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ABSTRACT

With the rapid progress of large language models (LLMs), multimodal frameworks
that unify understanding and generation have become promising, yet they face
increasing complexity as the number of modalities and tasks grows. We observe
that motion quantization introduces approximation errors that cap motion quality,
while unifying discrete text and continuous motion within a single-stream backbone
amplifies cross-modal interference. Motivated by recent multi-branch designs that
separate signals from different modalities, we propose MotionGPT3, a bimodal mo-
tion—language model for both understanding and generation. MotionGPT3 encodes
raw motion into a continuous latent space, thereby avoiding quantization-induced
artifacts, while leveraging the semantic prior of pretrained language models. A
dual-stream Transformer with shared attention preserves modality-specific routes
while enabling controlled, bidirectional information flow, which reduces interfer-
ence, stabilizing optimization, and empirically accelerates convergence without
degrading fidelity. For multimodal joint training, a generate-then-align three-stage
schedule further improves stability and limits cross-task interference. Experiments
show that MotionGPT3 achieves 2x faster convergence in training loss and up to
4x faster convergence in validation, while maintaining state-of-the-art performance
on standard motion understanding and motion generation benchmarks.

1 INTRODUCTION

Multimodal large language models (MLLMs) have recently achieved rapid progress in understand-
ing and generation across text, images (Team, 2024; Wu et al.| [2024a; |[Zhou et al., 2024)), au-
dio (Agostinelli et al., 2023} |Copet et al., 2023} |Liu et al.| [2024)), and video (Kondratyuk et al., 2023}
Zhang et al.,|2023a};[2024d)). Built on the strong semantic priors and in-context learning capabilities
of pretrained LLMs, these models capture long-range dependencies and compositional structure,
enabling few-shot transfer and controllable across modalities (Alayrac et al.,2022;|Chowdhery et al.|
2023; Dong et al., [2023} L1 et al., 2023; Touvron et al.,[2023). Toward Unified Motion-Language
Modeling. While most prior work has focused mainly on text-driven motion synthesis (Shafir et al.|
2023; [Tevet et al., [2022azbic; (Xin et al., 2023 |Zhang et al., 2024a), unified motion—language models
for both understanding and generation remain comparatively underexplored. Pursuing both tasks in a
single model demands representations and training strategies that respect the distinctive statistics of
human motion without sacrificing the reasoning benefits of language models.

Tokenizing motion into a fixed codebook, typically via VQ-based models, facilitates integration with
Transformer-based LLMs (Guo et al.| [2022c}, [Zhang et al., [ 2023b}; |2024c)), however inevitably intro-
duces quantization error, attenuating high-frequency components and degrading semantic-physical
consistency. More importantly, treating motion as "language" (Jiang et al., 2023} Wang et al., 2023}
Siyao et al.l[2022)) overlooks the gap between symbolic sequences and continuous trajectories (Wang
et al.| 2025b)). Consequently, cross-modal alignment often remains at a symbolic level and struggles
to capture the fine-grained kinematics demanded by nuanced linguistic semantics. In practice, limited
codebook capacity and training coverage further constrain realism and controllability.

Recent MLLMs tend to process multiple modalities within a single backbone and attach modality-
specific heads and supervision (Park et al., 2025} Teaml 2024; |Zhang et al.| [2024b; Zhou et al. 2024).
However, jointly optimizing multimodal objectives induces gradient interference and loss-scale
mismatch, which increases hyperparameter sensitivity, destabilizes training, and can erode language
competence (Driess et al.,|2023 [Kendall et al., [2018; [Tsimpoukelli et al.,|2021). Moreover, forcing
distinct modalities into a shared space erodes modality-specific information and inductive biases,
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causing negative transfer. For robust, controllable motion-language modeling, a method is needed
that (i) adopts representations respect the continuous nature of human movement and (ii) explicitly
balances multimodal, multi-objective training. Addressing these representational and optimization
bottlenecks is, therefore, key to advancing unified motion understanding and generation.

Continuous Motion Latent Space Our approach first replace the motion tokens with a continuous,
low-dimensional latent representation learned by a pretrained motion VAE (Xin et al [2023)). By
‘continuous’ we mean: (i) the latents are real-valued vectors rather than discrete code indices, and (ii)
the VAE induces a smooth latent manifold in which nearby points correspond to gradually varying
motions. Compared with VQ-based tokenization, this latent space is perceptually aligned with
the original trajectories yet computationally compact, avoiding quantization artifacts and preserves
high-frequency micro-dynamics for efficient and stable motion synthesis.

