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Abstract

In this work, we study the large-scale pre-001
training of BERT-Large (Devlin et al., 2019)002
with differentially private SGD (DP-SGD). We003
show that combined with a careful implemen-004
tation, scaling up the batch size to millions005
(i.e., mega-batches) improves the utility of006
the DP-SGD step for BERT; we also enhance007
the training efficiency by using an increas-008
ing batch size schedule. Our implementation009
builds on the recent work of Subramani et al.010
(2020), who demonstrated that the overhead011
of a DP-SGD step is minimized with effec-012
tive use of JAX (Bradbury et al., 2018; Frostig013
et al., 2018) primitives in conjunction with the014
XLA compiler (XLA team and collaborators,015
2017). Our implementation achieves a masked016
language model accuracy of 60.5% at a batch017
size of 2M, for ε = 5, which is a reasonable018
privacy setting. To put this number in perspec-019
tive, non-private BERT models achieve an ac-020
curacy of ∼70%.021

1 Introduction022

The widespread deployment of machine learning in023

recent years has raised serious concerns about the024

privacy of users whose data is used during the train-025

ing process (see, e.g., (Kearns and Roth, 2019)).026

These concerns are exacerbated by the well-known027

memorization behavior exhibited by deep neural028

networks (Carlini et al., 2019) and in particular029

large language models (Carlini et al., 2021). To030

mitigate these concerns, the framework and prop-031

erties of differential privacy (DP) (Dwork et al.,032

2006b,a) provide a compelling approach for rig-033

orously controlling and preventing the leakage of034

sensitive user information present in the training035

dataset. Loosely speaking, DP guarantees that the036

output distribution of a (randomized) algorithm037

does not noticeably change if a single training ex-038

ample is added or removed; this change is param-039

eterized by two numbers (ε, δ)—the smaller these040

parameter values, the more private the algorithm.041

We refer the reader to Section 2 for the formal defi- 042

nition of DP, and to Dwork and Roth (2014) for a 043

thorough overview. 044

Motivated by these concerns, there has been a 045

significant body of work on training private ML 046

models. Notably, Abadi et al. (2016) presented 047

a generic recipe for training ML models with DP. 048

While their DP-SGD framework is quite robust as it 049

applies to arbitrary neural network architectures, it 050

faces two challenges that have significantly limited 051

its practical deployment: 052

(i) the gap between its accuracy and that of the 053

best non-private methods can be significant, and 054

(ii) the training time overhead (due to per- 055

example gradient clipping) is considerable. 056

Note that on simple tasks such as MNIST digit 057

classification, the accuracy of DP models is not 058

too far from that of non-private models. However, 059

for more complex tasks such as CIFAR-10, the 060

accuracy gap is very large, ∼25% for reasonable 061

privacy parameter settings. For even more compli- 062

cated tasks such as CIFAR-100, the inefficiency of 063

DP-SGD has for several years precluded the train- 064

ing of DP neural networks. These limitations have 065

made the DP training of a complex language model 066

such as the Bidirectional Encoder Representation 067

(BERT) (Devlin et al., 2019) a daunting task. 068

Very recently Hoory et al. (2021) tackled the 069

challenge of fine-tuning BERT with DP and re- 070

lied on non-private pretraining on the combined 071

Wikipedia and BooksCorpus (Zhu et al., 2015) 072

datasets. In this work, we take a step further 073

and consider the task of pretraining a BERT-Large 074

model with DP. Obtaining a pre-trained model with 075

DP guarantee allows us to employ it for multiple 076

downstream tasks without violating the privacy of 077

the data used in pre-training1. Pretraining BERT- 078

Large, however, is a computationally intensive task 079

even without privacy; with privacy, using DP-SGD 080

to pretrain BERT-Large poses significantly more 081

1This is a byproduct of the post-processing property of DP.
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computational challenges. Our work shows how082

