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Abstract: Compared with conventional image sensors, event cameras have been attracting attention thanks to their

potential in environments under fast motion and high dynamic range (HDR). To tackle the lost-track issue due to fast

illumination changes under HDR scene such as tunnels, an object tracking framework has been presented based on

event count images from an event camera. The framework contains an offline-trained detector and an online-trained

tracker which complement each other: The detector benefits from pre-labelled data during training, but may have false

or missing detections; the tracker provides persistent results for each initialised object but may suffer from drifting

issues or even failures. Besides, process and measurement equations have been modelled, and a Kalman fusion

scheme has been proposed to incorporate measurements from the detector and the tracker. Self-initialisation and track

maintenance in the fusion scheme ensure autonomous real-time tracking without user intervene. With self-collected

event data in urban driving scenarios, experiments have been conducted to show the performance of the proposed

framework and the fusion scheme.

1 Introduction

Multiple object tracking has become an essential module in
human–computer interaction [1], automated surveillance [2], and
vehicle navigation systems [3, 4]. With the rapid development of
sensor technology, event cameras (or dynamic vision sensors,
DVSs) have come into the market thanks to their superior
performance in fast-moving scenarios and high dynamic scenes.
Although many research efforts have been made, the algorithms
designed for event cameras are still far from mature. In particular,
event cameras generate significantly different data compared to
conventional image sensors (see Section 3.1 for details). There
exist two technical routes for event data processing and
interpretation. The first tries to establish an event-based processing
framework, while the second makes use of the off-the-shelf image
processing approaches to accelerate the development. The first
route may have a better chance to unleash the full potential of the
sensor, but most existing methods belong to the second. Although
data from event cameras can be approximately represented in
frames, it is still not clear that if these data can be efficiently and
effectively utilised by traditional and modern machine vision
algorithms, such as feature extraction and convolutional neural
networks (CNNs).

This work studies the visual tracking problem based on event
cameras, Fig. 1 demonstrates the diagram of the proposed
framework, which contains two stages. At stage one, offline
training has been done based on YOLO detector [5] before
tracking, such that object detection results with objects’ types
could be obtained. At stage two, online training and tracking are
in a simultaneous process. The real-time generated event count
images are fed into the offline-trained detector and the correlation
filter (CF). After data association, those assignments are sent to a
Kalman ensemble as measurements. Meanwhile, the CF also
outputs its tracked results to the Kalman ensemble as
supplementary measurements. Reinitialisation is triggered once
inconsistencies are found between outputs from the ensemble and
the CF, such that the ensemble is adaptive to various conditions

with changes of appearance and scale. The main contributions are
listed as follows:

† An object tracking framework has been presented for event
cameras, aiming at real-time applications for ground vehicles. The
tracking framework contains a YOLO-based [5] offline-trained
deep detector and a CF-based [6] online-trained tracker, which
complements each other.
† A fusion scheme, which incorporates the results from the detector
and the tracker, has been proposed based on the Kalman filter. With
automated initialisation and track maintenance strategies in the
fusion scheme, real-time intervene-free operations could be attained.
† Features in event count images have been demonstrated
well-learned by deep networks and feature extractors. Robustness
and accuracy of the tracker have been presented using data in
actual driving scenarios.

The paper is organised as follows: Section 2 presents related work in
event-based object tracking. Section 3 introduces the event camera
and its unique data format, and the essential modules in an online
tracker. Then, the proposed tracking framework is elaborated in
Section 4, followed by evaluation results in Section 5. Lastly,
Section 6 concludes the paper.

2 Related work

Object tracking has been extensively studied in the past decades.
In [7], different implementations for the five building blocks in a
tracking framework, namely the motion model, the feature
extractor, the observation model, the model updater, and the
ensemble post-processor have been evaluated to help design a
tracker. Authors in [8] review multiple object tracking approaches
thoroughly. A multiple object tracker (MOT) is not a simple
combination of single object trackers. In practice, manual
initialisation is often infeasible; thus an initialisation scheme needs
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to be proposed for MOTs. Moreover, a maintenance mechanism is
essential in MOTs to create new tracks, delete obsolete tracks and
assign consistent labels, since the number of objects may vary at
any time. Besides, data association is necessary for assigning
detections to trackers such that the ensemble post-processor can
update objects’ positions according to latest observations.

