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ABSTRACT

Unsupervised skill learning methods are a form of unsupervised pre-training for
reinforcement learning (RL) that has the potential to improve the sample effi-
ciency of solving downstream tasks. Prior work has proposed several methods for
unsupervised skill discovery based on mutual information (MI) objectives, with
different methods varying in how this mutual information is estimated and opti-
mized. This paper studies how different design decisions in skill learning algo-
rithms affect the sample efficiency of solving downstream tasks. Our key findings
are that the sample efficiency of downstream adaptation under off-policy back-
bones is better than their on-policy counterparts. In contrast, on-policy backbones
result in better state coverage, moreover, regularizing the discriminator gives bet-
ter downstream results, and careful choice of the mutual information lower bound
and the discriminator architecture yields significant improvements in downstream
returns, also, we show empirically that the learned representations during the pre-
training step correspond to the controllable aspects of the environment1.

1 INTRODUCTION

Reinforcement learning (RL), when combined with high capacity function approximators (e.g., neu-
ral networks), can acquire complex robotic skills in both simulation and the real world (Schulman
et al., 2015; Lillicrap et al., 2015; Zhang et al., 2019; Haarnoja et al., 2018a)

However, RL suffers from poor sample efficiency (Schulman et al., 2015; Lillicrap et al., 2015;
Zhang et al., 2019; Haarnoja et al., 2018a), the high performance of RL agents comes with the cost
of millions of transition data.

Meanwhile, unsupervised pre-training had shown significant improvements in sample efficiency
in the fields of natural language processing (NLP) (Brown et al., 2020; Devlin et al., 2019) and
computer vision (CV) (Chen et al., 2020; Hénaff et al., 2020).

Combining unsupervised pre-training and RL (unsupervised RL) have shown a promise in improv-
ing sample efficiency. (Laskin et al., 2021a; Gregor et al., 2016; Eysenbach et al., 2018), in this
paradigm the goal is to train the agent in an interaction phase, in which it can acquire knowledge
about the environment and learn useful representations for efficient adaptation to downstream tasks.

Most unsupervised RL algorithms differ in the pre-training objective or the intrinsic reward. Unsu-
pervised RL algorithms are classified into three categories according to their pre-training objective,
knowledge-based algorithms Pathak et al. (2017); Burda et al. (2018) maximize a prediction error,
while data-based algorithms Yarats et al. (2021); Liu & Abbeel (2021b) optimize a state diversity ob-
jective, competence-based algorithms also called unsupervised skill discovery Gregor et al. (2016);
Laskin et al. (2021a) maximize the mutual information between the state and skill distributions by
applying an off-the-shelf RL algorithm to a self-generated reward function. Skill discovery has
shown promising results Laskin et al. (2021b;a); Eysenbach et al. (2018), however, there are many

1Code is available at https://github.com/FaisalAhmed0/SLUSD
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design decisions that the practitioner needs to decide when applying these algorithms, such as the
deep RL optimizer, skills’ representation, adding a regularizer, and the mutual information lower
bound.

The main contribution of this work is an empirical investigation of these design decisions:

1. We investigate the effect of using different deep RL backbones on the adaptation efficiency
and scalability of the skill learning algorithm.

2. We study how various regularization methods affect the learned skills and adaptation effi-
ciency.

3. We study how the choice of the mutual information lower bound affect the quality of the
skills.

4. We try to understand the representations learned during the pre-training phase.

2 RELATED WORK

Mutual information (MI) skill learning or competence-based unsupervised RL have been explored
by many researchers. In the pre-training phase, all skill learning algorithms have the same MI objec-
tive. Algorithms differ in their optimization backbone, the skills representation, the form of the MI
lower bound and its approximations among other design choices. There are two ways to express the
MI objective, the first one is optimizing the reverse form (Gregor et al., 2016) of mutual information
(Eysenbach et al., 2018; Gregor et al., 2016; Hansen et al., 2019; Achiam et al., 2018; Gao et al.,
2020; Baumli et al., 2020; Zhao et al., 2021; Florensa et al., 2017) while the second type optimizes
the forward form (Laskin et al., 2021a; Liu & Abbeel, 2021a; Lee et al., 2020; Sharma et al., 2020).
Campos et al. (2020) designed a skill learning algorithm based on three stages, exploration, skill
discovery and skill learning, and used a variational auto-encoder to approximate the MI objective.
Laskin et al. (2021b) introduced a unified benchmark for unsupervised RL algorithms and open-
sourced code for popular baselines, while Choi et al. (2021) focused on unifying goal-conditioned
RL (GCRL) and MI skill learning in one framework that was called variational goal-conditioned RL
(VGCRL), and used it to define an evaluation metric for MI skill learning methods.