to overcome these barriers. We present an imple-083

mentation of a variant of DP-SGD that, surpris-084

ingly, can train (relatively) quickly on state-of-the-085

art hardware and achieve good accuracy.086

1.1 Contributions087

In this work, we establish a high accuracy base-088

line for DP BERT-Large pretraining. Our primary089

contributions are:090

(i) Negative interaction of naive DP-SGD with091

scale-invariant layers: We discuss the importance092

of a large weight decay parameter (in Adam op-093

timizer) and its interactions with layers that are094

scale-invariant individually and jointly. This in-095

sight allows us to tune hyper-parameters effectively,096

thereby achieving higher accuracies.097

(ii) Mega-batches improve accuracy for DP098

BERT-Large: We demonstrate that scaling up the099

batch sizes to ∼2M improves the utility of every100

step of DP-SGD empirically. This batch size is101

32× larger than previously used for non-private102

training of BERT (Nado et al., 2021). We achieve103

a masked language modeling accuracy of 60.5%.104

Complementing this, we also provide a theoret-105

ical justification as to why large batch sizes are106

advantageous in DP-SGD.107

(iii) Increasing batch size schedule improves108

training efficiency: We show that an increasing109

batch size schedule can improve the efficiency of110

the training procedure while matching the accuracy111

of a fixed batch size schedule. We motivate our112

approach using a notion of gradient-SNR (signal-113

to-noise ratio). Our proof-of-concept experiments114

show up to 14% reduction in the total number of115

examples visited to achieve the same accuracy.116

1.2 Related work117

In previous work McMahan et al. (2018) trained118

recurrent language models with DP. Other works119

also considered adaptive clipping in the context120

of DP-SGD (Andrew et al., 2019; Pichapati et al.,121

2019) as well as adaptive learning rates (Koskela122

and Honkela, 2020). In the non-private literature,123

increasing batch sizes have been considered, e.g.,124

in Smith et al. (2018). Finally, a significant speedup125

of DP-SGD was shown to be possible in Subramani126

et al. (2020) via large leaps in software (Bradbury127

et al., 2018; Frostig et al., 2018; XLA team and col-128

laborators, 2017) for machine learning; this serves129

as our foundation for scaling pretraining for BERT.130

Memorization properties of the DP trained 131

model have been investigated in (Carlini et al., 132

2021; Brown et al., 2021); Feldman (2020) studies 133

the generalization properties of DP models. 134

Organization. We start with some background 135

in Section 2. The details of the algorithm are de- 136

scribed in Section 3. Our experimental setup and 137

results are presented in Section 4 and Section 5. We 138

conclude with some future directions in Section 6. 139

2 Preliminaries 140

Similar to most previous works on DP ML, we say 141

that two datasets X and X ′ are neighboring, if X ′ 142

results from adding or removing a single training 143

example from X . 144

Definition 1 (Differential Privacy (Dwork et al., 145

2006b,a)). For any real numbers ε ≥ 0 and 146

δ ∈ [0, 1], a randomized algorithm A is (ε, δ)- 147

differentially private (DP) if for every pairX,X ′ of 148

neighboring datasets and every subset S of outputs 149

of A, it is the case that 150

Pr[A(X) ∈ S] ≤ eε · Pr[A(X ′) ∈ S] + δ, 151

where the probabilities are over the randomness in 152

the algorithm A. When δ = 0, we simply use ε-DP. 153

DP has seen significant interest in the literature 154

due to its nice mathematical properties such as 155

composition, post-processing, and group privacy 156

(see, e.g., the book of Dwork and Roth (2014)). 157

3 Algorithm 158

At a high-level, we use the DP-SGD algo- 159

rithm (Abadi et al., 2016) with the Adam opti- 160

mizer (Kingma and Ba, 2015). Our choice of Adam 161

follows the work of Nado et al. (2021), who showed 162

that tuning Adam works well up to large batch sizes 163

of 65K. As our goal is to establish a baseline for 164

BERT pretraining with DP, we leave the investi- 165

gation of higher-order methods (Anil et al., 2020; 166

Amid et al., 2021) to future work. 167

At each step of training, we randomly select 168

a prespecified number of examples, compute and 169

clip their gradients and add appropriate noise to 170

the average gradient to ensure privacy. To compute 171

the noise multiplier, we use the privacy loss dis- 172

tribution (PLD) method (e.g., (Gopi et al., 2021)) 173

implemented in Google DP Accounting Library2. 174

2https://github.com/google/
differential-privacy/tree/main/python/
dp_accounting.
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Algorithm 1 DP-SGD using Adam optimizer with weight decay

Require: Examples x1, . . . , xn, loss L(θ) = 1
n

∑n
i=1 L(θ;xi).