Recently, the concept of ‘tracking by detection’ has become
increasingly popular owing to its discriminative nature compared
to conventional generative model-based trackers [9–11]. Many
event-based detectors have been proposed: As an early attempt, a
hierarchical spiking model for object recognition has been
introduced in [12], where asynchronous data are fed into the
spiking neural networks that take advantage of accurate timing
from event cameras. An end-to-end object detector has been
proposed for DVS in [13], where the feature extraction network is
designed by considering unique data structure from DVS;
moreover, the adaptive temporal pooling is applied to balance
triggered events between rapid and slow motions. A comparison
of object detection performance between traditional image frames
and event frames has been presented in [14], which shows
the advantages of event-based approaches in fast and low-light
conditions. Authors in [15] propose two neural network
architectures for object detection based on the YOLO [5] detector.

As for event-based object tracking, an event camera has been used
to assist MOT in [16], demonstrating superior performance for
fast-moving objects. In [17], an expectation maximisation-based
probabilistic multi-hypothesis tracker is presented for MOT with
false alarm observations. In [18], a moving object detector has been
proposed for event cameras. After motion correction, those areas
with different event timestamps are deemed as moving objects.
Then the detected objects are tracked using a Kalman filter.
The similar tracking scheme is also implemented in [19].
An event-driven stereo vision system has been developed in [20],
where cluster tracking and three-dimensional (3D) reconstruction are
complementarily integrated such that ambiguity could be solved
when occlusion occurred. By simple morphological operations, the
moving objects are extracted and tracked using a Kalman filter with
the constant acceleration model. Authors in [21] propose an online
tracker-detector integration framework, where the local tracker is
based on a support vector machine classifier, and the user-initialised
global detector is responsible for failure recovery.

We have listed some state-of-the-art methods in Table 1 for
comparison. Compared with [21], this work considers multiple
objects in the tracking framework. Compared with [18, 19],
all three papers use the Kalman filter as tracking framework, but
this work focuses on improving label continuity and tracking
stability. The offline-trained detector not only brings a priori
information to enable self-initialisation but also improves final
performance by providing drift-free, independent results for each
frame. The online-trained tracker provides persistent results once
initialised, and is free from drifting issues with the help of
self-reinitialisation.

3 Preliminaries

In this preliminary section, we first introduce event cameras and their
data formats for those readers who are not familiar with event
cameras. Then we present how to represent the appearance of a
region of interest to generate ‘features’, and how to utilise the
features in single object tracking, and finally, how to generalise to
MOT problems from a single object tracker.

3.1 Event cameras and event frames

Event cameras detect intensity changes at each pixel independently.
When the change is larger than a user-defined threshold, an ‘event’
k(x, y), I , tl would be triggered, where x, y denote pixel coordinates,
I is the intensity, and t represents the timestamp [The explicit
data format varies based on the sensor model. Events as
k(x, y), p, tl where p is the polarity are common in the literature
[23].]. From these events, diverse processing techniques can be
used to generate event-based data for easier implementation. By
aggregating events in an interval as a tuple set S = {k(x, y), I , tl},
different types of event frames can be obtained. We write the fixed
time interval for event frames as DT ; t1 denotes the timestamp of
the first event in each interval; Ik (x, y) represents the intensity at
pixel (x, y) for the k th frame. An event binary image is

Ik (x, y) =
1, if (x, y) [ S

0, otherwise

{

(1)

An event intensity image, which utilises the intensity information,
can be generated as

Ik (x, y) =
I , if (x, y) [ S

0, otherwise

{

(2)

An event count image that accumulates events as intensity for each
pixel is

Ik (x, y) =
∑

(x,y)[S

1 (3)

Fig. 1 Proposed object tracking framework. The two stages are denoted as blue and red dotted lines with arrows, respectively. The first stage needs to be

completed off-line before tracking such that a YOLO detector is trained; In the second stage, the CF, which tracks single object, is initialised/reinitialised

using results from the YOLO detector. The Kalman filter fuses measurements from both the detector and the tracker to achieve multi-object tracking

Table 1 Object tracking approaches using event cameras

No. of objects Configuration Tracking scheme

[18] multiple monocular probabilistic
[20] multiple stereo event matching-based
[21] single monocular optimisation-based
[22] single monocular probabilistic
[19] multiple monocular probabilistic
this work multiple monocular probabilistic
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An 8-bit event full frame picture, which reflects events’ sequence, is
obtained from

Ik (x, y) =

t − [t1 + (k − 1)DT ]

DT
× 255

⌊ ⌋

, if (x, y) [ S

0, otherwise

⎧

⎨

⎩

(4)

where ·⌊ ⌋ denotes the floor function. In this work, we use event
count images generated from (3) for both detection and tracking.

