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Abstract
Phonological alternations often involve depen-001
dencies between adjacent segments. Despite002
the apparent long-distance nature of alterna-003
tions such as consonant and vowel harmony,004
even these can be reduced to dependencies be-005
tween adjacent segments by projecting a subset006
of segments onto a new representation, often007
called a tier. Tiers are known to simplify learn-008
ing non-local dependencies and are consistent009
with human behavior in artificial language ex-010
periments. However, little is known about the011
mechanism by which learners may construct012
such a representation. In this work, we pro-013
pose a computational model that learns non-014
local alternations by automatically construct-015
ing alternation-relevant tiers. The model is016
sensitive to adjacent dependencies and—when017
adjacency fails—uses this same sensitivity to018
construct a tier that reduces the relevant non-019
local dependencies to local ones, falling within020
its purview. The model accurately matches the021
behavior of humans on prior artificial language022
experiments. This submission describes pre-023
liminary work and is intended as an extended024
abstract.025

1 Introduction026

Phonological segments often alternate in a way027

that is predictable from phonological environment.028

For instance, the English plural (Pl) affix alternates029

between [-z] and [-s], matching the voicing of the030

final segment of the Sg form, as exemplified in (1).031

(1) /dAg-Pl/→ [dAgz]032

/kæt-Pl/→ [kæts]033

Such phonological alternations are common034

across the world’s languages, and often involve035

dependencies between adjacent segments.036

However, consonant harmony (Rose and Walker,037

2004) and vowel harmony (Van der Hulst, 2016)038

are phonological alternations that often involve039

dependencies between segments that are arbitrar-040

ily far away. For instance, Turkish affix vowels041

Figure 1: The proposed model tracks only adjacent
dependencies. Any adjacent dependencies that fail are
deleted until a sufficiently accurate generalization can
be formed in terms of adjacent segments § 2.

match the feature [±back] to the final stem vowel, 042

as shown in (2) (examples from Kabak, 2011, p. 3 043

and Nevins, 2010, p. 28); the affix vowels alternate 044

between back {A, W} and front {e, i} to match the 045

[±back] value of the preceeding vowel. Arbitrary 046

numbers of consonants can intervene. 047

(2) [dAl-lAr-Wn]
[jer-ler-in]
[ip-ler-in]

branch-Pl-Gen
place-Pl-Gen
rope-Pl-Gen

The Omotic language Aari exhibits a sibilant 048

harmony pattern exemplified in (3) from McMullin 049

(2016, p. 21) (adapted from Hayward 1990). Un- 050

derlying /s/ (3a) surfaces as [S] when it is preceded 051

by a [−ant] sibilant at any distance (3b) (dependent 052

sibilants are underlined for clarity). 053

(3) a. /baP-s-e/
b. /?uS-s-it/

/ZaP-s-it/
/Sed-er-s-it/

→ [baPse]
→ [?uSSit]
→ [ZaPSit]
→ [SederSit]

‘he brought’
‘I cooked’
‘I arrived’
‘I was seen’

Experiments on sequence learning have force- 054

fully demonstrated that learners more readily track 055

dependencies between adjacent segments (Saffran 056

et al., 1996, 1997; Aslin et al., 1998) than non- 057

adjacent segments (Santelmann and Jusczyk, 1998; 058

Gómez, 2002; Newport and Aslin, 2004; Gómez 059

and Maye, 2005). Such results suggest that learn- 060

ing non-local alternations, such as those in (2)-(3) 061
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Figure 2: A rule generates an output sequence in three
steps: (1) it projects a tier, (2) it applies feature match-
ing over that projection, and (3) it replaces original
segments with their results from the tier projection.

