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Abstract

Data-driving supervised models for named en-
tity recognition (NER) have made significant
improvements on standard benchmarks. How-
ever, such models often have severe perfor-
mance degradation on large-scale noisy data.
Thus, a practical and challenging question
arises: Can we leverage only a small amount of
relatively clean data to guide the NER model
learning from large-scale noisy data? To an-
swer this question, we focus on the inconsistent
labeling instances problem. We observe that
inconsistent labeling instances can be classi-
fied into five types of noise, each of which will
largely hinder the model performance in our ex-
periments. Based on the above observation, we
propose a simple yet effective denoising frame-
work named Distillation and Calibration for
Chinese NER (DCNER). DCNER consists: (1)
a Dual-stream Label Distillation mechanism
for distilling five types of inconsistent label-
ing instances from the noisy data; and (2) a
Consistency-aware Label Calibration network
for calibrating inconsistent labeling instances
based on relatively clean data. Additionally, we
propose the first benchmark towards validating
the ability of Chinese NER to resist inconsis-
tent labeling instances. Finally, detailed experi-
ments show that our method consistently and
significantly outperforms previous methods on
the proposed benchmark.

1 Introduction

Named entity recognition (NER), which is essential
for natural language understanding, aims to detect
and classify named entities in texts. For instance,
given the sentence “He drove to the White House.”,
a NER system needs to detect the span of “the
White House” and classify this mention to the Fa-
cility type. In recent years, data-driving supervised
NER has made significant improvements on stan-
dard benchmarks (Ma and Hovy, 2016; Lample
et al., 2016; Peters et al., 2018; Zhang and Yang,
2018; Li et al., 2020b,a, 2021; Yan et al., 2021).

However, such models often have severe perfor-
mance degradation on large-scale noisy data. Thus,
a practical and challenging question arises: Can we
leverage only a small amount of relatively clean
data to guide the NER model learning from large-
scale noisy data? To answer this question, we focus
on the problem of inconsistent labeling instances.

Inconsistent labeling instances are widespread in
human-annotated datasets. When building a large-
scale NER dataset, annotators may have various
standards for annotating a certain mention in their
minds, leading to the problem of inconsistent la-
beling instances. This problem cannot be avoided
by annotation guidelines because even the most de-
tailed guideline cannot cover all entities. Due to the
vagueness of Chinese word boundary, this problem
is particularly prominent in Chinese NER (Zeng
et al., 2021; Zhang et al., 2021). For example,
OntoNotes 4.0 (Weischedel et al.) dataset, which
18 a standard Chinese NER benchmark, still can-
not avoid this noise. In the statistics of (Zhang
et al., 2021), the mention of “[E A [ (Chinese
People) has two different labeling instances. It is
labeled as “H[E] A\ [&” (Chinese People) 23 times
and “H1[E” (China) 13 times. We cannot arbitrarily
assume that the majority is correct because both
two labeling instances are reasonable and generally
exist in the test set. Therefore, how to denoise in-
consistent labeling instances is a challenging prob-
lem.

To tackle different types of noise, existing
denoising methods can be roughly divided into
three lines: methods towards the auto-annotated
dataset (Hedderich and Klakow, 2018; Yang et al.,
2018; Lange et al., 2019; Jie et al., 2019; May-
hew et al., 2019), methods towards instance-
independent settings (Goldberger and Ben-Reuven,
2016; Zhou and Chen, 2021), and methods towards
the human-annotated dataset (Wang et al., 2019;
Jiang et al., 2021). Previous methods towards the
auto-annotated dataset are confined to instances



that cannot be auto-annotated due to the limited
coverage of the dictionary. In fact, there are no in-
consistent labeling instances in the auto-annotated
dataset. For example, if “* [E A & (Chinese
People) and “H[E” (Chinese) exist in the dictio-
nary at the same time, then the mention of “H
[E A (Chinese People) can only be labeled as
“HHE AR instead of “FE AR, In contrast,
methods for instance-independent settings gener-
ally do not consider the labeling instance, but di-
rectly randomly perturb the edge distribution of the
label space. Our experiments show that, although
these methods have achieved surprising effects on
the target noise, they have to sacrifice the general-
ization on inconsistent labeling instances.

