-resolution images, the reduced pixel information limits the ability to preserve these fine
details. Rain streaks that are physically the same length may appear shorter and thicker due to the
loss of spatial resolution and the effects of blurring. This results in a coarser and more ambiguous
depiction of rain streaks, where fine structures and elongated shapes are less distinguishable. This
disparity highlights the importance of resolution in faithfully representing rain streaks and motivates
the development of high-resolution synthesis approaches. Based on these real-world observations,
we perform geometric transformation using scaling operations on the initial rain layer generated in
the previous step.

Alpha Blending. We utilize alpha blending to combine the rain layer with the background layer.
Here, the alpha value of each pixel in a layer determines the extent to which colors from underlying
layers are visible through the current layer’s color. Mathematically, this process is expressed as:

Rr,g,b = α⊙ S+ (1− α)⊙B, (8)

where α represents the blending ratio, which is empirically set within the range [0.8, 0.9]. The symbol
⊙ indicates element-wise multiplication. The R, G, and B channels are handled independently
during the process. Figure 8 shows an example of synthesizing rainy images with different blending
ratios. It is evident that when the blending ratios are set to 0.8 and 0.9, the rain streaks become
invisible in the white sky region, resulting in greater harmony with real rainy images.

A.2 MORE SAMPLE IMAGES

We further present several sample images from existing representative datasets (i.e.,
Rain200L/H (Yang et al., 2017), DDN-Data (Fu et al., 2017), DID-Data (Zhang & Patel, 2018),
Rain800 (Zhang et al., 2019), SPA-Data (Wang et al., 2019), Rain13k (Jiang et al., 2020), RainDirec-
tion (Liu et al., 2021b), RainDS (Quan et al., 2021), GT-RAIN (Ba et al., 2022), LHP-Rain (Guo
et al., 2023)) and our proposed 4K-Rain13k dataset in Figure 9. Note that we maintain the original
resolution ratio of different images. Our proposed new benchmark fills the gap in research on UHD
image deraining.

A.3 COMPARISONS WITH PREVIOUS DATASETS

We adopt the Kullback-Leibler Divergence (KLD) (Joyce, 2011), also known as relative entropy, to
measure the difference between two probability distributions (i.e., the synthetic image and real-world
image). Figure 10 presents the comparison results of the representative synthetic benchmarks (Yang
et al., 2017; Li et al., 2019; Zhang & Patel, 2018; Fu et al., 2017) and our benchmark, showing that
our 4K-Rain13k is close to the distribution of real-world rainy images. The reason behind this is
that 4K-Rain13k fully considers the harmony of the synthesized rainy images, thereby narrowing the
domain gap between synthetic and real images.
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Rain200H

Rain200L

DDN-Data

DID-Data

Rain800

Rain13k

RainDirection

SPA-Data
GT-RAIN

LHP-Rain

4K-Rain13k

RainDS

Figure 9: Example images from previous representative datasets(Yang et al., 2017; Fu et al., 2017;
Zhang & Patel, 2018; Zhang et al., 2019; Wang et al., 2019; Jiang et al., 2020; Liu et al., 2021b; Ba
et al., 2022; Guo et al., 2023; Quan et al., 2021) and our proposed 4K-Rain13k.

A.4 GENERALIZATION ANALYSIS OF DATASETS

We compare the performance of our model trained on the proposed dataset and existing low-resolution
dataset (Rain13k) and then test on real-world 4K rainy images. We have provided the comparison
results in Figure 11. It can be observed that the model trained on our 4K-Rain13k performs better on
real-world rainy images, indicating that our dataset effectively reduces the domain gap and enables
the model to generalize better to real-world scenarios.

A.5 ILLUSTRATION OF FEATURE REARRANGE STRATEGY

In the main paper, we compare with recent MLP-based feature rearrangement methods, including
spatial shift (Yu et al., 2022a), height-direction region rearrange and width-direction region rear-
range (Guo et al., 2022). Here, we present schematic diagrams of these three feature rearrangement
strategies in Figure 12.

A.6 DISCUSSIONS WITH THE CLOSELY-RELATED METHOD

We note that (Wu et al., 2024) develops a Global Feature Modulation Layer (GFML) for achieving
dimension transformations. Compared to GFML, our SFRL has several differences: (1) Flexible
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Figure 10: Comparison of Kullback CLeibler divergence (KLD) between different synthetic datasets
and one real dataset. The vertical axis represents the value of KLD, and the horizontal axis represents
the number of samples. Obviously, our proposed 4K-Rain13k obtains a lowest KLD score, indicating
that our dataset has a smaller domain gap between the synthetic and real images compared to others.