Ensure: number T of steps, batch sizes q1, . . . , qT , clipping norm C, noise multiplier σ, momentum
parameter β1, second-moment averaging parameter β2, weight decay λ, learning rate ηt.
for t = 1, . . . , T do
Bt ← random qt training examples.
gt ← 1

|Bt|

(
N (0, σ2C2I) +

∑
xj∈Bt

clip(∇L(θ;xj), C)
)

mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2t
m̂t ← mt/(1− βt1)
v̂t ← vt/(1− βt2)
θt ← θt−1 − ηt

(
m̂t/(

√
v̂t + ξ) + λ · θt−1

)
. ξ is set to 10−11

return θT

This gives tighter privacy parameters ε, δ compared175

to the Rényi DP method in (Abadi et al., 2016;176

Mironov, 2017). These noisy average gradients are177

then used to update the parameters via the Adam178

update (Kingma and Ba, 2015) rule with weight179

decay (Loshchilov and Hutter, 2017). See Algo-180

rithm 1 for a self-contained detailed description.181

For the increasing batch size schedule, we mod-182

ify the DP accounting procedure to handle multiple183

batch sizes, in a straightforward manner.184

4 Experimental Setup and Tuning185

We present results on pretraining a BERT archi-186

tecture (Devlin et al., 2019), focusing on its larger187

variant, aka “BERT-Large”, which is a transformer188

model (Vaswani et al., 2017) containing 24 trans-189

former blocks with 1024 hidden dimensions and190

16 self attention heads. It has 340M parameters191

(1.297 GiB). The training setup is a reimplemen-192

tation of the official BERT codebase3 in the JAX193

framework (Bradbury et al., 2018; Frostig et al.,194

2018) with the FLAX library (Heek et al., 2020).195

Our choice of JAX was motivated by the recent re-196

sults of Subramani et al. (2020), where they demon-197

strate that JAX features such as Just-In-Time (JIT)198

compilation and compiler fusion result in low run-199

time overheads for the DP-SGD step and match200

or commonly exceeds the performance of various201

other frameworks. All experiments were carried202

out on Google TPUs (Jouppi et al., 2017), using203

the TPUv3-1024 configuration.204

3https://github.com/google-research/
bert

4.1 Pretraining dataset 205

The pretraining dataset is the combined Wikipedia 206

and Books corpus (Zhu et al., 2015) datasets with 207

2.5B and 800M words, respectively. It consists 208

of about 346M examples, each containing two 209

sentences (389M unique sentences). To have a 210

finite vocabulary and address out-of-vocabulary 211

words gracefully, the words in the sentences are 212

segmented into word-pieces (Sennrich et al., 2016). 213

There are 32K tokens in the vocabulary. Each pair 214

of sentences has 128 tokens. 20 tokens from each 215

example were replaced with masked tokens (15% 216

of the tokens). The objective of the model is to 217

predict the masked tokens and which of the two 218

sentences precedes the other. A typical pretraining 219

model achieves 70% in masked-language model 220

(MLM) accuracy. After pretraining, the model pa- 221

rameters are used for fine-tuning on small amounts 222

of data to solve specific natural language tasks 223

(Wang et al., 2019). 224

4.2 On Advantage of Large Batch Sizes 225

Our training employs fairly large batch sizes. Here 226

we provide a justification for these large batch sizes. 227

In particular, we argue below that once we fix the 228

number of steps T , there is a minimum batch size 229

below which should not be used for DP-SGD. 230

For simplicity of exposition, we assume that the 231

batch sizes are fixed to q in each step. To formalize 232

the aforementioned intuition, we will define the 233

notion of normalized noise multiplier σ̃ which is 234

defined as σ
q—this is the noise multiplier added in 235

each DP-SGD step after the average of gradients. 236

Again, for simplicity, we assume that we are 237

using the advanced composition theorem (Dwork 238

et al., 2010) and the generic amplification-by- 239

3
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subsampling theorem (Balle et al., 2018) for pri-240