To tackle the problem of inconsistent labeling
instances, we identify that inconsistent labeling in-
stances can be classified into five types of noise,
which are described in detail in Section 4. Fur-
ther, our experiments demonstrate that each of the
five noise types can seriously affect the model per-
formance. Based on the above observation, we
propose a two-stage denoising framework named
Distillation and Calibration for Chinese NER (DC-
NER).

Specifically, in the first distillation phase, we pro-
pose a Dual-stream Label Distillation mechanism
(DLD) to distill five types of inconsistent labeling
instances from the noisy data. Therefore, this mech-
anism can preserve the potential labeling instances
in noisy data as much as possible. In the second
calibration phase, we propose a Consistency-aware
Label Calibration network (CLC) to calibrate in-
consistent labeling instances. This network can
calibrate inconsistent labeling instances based on
relatively clean data and outputs the final prediction.
Besides, we propose the first Chinese benchmark
towards the ability of the NER model to resist in-
consistent labeling instances. To obtain noisy data
similar enough to the real-world dataset, we heuris-
tically amplify the original noise in two Chinese
NER benchmarks at different scales. In this way,
we get two synthetic datasets, which can validate
the NER model under multiple proportions of in-
consistent noise.

In summary, our main contributions are:

* This is the first NER work to focus on denois-
ing inconsistent labeling instances in such a
scenario where only a small amount of rela-
tively clean data and large-scale noisy data
are available. To this end, we propose the first

denoising framework (DCNER) for handling
the inconsistent labeling instances problem.
Besides, we propose the first Chinese NER
benchmark towards validating the ability of
NER model to resist the inconsistent labeling
instances.

* In DCNER, a novel Dual-stream Label Dis-
tillation mechanism is proposed to distill in-
consistent labeling instances from the noisy
data, and a novel Consistency-aware Label
Calibration network is proposed to calibrate
inconsistent labeling instances based on rela-
tively clean data.

* Experiments show that our method consis-
tently and significantly outperforms previous
methods on the proposed benchmark, exceed-
ing by 4.29% and 14.74% on F1 score (with-
out pre-training). Besides, ablation experi-
ments prove the effectiveness of each phase
in our method.

2 Related Work

This section emphasizes some representative meth-
ods we use for comparison towards the following
three mainstream scenarios.

2.1 Towards the Auto-annotated Dataset

Existing methods towards the auto-annotated
dataset are confined to instances that cannot be
auto-annotated due to the limited coverage of the
dictionary. (Hedderich and Klakow, 2018) add a
global noise adaptation matrix on top of a BILSTM
to correct noisy labels for English NER. (Lange
et al., 2019) enhance confusion-matrix based meth-
ods to capture feature-dependent noise. (Yang et al.,
2018) design an agent as an instance selector based
on reinforcement learning to distinguish positive
sentences. (Jie et al., 2019) and (Mayhew et al.,
2019) use self-training to adjust the weights of
wrong labels and correct labels iteratively.

2.2 Towards Instance-independent Settings

Methods for instance-independent settings gener-
ally do not consider the type of noise, primarily
based on noise transition matrix and the memo-
rization effect of neural network (Zhou and Chen,
2021). (Goldberger and Ben-Reuven, 2016) model
the relationship between noisy and clean labels
with a confusion matrix. (Luo et al., 2017) apply a
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Figure 1: The architecture of our proposed DCNER.

dynamically generated matrices-based method to
characterize clues about the noise patterns.

