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Abstract

Phonological alternations often involve depen-
dencies between adjacent segments. Despite
the apparent long-distance nature of alterna-
tions such as consonant and vowel harmony,
even these can be reduced to dependencies be-
tween adjacent segments by projecting a subset
of segments onto a new representation, often
called a tier. Tiers are known to simplify learn-
ing non-local dependencies and are consistent
with human behavior in artificial language ex-
periments. However, little is known about the
mechanism by which learners may construct
such a representation. In this work, we pro-
pose a computational model that learns non-
local alternations by automatically construct-
ing alternation-relevant tiers. The model is
sensitive to adjacent dependencies and—when
adjacency fails—uses this same sensitivity to
construct a tier that reduces the relevant non-
local dependencies to local ones, falling within
its purview. The model accurately matches the
behavior of humans on prior artificial language
experiments. This submission describes pre-
liminary work and is intended as an extended
abstract.

1 Introduction

Phonological segments often alternate in a way
that is predictable from phonological environment.
For instance, the English plural (Pr) affix alternates
between [-z] and [-s], matching the voicing of the
final segment of the Sc form, as exemplified in (1).

(1) /dag-Pr/ — [dagz]
/keet-PL/ — [kaets]

Such phonological alternations are common
across the world’s languages, and often involve
dependencies between adjacent segments.

However, consonant harmony (Rose and Walker,
2004) and vowel harmony (Van der Hulst, 2016)
are phonological alternations that often involve
dependencies between segments that are arbitrar-
ily far away. For instance, Turkish affix vowels

/lapu-s/ - <[apgs>—><[ps>— <[s>

fli-s] - <fis> = <[s> - <[s>

[fta-s/ - <[tas> - <[ts> > <[s>
Figure 1: The proposed model tracks only adjacent
dependencies. Any adjacent dependencies that fail are

deleted until a sufficiently accurate generalization can
be formed in terms of adjacent segments § 2.

match the feature [+back] to the final stem vowel,
as shown in (2) (examples from Kabak, 2011, p. 3
and Nevins, 2010, p. 28); the affix vowels alternate
between back {a, ur} and front {e, i} to match the
[+back] value of the preceeding vowel. Arbitrary
numbers of consonants can intervene.

(2) [dal-lar-un]
[jer-ler-in]
[ip-ler-in]

branch-PL-GEN
place-PL-GEN
rope-PL-GEN

The Omotic language Aari exhibits a sibilant
harmony pattern exemplified in (3) from McMullin
(2016, p. 21) (adapted from Hayward 1990). Un-
derlying /s/ (3a) surfaces as [[] when it is preceded
by a [—ant] sibilant at any distance (3b) (dependent
sibilants are underlined for clarity).

(3) a. /ba?-s-e/ — [ba?se] ‘he brought’
b. /7uf-s-it/  — [Puffit] ‘Tcooked’
/Sa‘?_g_jt/ — [3za?[it] ‘T arrived’

/J_"ed—e_r—s—it/ — [Iedérlit]‘l was seen’

Experiments on sequence learning have force-
fully demonstrated that learners more readily track
dependencies between adjacent segments (Saffran
et al., 1996, 1997; Aslin et al., 1998) than non-
adjacent segments (Santelmann and Jusczyk, 1998;
Go6mez, 2002; Newport and Aslin, 2004; Gémez
and Maye, 2005). Such results suggest that learn-
ing non-local alternations, such as those in (2)-(3)



r(x) = m({s, [}, {ant}) /{5 [} _ o proj(x, [+sib])

/Joku-su/ /Joku-su/ [Jokuu]
N/ - /
<[s> <[[> <[[>

Figure 2: A rule generates an output sequence in three
steps: (1) it projects a tier, (2) it applies feature match-
ing over that projection, and (3) it replaces original
segments with their results from the tier projection.

is more challenging than learning local alternations
like (1). However, since at least Goldsmith (1976),
researchers have recognized that non-local alterna-
tions like (2)-(3) can be reduced to local alterna-
tions by projecting a subset of segments onto a
relevant phonological tier.