Rearrangement: Unlike the fixed swapping of adjacent elements in GFML, SFRL rearranges the
positions of all elements in the 3D feature map during each dimension transformation. This allows
our method to flexibly capture global spatial information. (2) Multi-Scale Integration: While
GFML operates at a single scale, SFRL is embedded within a multi-scale encoder-decoder network
backbone, enabling more effective exploration of multi-scale information, which is crucial for image
deraining. (3) Enhanced UHD Restoration: MixNet directly downsamples UHD images to learn
spatial features, leading to detail loss. Our method addresses this issue by introducing the FFML,
which enhances UHD image restoration quality through joint learning in both spatial and frequency
information.

A.7 EVALUATIONS ON THE LOW-RESOLUTION BENCHMARKS

We further evaluate our method on an existing low-resolution image deraining benchmark,
RainDS (Quan et al., 2021). Table 8 presents the quantitative results of different approaches. Here, we
refer to the results reported in (Chen et al., 2023a) (ICCV’23). It can be seen that our UDR-Mixer-L
still achieves competitive performance while maintaining a lower model complexity.

A.8 RUNTIME ANALYSIS

We calculate the runtime of our method and recent image deraining methods on 4K images. We
conduct on a machine equipped with an NVIDIA RTX 4090 GPU. Tabale 7 shows that our method
achieves lower inference time.

A.9 APPLICATION-BASED EVALUATION

With the advancement of intelligent assisted driving systems, UHD images are increasingly being
integrated into existing onboard devices. To investigate whether the image deraining process benefits
downstream vision-based applications such as object detection, we apply mainstream object detection
pre-trained models (YOLOv5) to evaluate the results.

Figure 13 shows that our approach not only reconstructs clear images but also enhances the accuracy
of target recognition, such as the motorcycle category. Therefore, the method we developed is of
significant importance for improving the practicality of real-world applications.
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(a) Rainy input (b) Trained on Rain13k (c) Trained on 4K-Rain13k

Figure 11: Generalization results on real rainy images trained on the low-resolution Rain13k dataset
and our proposed high-resolution 4K-Rain13k dataset.

A.10 FAILURE CASE

As shown in Figure 14, our method is able to effectively remove rain streaks but fails to handle the
presence of fog-like rain accumulation in real rainy scenes. In addition, the splashing effect of raind
on the ground is also worth paying attention to in future work, which is crucial for downstream
autonomous driving.

A.11 MORE VISUAL COMPARISON RESULTS

In this section, we show more visual comparison results to demonstrate the effectiveness of the pro-
posed method. Figure 15 shows the visual comparison results on real rainy images with MAXIM (Tu
et al., 2022). It can be seen that our method successfully removes most rain streaks and generates
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(c) Width-direction region rearrange (Guo et al., 2022)

Figure 12: Illustration of other feature rearrange strategies.

Table 7: Comparison of running times of different models.

Methods IDT Restormer DRSformer UDR-S2Former UDR-Mixer(Ours)
Runtime(s) 0.1677 0.6324 1.2061 0.8194 0.0072

a clearer image. Furthermore, Figures 16-17 show the visual comparison results on the proposed
4K-Rain13k dataset. Compared to other methods, our UDR-Mixer can generate high-quality derain-
ing results with more accurate detail and texture recovery. Finally, Figures 18-19 show the visual
comparison results on real rainy images. Our method can successfully remove complex and random
rain streaks and own visual pleasant recovery results.
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(a) Rainy patch (b) IDT (c) Restormer

(d) DRSformer (e) UDR-S2Former (f) Ours

Figure 13: Object recognition results for the input rainy image and the derained images by different
methods. Here, we crop a region from an UHD image for better comparison.

Table 8: Quantitative evaluations on the RainDS dataset. “Params” and “FLOPs” represent the
number of trainable model parameters (in M) and FLOPs (in G), respectively. The results of FLOPs
are tested on the images with 256× 256 pixels.