Diffusion Bridge within the LLM Framework Autoregressive generation and cross-entropy—based
supervision in LLMs presumes discrete token targets and is therefore ill-suited to continuous motion
latents. Conditioned on the LLM’s hidden states, we further attach a lightweight diffusion head that
perform denoising directly in the motion latent space to predict motion VAE latents, which the motion
decoder then converts into motion sequences. Operating in a low-dimensional latent domain with a
relatively small expert, this diffusion scheme bridges the gap between LLM hidden states and motion
latents while only brings little overhead in both training and inference.

Bimodal Architecture Following Mixture-of-Transformers (MoT) (Liang et al., [2024)), we treat
human motion as a second modality and introduce a motion branch symmetric to the language
backbone. The two independent branches interact via shared attention layers, yet retain modality-
specific embeddings and allow each module to be guided by its own objective. This bimodal design
mitigates interference between modalities and preserves each modality’s structure, thereby enabling
high-quality motion understanding and generation within a unified framework.

Three-Stage Training To effectively model motion branch under guidance of a pre-trained language
model, we design a three-stage training scheme. First, we perform Uni-task Pretraining. with the text
branch frozen, the motion branch is pre-trained on text-to-motion generation. Next, in Cross-Modal
Alignment, motion-to-text and motion prediction objectives are introduced to align two branches.
Finally, all parameters are optimized in Joint Fine-Tuning.

‘We summarize our contributions as follows:

 Latent diffusion for motion. Unlike quantization-based pipelines (Zhang et al. [2023bj
2024c), we integrate latent diffusion (Rombach et al.| 2022; Xin et al., [2023)) into autore-
gressive backbone via a diffusion head, bridging the continuous motion with the next-token
prediction framework for higher-fidelity and diverse synthesis.

* Architecture and training. We propose a bimodal motion-language framework with per-
modal branches communicating through shared attention, reducing interference while pre-
serving modality-specific intelligence. A three-stage generate-then-align scheme further
stabilizes joint training and curbs negative transfer.

* Results and efficiency. Under comparable settings, MotionGPT3 achieves state-of-the-art
performance on both text-to-motion and motion-to-text tasks, within a unified framework,
while reducing training time by approximately 2-3x.

2 RELATED WORK

Human Motion Modeling Early approaches leverage strong text encoders (Li et al.| 2022} |Radford
et al., 2021; |Raffel et al.;,2020; |Sanh et al.,2019) to develop motion—language understanding/retrieval
via shared embeddings (Guo et al.| [2022¢; Tevet et al.| [2022a; Yin et al.||2024) or contrastive learning
(Chen et al., 2024; |[Petrovich et al.l [2023)). Recent methods (Athanasiou et al.,[2024; |/Cohan et al.,
2024} |Shafir et al., 2023} [Tevet et al., 2022b; [Xin et al., 2023; Zhang et al.,2023c;|2024b)) advance text-
to-motion generation with diffusion backbones (Ho et al.| 20205 Song et al.,2020), either operating
directly on raw motion sequence or reconstructing a VAE latent. Working in a compressed latent
space, LDMs (Rombach et al.| 2022) keeps training computationally cheaper and inference faster
while maintaining synthesis quality. In parallel, to fit next-token—prediction recipes in large language
model (LLM), several works discretize motion with VQ-VAE (Esser et al.,|2021;|Van Den Oord
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et al.| 2017)) into token indices, enabling transformer-based generation (Zhang et al.,[2023bj;2024c};
2025). However, quantization induces approximation error and a "symbolic—continuous mismatch"
that attenuates fine-grained kinematics and limits controllability, while refined tokenization such as
residual VQ (RVQ) (Guo et al}2024)) and post-training schemes (Wang et al., 2025b) only partially
allieviate these issues and cannot fundamentally avoid the numerical and semantic discontinuities
induced by tokenization. Accordingly, we adopt an approach that interface language models directly
with unquantized VAE latent representations.

Human motion modeling has evolved from task-specific designs to unified frameworks for multi-
modal understanding and generation. Recent motion models (Jiang et al., [2023}; |Park et al., 2025
Wang et al.| 2024} Wu et al.} 2025) adopt single-stream LM backbones with discretized motion tokens
to support bidirectional text-motion mapping, and have been attended to other modalities such as
music (Luo et al.| 2024; |You et al., [2024). In parallel, language-centric multimodal frameworks
extend LLMs beyond text via lightweight adapters and cross-attention conditioning, offering a generic
recipe for vision- and audio-grounded reasoning (Alayrac et al.,[2022; [Li et al., 2023} |Copet et al.,
2023; |L1u et al.l|[2023a)). Works such as NEXT-GPT (Wu et al., 2024b) and Janus (Wu et al., 2024 a;
Ma et al., [2024)) employ pretrained encoders/decoders to map inputs into modality-specific latent
spaces and attach adapters for flexible multimodal generation. In vision-language, Chameleon (Team,
2024) and Transfusion (Zhou et al., [2024) discretize or encode images into token sequences to
support interleaved text-image training, while Show-o (Xie et al.l |2024)) and Fuyu (Bavishi et al.|
2023) employ masked or causal attention for joint reasoning. Despite their versatility, single-stream
architectures often suffer from cross-modal interference, limiting scalability and robustness. Even
with carefully tuned objectives, newly introduced modalities can disrupt existing representations,
underscoring the challenge of preserving modaliti-specific capability while scaling to new domains.