In this paper, we do not propose a new skill learning algorithm or a benchmark, but we focus on
understanding the influence of some important design choices and their effects on the properties of
the learned skills.

3 BACKGROUND

Reinforcement learning. We work under the standard setup of the Markov decision process
(MDP) Sutton & Barto (2018), which is defined by the tuple (S,A,P, r, γ), where S is the state
space, A is the action space, P is the transition dynamics (in general P is a probability distribution
but in deterministic environment it is a function), r is the reward function, and γ is the discount
factor.

In MDP settings, an agent interacts with an environment by receiving a state at timestep t st and
choosing an action at according to a policy π(at | st). After executing the action in the environment,
the agent receives a new state st+1 and a reward signal rt+1 that indicates how good or bad the
executed action is. The goal of the agent is to maximize the expected discounted sum of rewards.

Mutual information lower bounds. Before we formally define the unsupervised RL problem,
we review prior work on mutual information estimation(defined in equation 1), which forms the
basis for many prior unsupervised RL methods. We will examine different MI lower bounds and
their effects on adaptation and the learned skills. We use BA lower bound IBA (Barber & Agakov,
2003), NWJ INWJ (Nguyen et al., 2010), InfoNCE INCE (van den Oord et al., 2019), and Iα lower
bound (Choi et al., 2021), which are shown on the equations below:
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I(x; y) = H(x)−H(x | y) (1)
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f(xl,y) + (1− α)q(y) and H(·) is Shannon entropy.

Unsupervised skill learning. We follow the standard unsupervised RL learning paradigm (Gregor
et al., 2016; Eysenbach et al., 2018; Laskin et al., 2021b). The agent maximizes a self-generated
objective based on an intrinsic reward rint, the goal is to acquire general knowledge and useful
representations that improve the data efficiency in the adaptation phase, in which the pre-trained
policy is trained to maximize an extrinsic objective based on a task reward rext.

In MI skill learning, the policy π(a | s, z) is conditioned on a latent variable z ∼ p(z) which we
refer to as a “skill”, the pre-training objective is defined as the mutual information between the skills
and the states.

We use DIAYN (Eysenbach et al., 2018) as our skill-learning method, which optimizes the following
lower bound on this mutual information objective:

I(s; z) = H(z)−H(z | s) = Ez∼p(z),s∼p(s)[log p(z | s)]− Ez∼p(z)[log p(z)]

≥ Ez∼p(z),s∼p(s)[log qϕ(z | s)]− Ez∼p(z)[log p(z)] ≜ J(θ, ϕ) (6)

To maximize the expectation in J(θ, ϕ) with a deep RL algorithm, we use the following intrinsic
reward in equation7 below.

rint = log qϕ(z | s)− log p(z) (7)

The skill distribution p(z) is fixed to be discrete uniform, qϕ(z | s) is a learned discriminator, we
refer the reader to Eysenbach et al. (2018) for a more detailed description of the algorithm.

4 EXPERIMENTS

We run experiments to investigate the influence of important design decisions on the adaptation effi-
ciency and scalability of the pre-trained policy. In particular, the experiments answer the following
questions:

Q1 How does a deep RL algorithm affect the speed of adaptation to a downstream task?
Q2 Is the mutual information lower bound well correlated with exploration performance ?
Q3 Does increasing the pre-training steps improves adaptation efficiency ?
Q4 Does regularizing the discriminator lead to better downstream performance?
Q5 Do different mutual information lower bounds lead to different performance on down-

stream tasks?
Q6 What do the representations learned during the pre-training step correspond to?