3.2 Essentials of the online tracker

As this paper is not a comprehensive review, only those building
blocks that have been applied to our framework are explained here
for readers’ convenience.

3.2.1 Appearance representation: A natural idea to represent
the region of interest on an image is to simply use the intensity values
inside the region and write them as the vector form. To include more
information, intensities in colour channels instead of grayscale have
been used. However, those raw intensities are sometimes too specific
to describe the substantial features of the interested region. The
histogram of oriented gradients (HOGs) [24, 25] has been
demonstrated as a useful feature in object detection. In addition to
hand-crafted features, it is noted that learned features [26–28]
using data-driven techniques sometimes perform better. YOLO is
one of the examples that shows excellent object detection results
using deep convolutional features. In the proposed framework,
deep features have been used in YOLO, while either intensity
features or HOG could be applied to the CF.

3.2.2 Correlation filter: The filter-based object trackers model the
problem as regression. Given a set of features yi with target points as
training samples and their corresponding user-defined responses gi,
we aim to train a filter f (yi) which gives the maximum correlation
output on these points. Suppose the regression model is linear
f (yi) = u

`
yi, the problem becomes to find the model parameter u

that leads to minimum squared regression error:

min
u

∑

i

f (yi)− gi
( )2

+l‖u‖2 (5)

where l . 0 is the penalty term parameter. Correlation is computed in
the Fourier domain so that fast online training could be achieved
because correlation operation becomes element-wise multiplication
in the Fourier domain. The analytical solution of (5) in the Fourier
domain has been derived as [6, 29]

u = X
H
X + lI

( )−1
X

H
g (6)

where X is the data matrix that contains one sample xi for each row;
(·)H = (·)∗T denotes the Hermitian transpose, and (·)∗ is the
complex-conjugate notation; I is the identity matrix, and g contains
regression targets gi.

Authors in [6] have noted that the regression problem could be
further accelerated when the training data is composed of cyclic
shifts. Moreover, Kernelised CFs (KCFs) have been derived to
tackle kernel ridge regression problems. The proposed approach is
generalised to multi-channel images, such that more features
including HOG could be applied in appearance representation.
Considering both speed and accuracy, the KCF is used for online
learning in this work.

3.2.3 Data association: One additional concern for MOT
compared to single object tracking is the data association, which
assigns detected objects to existing tracks. The problem is usually
formulated as the minimisation of total costs, which, could be
solved by the Hungarian algorithm [30, 31]. Particularly, suppose
we have n detections pending assignment to m tracks, and a cost
matrix Acost [ R

m×n representing the cost of assigning the jth
detection to the ith track. The algorithm outputs pairs of tracks and
corresponding detections as the first and second columns in matrix

Aassgnmt [ R
l×2 respectively, where l denotes the number of

successfully paired assignments.

4 Offline–online multiple object tracking

4.1 Offline learning

The offline learning follows the YOLOv3 framework [32] where the
ground truth is manually labelled with bounding boxes on the
objects in event count images. Although YOLO can detect
multiple classes, only cars are considered in off-line training in
this work due to a lack of manually-labelled data. The features are
then extracted by undergoing the CNN of Darknet-53. Finally,
the model is learned or fine-tuned by minimising the loss between
the ground truth and the regression results.

4.2 Online learning and tracking

The online learning and tracking procedure, as the core contribution of
this work, is summarised in Algorithm 1. The proposed tracking
framework maintains a list of tracks that keeps necessary
properties (such as Kalman filter estimates, type, CF status and age
variables) of all track candidates. A priori estimate and error
covariance are computed from the function predictKalman, and
assignHungarian tries to find the best match between tracks
and detections. Then, estimated bounding boxes on the current
image Ik are used as positive samples for online learning in
correlationFilter. Correction is done in correctKalman

to incorporate online CF and offline detector together. The function
maintainTracks removes obsolete tracks, creates new tracks
and updates their properties according to assignment results. The
conditions of track removal is detailed in the Section 4.2.1.