vacy calculations. In actual training, we use the241

tighter PLD accounting; nonetheless, as we empiri-242

cally show below, the asymptotic behaviors remain243

the same as in our simplified setting. When ap-244

plying the advanced composition theorem (Dwork245

et al., 2010), we get that it suffices to make each246

step of DP-SGD (ε0, δ0)-DP in order for the entire247

algorithm be (ε, δ)-DP. Here ε0, δ0 depend only on248

ε, δ, T and not on the batch size q. We assume in249

the calculation below that ε0 < 1 and δ0 < 1/n.250

These are the standard parameters of interest.251

Now, in order for each step be (ε0, δ0)-DP, we252

may apply the amplification-by-subsampling the-253

orem (Balle et al., 2018) with sampling probabil-254

ity p = q/n. This requires the (non-subsampled)255

Gaussian mechanism to be (ε1, δ1)-DP where256

ε1 = log(1 + (eε0 − 1)/p), δ1 = δ0/p.257

This allows us to set the noise multiplier σ to be4258

σ = Θ

( √
log(1/δ0)

log(1 + (eε0 − 1)/p)

)
,259

giving a normalized noise multiplier of260

σ̃ =
σ

q
= Θ

(
1

q
·

√
log(1/δ0)

log(1 + (eε0 − 1)/p)

)
. (1)261

Now, consider two cases based on the batch size.262

Case I: q ≥ ε0n. In this large batch size case,263

p > ε0. This implies log(1 + (eε0 − 1)/p) =264

Θ(ε0/p). Plugging this into (1), we get σ̃ =265

Θ

(√
log(1/δ0)

ε0n

)
. In other words, the normalized266

noise multiplier remains roughly constant when267

the batch size is sufficiently large.268

Case II: q < ε0n. In the small batch size case,269

p < ε0, which implies log(1 + (eε0 − 1)/p) =270

Θ(log(ε0/p)). Plugging this into (1), we have271

σ̃ = Θ

(√
log(1/δ0)

q log(nε0/q)

)
. This means that the nor-272

malized noise multiplier keeps increasing as the273

batch size decreases. In fact, the decrease rate is274

almost inverse linear in q here, i.e., the unnormal-275

ized noise multiplier remains almost constant even276

when the batch size decreases.277

To summarize, the normalized noise multiplier278

is constant when the batch size is sufficiently large,279

but at a critical point Θ(ε0n), the normalized noise280

4See e.g. (Dwork and Roth, 2014, Appendix A).

multiplier starts increasing as the batch size de- 281

creases. This effect can also be seen empirically 282

for noise multiplier computed from the PLD ac- 283

counting method (Figure 1), and is indeed one of 284

the reasons large batch sizes are more effective for 285

DP-SGD in large datasets. 286

Figure 1: Normalized noise multiplier with varying
batch sizes. We see that there is a critical point after
which the value becomes roughly a constant.