Mixture-of-Experts and Multi-Stream Architecture address these limitations by routing inputs to
modality-specific experts while maintaining a shared fusion interface (Alayrac et al.,2022; Li et al.,
2023; [Tsimpoukelli et al., 2021). This separation reduces gradient interference between modalities,
and enables branch to be guided by its own objective (Liu et al., 2021} [Sener & Koltun, |[2018]), and
simplifies the introduction of new modalities. These insights motivate hybrid strategies (Cho et al.}
2024; [Shi et al.| [2025; [Wang et al., [2025a) that combine discrete and continuous representations
and decouple modality-specific encoders with minimal modification on the LLM backbone, thereby
enhancing alignment and expressiveness. Mixture-of-Transformers (MoT) (Liang et al. [2024)
instantiates this idea with modality-specific Transformer experts coupled through shared attention,
facilitating modular training and reducing interference when incorporating new modalities. Guided
by these observations, we adopt a MoT-style architecture that isolates motion representation learning
while leveraging the language competence of pretrained LMs (Bai et al.,[2023; [Radford et al., 2019).

3 METHOD

To couple motion understanding and generation into language-centric LLMs, we observe that although
discretization in prior unified systems (Jiang et al., 2023; [Wang et al., 2024} |Wu et al., [2025)
facilitates reuse of text-style training and inference pipelines, it inevitably removes fine-grained
details and complicates optimization. Moreover, single-stream backbones exacerbate cross-modal
interference and yield imbalanced training. We circumvent these limitations by representing motion
in a continuous, perceptually faithful VAE latent space (Sec. [3.1)) and adopting a hybrid motion—text
backbone that processes the two streams separately while permitting controlled interaction via
shared self-attention (Sec. @]) On top of this backbone, we attach a diffusion head conditioned
on LLM hidden states to bridge language and motion latents, enabling bidirectional understanding
and generation (Sec. [3.3). Finally, together with a three-stage training schedule (Sec. [3.4), our
MotionGPT3 avoids quantization bottlenecks and improves training and inference efficiency while
maintaining generation quality.

3.1 MOTION REPRESENTATION IN CONTINUOUS TOKENS

To align motion with the autoregressive generation paradigm of large language models (LLMs) (Bai
et al.| |2023} Radford et al., [2019; |Raffel et al., [2020; [Touvron et al., 2023)), previous approaches
typically descretizes motion with vector-quantized autoencoders (Esser et al.,[2021; Van Den Oord;
et al., [2017), converting a N-length sequences into latents y € R"™*% and replace each vector
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Figure 1: MotionGPT?3 introduces hybrid motion-language model that takes motion as a second
modality and processes the data through a new branch, with cross-modal attention mechanism
to communicate with text branch (Sec.[3.2). We leverage a VAE network for continuous motion
representation (Sec. , and design separate training objective for each modality (Sec. .

y* € RY by its nearest code e, from a learned K-entry codebook. The corresponding indexes
k%™ then serve as tokens for LLM training (Zhang et al.l 2023b; Jiang et al.,|2023; Wang et al.|
2024).While they integrate cleanly with standard next-token prediction objectives in LLMs such as
cross-entropy, quantization process inevitably introduces approximation error and disrupts motion
continuity, weakening fine-grained dynamics and constraining controllability. |Guo et al.| (2024)),
equiped with residual vector quantization (RVQ), leverages multiple codebooks whose decoded
latents are summed to reduce information loss. In parallel, Wang et al.| (2025b) explores refined
post-training tokenization. However, neither strategy fundamentally resolves the numerical and
semantic discontinuities inherent to discretization.

In contrast, we adopt a continuous latent space learned by a motion VAE. Given a N frame motion
sequence m!" ", the encoder £ map m into a compact continuous latent vector z € R¢, and the
decoder D reconstructs m'*M = D(z) = D(E(m!*™M). The VAE is trained once with a reconstruction
term (optionally including kinematic losses on pose and velocity) and a KL regularizer (Kullback &
Leibler| |[1951) to prevent high-variance latents and promote a smooth manifold. This compressed,
continuous representation learns the inherent structure of z, and preserves subtle variations and
maintains numerical and semantic continuity, while providing a compact domain in which our
downstream generator operates. Further details can be found in the supplement.