4.2.1 System modelling in Kalman ensemble: As the
Kalman filter has been widely used in object tracking [33, 34], the
recursive equations are omitted for simplicity. In this work,
notation (·̂) denotes the estimated value; at discrete time k,
subscript (·̂)k|k−1 and (·̂)k|k represent the predicted (a priori)
estimate and the updated (a posteriori) estimate, respectively.

We consider the following linear process model between k and
k + 1:

xk+1 = Fkxk + wk = Fkxk + Gk
^

w (7)

where the state vector x = [x, y, vx, vy, w, vw, s]
`
[ R

7 contains
properties of the bounding box being tracked, which includes
central coordinates, velocities, the width, the change rate of
width, and the ratio of width to height. We assume that the
process modelling error is caused by random impact in 2D image
plane, thus ^

w = [ax, ay, aw, as]
`
[ R

4 denotes the zero-mean
independent Gaussian noise with the diagonal covariance matrix
^

Q [ R
4×4. Then we write

Fk =

1 0 Dtk 0 0 0 0

0 1 0 Dtk 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 Dtk 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Gk =

1

2
Dt2k 0 0 0

0
1

2
Dt2k 0 0

Dtk 0 0 0

0 Dtk 0 0

0 0
1

2
Dt2k 0

0 0 Dtk 0

0 0 0
1

2
Dt2k

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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where Dtk is the time interval between states at k and k + 1. At time k,
by denoting the process covariance matrix in standard form as Qk ,
we have

Qk = Cov[wk ] = Cov[Gk
^

w] = E[(Gk
^

w)(Gk
^

w)`]

= GkE[
^

w
^

w
`]G`k = GkCov[

^

w]G`k

= Gk

^

QG
`

k

(8)

where Cov[ · ] and E[ · ] denote the covariance matrix and the
expectation of a random vector.

The measurement model at time k is written as

zk = hk (xk )+ vk (9)

By omitting the time index, we have

h(x) = x y w
w

s
x y

[ ]`

(10)

The measurement vector z = [z`d , z
`

c ]
` contains two parts, where zd

and zc are from the offline-trained detector and the online-trained CF,
respectively. Specifically, zd = [xd, yd, wd, hd]

` and zc = [xc, yc]
`.

Note that we have not considered width and height from the CF,
since no scale change is allowed in CF for the sake of real-time
performance. After linearisation, the Jacobian H k = (∂h/∂x)

∣

∣

x̂k|k−1
is derived as

H k =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0
1

ŝk|k−1

0 −
ŵk|k−1

ŝ2k|k−1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and vk denotes the measurement noise that is assumed to be
zero-mean Gaussian with covariance matrix Rk .

It is noted that zd is not always available as (i) the detector may fail
to recognise the object in each frame; or (ii) the data association may
not assign the detected bounding boxes to their corresponding tracks
correctly. In this case, the ensemble still works in a short time by
correcting objects’ position using zc, which is persistent once
initialised. If neither zd nor zc is available, the ensemble predicts
objects’ position for a certain iterations t, then removes those
tracks if measurements cannot be recovered.

4.2.2 Cost function in data association: We use the
assignment algorithm described in Section 3.2.3. The values in
Acost play a central role in algorithm performance. In this work, we
modified the cost function [35] at the time k such that both
position and type from the detector are considered in assignment:

Acost(i, j) = (zd −Hdx̂k|k−1)
`S

−1
d (zd −Hdx̂k|k−1)

+ ln Sd

∣

∣

∣

∣+ htypeck (i, j)
(11)

where Hd [ R
4×7 contains the first four rows of H k ; Acost(i, j)

denotes the element at row i, column j in matrix Acost;
Sd = HdPk|k−1H

`

d could be computed each time after Kalman
prediction; | · | is the matrix determinant notation; parameter htype

is the weight of type detection error and

ck (i, j) =

0, if the track− detection pair (i, j)

shares the same type at time k

1, otherwise

⎧

⎪

⎨

⎪

⎩

The discrete time index k is omitted in Acost(i, j), zd, Hd and Sd for
simplicity. See Algorithm 1 (Fig. 2).