Method Venue Syn-RS Real-RS Average Params FLOPsPSNR SSIM PSNR SSIM PSNR SSIM
GMM (Li et al., 2016) CVPR’16 26.66 0.781 23.73 0.560 25.20 0.671 - -
JCAS (Gu et al., 2017) ICCV’17 26.46 0.786 24.04 0.556 25.05 0.671 - -
DDN (Fu et al., 2017) CVPR’17 30.41 0.869 24.85 0.683 27.63 0.776 - -
NLEDN (Li et al., 2018a) MM’18 36.24 0.958 27.02 0.723 31.63 0.841 - -
RESCAN (Li et al., 2018b) ECCV’18 30.99 0.887 26.70 0.683 28.85 0.785 0.15 32.32
PreNet (Ren et al., 2019) CVPR’19 36.63 0.968 26.43 0.729 31.53 0.849 0.17 66.58
UMRL (Yasarla & Patel, 2019) CVPR’19 35.76 0.962 25.89 0.726 30.83 0.844 0.98 16.50
JORDER-E (Yang et al., 2019) TPAMI’19 33.65 0.925 26.56 0.713 30.11 0.819 4.21 273.68
MSPFN (Jiang et al., 2020) CVPR’20 38.61 0.975 26.45 0.727 32.53 0.851 21.00 708.44
CCN (Quan et al., 2021) CVPR’21 39.17 0.981 27.46 0.737 33.32 0.859 3.75 245.85
MPRNet (Zamir et al., 2021) CVPR’21 40.81 0.981 27.29 0.736 34.05 0.859 3.64 148.55
DGUNet (Mou et al., 2022) CVPR’22 41.09 0.983 27.52 0.737 34.31 0.860 12.18 199.74
Uformer (Wang et al., 2022) CVPR’22 40.69 0.972 26.89 0.730 33.79 0.851 20.63 43.86
Restormer (Zamir et al., 2022) CVPR’22 41.42 0.980 27.39 0.742 34.41 0.861 26.12 140.99
IDT (Xiao et al., 2022) TPAMI’22 41.61 0.983 27.51 0.743 34.56 0.863 16.41 61.90
NAFNet (Chen et al., 2022a) ECCV’22 40.39 0.972 27.49 0.729 33.94 0.851 40.60 16.19
UDR-S2Former (Chen et al., 2023a) ICCV’23 42.39 0.988 27.90 0.745 35.15 0.867 8.53 21.58
UDR-Mixer-L Ours 44.31 0.992 27.12 0.743 35.72 0.868 2.60 64.65
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(a) Rainy input (b) Ours

Figure 14: Failure case.

(a) Rainy input (b) MAXIM (c) Ours

Figure 15: Comparison results with MAXIM (Tu et al., 2022).
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(a) Rainy input (b) DSC (c) LPNet

(d) JORDER-E (e) RCDNet (f) SPDNet

(g) IDT (h) Restormer (i) DRSformer

(j) UDR-S2Former (k) Ours (l) Ground truth

Figure 16: Visual quality comparison on the 4K-Rain13k dataset. Compared with the derained results
in (b)-(j), our method recovers a high-quality image with clearer details. Zooming in the figures
offers a better view at the deraining capability.
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(a) Rainy input (b) DSC (c) LPNet

(d) JORDER-E (e) RCDNet (f) SPDNet

(g) IDT (h) Restormer (i) DRSformer

(j) UDR-S2Former (k) Ours (l) Ground truth

Figure 17: Visual quality comparison on the 4K-Rain13k dataset. Compared with the derained results
in (b)-(j), our method recovers a high-quality image with clearer details. Zooming in the figures
offers a better view at the deraining capability.
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(a) Rainy input (b) SPDNet (c) Restormer

(d) DRSformer (e) UDR-S2Former (f) Ours

Figure 18: Visual quality comparison on a real-world UHD rainy image from the collected 4K-
RealRain. Compared with the derained results in (b)-(e), our method recovers a clearer image.
Zooming in the figures offers a better view at the deraining capability.
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(a) Rainy input (b) JORDER-E (c) RCDNet

(d) SPDNet (e) IDT (f) Restormer

(g) DRSformer (h) UDR-S2Former (i) Ours

Figure 19: Visual quality comparison on a real low-resolution rainy image from the RE-RAIN dataset.
Compared with the derained results in (b)-(h), our method recovers a clearer image. Zooming in the
figures offers a better view at the deraining capability.
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