2.3 Towards the Human-annotated Dataset

This direction has received increasing attention in
recent years. (Wang et al., 2019) aim to detect and
down weight wrong labels based on self-training,
resulting in a weighted training set. The first phase
of our method is also based on self-training. How-
ever, our goal is fundamentally different from them.
We aim to detect and separate inconsistent labeling
instances entangled in the whole noisy data rather
than arbitrarily asserting that a specific instance is
more correct. (Jiang et al., 2021) have the same
experimental settings as ours. Their idea is to use
external resources for domain adaptation through
pre-training models. Their method is limited to
pre-trained models, but our method performs well
with or without pre-training models.

3  Our Proposed NER Framwork

This section introduces in detail our proposed DC-
NER. We first introduce the distillation phase with
a self-training mechanism called Dual-stream La-
bel Distillation. Then we describe the following
calibration phase with a Consistency-aware Label
Calibration network.

3.1 Dual-stream Label Distillation

The distillation phase is to detect and separate in-
consistent labeling instances entangled in the whole

noisy data. Our proposed Dual-stream Label Dis-
tillation is shown in Algorithm 1.

Algorithm 1: Dual-stream Label Distilla-
tion
Input: A NER network f, the noisy data
N ={z1,....;xn},{y1, - Unl})s
and hyper-parameters k.
Output: Two NER models: M and M~
Randomly partition V into k folds;
2 for Each fold Ni, do
3 train_sety, «— N \Ng;
4 Train a NER model
My, = f(train_sety);
5 for Each x; € N do
6 L g)f +—M},’s prediction on x;
7 Nk — <{x17--'axn}a{g’fa"'vgz}>;
8 D:Nlu,...,UNk;
9 N = High-Density Distillation (D, N);
10 N¥ = Low-Density Distillation (D, N);
11 Train a NER model M7 = f(NH);
12 Train a NER model M* = f(N1);
13 Return M and ML,

[

Self-training: We randomly partition the noisy
data N into k folds. when each fold is regarded
as an independent development set dev_sety, the
other (k — 1) folds are combined as the correspond-
ing training set train_set;. In this way, we get
k new datasets for self-training. Then we train k
NER models based on the k& datasets. We use these



k NER models to predict the entire original noisy
training data N. The sentences of /N and the cor-
responding k prediction results are denoted as D
integrally.

High-density Distillation: With k different la-
beling results in D for comparison, this part will
automatically detect and separate the inconsistent
labeling instances. We get all predicted entities
for each sentence as a set E}i, Then we compare
and merge the different labeling instances for each
entity in Ei,. .. ,E,i. Here, we tend to leave more
non-entity labeling instances, which helps to recall
more entities. As long as a non-entity labeling in-
stance appears, we will leave it. Finally, for each
sentence, we follow the following two rules: (1)
keep the labeling instance that appears in N but
does not appear in N; (2) always replace the shorter
labeling instances N in with the longer ones in N.
Thus, we get the result of High-density Distillation
NH.

Low-density Distillation: Contrary to High-
density Distillation, this strategy is to obtain lower
entity density. Here, we tend to leave fewer non-
entity labeling instances. As long as a non-empty
labeling instance appears less than k times, we will
leave remove it with an empty labeling instance.
Finally, for each sentence, we follow the following
two rules: (1) remove the labeling instance that
appears in N but does not appear in V; (2) always
replace the longer labeling instances in N with
the shorter ones in N. Thus, we get the result of
High-density Distillation N*.

3.2 Consistency-aware Label Calibration
Network

The second calibrate phase is to select and edit
the labeling instance consistent with the relatively
clean data from the two sets of potential labeling
instances of each entity. The workflow of our pro-
posed Consistency-aware Label Calibration net-
work is shown in Algorithm 2, and the architecture
is shown in Figure 1.

Encoding: This paper treats NER as a sequence
labeling problem for Chinese characters, which has
achieved state-of-the-art performances. We convert
NER into sequence labeling the BIEOS schema,
following (Lample et al., 2016). In this way, each
sentential character is assigned with one tag. We
tag the entity with a single character by label “S-
XX”, the beginning character of an entity by “B-
XX, the ending character of an entity by “E-XX”,

Algorithm 2: Consistency-aware Label
Calibration Network

Input: This network F', the NER model
with high-density labeling bias M,
the NER model with low-density
labeling bias ML, the test set
test_set, and the relatively clean
data N¢ =
({of. b} ol b))

Output: Final NER prediction Y.