4.2.3 Initialisation and reinitialisation of CF: Since the
proposed tracking framework aims to work continuously without
users’ intervention, it is necessary to design an initialisation
scheme for the CF to deal with new objects. As the CF does not
consider scale variation, reinitialisation is required to update
objects’ bounding boxes so that the regions out of the objects
could be excluded in the CF. Moreover, due to the change of
object motion, appearance and illumination conditions, results
from the CF may drift unboundedly. The situation also needs to be
saved by a reinitialisation scheme. In this work, a Boolean flag
initialisedCF with the default status false would be
assigned for each track. At time k, the initialisation would be done
to set initialisedCF=true if all following conditions are
satisfied:

† there is a reliable track from the Kalman ensemble; and
† the track is with the status initialisedCF=false; and
† the measurement zd is available.

Each initialised track would be constantly checked at each
iteration. Reinitialisation of CF would be triggered to reset
initialisedCF=false, when one of the following
conditions is satisfied:

† the difference of central coordinates between the CF and Kalman
ensemble exceeds the user-defined threshold; or
† the difference of bounding boxes’ size between the CF and
Kalman ensemble exceeds the user-defined threshold; or
† the bounding box from the CF is too close to the borders of image.

The first and second conditions deal with drifts and scale variations,
respectively, while the third one is based on the fact that CF performs
worse at image edges due to incomplete positive and negative
learning samples.

5 Evaluation in driving scenarios

We have tested the approach on self-collected event data, a long
sequence of 1663 event count images in urban areas, from
CelePixel CeleX5 Sensor. The data show common behaviors of
vehicles such as lane change and overtaking. Occlusion and scale
variation are frequent due to the heavy traffic. Some typical
scenarios in the dataset are shown in Fig. 3. The performance
metrics used in this work include the multiple object tracking
accuracy (MOTA) [36, 37] and the maximum label number
(MLN). MOTA is defined as

MOTA = 1−

∑

k FNk + FPk +Fk

( )

∑

k GTk
(12)

where FNk , FPk , Fk , and GTk represent the number of missed
detections (or false negatives), of false positives, of mismatched

Fig. 2 Algorithm 1 Online learning and tracking on event frames
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objects (or fragmentations), and of groundtruth objects at time k,
respectively. MLN is defined as the MLN from the tracker. It
reflects the unnecessary initialisation of new tracks: the larger
MLN is, the weaker label continuity is.

Although quantitative metrics related to bounding boxes tracking
accuracy (e.g. multiple object tracking precision) are not available as
the proposed approach focuses on providing smooth and continuous
tracking results, the improved performance can still be demonstrated
by qualitative results. It is noted that the position error of the
proposed tracker is related to the performance of the YOLO
detector and the CF since both are providing position
measurements, while the errors on bounding box width and height
are influenced by YOLO detector solely. Moreover, it is essential
to tune Kalman parameters in practice, as the output confidence
level in the deep learning-based model is not in the sense of
probability but from the proximity to cost function. The full
evaluation video has been made available online at https://youtu.
be/wUAj9dMeDNI.

5.1 General results

We firstly run the YOLO detector alone as a baseline, which shows
MOTA = 0.62 without consideringFk as there is no numbered label
for YOLO detection results. With the proposed approach, it is
observed that MOTA has been raised to 0.69 when using the
linear kernel, HOG feature and track removal threshold t = 10.
The metrics used for MOTA calculation could be found in Fig. 4.
In particular, by implementing the proposed framework, the
numbers of FN and TP become much smoother, as shown in
Fig. 4 especially from k = 600 to 750. Moreover, there is no FP
for the proposed approach after removing unreliable tracks, at the
cost of a slower response to new objects. In the testing sequence,

no sudden change of identification indices for the same object has
been found; thus, the fragmentation Fk = 0.

Fig. 5 shows the relation between MLN and the user-defined
parameter t. It is obvious that MLN becomes smaller with a larger
t, because a larger t retains the track longer when the detection
result is not available. However, a larger t would also lead to
higher drifting errors in case of no correction from the detector. In
this work, by incorporating CF results, the tracking performance
could be improved by setting a larger t.

