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Abstract

Data-driving supervised models for named en-001
tity recognition (NER) have made significant002
improvements on standard benchmarks. How-003
ever, such models often have severe perfor-004
mance degradation on large-scale noisy data.005
Thus, a practical and challenging question006
arises: Can we leverage only a small amount of007
relatively clean data to guide the NER model008
learning from large-scale noisy data? To an-009
swer this question, we focus on the inconsistent010
labeling instances problem. We observe that011
inconsistent labeling instances can be classi-012
fied into five types of noise, each of which will013
largely hinder the model performance in our ex-014
periments. Based on the above observation, we015
propose a simple yet effective denoising frame-016
work named Distillation and Calibration for017
Chinese NER (DCNER). DCNER consists: (1)018
a Dual-stream Label Distillation mechanism019
for distilling five types of inconsistent label-020
ing instances from the noisy data; and (2) a021
Consistency-aware Label Calibration network022
for calibrating inconsistent labeling instances023
based on relatively clean data. Additionally, we024
propose the first benchmark towards validating025
the ability of Chinese NER to resist inconsis-026
tent labeling instances. Finally, detailed experi-027
ments show that our method consistently and028
significantly outperforms previous methods on029
the proposed benchmark.030

1 Introduction031

Named entity recognition (NER), which is essential032

for natural language understanding, aims to detect033

and classify named entities in texts. For instance,034

given the sentence “He drove to the White House.”,035

a NER system needs to detect the span of “the036

White House” and classify this mention to the Fa-037

cility type. In recent years, data-driving supervised038

NER has made significant improvements on stan-039

dard benchmarks (Ma and Hovy, 2016; Lample040

et al., 2016; Peters et al., 2018; Zhang and Yang,041

2018; Li et al., 2020b,a, 2021; Yan et al., 2021).042

However, such models often have severe perfor- 043

mance degradation on large-scale noisy data. Thus, 044

a practical and challenging question arises: Can we 045

leverage only a small amount of relatively clean 046

data to guide the NER model learning from large- 047

scale noisy data? To answer this question, we focus 048

on the problem of inconsistent labeling instances. 049

Inconsistent labeling instances are widespread in 050

human-annotated datasets. When building a large- 051

scale NER dataset, annotators may have various 052

standards for annotating a certain mention in their 053

minds, leading to the problem of inconsistent la- 054

beling instances. This problem cannot be avoided 055

by annotation guidelines because even the most de- 056

tailed guideline cannot cover all entities. Due to the 057

vagueness of Chinese word boundary, this problem 058

is particularly prominent in Chinese NER (Zeng 059

et al., 2021; Zhang et al., 2021). For example, 060

OntoNotes 4.0 (Weischedel et al.) dataset, which 061

is a standard Chinese NER benchmark, still can- 062

not avoid this noise. In the statistics of (Zhang 063

et al., 2021), the mention of “中国人民” (Chinese 064

People) has two different labeling instances. It is 065

labeled as “中国人民” (Chinese People) 23 times 066

and “中国” (China) 13 times. We cannot arbitrarily 067

assume that the majority is correct because both 068

two labeling instances are reasonable and generally 069

exist in the test set. Therefore, how to denoise in- 070

consistent labeling instances is a challenging prob- 071

lem. 072

To tackle different types of noise, existing 073

denoising methods can be roughly divided into 074

three lines: methods towards the auto-annotated 075

dataset (Hedderich and Klakow, 2018; Yang et al., 076

2018; Lange et al., 2019; Jie et al., 2019; May- 077

hew et al., 2019), methods towards instance- 078

independent settings (Goldberger and Ben-Reuven, 079

2016; Zhou and Chen, 2021), and methods towards 080

the human-annotated dataset (Wang et al., 2019; 081

Jiang et al., 2021). Previous methods towards the 082

auto-annotated dataset are confined to instances 083
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that cannot be auto-annotated due to the limited084