1 YH = MP(N®); o high-density labels.
2 YE = ME(NC); > low-density labels.
3 Initialize F(MH, MT);

4 Train MF = F(MH, ME NC YH YLy

s Y = MF (test_set);

¢ Return Y;

the internal character of an entity by “I-XX”, and
the non-entity character by the label “O”, where
“XX” denotes the type of an entity.

Consistency-aware Label Calibration network
has a pseudo-siamese structure, which models the
sentence and its potential labeling instance infor-
mation of each entity. The two parts of the pseudo-
siamese structure are identical but with different
parameters initialized from the two NER models.
The two parts do not share parameters during the
training process.

The input of the model is a sentence and the two
sets of labels generated by the two NER models
in the previous phase; its output is the new labels
edited on the two sets of labels. We denote the
sentence as s = {cy,...,c,} where ¢; is the i-th
character. By looking up the embedding vector
from a pre-train character embedding matrix, each
character ¢; is represented as a vector, which de-
notes v;.

vi = €°(¢) €))

e is a character embedding lookup table.

To capture contextual information around char-
acters, we apply a bidirectional LSTM (BiL-
STM) (Lample et al., 2016) over {vy,...,v,}. We
then get the left-to-right hidden states and the right-
to-left hidden states.

wH = LsTM" <vi,ﬁ{{1) @)
Wl = LSTM?Y (v, ﬁf_l) 3)



H H
h; = LSTM" (v EiH) 4)

L L
h, = LSTM" (v R-H) (5)

By concatenating left-to-right hidden states and
the right-to-left hidden states of BiLSTM, we
obtain the contextual representation HY =

{h{’,... ) hf} and HY = {h{, ... hL}.
— «H
hil = Wi n, (6)
— «L
hl = hig p, (7

We initialize the two BiLSTM by copying BiLSTM
parameters of the NER model with high-density
labeling bias M and the NER model with low-
density labeling bias M, respectively. Note that
in addition to BiLSTM, any structure that captures
contextual information can be used in our network,
but it must be consistent with the NER model used
in the previous phase. We practice the two NER
models to make predictions on the relatively clean
training set N, generating high-density labels Y7
and low-density labels Y~

We map Y and Y to a 50-dimensional type
vector space, which is concatenated with H and
H’ respectively.

cl =y gpHH (8)

cl=ylgH! 9)
Finally, we concatenate C* and C~.

ctf=ctloct (10)

Decoding and Training: We use a standard
CRF (Lafferty et al., 2001) layer to capture the
dependencies between sentential labels. The in-
put of the CRF layer is ¢® = {c¥, ... cF}. CRF
involves two parts for prediction. First, we com-
pute the scores for each label based h;, resulting
in WY, whose dimension is the number of out-
put labels. The other part is a transition matrix T
which defines the scores of two successive labels.
T is also a model parameter. Based on WY and T,
we use the Viterbi algorithm to find the best label

sequence. The probability of the ground-truth tag
sequence y = {y1,...,Yn}is

exp (Y (WYici + Ty, )

Ly P (ZZ’ (Wygci * T(yé_l,yé)»

1D
Here 3/ is an arbitrary label sequence, W¥i is used
for modeling emission potential for the ¢-th charac-
ter in the sentence, and T is the transition matrix
storing the score of transferring from one tag to
another.

Given a relatively clean training data
{(si,vi) } Z]\i 1~ We optimize the model by
minimizing the negative log-likelihood loss with
Lo regularization. The loss function is defined as:

plyls) =

N
A
L==log(P(y:|s)+ 510 (12
=1

where A\ denotes the Lo regularization parameter
and © is the all trainable parameters set.

Inference: The inference will practice the
Consistency-aware Label Calibration network to-
gether with the two NER models preserved from
the previous phase.