is more challenging than learning local alternations062

like (1). However, since at least Goldsmith (1976),063

researchers have recognized that non-local alterna-064

tions like (2)-(3) can be reduced to local alterna-065

tions by projecting a subset of segments onto a066

relevant phonological tier.067

Moreover, formal-language-theoretic analysis068

(Heinz et al., 2011; McMullin, 2016; Jardine and069

Heinz, 2016; Jardine and McMullin, 2017) and070

computational modeling experiments (Hayes and071

Wilson, 2008) have provided evidence that phono-072

logical tier is a representation that benefits learn-073

ing, and artificial language experiments have pro-074

vided evidence that learners may indeed construct075

tiers (Finley, 2011; McMullin and Hansson, 2019).076

However, the tier needed to render dependencies lo-077

cal varies heavily depending on what alternation is078

being learned (Nevins, 2010; Burness et al., 2021),079

and the mechanism by which learners may con-080

struct tiers remains largely unknown.081

In this work, we propose a computational model082

§ 2 that automatically constructs a tier and discov-083

ers alternations by tracking only adjacent depen-084

dencies (Fig. 1). The model learns tiers consistent085

with human behavior in artificial language experi-086

ments and learns non-local alternations in prelimi-087

nary natural language settings § 3.088

2 Model089

Our model is called D2L for Distant To Local be-090

cause it learns non-local alternations by automati-091

cally constructing a tier that exposes distant depen-092

dencies as local. D2L takes as input a set𝑉 of (𝑥, 𝑦)093

input-output pairs, along with a set 𝐴 of alternating094

segments and what features 𝐹 of those segments095

alternate. D2L tracks segments adjacent to the al-096

ternating segments and attempts to generalize from097

these which alternating segment of 𝐴 surfaces. If098

adjacent segments fail to account for the alterna-099

tion, D2L deletes the adjacent segments that do100

not work, by projecting the other segments onto a 101

new tier. This processes repeats iteratively until a 102

successful generalization is found. D2L’s general- 103

izations are implemented as rules, which produce 104

an output sequence from an input sequence. 105

2.1 Rule Structure 106

An example1 sibilant harmony rule is exemplified 107

in Fig. 2, where it projects a sibilant tier (step 1), 108

harmonizes the tier-adjacent sibilants (step 2), and 109

outputs an updated sequence (step 3). 110

We characterize a rule 𝑟 (𝑥) = 𝑟adj ◦ proj(𝑥, 𝑇) 111

as a local rule 𝑟adj applied over a tier projec- 112

tion, proj(𝑥, 𝑇). The local rule can either match 113

the features of a target 𝐴 to a left neighbor 114

𝑟adj = 𝑚(𝐴, 𝐹)/𝐿__ or a right neighbor 𝑟adj = 115

𝑚(𝐴, 𝐹)/__𝑅 on the tier projection. We treat seg- 116

ments as bundles of distinctive features, where each 117

feature 𝑓 has a value 𝛼 (e.g., ‘+’, ‘−’). The feature- 118

matching operation𝑚(𝐴, 𝐹) sets the 𝛼 value of any 119

segment in 𝐴 to match those of a segment in 𝐿/𝑅 120

for each feature 𝑓 ∈ 𝐹; e.g., 𝑚(S, {ant}) / s__ = s. 121

The rule applies iteratively to allow for modeling 122

the spreading patterns that are pervasive in vowel 123

and consonant harmony (Nevins, 2010; Burness 124

et al., 2021). If the rule has a left context, it applies 125

left-to-right; otherwise right-to-left.2 126

Tier projection is inspired by the concept of an 127

erasing function (Heinz et al., 2011) (4), projecting 128

a length-𝑛 sequence 𝑥 to a new, order-preserving 129

sequence that preserves only the 𝑥𝑖 ∈ 𝑇 . 130

(4) proj(𝑥, 𝑇) ≜ 𝑡1, ..., 𝑡𝑚 : 𝑥𝑖 ∈ 𝑡 iff 𝑥𝑖 ∈ 𝑇 131

In Fig. 2, proj(/Sokusu/, [+sib]) = <Ss>. We 132

extend this with a set of links, E(x, t), from input 133

segments to their tier projections (if they have one). 134

In Fig. 2, 𝐸 (𝑥, 𝑡) = {(𝑥1, 𝑡1), (𝑥5, 𝑡2)}. The final 135

output sequence is generated by iterating over each 136

(𝑥𝑖 , 𝑡 𝑗) ∈ 𝐸 (𝑥, 𝑡) and replacing each 𝑥𝑖 with 𝑡 𝑗 . 137

2.2 Learning 138

We give D2L’s pesudocode in Alg. 1, and visualize 139

a toy example in Fig. 3. The input is a set of input- 140

output pairs, and a set of alternating segments 𝐴 141

and their alternating features 𝐹 (which are any fea- 142

tures that vary across the segments in 𝐴). D2L first 143

initializes the tier to contain all segments. Conse- 144

quently, local generalizations like (1) are a special 145

1Examples in Figures 2-3 use artificial language data from
Finley (2011); cf. § 3.1.1 for details.