Without the online-trained tracker, the whole tracking framework
still works by considering the output zd as the sole measurement
vector. We have compared the performance between two
configurations: (i) the partial configuration without CF; and

Fig. 3 Typical scenarios in the testing sequence. Left: lane change in a tunnel; Middle: a blurred event count image with no available detection; Right: Exiting

the tunnel (high dynamic range scene). The red, green and cyan bounding boxes denote results from the detector, the CF, and the fusion scheme, respectively. Red

numbers are detector confidence. Cyan numbers are object identification indices. ‘ND’ means no matched detection for current tracking result

Fig. 4 Metrics used for MOTA calculation. The upper and lower figures show numbers of objects that are tracked in the proposed framework and the YOLO

detector, respectively. ‘FN’: ‘FP’: ‘TP’, and ‘ F ‘ denote False Negative, False Positive, True Positive, and fragmentation

Fig. 5 Relation between MLN and parameter t, which determines in how

long an invisible track would be removed if not detected consecutively
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(ii) the full configuration with offline-online learning. It is noted that
the partial configuration only contains single information source on
object position. If an object is not detected, its position will be
predicted by constant velocity motion model. In the circumstance
of false negative detections, the full configuration is more accurate
and robust, as demonstrated in Fig. 6. The real-time performance
between two configurations are shown in Table 2.

The time consumption covers core operations in the framework
such as CF, Kalman filtering, and data association, and does not
include YOLO detection as it is executed outside the loop. The
FPS is computed on a mobile workstation running MATLAB
R2018b, with an Intel Core i5-8250U CPU and 8 GB memory.
HOG orientation number and cell size are set to 6 and 4,
respectively. Although KCF could be used to improve the
performance by bringing features into high-dimensional spaces [6],
it lowers computational efficiency. It is noted that the performance
gap between different kernels is small when a powerful feature is
selected. These results are similar to [7].

5.2 Influence of Kalman parameters

It is well known that parameters in Kalman ensemble, namely noise
covariance matrices, affect final results. In all experiments, we set

Q̆ = diag(500, 1000, 20, 0.05) (13)

R = diag(5, 5, 20, 20, 10, 10) (14)

by experience and parameter tuning. The difference in x and y
components in Q̆ is to deal with the uneven pavement or humps,
where objects may jump in y direction. In practice, we prefer to
trust measurements from the offline-trained detector more, if the
measurement is available, as the precision of CF bounding boxes’
positions are less accurate since the image quality has been
sacrificed for efficiency.

6 Conclusion

This paper presents a real-time tracking framework based on event
count images from event cameras. Compared to conventional

tracking-by-detection, an offline-online training scheme has been
presented to improve the tracking robustness and accuracy. Deep
features, HOG or raw intensity features have been demonstrated
effective in the detector and the tracker. A Kalman ensemble,
together with the proposed self-initialisation scheme, has been
designed to incorporate measurements from the detector and the
tracker such that the tracking consistency is enhanced with
bounded position drifts.

Although some achievements have been made, the limitations of
this work include: (i) offline training is required, which limits
objects to pre-defined categories. (ii) Experiments are still at the
preliminary stage, where only cars in urban areas have been
considered in the detector. In the future, the authors believe that
the detector could be enhanced by introducing more data in a
variety of environments. As for feature selection in CF, the
possibilities of applying other features (such as LBP [38], Haar
[39] and other deep features) that describe event count images
could be explored. The data association could be improved by
adding appearance discrepancies between detected and predicted
bounding boxes into the assignment cost function. It is also
promising to reduce the time consumption by exploiting data
compression mechanisms.

7 References

[1] Sridhar, S., Mueller, F., Zollhöfer, M., et al.: ‘Real-time joint tracking of a hand

manipulating an object from RGB-D input’. European Conf. on Computer

Vision, Springer, Amsterdam, The Netherlands, 2016, pp. 294–310

[2] Javed, O., Shah, M.: ‘Tracking and object classification for automated

surveillance’. European Conf. on Computer Vision, Springer, Copenhagen,

Denmark, 2002, pp. 343–357

[3] Mendes, A., Bento, L.C., Nunes, U.: ‘Multi-target detection and tracking with a

laser scanner’. IEEE Intelligent Vehicles Symp., 2004, Parma, Italy, 2004,

pp. 796–801

[4] Zhao, D., Fu, H., Xiao, L., et al.: ‘Multi-object tracking with correlation filter for

autonomous vehicle’, Sensors, 2018, 18, (7), p. 2004

[5] Redmon, J., Divvala, S., Girshick, R., et al.: ‘You only look once: unified,

real-time object detection’. Proc. of the IEEE Conf. on Computer Vision and

Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 779–788

[6] Henriques, J.F., Caseiro, R., Martins, P., et al.: ‘High-speed tracking with

kernelized correlation filters’, IEEE Trans. Pattern Anal. Mach. Intell., 2014,

37, (3), pp. 583–596

[7] Wang, N., Shi, J., Yeung, D.-Y., et al.: ‘Understanding and diagnosing visual

tracking systems’. Proc. of the IEEE Int. Conf. on Computer Vision,

Las Condes, Chile, 2015, pp. 3101–3109

[8] Luo, W., Xing, J., Milan, A., et al.: ‘Multiple object tracking: a literature review’.