4.3 Hyper-parameter tuning 287

We tune hyper-parameters for Adam at a batch size 288

of 32K and transfer the tuned hyper-parameters 289

to all other batch sizes. For tuning the hyper- 290

parameters, we tune with grid search, and use a 291

total of 288 trials. Note that we do not train all 288 292

trials to completion as many of the hyper-parameter 293

combination either fail (model blow-ups) or pro- 294

duce lower accuracies (<15%) even after 4000 295

steps. Hyper-parameter tuning spaces are listed 296

in Table 1. Note that we can account for the pri- 297

vacy cost of hyper-parameter tuning using known 298

tools from the literature. Specifically, we follow 299

Appendix G of Abadi et al. (2016) and apply Theo- 300

rem 10.2 of Gupta et al. (2010). 301

Theorem 1 (Theorem 10.2 of Gupta et al. (2010)). 302

Let M : D → R be an ε-DP mechanism such 303

that for a query function q : D × R → R≥0 304

of sensitivity 1 with respect to D (meaning that 305

for any fixed r ∈ R, the function q(·, r) has 306

sensitivity 1), and a parameter Q, it holds that 307

Pr[q(A,M(A)) ≥ Q] ≥ p for some p ∈ (0, 1). 308

Then, for any κ > 0 and ε′ ∈ (0, 12), there is a 309

mechanism M ′, which satisfies the following: 310

(i) Pr[q(A,M(A)) ≥ Q− 4
ε′ log( 1

ε′κp)] ≥ 1−κ. 311

(ii) M ′ makes O(( 1
ε′κp)2 ln( 1

ε′κp)) calls to M . 312

M ′ satisfies (ε+ 8ε′)-DP. 313

Moreover, in the case of grid search, the new DP 314

parameter can be improved to max(ε, 8ε′) (Abadi 315

et al., 2016). In our case, we set κ = 0.1 and p = 316
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1/K, where K is the number of hyper-parameters317