2Spreading in both directions can be modeled with two
rules, one applied in each direction.
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Algorithm 1 D2L
Input: pairs 𝑉 , alternating segs 𝐴 and feats 𝐹

1: 𝑇 ← Σ ⊲ Initialize tier to all segments
2: 𝐷 ← ∅ ⊲ Initially delete no segments
3: while 𝑇 ≠ ∅ do
4: 𝐿 ← {𝑠 : 𝑠 precedes some 𝑎 ∈ 𝐴 on 𝑇}
5: 𝑅 ← {𝑠 : 𝑠 follows some 𝑎 ∈ 𝐴 on 𝑇}
6: 𝑟𝑙 = 𝑚(𝐴, 𝐹)/𝐿__ ◦ proj(·, 𝑇) ⊲ Left rule
7: 𝑟𝑟 = 𝑚(𝐴, 𝐹)/__𝑅 ◦ proj(·, 𝑇) ⊲ Right rule
8: 𝑟 = arg max𝑟 ∈{𝑟𝑙 ,𝑟𝑟 } acc(𝑟)
9: if acc(𝑟) > 𝜃 then

10: return 𝑟

11: 𝑁 ← 𝐿 ∪ 𝑅
12: 𝐷 ← 𝐷 ∪ {𝑠 ∈ 𝑁 : harmonizing with 𝑠 fails}
13: 𝐶 ← arg min{nat class 𝐶:𝐷⊆𝐶∧𝐴∩𝐶=∅} |𝐶 |
14: 𝑇 ← 𝑇 \ 𝐶

Figure 3: Example of D2L.

case of D2L. Next, the while loop begins. Left146

and right rules are constructed with the current tier147

𝑇 ; the most accurate is selected and compared to148

a threshold 𝜃. This threshold could be 100% accu-149

racy or something more tolerant to exceptions, like150

the Tolerance Principle (Yang, 2016). If the rule is151

accurate enough, it is returned and the algorithm152

is finished. Otherwise the tier is updated § 2.2.1.153

2.2.1 Updating the Tier154

Because the segments, 𝐴, must be targeted by the155

rule, they must be on the tier. The set 𝑁 contains all156

segments adjacent to an alternating segment on the157

current tier projection. A subset of these, 𝐷 ⊆ 𝑁 ,158

contains any tier-adjacent segment that cannot be159

harmonized with. This can be because the segment160

is not specified for the feature(s) 𝐹 (e.g., a sibilant161

cannot take an ‘ant’ feature from a vowel), or be- 162

cause it leads to the wrong surface segment (e.g., if 163

/s/ takes /p/’s ‘ant’ feature, it will surface as [s], but 164

may have been supposed to surface as [S]). These 165

segments cannot be on the tier. Thus, D2L takes 166

the smallest natural class 𝐶 that contains all of 𝐷 167

but none of 𝐴, and removes this from the tier. 168

3 Experiments 169

3.1 Human-Like Behavior 170

We first compare D2L to human learners in Finley 171

(2011)’s artificial language experiment. 172

3.1.1 Background 173

Finley (2011) presented participants with training 174

data: a <stem, suffixed> pair where the suffix sibi- 175

lant harmonized with the stem sibilant across a 176

single intervening vowel (5a). Learners would not 177

generalize to novel cases where non-sibilant conso- 178

nants also intervened (5b), choosing—in a forced- 179

choice two-alternative test—the non-harmonizing 180

option as often as a control group did. 181

(5) a. /diso-su/→ [disosu] 182

/nesi-su/→ [nesisu] 183

/piSa-su/→ [piSaSu] 184

/kuSo-su/→ [kuSoSu] 185

b. /Suko-su/→ [Sukosu] 186

These results are consistent with the view that 187

learners constructed a [+cons] tier, since this would 188

render the training sibilants (5a) adjacent, but har- 189

mony for the test sibilants (5b) would be blocked 190

by the non-sibilant consonants. 191

In contrast, if presented with training data where 192

sibilants harmonize across both intervening vowels 193

and non-sibilant consonants (6a), learners general- 194

ized to cases where only a vowel intervened (6b). 195

(6) a. /suge-su/→ [sugesu] 196

/sone-su/→ [sonesu] 197

/Supe-su/→ [SupeSu] 198

/Sako-su/→ [SakoSu] 199

b. /kuSa-su/→ [kuSaSu] 200

In this case, the results are consistent with the 201

view that learners constructed a [+sib] tier, since 202

this is needed to render the training sibilants (6a) 203

adjacent, and the test sibilants (6b) would also be 204

adjacent on the [+sib] tier. Together, these results 205

suggest that learners construct tiers in response to 206

the data they are exposed to. 207
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3.1.2 Setup208