4 Construction Details of Our Benchmark

This section introduces construction details of our
proposed Chinese NER benchmark.

4.1 Five Inconsistent Labeling Types

First of all, we conclude and define five inconsis-
tent labeling types in the human-annotated dataset,
which are shown in Figure 2. Long Span Noise
means that an entity is incorrectly labeled as a
longer labeling instance in some samples. Short
Span Noise means that an entity is incorrectly la-
beled as a shorter labeling instance in some sam-
ples. Inconsistent Type Noise means that an entity
has more than one labeling instance with different
types. Missing Entity Noise means that an entity is
incorrectly labeled as a non-entity labeling instance
in some samples. Redundant Entity Noise means
that a non-entity is incorrectly labeled as an entity
labeling instance in some samples.

4.2 Two Original Benchmarks

We chose to build our benchmark based on
OntoNotes 4.0 and MSRA (Levow, 2006) which
are both the standard Chinese NER benchmarks.
Statistics of original benchmarks are shown in
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Figure 2: Cases for inconsistent labeling instances. The mention that the annotator considers to be an entity is
marked in red, and the green character next to it represents its entity type.

Dataset Type Train Dev Test
OntoNot Sentence 15.7K 43K 43K
ONOIES  Char  491.9K  200.5K  208.1K
Sentence  46.4K - 44K
MSRA Char 2169.9K - 172.6K

Table 1: Statistics of original benchmarks.

Dataset Type Noisy data Clean data Dev  Test
Sentence 10.2K 23K 23K 52K
DC-OntoNotes -~ iiy 253K 61K 55K 123K
Sentence 37.5k 42K 46 44K

DC-MSRA Entity 63.1K 7.1K 43 62K

Table 2: Statistics of our benchmark.

Dataset Noise Type Noise Ratio

Inconsistent Span 15%

Inconsistent Type 5%

DC-OntoNotes Missing Entity 5%
Redundant Entity 5%

Inconsistent Span 15%

Inconsistent Type 5%

DC-MSRA Missing Entity 5%
Redundant Entity 5%

Table 3: Statistics of noise in our benchmark. We merge
Long Span Noise and Short Span Noise that are difficult
to manually distinguish into Inconsistent Span Noise.

Table 1. We take the same data split as (Chen
et al., 2006) on OntoNotes. The development set is
used for reporting development experiments. The
OntoNotes and MSRA datasets are in the news do-
main which is the most commonly involved field
in natural language understanding.

4.3 The Benchmark We Synthesized

Statistics of our benchmark are shown in Table
2. These five inconsistent labeling types are very
tricky for both humans and models, especially

when they are entangled in the dataset. When re-
viewing such a noisy training set, humans will get
lost in various seemingly reasonable labeling in-
stances, and do not know which one to believe.
When feeding such a noisy training set to previ-
ous NER models, their structures cannot notice the
inconsistency at the labeling instance level. As a
result, models only learn the most frequently oc-
curring labeling instances. Therefore, detecting
inconsistent labeling in the dataset is undoubtedly
a huge workload.

This benchmark provides both noisy data and
a small amount of relatively clean data. To ob-
tain sufficient noisy data by the crowd, we heuris-
tically amplify the original inconsistent labels in
two benchmarks at different scales. Specifically,
we automatically matched the entire training set
according to the definitions of these five types of
noise. Then we hired three part-time annotators to
filter manually. We heuristically split and reorga-
nize the inconsistent labeling instances we selected
and match the remaining data set to obtain more po-
tentially inconsistent labeling instances. After mul-
tiple iterations, all inconsistent labeling instances
in the entire training set are obtained. In this way,
we get two synthetic datasets, each with multiple
proportions of inconsistent noise. The two syn-
thetic datasets can simulate the real inconsistent
labeling instances in the human-annotated datasets
to a certain extent.