on the grid. Then, the above theorem implies that318

our training methods can be privatized with a loss319

of accuracy of at most 4
10000ε′ ln( 1

ε′κp) with proba-320

bility at most 0.9, where we have used the fact that321

the number of validation points is equal to 10000.322

For ε = 5, we could set ε′ as large as ε/8 = 0.625.323

For a grid search over K parameters, the loss in ac-324

curacy (with probability at least 0.9) will be upper-325

bounded by: 4
10000ε′ ln( 1

ε′κp) = 0.00064·ln(16·K).326

For K = 289 choices of hyper-parameters, the327

drop in accuracy would be 0.0054, or 0.54%.328

A linear learning rate warmup followed by a329

quadratic decay schedule is used for training. The330

tuning objective was to maximize the MLM ac-331

curacy over 10k examples following Nado et al.332

(2021). Non-private training of BERT-Large333

reaches 70% accuracy at 32K batch size in 14,063334

steps. For all experiments, we train for 20K steps,335

with a 7.5K step warmup. A key insight from tun-336

ing is that a very large weight decay λ needs to be337

set to achieve high accuracy. We will discuss this338

next section339

4.4 Scale-invariance and large weight decay340

The primary observation that led to larger search341

space for weight decay is that BERT-Large has sev-342

eral scale-invariant layers. A scale-invariant layer343

is one in which increasing the norm of the weights344

in the layer by a positive scalar has no effect on345

the function output. However, the norm of the gra-346

dient for the weights of the layer shrinks as it is347

inversely proportional to the norm of the weights.348

This has been noted in the literature (Hoffer et al.,349

2019; Cho and Lee, 2017; Davody et al., 2020;350

Heo et al., 2021), and Heo et al. (2021) propose351

a modification to Adam to handle these layers for352

non-private training, and Davody et al. (2020) intro-353

duce batch normalization layers to make networks354

scale-invariant in order to improve accuracy, but355

do not consider the trainability issue of standard356

DP-SGD addressed here.357

To make this concrete, consider a fully con-358

nected layer with parameters W ∈ Rm×n, where359

Wx = s. The gradient for the layer Gt ∈ Rm×n360

can be written via chain rule as ∇s`(st, yt)xT. Un-361

der layer normalization, the preactivation vector s362

is normalized to have zero mean and unit variance:363

f(s) =

(
s− E[s]√
Var[s] + ξ

)
.364

A key observation is that layer normalization makes 365

the layer’s output independent of the scale of W , 366

i.e., multiplying W by non-zero α ∈ R has no 367

effect on the function output. With DP training, 368

the Gaussian noise added to the gradient tends to 369

increase the Frobenius norm ||W ||F of the weights 370

over training which unintentionally shrinks the gra- 371

dients, making training ineffective! Thus, to sta- 372

bilize training, we set the weight decay parameter 373

to be much larger than non-private training. This 374

interaction is quite crucial for practitioners of DP 375

to be aware of when applying DP to any neural net- 376

work, as normalization layers such as layer-norm 377

(Ba et al., 2016), batch-norm (Ioffe and Szegedy, 378

2015), and weight-norm (Salimans and Kingma, 379

2016) are common. 380

Notice that the difficulty in employing a more 381

straightforward solution for the problem through 382

gradient projection, i.e., projecting the component 383

of the noise vector orthogonal to the weight vector, 384

is that we need to infer the scale invariance property 385

of the layers apriori, which is difficult on a broad 386

range of models. Moreover, for BERT-Large, the 387

three types of embedding layers—wordpiece, posi- 388

tional, and token type—are scale-invariant together 389

but not individually due to layer normalization be- 390

ing applied after aggregating these embeddings in 391

the input layer. Thus, the tuning of weight decay is 392

preferable to the heuristics from Heo et al. (2021). 393

Finally, handling the addition of standard DP noise 394

to the scale-invariant layers efficiently by identify- 395

ing them and including conjoint ones is an exciting 396

avenue for further research. 397

5 Experimental Results 398

In this section, we study the effect of the privacy 399

parameter ε and fix a particular value of ε to aim for 400

the highest attainable MLM accuracy, by changing 401

the batch size. 402

5.1 Varying privacy parameter ε 403

In Figure 2, we present the MLM accuracy results 404

for varying the ε parameter. We set the batch size to 405

65,536 and trained for 20K steps with a 7500 steps 406

warmup. Hyper-parameters were transferred from 407

the tuning experiments at 32,768 batch size from 408

Table 1. As expected, at ε = 1.08, the accuracy 409

drops to 33.2% while achieving up to 42.85% at 410

ε = 10.6. We identify a sweet spot of ε = 5 411

and use it for further experimentation; we also use 412

δ = 2.89× 10−9, the reciprocal of the number of 413
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Hyper-parameter Grid Best trial
η (learning rate) {5× 10−4, 1× 10−4, 5× 10−3, 1× 10−3} 5× 10−4

1− β1 (momentum parameter) {0.25, 0.1, 0.05} 0.25
1− β2 (second-moment parameter) {0.25, 0.1, 0.05} 0.1

λ (weight decay) {10−1, 1} 1.0
C (clipping norm) {1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2} 5× 10−3

Table 1: Hyper-parameter tuning search space, where search is done with grid-search. Learning rate schedule is a
linear warmup followed by a quadratic decay. DP parameters ε is set to 5 and δ to 2.89× 10−9.

examples, throughout.414
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Figure 2: MLM accuracy tradeoff with varying ε. We
use ε = 5 for the rest of the paper. Batch size is 65,536,
trained for 20K steps with 7500 steps of warmup.