arXiv preprint arXiv:1409.7618, 2014

[9] Okuma, K., Taleghani, A., De Freitas, N., et al.: ‘A boosted particle filter:

multitarget detection and tracking’. European Conf. on Computer Vision,

Springer, Prague, Czech Republic, 2004, pp. 28–39

[10] Avidan, S.: ‘Ensemble tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2007,

29, (2), pp. 261–271

[11] Breitenstein, M.D., Reichlin, F., Leibe, B., et al.: ‘Robust tracking-by-detection

using a detector confidence particle filter’. 2009 IEEE 12th Int. Conf. on

Computer Vision, Kyoto, Japan, 2009, pp. 1515–1522

Table 2 Real-time performance of the proposed tracking framework

Partial configuration Full configuration

Feature Intensity HOG

459 FPS Linear kernal 55.7 FPS 50.4 FPS
Gaussian kernal 33.8 FPS 34.6 FPS

Fig. 6 Tracking performance comparison between full configuration (lower row) and partial configuration (upper row) for 3 frames. Note the object 73 loses

detection from the second frame. The tracker deviates from the true position in partial configuration due to inaccurate motion model. The tracker in full

configuration is well-performed thanks to the online tracker

CAAI Trans. Intell. Technol., 2020, Vol. 5, Iss. 3, pp. 165–171

170 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution -NonCommercial License

(http://creativecommons.org/licenses/by-nc/3.0/)

 24682322, 2020, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/trit.2019.0107, W

iley O
nline L

ibrary on [12/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



[12] Orchard, G., Meyer, C., Etienne-Cummings, R., et al.: ‘HFirst: a temporal

approach to object recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2015,

37, (10), pp. 2028–2040

[13] Li, J., Shi, F., Liu, W., et al.: ‘Adaptive temporal pooling for object detection

using dynamic vision sensor’. British Machine Vision Conf. (BMVC), London,

UK, 2017

[14] Iacono, M., Weber, S., Glover, A., et al.: ‘Towards event-driven object detection

with off-the-shelf deep learning’. 2018 IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), Madrid, Spain, 2018, pp. 1–9

[15] Cannici, M., Ciccone, M., Romanoni, A., et al.: ‘Event-based convolutional

networks for object detection in neuromorphic cameras’. arXiv preprint

arXiv:1805.07931, 2018

[16] Saner, D., Wang, O., Heinzle, S., et al.: ‘High-speed object tracking using an

asynchronous temporal contrast sensor’. VMV, Darmstadt, Germany, 2014,

pp. 87–94

[17] Cheung, B., Rutten, M., Davey, S., et al.: ‘Probabilistic multi hypothesis tracker

for an event based sensor’. 2018 21st Int. Conf. on Information Fusion

(FUSION), Cambridge UK, 2018, pp. 1–8

[18] Mitrokhin, A., Fermüller, C., Parameshwara, C., et al.: ‘Event-based moving

object detection and tracking’. 2018 IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS) IEEE, Madrid, Spain, 2018, pp. 1–9

[19] Barranco, F., Fermuller, C., Ros, E.: ‘Real-time clustering and multi-target

tracking using event-based sensors’. 2018 IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), Madrid, Spain, 2018, pp. 5764–5769

[20] Camuñas-Mesa, L.A., Serrano-Gotarredona, T., Ieng, S.-H., et al.: ‘Event-driven

stereo visual tracking algorithm to solve object occlusion’, IEEE Trans. Neural

Netw. Learn. Syst., 2018, 29, (9), pp. 4223–4237

[21] Ramesh, B., Zhang, S., Lee, Z.W., et al.: ‘Long-term object tracking with a

moving event camera’. British Machine Vision Conf., Newcastle, UK, 2018,

vol. 2

[22] Liu, H., Moeys, D.P., Das, G., et al.: ‘Combined frame-and event-based detection

and tracking’. 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS), Montreal,

Canada, 2016, pp. 2511–2514

[23] Gallego, G., Delbrück, T., Orchard, G., et al.: ‘Event-based vision: a survey’.