In addition, for OntoNotes 4.0, the relatively
clean data is randomly sampled from the original
development set, and we leave the remaining half
as a new development set. For MSRA, the rel-
atively clean data is manually sampled from the
original training set, and we try to avoid typical
inconsistent labeling instances. Statistics of Noise



Method DC-OntoNotes DC-MSRA
etho P R F. P R F.

Base-Clean 56.36 53.21 54.73 7543  68.68 71.90

Base-Noise 50.23 47.12 48.62 71.57 66.56 68.97

Base-Mix 59.68 55.21 57.36 73.05 67.70 70.27

Towards the Auto-annotated Dataset

(Yang et al., 2018) - - 56.25 - - 72.60

(Jie et al., 2019) 5443 47.10 50.50 70.05 69.82 69.93

(Mayhew et al., 2019) 60.01 54.13 56.92 7335 67.94 70.54
Towards Instance-independent Settings

(Veit et al., 2017) 35.16 34.03 34.59 52.58 42.65 47.10

(Luo et al., 2017) 34.80 3535 35.07 56.40 44.40 49.69

(Hedderich and Klakow, 2018) 36.88  39.17 37.99 56.46 62.85 59.48
Towards the Human-annotated Dataset

(Wang et al., 2019) 62.58 5741 59.88 74.59 70.62 72.56

DCNER 67.86 60.86 64.17(+4.29) 89.15 85.60 87.34(+14.74)

(Jiang et al., 2021) w/ BERT 73.44  69.29 71.30 90.49 88.07 89.26

DCNER w/ BERT 73.62 75.60 74.60 89.72 92.11 90.90

Table 4: Main results of our experiments. The training on noisy data may lead to a certain amount of variance in
the evaluation scores. Therefore, we repeat all experiments of our main results five times and report the average.

in our benchmark are shown in Table . Among
them, the reason for the higher proportion of Incon-
sistent Span Noise is that Chinese NER is prone
to word segmentation confusion. In fact, 15% is
close to the upper limit (18%) that we can achieve
in this dataset with inconsistent labeling instances
generated by humans.

5 EXPERIMENTS

In this section, we conduct a series of experiments
to prove the effectiveness of our method. Besides,
we also carry ablation experiments to prove the
effectiveness of each phase in our method.

5.1 Experiment Setting

Character Embedding: In our experiments, We
use the same character embeddings as (Zhang and
Yang, 2018), which is pre-trained on Chinese Giga-
Word. Its lexicon consists of 704.4k words, where
the number of single-character, two-characters, and
three-character words are 5.7k, 291.5k, 278.1k, re-
spectively.

BERT Enhanced Character Embedding:
Since pre-trained language models have been
proven to be effective on several tasks, we also
experiment with employing BERT (Devlin et al.,
2018) to augment our model via BERT enhanced
embedding. Note that in all experiments involving
BERT, we used the Chinese BERT-Base model.

Hyper-parameter Setting: We implement our
models in PyTorch (Paszke et al., 2019). Our mod-
els are optimized by Adam (Kingma and Ba, 2014)
with a fixed learning rate of 0.01. The parameters

are initialized by Xavier (Glorot and Bengio, 2010).
We apply Dropout (Srivastava et al., 2014) with a
0.7 keep rate to our models. All runs are trained on
GTX 1080Ti GPU with batch size 128. In the first
phase of DCNER, we fix k as 5.

Evaluation: We use the strict F1 criteria as an
evaluation metric, which is widely used for NER.
In the strict F1 criteria, an entity is right only when
the span and the type are consistent with the gold.

5.2 Baselines

We follow the setting of (Hedderich and Klakow,
2018), which uses a global confusion matrix for
all noisy instances. We follow instructions by
(Lange et al., 2019), adapting (Veit et al., 2017)
and (Luo et al., 2017) models to the NER task.
Thus, our method compares against them in our
experiments. The work of (Wang et al., 2019),
known as a very competitive general denoising
framework based on self-training, has also been
included in our comparison. We implement their
methods based on the structure of BiLSTM. We
use (Yang et al., 2018) as a comparison, which is
also based on the structure of BiLSTM as instruc-
tions. Besides, We set up a series of BILSTM based
models. Base—Clean is trained only on the rela-
tively clean data; Base—Noise is trained only on
the noisy data; Base-Mix is trained on both the
relatively clean data and the noisy data.