coverage of the dictionary. In fact, there are no in-085

consistent labeling instances in the auto-annotated086

dataset. For example, if “中国人民” (Chinese087

People) and “中国” (Chinese) exist in the dictio-088

nary at the same time, then the mention of “中089

国人民” (Chinese People) can only be labeled as090

“中国人民” instead of “中国人民”. In contrast,091

methods for instance-independent settings gener-092

ally do not consider the labeling instance, but di-093

rectly randomly perturb the edge distribution of the094

label space. Our experiments show that, although095

these methods have achieved surprising effects on096

the target noise, they have to sacrifice the general-097

ization on inconsistent labeling instances.098

To tackle the problem of inconsistent labeling099

instances, we identify that inconsistent labeling in-100

stances can be classified into five types of noise,101

which are described in detail in Section 4. Fur-102

ther, our experiments demonstrate that each of the103

five noise types can seriously affect the model per-104

formance. Based on the above observation, we105

propose a two-stage denoising framework named106

Distillation and Calibration for Chinese NER (DC-107

NER).108

Specifically, in the first distillation phase, we pro-109

pose a Dual-stream Label Distillation mechanism110

(DLD) to distill five types of inconsistent labeling111

instances from the noisy data. Therefore, this mech-112

anism can preserve the potential labeling instances113

in noisy data as much as possible. In the second114

calibration phase, we propose a Consistency-aware115

Label Calibration network (CLC) to calibrate in-116

consistent labeling instances. This network can117

calibrate inconsistent labeling instances based on118

relatively clean data and outputs the final prediction.119

Besides, we propose the first Chinese benchmark120

towards the ability of the NER model to resist in-121

consistent labeling instances. To obtain noisy data122

similar enough to the real-world dataset, we heuris-123

tically amplify the original noise in two Chinese124

NER benchmarks at different scales. In this way,125

we get two synthetic datasets, which can validate126

the NER model under multiple proportions of in-127

consistent noise.128

In summary, our main contributions are:129

• This is the first NER work to focus on denois-130

ing inconsistent labeling instances in such a131

scenario where only a small amount of rela-132

tively clean data and large-scale noisy data133

are available. To this end, we propose the first134

denoising framework (DCNER) for handling 135

the inconsistent labeling instances problem. 136

Besides, we propose the first Chinese NER 137

benchmark towards validating the ability of 138

NER model to resist the inconsistent labeling 139

instances. 140

• In DCNER, a novel Dual-stream Label Dis- 141

tillation mechanism is proposed to distill in- 142

consistent labeling instances from the noisy 143

data, and a novel Consistency-aware Label 144

Calibration network is proposed to calibrate 145

inconsistent labeling instances based on rela- 146

tively clean data. 147

• Experiments show that our method consis- 148

tently and significantly outperforms previous 149

methods on the proposed benchmark, exceed- 150

ing by 4.29% and 14.74% on F1 score (with- 151

out pre-training). Besides, ablation experi- 152

ments prove the effectiveness of each phase 153

in our method. 154

2 Related Work 155

This section emphasizes some representative meth- 156

ods we use for comparison towards the following 157

three mainstream scenarios. 158

2.1 Towards the Auto-annotated Dataset 159

Existing methods towards the auto-annotated 160

dataset are confined to instances that cannot be 161

auto-annotated due to the limited coverage of the 162

dictionary. (Hedderich and Klakow, 2018) add a 163

global noise adaptation matrix on top of a BiLSTM 164

to correct noisy labels for English NER. (Lange 165

et al., 2019) enhance confusion-matrix based meth- 166

ods to capture feature-dependent noise. (Yang et al., 167

2018) design an agent as an instance selector based 168

on reinforcement learning to distinguish positive 169

sentences. (Jie et al., 2019) and (Mayhew et al., 170

2019) use self-training to adjust the weights of 171

wrong labels and correct labels iteratively. 172

2.2 Towards Instance-independent Settings 173

Methods for instance-independent settings gener- 174

ally do not consider the type of noise, primarily 175

based on noise transition matrix and the memo- 176

rization effect of neural network (Zhou and Chen, 177

2021). (Goldberger and Ben-Reuven, 2016) model 178

the relationship between noisy and clean labels 179

with a confusion matrix. (Luo et al., 2017) apply a 180

2



Figure 1: The architecture of our proposed DCNER.