Moreover, formal-language-theoretic analysis
(Heinz et al., 2011; McMullin, 2016; Jardine and
Heinz, 2016; Jardine and McMullin, 2017) and
computational modeling experiments (Hayes and
Wilson, 2008) have provided evidence that phono-
logical tier is a representation that benefits learn-
ing, and artificial language experiments have pro-
vided evidence that learners may indeed construct
tiers (Finley, 2011; McMullin and Hansson, 2019).
However, the tier needed to render dependencies lo-
cal varies heavily depending on what alternation is
being learned (Nevins, 2010; Burness et al., 2021),
and the mechanism by which learners may con-
struct tiers remains largely unknown.

In this work, we propose a computational model
§ 2 that automatically constructs a tier and discov-
ers alternations by tracking only adjacent depen-
dencies (Fig. 1). The model learns tiers consistent
with human behavior in artificial language experi-
ments and learns non-local alternations in prelimi-
nary natural language settings § 3.

2 Model

Our model is called D2L for Distant To Local be-
cause it learns non-local alternations by automati-
cally constructing a tier that exposes distant depen-
dencies as local. D2L takes as inputa set V of (x, y)
input-output pairs, along with a set A of alternating
segments and what features F of those segments
alternate. D2L tracks segments adjacent to the al-
ternating segments and attempts to generalize from
these which alternating segment of A surfaces. If
adjacent segments fail to account for the alterna-
tion, D2L deletes the adjacent segments that do

not work, by projecting the other segments onto a
new tier. This processes repeats iteratively until a
successful generalization is found. D2L’s general-
izations are implemented as rules, which produce
an output sequence from an input sequence.

2.1 Rule Structure

An example! sibilant harmony rule is exemplified
in Fig. 2, where it projects a sibilant tier (step 1),
harmonizes the tier-adjacent sibilants (step 2), and
outputs an updated sequence (step 3).

We characterize a rule r(x) = ryqj © proj(x,T)
as a local rule ryq; applied over a tier projec-
tion, proj(x,T). The local rule can either match
the features of a target A to a left neighbor
ragj = m(A,F)/L__ or a right neighbor r,q; =
m(A, F)/__R on the tier projection. We treat seg-
ments as bundles of distinctive features, where each
feature f has a value a (e.g., ‘“+’, ‘=’). The feature-
matching operation m (A, F) sets the a value of any
segment in A to match those of a segment in L/R
for each feature f € F;e.g., m([, {ant})/s__=s.

The rule applies iteratively to allow for modeling
the spreading patterns that are pervasive in vowel
and consonant harmony (Nevins, 2010; Burness
etal., 2021). If the rule has a left context, it applies
left-to-right; otherwise right-to-left.2

Tier projection is inspired by the concept of an
erasing function (Heinz et al., 2011) (4), projecting
a length-n sequence x to a new, order-preserving
sequence that preserves only the x; € T.

@) proj(x,T) 2ty,...tm:x;€tifftx; €T

In Fig. 2, proj(/fokusw/, [+sib]) = <[s>. We
extend this with a set of links, E(x, t), from input
segments to their tier projections (if they have one).
In Fig. 2, E(x,t) = {(x1,11), (x5,%2)}. The final
output sequence is generated by iterating over each
(xi,t;) € E(x,t) and replacing each x; with ;.

2.2 Learning

We give D2L’s pesudocode in Alg. 1, and visualize
a toy example in Fig. 3. The input is a set of input-
output pairs, and a set of alternating segments A
and their alternating features F (which are any fea-
tures that vary across the segments in A). D2L first
initializes the tier to contain all segments. Conse-
quently, local generalizations like (1) are a special

1Examples in Figures 2-3 use artificial language data from
Finley (2011); cf. § 3.1.1 for details.

2Spreading in both directions can be modeled with two
rules, one applied in each direction.