4.1 EXPERIMENTAL SETUP

We conducted the experiments on MountainCar, HalfCheetah, Walker2d, and Ant from OpenAI
gym Brockman et al. (2016). We chose DIAYN as our skill learning algorithm due to its popularity
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as a baseline for mutual information based skill learning. We changed the deep RL optimizer for
the first two experiments and fixed the adaptation algorithm to soft actor critic (SAC) Haarnoja
et al. (2018b). In the rest of the experiments, we fixed everything and changed other aspects of the
algorithm.

4.2 THE OPTIMIZATION BACKBONE AND DOWNSTREAM ADAPTATION (Q1, Q2)

We trained DIAYN with two model-free deep RL algorithms. From off-policy methods we chose
SAC (as the original implementation) and from on-policy methods, we chose proximal policy opti-
mization (PPO) (Schulman et al., 2017).

In the pre-training phase unlike Laskin et al. (2021b), we trained the policy to convergence (we
assumed that the pre-training phase is cheap and we can always train to convergence), to make sure
the comparisons are fair and reflects the quality of skills learned by each deep RL backbone, we fixed
the algorithm in the adaptation phase, in particular we used SAC with 100K adaptation timesteps.

Table 1 shows the results, and figure 1 shows the learning curves on the downstream task, all results
are calculated by training the algorithms on three random seeds (for MountainCar we tried five
random seeds but it did not affect the variance significantly), reporting the mean and the standard
deviation and normalized by the performance of an expert policy, which was a SAC agent trained on
each task with 5M timesteps.

DIAYN with SAC outperformed PPO in downstream adaptation for all environments except Ant.
PPO had higher state entropy in most environments, this may indicate that PPO learns a more di-
verse set of skills with the cost of slightly worse downstream performance, while SAC learns more
specialized skills that adapt quickly to some downstream tasks.

In Walker and Ant, RL from scratch (training from randomly initialized weights) was competitive
to the pre-trained policies, and the adaption did not improve the pre-trained policy by a considerable
amount. This suggests that better adaptation methods should be developed to adapt the learned skills
more efficiently, or it may indicate that the skill learning algorithm does not learn useful skills in
more complex environments. Hence, better skill learning algorithms should be developed.

Due to the exploration challenge in MountainCar, only DIAYN with SAC succeeded in finding the
goal state, which shows that a skill learning algorithm may need an additional exploration strategy
or a better approximation of the MI objective to discover skills that have broad coverage of the state
space.

In addition, all the downstream returns are far from the state of the art performance(this is also
mentioned in Laskin et al. (2021b)), which keep the question of how to develop efficient pre-training
methods that reach the state of the art performance with low data open.

There is no clear correlation between state entropy (state diversity) and the intrinsic reward. For
example, in MountainCar, DIAYN with SAC had a higher intrinsic reward that results in a higher
entropy. But in Walker, the same algorithm had lower entropy despite the higher intrinsic reward. A
reason for this could be that the MI approximation (specifically the reverse form) does not incentivize
broad coverage of the state space, as indicated by Laskin et al. (2021a).

4.3 THE OPTIMIZATION BACKBONE AND THE ALGORITHM SCALABILITY (Q3)

In this experiment, we investigated the scalability of mutual information skill learning. As men-
tioned in Laskin et al. (2021b), by scalability, we mean the correlation between the number of inter-
actions in the pre-training phase and the value of the downstream return. The algorithm is scalable
if there is a positive correlation between these two quantities.

We trained DIAYN with SAC and PPO and finetuned the pre-trained policy on the downstream
performance on fixed checkpoints. The results are shown in figure 2.

The first result to observe is that the two algorithms are not highly scalable, and more pre-training
steps do not necessarily result in better downstream performance, at some points it even gives lower
returns. When comparing the two algorithms, DIAYN with SAC showed better performance than
PPO in all environments, and for most pre-training steps, both algorithms were better than random
initialization.
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Environment Algorithm Rext
After Adaptation (%)

Rext
Best Skill (%)

Rint State
Entropy

MountainCar SAC 33.15± 58.15 28.62± 60.08 2229.40 ± 10.36 -9.41 ± 0.65
PPO -0.00 ± 0.00 -1.52± 1.58 1643.41± 238.91 -9.84 ± 0.38

HalfCheetah SAC 68.88± 10.25 -1.78± 0.64 3400.37± 0.63 -162.83± 3.87
PPO 67.66 ± 8.55 4.49 ± 6.74 3276.30 ± 208.87 -33.34 ± 19.39