dynamically generated matrices-based method to181

characterize clues about the noise patterns.182

2.3 Towards the Human-annotated Dataset183

This direction has received increasing attention in184

recent years. (Wang et al., 2019) aim to detect and185

down weight wrong labels based on self-training,186

resulting in a weighted training set. The first phase187

of our method is also based on self-training. How-188

ever, our goal is fundamentally different from them.189

We aim to detect and separate inconsistent labeling190

instances entangled in the whole noisy data rather191

than arbitrarily asserting that a specific instance is192

more correct. (Jiang et al., 2021) have the same193

experimental settings as ours. Their idea is to use194

external resources for domain adaptation through195

pre-training models. Their method is limited to196

pre-trained models, but our method performs well197

with or without pre-training models.198

3 Our Proposed NER Framwork199

This section introduces in detail our proposed DC-200

NER. We first introduce the distillation phase with201

a self-training mechanism called Dual-stream La-202

bel Distillation. Then we describe the following203

calibration phase with a Consistency-aware Label204

Calibration network.205

3.1 Dual-stream Label Distillation206

The distillation phase is to detect and separate in-207

consistent labeling instances entangled in the whole208

noisy data. Our proposed Dual-stream Label Dis- 209

tillation is shown in Algorithm 1.

Algorithm 1: Dual-stream Label Distilla-
tion
Input: A NER network f , the noisy data

N = ⟨{x1, . . . , xn} , {y1, . . . , yn}⟩,
and hyper-parameters k.

Output: Two NER models: MH and ML.
1 Randomly partition N into k folds;
2 for Each fold Nk do
3 train_setk ←− N \Nk;
4 Train a NER model

Mk = f(train_setk);
5 for Each xj ∈ N do
6 ŷkj ←−Mk’s prediction on xj

7 N̂k =
〈
{x1, . . . , xn} ,

{
ŷk1 , . . . , ŷ

k
n

}〉
;

8 D = N̂1∪, . . . ,∪N̂k;
9 NH = High-Density Distillation (D, N );

10 NL = Low-Density Distillation (D, N );
11 Train a NER model MH = f(NH);
12 Train a NER model ML = f(NL);
13 Return MH and ML;

210
Self-training: We randomly partition the noisy 211

data N into k folds. when each fold is regarded 212

as an independent development set dev_setk, the 213

other (k−1) folds are combined as the correspond- 214

ing training set train_setk. In this way, we get 215

k new datasets for self-training. Then we train k 216

NER models based on the k datasets. We use these 217

3



k NER models to predict the entire original noisy218

training data N . The sentences of N and the cor-219

responding k prediction results are denoted as D220

integrally.221

High-density Distillation: With k different la-222

beling results in D for comparison, this part will223

automatically detect and separate the inconsistent224

labeling instances. We get all predicted entities225

for each sentence as a set Ei
k. Then we compare226

and merge the different labeling instances for each227

entity in Ei
1,. . . ,Ei

k. Here, we tend to leave more228

non-entity labeling instances, which helps to recall229

more entities. As long as a non-entity labeling in-230

stance appears, we will leave it. Finally, for each231

sentence, we follow the following two rules: (1)232

keep the labeling instance that appears in N̂ but233

does not appear in N ; (2) always replace the shorter234

labeling instances N in with the longer ones in N̂ .235

Thus, we get the result of High-density Distillation236

NH .237

Low-density Distillation: Contrary to High-238

density Distillation, this strategy is to obtain lower239

entity density. Here, we tend to leave fewer non-240

entity labeling instances. As long as a non-empty241

labeling instance appears less than k times, we will242

leave remove it with an empty labeling instance.243

Finally, for each sentence, we follow the following244

two rules: (1) remove the labeling instance that245

appears in N̂ but does not appear in N ; (2) always246

replace the longer labeling instances in N with247

the shorter ones in N̂ . Thus, we get the result of248

High-density Distillation NL.249

3.2 Consistency-aware Label Calibration250

Network251

The second calibrate phase is to select and edit252

the labeling instance consistent with the relatively253

clean data from the two sets of potential labeling254

instances of each entity. The workflow of our pro-255

posed Consistency-aware Label Calibration net-256

work is shown in Algorithm 2, and the architecture257

is shown in Figure 1.258

Encoding: This paper treats NER as a sequence259

labeling problem for Chinese characters, which has260

achieved state-of-the-art performances. We convert261

NER into sequence labeling the BIEOS schema,262

following (Lample et al., 2016). In this way, each263

sentential character is assigned with one tag. We264

tag the entity with a single character by label “S-265

XX”, the beginning character of an entity by “B-266

XX”, the ending character of an entity by “E-XX”,267

Algorithm 2: Consistency-aware Label
Calibration Network
Input: This network F , the NER model

with high-density labeling bias MH ,
the NER model with low-density
labeling bias ML, the test set
test_set, and the relatively clean
data NC =〈{

xF1 , . . . , x
F
m

}
,
{
yF1 , . . . , y

F
m

}〉
Output: Final NER prediction Ŷ .