Algorithm 1 D2L

Input: pairs V, alternating segs A and feats F'
. T« X

> Initialize tier to all segments

22D« 0 > Initially delete no segments
3: while 7T # 0 do

4: L < {5 : s precedes somea € AonT}

5: R « {s : s follows some a € AonT}

6: rp=m(A,F)/L__oproj(-,T) »> Leftrule
7: rr =m(A,F)/__Roproj(-,T) > Rightrule
8: r = argmax,. gy, .} acc(r)

9: if acc(r) > 6 then

10: return r

11: N—LUR

12: D < D U {s € N : harmonizing with s fails}
130 C = argmin , cjass c:pccaanc=0y [Cl

14: T<—T\C

INPUT
/Iupe- U/ 9 [IUpeIU] A={ I}
V4/foku-su/ = [Joku[u] ’
F = {ant}

/[ito-su/ =2 [[itofu]

T=% < esu> < usu> <[itosu>
Iteration 1
T = [+cons] <|ps> </ks> <[ts>

Iteration 2
T = [+sib]
Iteration 3
Output: r(x) = m({s, [}, {ant}) /{J} _ © proj(x, [+sib])

Figure 3: Example of D2L.

<[_> <j_> <L>

case of D2L. Next, the while loop begins. Left
and right rules are constructed with the current tier
T; the most accurate is selected and compared to
a threshold 6. This threshold could be 100% accu-
racy or something more tolerant to exceptions, like
the Tolerance Principle (Yang, 2016). If the rule is
accurate enough, it is returned and the algorithm
is finished. Otherwise the tier is updated § 2.2.1.

2.2.1 Updating the Tier

Because the segments, A, must be targeted by the
rule, they must be on the tier. The set N contains all
segments adjacent to an alternating segment on the
current tier projection. A subset of these, D C N,
contains any tier-adjacent segment that cannot be
harmonized with. This can be because the segment
is not specified for the feature(s) F (e.g., a sibilant

cannot take an ‘ant’ feature from a vowel), or be-
cause it leads to the wrong surface segment (e.g., if
/s/ takes /p/’s ‘ant’ feature, it will surface as [s], but
may have been supposed to surface as [[]). These
segments cannot be on the tier. Thus, D2L takes
the smallest natural class C that contains all of D
but none of A, and removes this from the tier.

3 Experiments

3.1 Human-Like Behavior

We first compare D2L to human learners in Finley
(2011)’s artificial language experiment.

3.1.1 Background

Finley (2011) presented participants with training
data: a <stem, suffixed> pair where the suffix sibi-
lant harmonized with the stem sibilant across a
single intervening vowel (5a). Learners would not
generalize to novel cases where non-sibilant conso-
nants also intervened (5b), choosing—in a forced-
choice two-alternative test—the non-harmonizing
option as often as a control group did.

(5) a. /diso-su/ — [disosu]
/nesi-su/ — [nesisu]
/pifa-su/ — [pifaju]
/kuj_“o—gu/ — [kuioj_‘u]

b. /fuko-su/ — [Jukosu]

These results are consistent with the view that
learners constructed a [+cons] tier, since this would
render the training sibilants (5a) adjacent, but har-
mony for the test sibilants (5b) would be blocked
by the non-sibilant consonants.

In contrast, if presented with training data where
sibilants harmonize across both intervening vowels
and non-sibilant consonants (6a), learners general-
ized to cases where only a vowel intervened (6b).

(6) a. /suge-su/ — [sugesu]
/sone-su/ — [sonesu]
/Iupe—gu/ — [[upelu]
/Jako-su/ — [[ako[u]

b. /kufa-su/ — [kufafu]

In this case, the results are consistent with the
view that learners constructed a [+sib] tier, since
this is needed to render the training sibilants (6a)
adjacent, and the test sibilants (6b) would also be
adjacent on the [+sib] tier. Together, these results
suggest that learners construct tiers in response to
the data they are exposed to.