5.2 Varying batch size with fixed step budget415

We now study the effect of batch size on MLM416

accuracy. In non-private training, typically batch417

size scaling is studied under a fixed epoch budget418

(Shallue et al., 2019; Nado et al., 2021) rather than419

a step budget. In contrast, we carry out this study420

at a fixed step budget for two reasons:421

(i) our primary motivation is to establish a high422

accuracy private baseline, and423

(ii) fixed epoch budget study requires re-tuning424

hyper-parameters efficiently for very large batch425

sizes, an open challenge for private training.426

Improving optimization efficiency of the training427

procedure is a natural next step, and along these428

lines, we propose an increasing batch size schedule429

that improves the efficiency and is described in the430

later sections. (See Section 6 for other possibilities431

for efficiency improvement.) Notice that for all432

our experiments, we transfer the hyper-parameters433

from the 32K hyper-parameter tuning and naively434

increase the batch size while fixing ε to 5.435

5.2.1 Effect of batch size on DP gradients 436

As described in Section 3, DP training relies on clip- 437

ping individual gradients, then aggregating them, 438

followed by the addition of a noise vector. We 439

measure the ratio between the norms of the aggre- 440

gated gradient of the network and the noise vector. 441

We call this quantity gradient signal-to-noise ratio 442

(gradient-SNR) and measure it over the training 443

run; the results are presented in Figure 3a and Fig- 444

ure 4a. We observe that using a larger batch size 445

yields favorable gradient-SNR through training and 446

overall higher accuracy. Gradient-SNR can be seen 447

to shrink as training progresses, which motivates 448

the batch size schedule that we discuss next. 449

2500 5000 7500 10000 12500 15000 17500 20000
steps

10 1

100

101

gr
ad

ie
nt

-S
NR

65,536 (batch-size)
262,144
1,048,576
2,097,152

(a) Gradient-SNR

Figure 3: Gradient-SNR at several batch sizes at a fixed
step budget of 20K steps using hyper-parameters from
Table 1. Larger batch sizes improve overall accuracy.
Target solution quality is 70% and is achieved by BERT-
Large at modest batch sizes of 32K in 14,063 steps.

5.2.2 Batch size schedule improves efficiency 450

To improve the efficiency of training, we propose 451

an increasing batch size schedule. As seen in Fig- 452

ure 3a, the gradient norm decreases over time, and 453
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(a) MLM accuracy

Figure 4: MLM accuracy at several batch sizes at a
fixed step budget of 20K steps using hyper-parameters
from Table 1. Larger batch sizes improve overall accu-
racy. Target solution quality is 70%, achieved by BERT-
Large at modest batch sizes of 32K in 14,063 steps.

the noise starts dominating, which leads to slower454

convergence of DP training. This is primarily in the455

DP framework, the noise added does not grow pro-456

portional to the batch size under fixed steps budget.457

Based on this insight, we devise an increasing batch458

size schedule from 262,144 (262K) to 1,048,576459

(1M) over 7.5K steps. Every one-quarter of the460

7.5K steps, we increase the batch size by ∼196K461

examples, reaching 1M at 7.5 steps. Overall we462

observe improved efficiency in training as seen in463

Figure 5a and match the accuracy of fixed batch464

size training in Figure 6a. This technique reduces465

examples seen in training by 14%. We note that466

increasing batch sizes have been proposed in the467

literature, e.g., in Smith et al. (2018), where the468

technique is used as a substitute for decreasing the469

learning rate. In contrast, our proposal is motivated470

by the specific DP-SGD setting, i.e., the fact that471

the norm of the gradients tends to decrease as train-472

ing progresses, so naturally, increasing the batch473

size allows us to improve gradient-SNR.474

5.3 On scaling up to mega batch sizes475

The primary bottleneck with data-parallel training476

at large batch sizes (>65K) for BERT-Large is477

memory. Recall that You et al. (2019) resort to478

using smaller batch sizes of (32K) when training479

with longer sequence lengths (512) when using480

equivalent amount of hardware resources used in481

this work. Motivated by the fact it is clear that482

increasing batch sizes improves gradient-SNR and483
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(a) Gradient-SNR

Figure 5: Gradient-SNR for fixed batch sizes 262K,
and 1M, and increasing schedule starting at 262K to
1M over 7500 steps.
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(a) MLM accuracy

Figure 6: MLM accuracy for fixed batch sizes 262K,
and 1M, and increasing schedule starting at 262K to
1M over 7500 steps.

thereby improves the overall accuracy of the model, 484

we handle mega-batch sizes by simply using gra- 485

dient accumulation across examples to form large 486

batches. We rely heavily on JAX (Bradbury et al., 487

2018; Frostig et al., 2018) primitives, and with 488

them it is straightforward to implement this func- 489

tionality by accumulating gradients over batches 490

of examples via a jax.lax.fori_loop and 491

jax.vmap (vectorized map). 492

Large batch training can be quite beneficial in 493

improving overall efficiency when training with 494

slow interconnects (on typical GPU setup) as they 495

amortize the cost of gradient reduction. We have 496
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found that increasing batch size is useful as long as497