1 Y H = MH(NC); ▷ high-density labels.
2 Y L = ML(NC); ▷ low-density labels.
3 Initialize F (MH ,ML);
4 Train MF = F (MH ,ML, NC , Y H , Y L);
5 Ŷ = MF (test_set);
6 Return Ŷ ;

the internal character of an entity by “I-XX”, and 268

the non-entity character by the label “O”, where 269

“XX” denotes the type of an entity. 270

Consistency-aware Label Calibration network 271

has a pseudo-siamese structure, which models the 272

sentence and its potential labeling instance infor- 273

mation of each entity. The two parts of the pseudo- 274

siamese structure are identical but with different 275

parameters initialized from the two NER models. 276

The two parts do not share parameters during the 277

training process. 278

The input of the model is a sentence and the two 279

sets of labels generated by the two NER models 280

in the previous phase; its output is the new labels 281

edited on the two sets of labels. We denote the 282

sentence as s = {c1, . . . , cn} where ci is the i-th 283

character. By looking up the embedding vector 284

from a pre-train character embedding matrix, each 285

character ci is represented as a vector, which de- 286

notes vi. 287

vi = ec (ci) (1) 288

ec is a character embedding lookup table. 289

To capture contextual information around char- 290

acters, we apply a bidirectional LSTM (BiL- 291

STM) (Lample et al., 2016) over {v1, . . . ,vn}. We 292

then get the left-to-right hidden states and the right- 293

to-left hidden states. 294

−→
hH

i =
−−−−→
LSTMH

(
vi,
−→
hH

i−1

)
(2) 295

296
−→
h L

i =
−−−−→
LSTML

(
vi,
−→
h L

i−1

)
(3) 297

4



298
←
h
H

i =
←−−−−
LSTMH

(
vi,
←
h
H

i+1

)
(4)299

300
←
h
L

i =
←−−−−
LSTML

(
vi,
←
h
L

i+1

)
(5)301

By concatenating left-to-right hidden states and302

the right-to-left hidden states of BiLSTM, we303

obtain the contextual representation HH =304 {
hH
1 , . . . ,hH

n

}
and HL =

{
hL
1 , . . . ,h

L
n

}
.305

hH
i =

−→
hH

i ⊕
←
h
H

i (6)306

307

hL
i =
−→
h L

i ⊕
←
h
L

i (7)308

We initialize the two BiLSTM by copying BiLSTM309

parameters of the NER model with high-density310

labeling bias MH and the NER model with low-311

density labeling bias ML, respectively. Note that312

in addition to BiLSTM, any structure that captures313

contextual information can be used in our network,314

but it must be consistent with the NER model used315

in the previous phase. We practice the two NER316

models to make predictions on the relatively clean317

training set NC , generating high-density labels Y H318

and low-density labels Y L.319

We map Y H and Y L to a 50-dimensional type320

vector space, which is concatenated with HH and321

HL respectively.322

CH = Y H ⊕HH (8)323

324

CL = Y L ⊕HL (9)325

Finally, we concatenate CH and CL.326

CE = CH ⊕CL (10)327

Decoding and Training: We use a standard328

CRF (Lafferty et al., 2001) layer to capture the329

dependencies between sentential labels. The in-330

put of the CRF layer is cE =
{
cE1 , . . . , c

E
n

}
. CRF331

involves two parts for prediction. First, we com-332

pute the scores for each label based ht, resulting333

in Wyi , whose dimension is the number of out-334

put labels. The other part is a transition matrix T335

which defines the scores of two successive labels.336

T is also a model parameter. Based on Wyi and T,337

we use the Viterbi algorithm to find the best label338

sequence. The probability of the ground-truth tag 339

sequence y = {y1, . . . , yn} is 340

p(y | s) =
exp

(∑
i

(
Wyici +T(yi−1,yi)

))
∑

y′ exp
(∑

i

(
Wy′ici +T(y′i−1,y

′
i)