3.1.2 Setup

We ran D2L on the 25 train instances from Finley
(2011), for each setting (5)-(6) described above
(§ 3.1.1). We treated the underlying affix sibilant
as unspecified [+ant], and used D2L’s output as its
choice in the forced-choice two-alternative test.
As comparison models, we used Goldsmith and
Riggle (2012), which we call GR, and the finite-
state model of Jardine (2016); Jardine and Heinz
(2016), which we call FS. GR is an information-
theoretic model, which uses a two-state hidden
markov model to induce a tier, and then fits a proba-
bilistic phonotactic model with a Boltzmann distri-
bution, which incorporates information from both
string and tier bigrams. FS attempts to induce a tier
strictly-local finite-state acceptor (FSA) that can
accept or reject strings as grammatical. We used
the python implementation from (Aksénova, 2020).
Since these models are phonotactic models, we ran
both choices of the forced-choice two-alternative
test through the models and used the one that is
scored higher as the models’ respective choices.

3.1.3 Results

Results are reported in Tab. 1. The HUM row gives
human results, with a ‘v’ wherever the experimen-
tal group chose the harmonizing test choice over
the non-harmonizing choice significantly more of-
ten than the control group (as measured in the
original study); ‘X’ appears elsewhere. For com-
putational models, ‘v’ marks results where the
model chose the harmonizing test choice over the
non-harmonizing at a rate significantly greater than
chance (=>50% accuracy).

Only D2L matches the results of human learn-
ers, learning a [+cons] tier in the first experiment
condition and a [+sib] tier in the second.

Neither GR nor FS succeed in learning a mean-
ingful tier on 25 instances, and consequently
cannot generalize from the training data to test
instances—even of the type that humans did.

McMullin and Hansson (2019) performed sim-
ilar experiments, involving regressive liquid har-
mony. D2L is the only model to match human
performance on those experiments as well, but we
omit the results due to space limitations.

3.2 Learning Natural Language Alternations

We present preliminary results running D2L on
two natural language alternations: vowel harmony
in Turkish (Kabak, 2011) and Finnish (Ringen
and Heindmiki, 1999). Both languages exhibit a

Table 1: Finley (2011) Sibilant Harmony

Train CVSV-SV Train SVCV-SV
Model | CVSV-SV  SVCV-SV  SVCV-SV  CVSV-SV
HUM v X v v
D2L v (1.0) X(0.0) /(1.0 v(1.0)
GR X X X X
FS X X X X

Table 2: Turkish and Finnish Vowel Harmony

Language Tier Learned Accuracy
Turkish [—cons] 1.0
Finnish [—cons] \ {i, e} 1.0

[+back] vowel alternation: affix vowels harmonize
with the closest stem vowel. All vowels partici-
pate in Turkish; {i,e} are neutral in Finnish. Using
frequency-annotated data from the MorphoChal-
lenge (Kurimo et al., 2010), we ran D2L on the
200 most frequent words from each language (sep-
arately). As a proxy for morphological boundaries,
we treated each word’s first vowel as fully specified
and treated all following vowels as underspecified
for their [+back] feature (Van der Hulst, 2016).3
We treat underlyingly unspecified vowels as always
harmonizing. These results are preliminary; future
versions will improve on the realism of the setup.

We show the tier that D2L learned and the accu-
racy of the resulting rule in Tab. 2. Accuracy was
computed over the 1K most frequent words, mean-
ing the 200 training words and 800 novel words.
D2L learns an appropriate tier for each language:
the vowel tier for Turkish, and the vowel tier minus
the neutral vowels {i,e} for Finnish.

4 Conclusion and Discussion

We presented a computational model, D2L, which
tracks adjacent segments in order to account for
phonological alternations. When these segments
are inadequate, D2L deletes the adjacent seg-
ments that failed to account for the alternation and
tracks the resulting, newly-adjacent dependencies.
This process, carried out iteratively until an ade-
quate generalization is discovered, learns non-local
phonological alternations consistent with human
behavior in artificial language experiments. Local
alternations constitute a special case, where no tier
is needed. Future work will apply D2L to a more
diverse range of natural language settings.

3Turkish has secondary rounding harmony for high vowels,
which we intend to model in future versions of this work.
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