We ran D2L on the 25 train instances from Finley209

(2011), for each setting (5)-(6) described above210

(§ 3.1.1). We treated the underlying affix sibilant211

as unspecified [±ant], and used D2L’s output as its212

choice in the forced-choice two-alternative test.213

As comparison models, we used Goldsmith and214

Riggle (2012), which we call GR, and the finite-215

state model of Jardine (2016); Jardine and Heinz216

(2016), which we call FS. GR is an information-217

theoretic model, which uses a two-state hidden218

markov model to induce a tier, and then fits a proba-219

bilistic phonotactic model with a Boltzmann distri-220

bution, which incorporates information from both221

string and tier bigrams. FS attempts to induce a tier222

strictly-local finite-state acceptor (FSA) that can223

accept or reject strings as grammatical. We used224

the python implementation from (Aksënova, 2020).225

Since these models are phonotactic models, we ran226

both choices of the forced-choice two-alternative227

test through the models and used the one that is228

scored higher as the models’ respective choices.229

3.1.3 Results230

Results are reported in Tab. 1. The HUM row gives231

human results, with a ‘3’ wherever the experimen-232

tal group chose the harmonizing test choice over233

the non-harmonizing choice significantly more of-234

ten than the control group (as measured in the235

original study); ‘7’ appears elsewhere. For com-236

putational models, ‘3’ marks results where the237

model chose the harmonizing test choice over the238

non-harmonizing at a rate significantly greater than239

chance (≈>50% accuracy).240

Only D2L matches the results of human learn-241

ers, learning a [+cons] tier in the first experiment242

condition and a [+sib] tier in the second.243

Neither GR nor FS succeed in learning a mean-244

ingful tier on 25 instances, and consequently245

cannot generalize from the training data to test246

instances—even of the type that humans did.247

McMullin and Hansson (2019) performed sim-248

ilar experiments, involving regressive liquid har-249

mony. D2L is the only model to match human250

performance on those experiments as well, but we251

omit the results due to space limitations.252

3.2 Learning Natural Language Alternations253

We present preliminary results running D2L on254

two natural language alternations: vowel harmony255

in Turkish (Kabak, 2011) and Finnish (Ringen256

and Heinämäki, 1999). Both languages exhibit a257

Table 1: Finley (2011) Sibilant Harmony

Train CVSV-SV Train SVCV-SV

Model CVSV-SV SVCV-SV SVCV-SV CVSV-SV

HUM 3 7 3 3

D2L 3(1.0) 7(0.0) 3(1.0) 3(1.0)
GR 7 7 7 7
FS 7 7 7 7

Table 2: Turkish and Finnish Vowel Harmony

Language Tier Learned Accuracy

Turkish [−cons] 1.0

Finnish [−cons] \ {i, e} 1.0

[±back] vowel alternation: affix vowels harmonize 258

with the closest stem vowel. All vowels partici- 259

pate in Turkish; {i,e} are neutral in Finnish. Using 260

frequency-annotated data from the MorphoChal- 261

lenge (Kurimo et al., 2010), we ran D2L on the 262

200 most frequent words from each language (sep- 263

arately). As a proxy for morphological boundaries, 264

we treated each word’s first vowel as fully specified 265

and treated all following vowels as underspecified 266

for their [±back] feature (Van der Hulst, 2016).3 267

We treat underlyingly unspecified vowels as always 268

harmonizing. These results are preliminary; future 269

versions will improve on the realism of the setup. 270

We show the tier that D2L learned and the accu- 271

racy of the resulting rule in Tab. 2. Accuracy was 272

computed over the 1K most frequent words, mean- 273

ing the 200 training words and 800 novel words. 274

D2L learns an appropriate tier for each language: 275

the vowel tier for Turkish, and the vowel tier minus 276

the neutral vowels {i,e} for Finnish. 277

4 Conclusion and Discussion 278

We presented a computational model, D2L, which 279

tracks adjacent segments in order to account for 280

phonological alternations. When these segments 281

are inadequate, D2L deletes the adjacent seg- 282

ments that failed to account for the alternation and 283

tracks the resulting, newly-adjacent dependencies. 284

This process, carried out iteratively until an ade- 285

quate generalization is discovered, learns non-local 286

phonological alternations consistent with human 287

behavior in artificial language experiments. Local 288

alternations constitute a special case, where no tier 289

is needed. Future work will apply D2L to a more 290

diverse range of natural language settings. 291

3Turkish has secondary rounding harmony for high vowels,
which we intend to model in future versions of this work.
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