))
(11) 341

Here y′ is an arbitrary label sequence, Wyi is used 342

for modeling emission potential for the i-th charac- 343

ter in the sentence, and T is the transition matrix 344

storing the score of transferring from one tag to 345

another. 346

Given a relatively clean training data 347

{(si, yi)}|Ni=1. We optimize the model by 348

minimizing the negative log-likelihood loss with 349

L2 regularization. The loss function is defined as: 350

L = −
N∑
i=1

log (P (yi | si)) +
λ

2
∥Θ∥2 (12) 351

where λ denotes the L2 regularization parameter 352

and Θ is the all trainable parameters set. 353

Inference: The inference will practice the 354

Consistency-aware Label Calibration network to- 355

gether with the two NER models preserved from 356

the previous phase. 357

4 Construction Details of Our Benchmark 358

This section introduces construction details of our 359

proposed Chinese NER benchmark. 360

4.1 Five Inconsistent Labeling Types 361

First of all, we conclude and define five inconsis- 362

tent labeling types in the human-annotated dataset, 363

which are shown in Figure 2. Long Span Noise 364

means that an entity is incorrectly labeled as a 365

longer labeling instance in some samples. Short 366

Span Noise means that an entity is incorrectly la- 367

beled as a shorter labeling instance in some sam- 368

ples. Inconsistent Type Noise means that an entity 369

has more than one labeling instance with different 370

types. Missing Entity Noise means that an entity is 371

incorrectly labeled as a non-entity labeling instance 372

in some samples. Redundant Entity Noise means 373

that a non-entity is incorrectly labeled as an entity 374

labeling instance in some samples. 375

4.2 Two Original Benchmarks 376

We chose to build our benchmark based on 377

OntoNotes 4.0 and MSRA (Levow, 2006) which 378

are both the standard Chinese NER benchmarks. 379

Statistics of original benchmarks are shown in 380
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Figure 2: Cases for inconsistent labeling instances. The mention that the annotator considers to be an entity is
marked in red, and the green character next to it represents its entity type.

Dataset Type Train Dev Test

OntoNotes
Sentence 15.7K 4.3K 4.3K

Char 491.9K 200.5K 208.1K

MSRA
Sentence 46.4K - 4.4K

Char 2169.9K - 172.6K

Table 1: Statistics of original benchmarks.

Dataset Type Noisy data Clean data Dev Test

DC-OntoNotes
Sentence 10.2K 2.3K 2.3K 5.2K

Entity 25.3K 6.1K 5.5K 12.3K

DC-MSRA
Sentence 37.5k 4.2K 4.6 4.4K

Entity 63.1K 7.1K 4.3 6.2K

Table 2: Statistics of our benchmark.

Dataset Noise Type Noise Ratio

DC-OntoNotes

Inconsistent Span 15%
Inconsistent Type 5%

Missing Entity 5%
Redundant Entity 5%

DC-MSRA

Inconsistent Span 15%
Inconsistent Type 5%

Missing Entity 5%
Redundant Entity 5%

Table 3: Statistics of noise in our benchmark. We merge
Long Span Noise and Short Span Noise that are difficult
to manually distinguish into Inconsistent Span Noise.

Table 1. We take the same data split as (Chen381

et al., 2006) on OntoNotes. The development set is382

used for reporting development experiments. The383

OntoNotes and MSRA datasets are in the news do-384

main which is the most commonly involved field385

in natural language understanding.386

4.3 The Benchmark We Synthesized387

Statistics of our benchmark are shown in Table388

2. These five inconsistent labeling types are very389

tricky for both humans and models, especially390

when they are entangled in the dataset. When re- 391

viewing such a noisy training set, humans will get 392

lost in various seemingly reasonable labeling in- 393

stances, and do not know which one to believe. 394

When feeding such a noisy training set to previ- 395

ous NER models, their structures cannot notice the 396

inconsistency at the labeling instance level. As a 397

result, models only learn the most frequently oc- 398

curring labeling instances. Therefore, detecting 399

inconsistent labeling in the dataset is undoubtedly 400

a huge workload. 401

This benchmark provides both noisy data and 402

a small amount of relatively clean data. To ob- 403

tain sufficient noisy data by the crowd, we heuris- 404

tically amplify the original inconsistent labels in 405

two benchmarks at different scales. Specifically, 406

we automatically matched the entire training set 407

according to the definitions of these five types of 408

noise. Then we hired three part-time annotators to 409

filter manually. We heuristically split and reorga- 410

nize the inconsistent labeling instances we selected 411

and match the remaining data set to obtain more po- 412

tentially inconsistent labeling instances. After mul- 413

tiple iterations, all inconsistent labeling instances 414

in the entire training set are obtained. In this way, 415

we get two synthetic datasets, each with multiple 416

proportions of inconsistent noise. The two syn- 417

thetic datasets can simulate the real inconsistent 418

labeling instances in the human-annotated datasets 419

to a certain extent. 420

In addition, for OntoNotes 4.0, the relatively 421

clean data is randomly sampled from the original 422

development set, and we leave the remaining half 423

as a new development set. For MSRA, the rel- 424

atively clean data is manually sampled from the 425

original training set, and we try to avoid typical 426

inconsistent labeling instances. Statistics of Noise 427
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Method
DC-OntoNotes DC-MSRA