the progress per example (utility) does not shrink.498

Another avenue is in the training of larger models499

(>5B parameters) that requires model parallelism.500

In this case, weights are split across devices, and ef-501

ficiency is improved via pipeline parallelism where502

smaller batches are used to pipeline computations503

(forward, backward, update) across devices, as de-504

scribed in Xu et al. (2021); Lepikhin et al. (2021).505

Integrating DP-SGD in that setup is the natural506

next step when training models much larger than507

BERT-Large. Another interesting question is how508

accuracy differs across various sizes of BERT mod-509

els, which we leave for future work. To conclude,510

we use the gradient accumulation to scale up the511

batch size to 2,097,152 (2M), which is 32× larger512

than previously reported in the literature for non-513

private training, and obtain an MLM accuracy of514

60.5% with DP.515

5.4 DP and memorization516

Carlini et al. (2021) showed that large language517

models do memorize training data, so we investi-518

gate whether DP leads to less memorization. Our519

experimental setup is as follows: we create a set520

of training examples similar to the original BERT521

dataset, but from a disjoint public domain corpus.522

However instead of masking out random tokens,523

here in each example we mask out a sequence of524

tokens corresponding to a phrase in the text. Each525

example was added to the training set with some526

frequency: 25,000 examples each were added with527

frequencies 1 through 10, and we also added some528

examples with higher frequencies. In addition,529

25,000 examples were held out as the control set.530

We trained the model on this augmented dataset531

with ε = 1, 5, 10, as well as without DP, and532

then predicted masked tokens in the new examples.533

We computed various metrics on these predictions.534

Two of these are shown in Figure 7:535

(i) The edit distance between the missing phrase536

and top prediction.537

(ii) The exposure-50 metric of Carlini et al.538

(2019)—this is the negative log of the estimated539

rank of the missing phrase among all predictions.540

It is clear from the slope of the line graphs that541

non-private training memorizes significantly more542

than DP training. However ε did not seem to make543

a significant difference—the predictions for a few544

repetitions was similar to the holdout set, though of545

course the models memorized examples that were546

(a) Edit distance

(b) Exposure-50

Figure 7: Metrics for various values of ε.

repeated a lot. 547

6 Conclusions 548

We build off the recent advances in software (XLA 549

team and collaborators, 2017; Bradbury et al., 2018; 550

Frostig et al., 2018) and hardware (Jouppi et al., 551

2017) and establish a baseline for BERT-Large pre- 552

training with DP. We achieve high accuracy for 553

the model by scaling up the batch size to millions 554

of examples (mega-batches) and using additional 555

insights such as improving the trainability of net- 556

works under normalization layers and measuring 557

the gradient-SNR metric. We proposed a proof of 558

concept batch size increasing schedule and demon- 559

strate an efficiency improvement. An interesting 560

direction is to improve the efficiency of DP train- 561

ing further by leveraging recent advances such as 562

higher-order methods (Anil et al., 2020; Gupta 563

et al., 2018), local loss optimization (Amid et al., 564

2021), scaling techniques that exploit increased 565

parallelism: such as online distillation (Anil et al., 566

2018) and ones that use lower memory (Shazeer 567

and Stern, 2018; Anil et al., 2019), automatic tun- 568

ing of hyper-parameters meta optimization (Amid 569

et al., 2020), more efficient architectures such as 570

MLP-Mixer, and F-NETs (Tolstikhin et al., 2021; 571

Lee-Thorp et al., 2021) for longer sequences, multi- 572

step training at mega-batch sizes (Choi et al., 2019; 573

Agarwal et al., 2020), loss functions that are robust 574

to label noise (Amid et al., 2019). 575
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7 Ethical considerations & Limitations576

This work addresses the accuracy gap typically577

seen when pretraining a moderately sized language578

model (BERT-Large) with DP. We find that larger579

batches, with good training metrics (Gradient-580

SNR) and architecture-aware tuning insights (the581

negative interaction between layer norm and DP-582

SGD) closes this gap. While this work has focused583

solely on pretraining, there are several limitations584

and questions on the behavior of pretrained DP585

models for fine-tuning and around what DP param-586

eters (ε) to choose in practice to balance quality and587

privacy hope the community takes on. The training588

time of the largest experiment: BERT-Large at 2M589

batch size on TPUv3-1024 is 72 hours, which is ex-590

pensive. Pretraining cost is amortized as it is only591

carried out once compared to several downstream592

use cases of the model. Moreover, we think several593

follow-up work has the potential to reduce the cost,594

for example, through more efficient architectures595

and optimizers.596
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