Walker2d SAC 5.84 ± 3.38 16.57 ± 1.7 3342.23 ± 64.15 -16.14 ± 12.7
PPO 5.60 ± 0.77 2.11 ± 2.22 3150.90 ± 223.61 35.89 ± 8.39

Ant SAC 9.63 ± 12.68 -2.94 ± 3.59 1242.69± 2054.93 -1139.12 ± 31.60
PPO 9.64 ± 3.12 -0.12 ± 0.03 3337.75 ± 48.78 -846.48 ± 39.26

Table 1: DIAYN with different Deep RL optimizers: In most environments, PPO had higher state
entropy . This may indicate that PPO learns more diverse skills than SAC. In Walker, adaptation
yielded worse results than the best skill return in SAC, and in Ant, SAC did not converge to the
highest intrinsic return.

Figure 1: Downstream adaptation: In downstream adaptation, DIAYN with SAC outperformed
PPO in most environments, due to the exploration challenge in MountainCar, only DIAYN with
SAC succeeded in finding the goal state that has the high reward, all the downstream returns are far
from the state of the art performance.

This result raises the question of how to improve the scalability of skills learning algorithms. There
could be multiple causes of this problem. Maybe we need better adaptation methods, better ap-
proximations of the MI objective, or methods that help the pre-trained policy in learning scalable
representations.

A possible answer for this may be that the downstream task can not be learned effectively using
the learned set of skills, which indicates that we should learn better skill representations that learn
more skills as we increase the pre-training interactions, or the skills can be combined to cover tasks
beyond what each skill individually does.
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Figure 2: Scalability with the number of pre-training timesteps: Both algorithms are not scalable,
more pre-training steps do not necessarily result in better downstream performance, and in some
steps, it gives lower returns. Both algorithms are better than random initialization.

4.4 EFFECT OF REGULARIZATION ON DOWNSTREAM PERFORMANCE. (Q4)

For a fair comparison, we fixed the deep RL backbone (SAC) and run DIAYN with different reg-
ularization methods applied to the discriminator, we trained the discriminator with weight decay,
dropout Srivastava et al. (2014), gradient penalty Gulrajani et al. (2017), label smoothing Szegedy
et al. (2016), and mixup Zhang et al. (2017). The results are shown in figure 3 and table 2 in the
appendix.

In most cases, using regularization improved the results of downstream performance. Weight decay
improved the results by an average factor of 2.5, dropout gave nearly the same improvements, and
gradient penalties introduced the lowers amount of improvements.

This performance gap between regularized and unregularized skill learning begs several questions,
what does the discriminator learn? Does it overfit the initial random data induced by the initially
random policy? What if we introduced a lag between the discriminator, the policy and the discrimi-
nator update? Will this improve the results in the unregularized case? are MLPs the best architecture
for skills discrimination?

These questions suggest that we need to develop discriminators that are less prone to overfitting and
focus on distilling the state space to a meaningful set of skills as the pre-trained policy converges.
We leave these questions for future work.
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Figure 3: Effect of regularization on downstream performance: Regularization improved the
results of downstream performance, weight decay and dropout gave the largest improvement.

4.5 MI LOWER BOUND AND DOWNSTREAM PERFORMANCE (Q5)

In this experiment we investigate the relation between the MI lower bound and downstream per-
formance, specifically, we examined the NWJ lower bound INWJ Nguyen et al. (2010), InfoNCE
INCE van den Oord et al. (2019), and α Choi et al. (2021), which are shown in equation 3, we used
the separable architecture of the discriminator, in which we encoded the state and skill using an MLP
encoders ϕ1(s) and ϕ2(z), we chose the score function as the dot product f(s, z) = ϕ1(s)

⊤ϕ2(z)

The plots in figure 4, show the downstream performance for each lower bound.

INCE and INWJ consistently yielded higher downstream performance than the original IBA (which
corresponds to the original DIAYN implementation), Iα gave better returns than the IBA in most
cases, but it was worse than the INCE and INWJ .

This shows that the choice of the MI lower bound and the discriminator architecture is important for
adaptation efficiency. Some lower bounds could give better performance than others.