P. R. F. P. R. F.

Base-Clean 56.36 53.21 54.73 75.43 68.68 71.90
Base-Noise 50.23 47.12 48.62 71.57 66.56 68.97
Base-Mix 59.68 55.21 57.36 73.05 67.70 70.27

Towards the Auto-annotated Dataset

(Yang et al., 2018) - - 56.25 - - 72.60
(Jie et al., 2019) 54.43 47.10 50.50 70.05 69.82 69.93
(Mayhew et al., 2019) 60.01 54.13 56.92 73.35 67.94 70.54

Towards Instance-independent Settings

(Veit et al., 2017) 35.16 34.03 34.59 52.58 42.65 47.10
(Luo et al., 2017) 34.80 35.35 35.07 56.40 44.40 49.69
(Hedderich and Klakow, 2018) 36.88 39.17 37.99 56.46 62.85 59.48

Towards the Human-annotated Dataset

(Wang et al., 2019) 62.58 57.41 59.88 74.59 70.62 72.56
DCNER 67.86 60.86 64.17(+4.29) 89.15 85.60 87.34(+14.74)

(Jiang et al., 2021) w/ BERT 73.44 69.29 71.30 90.49 88.07 89.26
DCNER w/ BERT 73.62 75.60 74.60 89.72 92.11 90.90

Table 4: Main results of our experiments. The training on noisy data may lead to a certain amount of variance in
the evaluation scores. Therefore, we repeat all experiments of our main results five times and report the average.

in our benchmark are shown in Table . Among428

them, the reason for the higher proportion of Incon-429

sistent Span Noise is that Chinese NER is prone430

to word segmentation confusion. In fact, 15% is431

close to the upper limit (18%) that we can achieve432

in this dataset with inconsistent labeling instances433

generated by humans.434

5 EXPERIMENTS435

In this section, we conduct a series of experiments436

to prove the effectiveness of our method. Besides,437

we also carry ablation experiments to prove the438

effectiveness of each phase in our method.439

5.1 Experiment Setting440

Character Embedding: In our experiments, We441

use the same character embeddings as (Zhang and442

Yang, 2018), which is pre-trained on Chinese Giga-443

Word. Its lexicon consists of 704.4k words, where444

the number of single-character, two-characters, and445

three-character words are 5.7k, 291.5k, 278.1k, re-446

spectively.447

BERT Enhanced Character Embedding:448

Since pre-trained language models have been449

proven to be effective on several tasks, we also450

experiment with employing BERT (Devlin et al.,451

2018) to augment our model via BERT enhanced452

embedding. Note that in all experiments involving453

BERT, we used the Chinese BERT-Base model.454

Hyper-parameter Setting: We implement our455

models in PyTorch (Paszke et al., 2019). Our mod-456

els are optimized by Adam (Kingma and Ba, 2014)457

with a fixed learning rate of 0.01. The parameters458

are initialized by Xavier (Glorot and Bengio, 2010). 459

We apply Dropout (Srivastava et al., 2014) with a 460

0.7 keep rate to our models. All runs are trained on 461

GTX 1080Ti GPU with batch size 128. In the first 462

phase of DCNER, we fix k as 5. 463

Evaluation: We use the strict F1 criteria as an 464

evaluation metric, which is widely used for NER. 465

In the strict F1 criteria, an entity is right only when 466

the span and the type are consistent with the gold. 467

5.2 Baselines 468

We follow the setting of (Hedderich and Klakow, 469

2018), which uses a global confusion matrix for 470

all noisy instances. We follow instructions by 471

(Lange et al., 2019), adapting (Veit et al., 2017) 472

and (Luo et al., 2017) models to the NER task. 473

Thus, our method compares against them in our 474

experiments. The work of (Wang et al., 2019), 475

known as a very competitive general denoising 476

framework based on self-training, has also been 477

included in our comparison. We implement their 478

methods based on the structure of BiLSTM. We 479

use (Yang et al., 2018) as a comparison, which is 480

also based on the structure of BiLSTM as instruc- 481

tions. Besides, We set up a series of BiLSTM based 482

models. Base-Clean is trained only on the rela- 483

tively clean data; Base-Noise is trained only on 484

the noisy data; Base-Mix is trained on both the 485

relatively clean data and the noisy data. 486

5.3 Main Results and Analysis 487

Table presents the comparisons among all ap- 488

proaches on our proposed benchmark. DCNER 489
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Figure 3: The effect of single noise. We merge Long
Span Noise and Short Span Noise that are difficult to
manually distinguish into Inconsistent Span Noise.