5.3 Main Results and Analysis

Table presents the comparisons among all ap-
proaches on our proposed benchmark. DCNER
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Figure 3: The effect of single noise. We merge Long
Span Noise and Short Span Noise that are difficult to
manually distinguish into Inconsistent Span Noise.

has achieved consistent and significant improve-
ments on DC-OntoNotes and DC-MSRA. The re-
sults show that our method is more resistant to
inconsistent labeling noise than previous methods.
Experiments also show that our method has good
compatibility with BERT, and the performance has
been significantly improved. We notice that when
faced with inconsistent labeling noise, the previ-
ous classic anti-noise method does not seem to
be as effective as in the face of distant supervi-
sion noise. Models designed for distant supervi-
sion noise (Hedderich and Klakow, 2018; Jie et al.,
2019; Mayhew et al., 2019; Yang et al., 2018), mod-
els designed for noise in the general sense (Wang
et al., 2019), and models migrated from other tasks
work not as well as before. Some even poorly when
compared to Base-Clean, Base-Noise or Base-Mix.
We draw two conclusions from our experiments
as follows: Firstly, the noise types of the auto-
annotated dataset and the human-annotated are dif-
ferent. Secondly, restrictions on application condi-
tions. Some methods (Veit et al., 2017; Luo et al.,
2017; Jie et al., 2019; Mayhew et al., 2019; Wang
et al., 2019) are designed for noisy training data
only (we feed the mix of noisy data and relatively
clean data instead), while some methods (Hed-
derich and Klakow, 2018; Jiang et al., 2021) re-
quire additional data for initialization (we disable
external resources). However, for the principle of a
fair comparison, we have to modify some original
limitations of these methods.

5.4 The Effect of Single Noise

We continue to dive into the impact of single incon-
sistent labeling noise on the model. Experiments
prove that each of the five noise types can seriously
affect the model performance and our method can

DC-OntoNotes

Method P R e

DCNER 67.86 60.86 64.17
w/ BERT 73.62 75.60 74.60
w/o Label Emb 6729 60.87 6391
w/o DLD 66.70 58.33 62.24
w/o High-D Bias  67.18 54.47 60.16
w/o Low-D Bias 6545 5729 61.10

Table 5: Ablation experiments.

resist any single type of inconsistent labeling noise.
Experimental results are shown in Figure 3.

5.5 Ablation Study

As shown in Table 5, we also carry ablation exper-
iments to prove the effectiveness of each phase
in our method. w/ BERT means that we use
BERT to enhance the character embedding of
the Consistency-aware Label Calibration network
(CLC). This experiment shows that BERT can very
effectively enhance our method. w/o Label Emb
means that we remove the label embedding in the
CLC. This experiment shows that explicitly intro-
ducing label information can help the model un-
derstand inconsistent labeling instances better. w/o
DLD means that we remove the Dual-stream La-
bel Distillation (DLD) and use two Base-Noise
models for the initialization of the network. This
experiment shows the effectiveness of DLD. w/o
High-D Bias means that we use two High-density
Bias models to initialize the CLC. In contrast, w/o
Low-D Bias means that we use two Low-density
Bias models to initialize the CLC.

6 Conclution and Future Work

We propose the first NER work to study: relying
on only a small amount of relatively clean data
to denoise the inconsistent labeling instances in
large-scale noisy data. To this end, we propose
the first denoising framework named DCNER for
handling the inconsistent labeling instances prob-
lem. Besides, we propose the first Chinese NER
benchmark towards the ability of the NER model
to resist the inconsistent labeling instances. Finally,
detailed experiments have shown that our method
consistently and significantly outperforms previous
denoising methods on the proposed benchmark. In
the future, we hope to continue to explore the in-
consistent labeling problem in a broader language
and task context.
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