4.6 WHAT ASPECTS OF THE ENVIRONMENT DO THESE REPRESENTATIONS LEARN? (Q6)

This experiment aims to show that the learned representations in the pre-training phase correspond
to the controllable aspects of the environment.

We trained DIAYN with a separable discriminator and the InfoNCE lower bound on the Inverted-
Pendulum environment. We added three random components to the state vector, each component
was sampled from a standard Gaussian distribution N (µ, σ). After convergence of the pre-trained
policy, we trained a linear regression on the features from the state encoder. We report the mean
square error (MSE) per state component in figure 5 to show which element of the state the linear
regression could not fit well.
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Figure 4: MI lower bounds and downstream performance: Both INCE and INWJ have better
downstream performance than the original IBA, Iα gave better returns than the IBA in most cases,
but it was worse than the INCE and INW .

We observe that the MSE is larger for components that are difficult to control. For example, it is
easier to control the cart position than to control the cart velocity, and the MSE reached the same
value for all uncontrollable noise components.

5 CONCLUSION

Unsupervised skill learning methods are a form of unsupervised pre-training for RL that has the
potential to improve the sample efficiency of solving downstream tasks. Prior work has proposed
several methods for unsupervised skill discovery based on MI objectives, with different methods
varying in how this mutual information is estimated and optimized. This work showed some key
design decisions could affect the sample efficiency of solving downstream tasks. Our key findings
are that the sample efficiency of downstream adaptation under off-policy backbones is better than
their on-policy counterparts. In contrast, on-policy backbones resulted in better state coverage,

8



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Figure 5: MSE per state component: The controllable components of the environment have lower
MSE than the components that are difficult to control.

regularizing the discriminator gave better results, and careful choice of the mutual information lower
bound and discriminator architecture yielded significant improvements on downstream tasks.

The limitations of our work are that we did not explore other optimization backbones such as black-
box optimizers or model-based RL methods, and we did not examine other design choices such as
the skill parametrization and the scalability with respect to the number of skills. We leave that for
feature work.

Also, the questions of scalability, MI lower bound, and the discriminator architecture, open a lot of
potential research to improve our understanding of these factors.
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A EXPERIMENTAL DETAILS

B REGULARIZATION EXPERIMENT RESULTS

Table 2 show the results for extrinsic rewards, state entropy, and intrinsic reward in the regularization
experiments, and figure 6 show the learning curves of the adaptation phase.

C HYPERPARAMETERS

We ran the experiments in parallel on GCP, with 32 Intel Cascade Lake CPUs and 128 GB of RAM,
the average time of the experiments was about 18 hours, tables 3 and 3 show the hyperparameters
used in DIAYN, we used 30 skills for all environments except MountainCar where we used 10 skills.
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Figure 6: Learning Curves of Regularization Experiment

Table 3: DIAYN (SAC)

Hyperparameter Value
Learning rate 3× 10−4

γ 0.99
Buffer size 107

Batch size 128
τ 0.001

Gradient steps 1
Entropy coefficient 0.1

Learning start 104

Table 4: DIAYN (PPO)

Hyperparameter Value
Learning rate 1− 4

γ 0.99
Batch size 4096

Rollout size 2048
clip 0.1

No. actors 32
λ 0.95

Entropy coefficient 0.1
Epochs 10

D QUALITATIVE ANALYSIS

In this section, we introduce a qualitative analysis of the learned skill in a point-mass environment.
We show the effect of some of the design decisions on the skills learned by the original DIAYN
implementation. Figure 7shows the skills distributions over the x,y position of the point-mass of
SAC vs PPO. Figure 8 shows the skills distributions resulting from applying weight decay and
mixup to DIAYN with SAC.
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Figure 7: Skills distributions over the x,y position of the point-mass of SAC vs PPO: The plot
shows the visited states by each algorithm. This plot supports the results in table 1, in which PPO
had higher state entropy in most environments while SAC had more specialized(in this plot, more
clustered ) skills.

Figure 8: Skill distribution under different regularizers: Without regularization (the left figure),
the learned skills are clearly separable, and some skills visit two separate regions of the state space,
adding regularization improves the discriminability of the learned skills and guide each skill to focus
on a specific region of the state space.
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