has achieved consistent and significant improve-490

ments on DC-OntoNotes and DC-MSRA. The re-491

sults show that our method is more resistant to492

inconsistent labeling noise than previous methods.493

Experiments also show that our method has good494

compatibility with BERT, and the performance has495

been significantly improved. We notice that when496

faced with inconsistent labeling noise, the previ-497

ous classic anti-noise method does not seem to498

be as effective as in the face of distant supervi-499

sion noise. Models designed for distant supervi-500

sion noise (Hedderich and Klakow, 2018; Jie et al.,501

2019; Mayhew et al., 2019; Yang et al., 2018), mod-502

els designed for noise in the general sense (Wang503

et al., 2019), and models migrated from other tasks504

work not as well as before. Some even poorly when505

compared to Base-Clean, Base-Noise or Base-Mix.506

We draw two conclusions from our experiments507

as follows: Firstly, the noise types of the auto-508

annotated dataset and the human-annotated are dif-509

ferent. Secondly, restrictions on application condi-510

tions. Some methods (Veit et al., 2017; Luo et al.,511

2017; Jie et al., 2019; Mayhew et al., 2019; Wang512

et al., 2019) are designed for noisy training data513

only (we feed the mix of noisy data and relatively514

clean data instead), while some methods (Hed-515

derich and Klakow, 2018; Jiang et al., 2021) re-516

quire additional data for initialization (we disable517

external resources). However, for the principle of a518

fair comparison, we have to modify some original519

limitations of these methods.520

5.4 The Effect of Single Noise521

We continue to dive into the impact of single incon-522

sistent labeling noise on the model. Experiments523

prove that each of the five noise types can seriously524

affect the model performance and our method can525

Method
DC-OntoNotes

P. R. F.

DCNER 67.86 60.86 64.17
w/ BERT 73.62 75.60 74.60
w/o Label Emb 67.29 60.87 63.91
w/o DLD 66.70 58.33 62.24
w/o High-D Bias 67.18 54.47 60.16
w/o Low-D Bias 65.45 57.29 61.10

Table 5: Ablation experiments.

resist any single type of inconsistent labeling noise. 526

Experimental results are shown in Figure 3. 527

5.5 Ablation Study 528

As shown in Table 5, we also carry ablation exper- 529

iments to prove the effectiveness of each phase 530

in our method. w/ BERT means that we use 531

BERT to enhance the character embedding of 532

the Consistency-aware Label Calibration network 533

(CLC). This experiment shows that BERT can very 534

effectively enhance our method. w/o Label Emb 535

means that we remove the label embedding in the 536

CLC. This experiment shows that explicitly intro- 537

ducing label information can help the model un- 538

derstand inconsistent labeling instances better. w/o 539

DLD means that we remove the Dual-stream La- 540

bel Distillation (DLD) and use two Base-Noise 541

models for the initialization of the network. This 542

experiment shows the effectiveness of DLD. w/o 543

High-D Bias means that we use two High-density 544

Bias models to initialize the CLC. In contrast, w/o 545

Low-D Bias means that we use two Low-density 546

Bias models to initialize the CLC. 547

6 Conclution and Future Work 548

We propose the first NER work to study: relying 549

on only a small amount of relatively clean data 550

to denoise the inconsistent labeling instances in 551

large-scale noisy data. To this end, we propose 552

the first denoising framework named DCNER for 553

handling the inconsistent labeling instances prob- 554

lem. Besides, we propose the first Chinese NER 555

benchmark towards the ability of the NER model 556

to resist the inconsistent labeling instances. Finally, 557

detailed experiments have shown that our method 558

consistently and significantly outperforms previous 559

denoising methods on the proposed benchmark. In 560

the future, we hope to continue to explore the in- 561

consistent labeling problem in a broader language 562

and task context. 563
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