CoRR, vol. abs/1904.08405, 2019. Available at http://arxiv.org/abs/1904.

08405=0pt

[24] Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Int.

Conf. on Computer Vision & Pattern Recognition (CVPR’05), IEEE Computer

Society, San Diego, CA, USA, 2005, vol. 1, pp. 886–893

[25] Vondrick, C., Khosla, A., Malisiewicz, T., et al.: ‘Hoggles: visualizing object

detection features’. Proc. of the IEEE Int. Conf. on Computer Vision, Darling

Harbour, Australia, 2013, pp. 1–8

[26] Wang, N., Yeung, D.-Y.: ‘Learning a deep compact image representation for

visual tracking’, Adv. Neural. Inf. Process. Syst., 2013, 26, pp. 809–817

[27] Danelljan, M., Hager, G., Shahbaz Khan, F., et al.: ‘Convolutional features for

correlation filter based visual tracking’. Proc. of the IEEE Int. Conf. on

Computer Vision Workshops, Las Condes, Chile, 2015, pp. 58–66

[28] Yi, K.M., Trulls, E., Lepetit, V., et al.: ‘Lift: learned invariant feature transform’.

European Conf. on Computer Vision, Springer, Amsterdam, The Netherlands,

2016, pp. 467–483

[29] Rifkin, R., Yeo, G., Poggio, T., et al.: ‘Regularized least-squares classification’,

Nato Sci. Series Sub Series III Comput. Syst. Sci., 2003, 190, pp. 131–154

[30] Munkres, J.: ‘Algorithms for the assignment and transportation problems’, J. Soc.

Ind. Appl. Math., 1957, 5, (1), pp. 32–38

[31] Miller, M.L., Stone, H.S., Cox, I.J.: ‘Optimizing murty’s ranked assignment

method’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, (3), pp. 851–862

[32] Redmon, J., Farhadi, A.: ‘YOLOv3: an incremental improvement’. arXiv preprint

arXiv:1804.02767, 2018

[33] Kim, D.Y., Jeon, M.: ‘Data fusion of radar and image measurements for

multi-object tracking via kalman filtering’, Inf. Sci., 2014, 278, pp. 641–652

[34] Kulikov, G.Y., Kulikova, M.V.: ‘The accurate continuous-discrete extended

Kalman filter for radar tracking’, IEEE Trans. Signal Process., 2015, 64, (4),

pp. 948–958

[35] Altendorfer, R., Wirkert, S.: ‘Why the association log-likelihood distance should

be used for measurement-to-track association’. 2016 IEEE Intelligent Vehicles

Symp. (IV), Gotenburg, Sweden, 2016, pp. 258–265

[36] Ristani, E., Solera, F., Zou, R., et al.: ‘Performance measures and a data set for

multi-target, multi-camera tracking’. European Conf. on Computer Vision,

Springer, 2016, Amsterdam, The Netherlands, pp. 17–35

[37] Bernardin, K., Stiefelhagen, R.: ‘Evaluating multiple object tracking

performance: the clear mot metrics’, J. Image Video Process., 2008, 2008, p. 1

[38] Ojala, T., Pietikäinen, M., Mäenpää, T.: ‘Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns’, IEEE Trans. Pattern

Anal. Mach. Intell., 2002, 24, (7), pp. 971–987

[39] Viola, P., Jones, M.: ‘Rapid object detection using a boosted cascade of simple

features’. IEEE Computer Society Conference on Computer Vision and Pattern

Recognition . IEEE Computer Society Conference on Computer Vision and

Pattern Recognition CVPR (1), Kauai, HI, USA, 2001, vol. 1, pp. 511–518

CAAI Trans. Intell. Technol., 2020, Vol. 5, Iss. 3, pp. 165–171

171This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution -NonCommercial License

(http://creativecommons.org/licenses/by-nc/3.0/)

 24682322, 2020, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/trit.2019.0107, W

iley O
nline L

ibrary on [12/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://arxiv.org/abs/1904.08405=0pt
http://arxiv.org/abs/1904.08405=0pt
http://arxiv.org/abs/1904.08405=0pt

	1 Introduction
	2 Related work
	3 Preliminaries
	4 Offline--online multiple object tracking
	5 Evaluation in driving scenarios
	6 Conclusion
	7 References