3.2 BIMODAL MOTION-LANGUAGE FRAMEWORK

To accommodate the distinct characteristics of language and motion while enabling efficient cross-
modal interaction, we augment a decoder-only transformer backbone Radford et al.[|(2019) with a
parallel motion branch. Unlike single-stream designs that merge all modalities into one pathway
Jiang et al.| (2023); [Wu et al.| (2025)), our architecture preserves modality-specific routes: a text
branch 7 and a motion branch M. Each branch maintains its own embeddings, feed-forward blocks,
and normalization, and information exchange occurs only in shared self-attention layers (Alayrac
et al., [2022; |Shi et al.| [2025)). The motion branch is initialized from scratch and trained primarily
under its own objective, thereby capturing motion-specific inductive biases and reducing cross-modal
interference during multimodal training (Yu et al., [2020; [Zhou et al.| [2023]).

Hybrid Sequence Route As illustrated in Fig. |1} given an input sequence S = s'*¥, each element is
embedded either as a text embedding 7; or as a motion latent z;, with a routing indicator ¢; € {0,1}
dispatches them to 7 or M. The branches compute hidden states h; and h,,, seperately, which
are then reassembled in input order for shared self-attention layers. This hybrid routing supports
interleaved text—-motion processing without collapsing modalities into a single embedding space,
laying the foundation for high-quality, condition-aware generation.
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Figure 2: We propose a three-stage alignment strategy for our hybrid motion-language model: (a)
The text branch is frozen, and only motion output is supervised. (b) Motion reasoning is introduced
to further align the motion branch with language, with supervision on both modalities. (c) All
modules are jointly fine-tuned with text branch unfrozen. (d)(e) shows inference time behavior of
two branches which process data only with the same modality tags (differtiated by colors). Each
rectangle block represents for a whole text/motion branch, while shadowed ones denote inactive
modules. Modalities are color-coded: blue for text and . Shadowed orange squares
represent , and orange-outlined squares indicate boundary tokens or

Interfaces for Continuous Motion Latents Because that the continuous motion representation (Xin
et al.}2023) does not rely on a tokenized vocabulary or codebook, the index-to-embedding lookup
and softmax decoding employed for text cannot be reused for motion. We therefore introduce
motion-specific interfaces that bridge continuous latents and transformer hidden states. First, we
augment the text vocabulary with a small set of motion-boundary/holder tokens (i.e. ,

) to mark motion spans and I/O positions in interleaved sequences as in
Zhou et al. (2024) Second, a Motion Understanding Head (MUH) linearly maps motion latents into
the Transformer’s input embedding space for captioning and prediction. Finally, a lightweight Motion
Generation Head (MGH) projects hidden states back to the VAE latent space via diffusion (Ho et al.,
2020; Rombach et al., 2022} |Xin et al., [2023)).

3.3 MOTION DIFFUSION IN AUTOREGRESSIVE BACKBONE

Continuous representations are inherently misaligned with the discrete nature of token-based genera-
tion in LLMs, and requires more sophisticated modeling to support generation. Inspired by recent
advances in diffusion-based generative modeling (Tevet et al., 2022b; Song et al., |2020; Rombach
et al.| 2022} [Li et al., [2024a), we attach a lightweight diffusion module H to bridge this gap. H
predicts motion latents directly from the backbone’s hidden states, enabling integration of continuous
motion representation within an autoregressive framework.

Diffusion Process Given a ground-truth motion sequence x, we obtain the target latent zp = () €
R? via the motion encoder £. We adopt a fixed forward noising process over t € {1,...,7} with
Gaussian perturbations: z; = v/az z0 + v/1 — &z €, where € ~ N(0,1) and &y = HZ:1 «, is the
cumulative product of noise scheduling coefficients. A time-aware denoiser ‘H is conditioned on the
Transformer hidden states from the motion stream (denoted h.,,) and learns to reverse the diffusion
process. Conditioning is implemented via lightweight linear projections into the denoiser inputs,
following recent practice (Ho & Salimans| |2022; |L1 et al., 2024a). We train ‘H with the standard

DDPM objective (Ho et al., 2020; Song et al.l 2020): Lair = B, ¢, |lle — H(zt, t, hm) ||§] )
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Inference The text branch autoregressively generates tokens until a motion start marker

is produced. We then insert K placeholder tokens (i.e., ) to elicit the span-aligned
hidden states 2%+ % in a single forward pass. The diffusion head runs the reverse process conditioned
on h¥*+K to sample the noise-free motion latent 2o, which the VAE decoder D finally decoded to
the raw motion sequence. As in [Team| (2024)), generation then resumes in the text stream with a
concatenated until end-of-sequence. Operating on compact motion latents, this diffusion head
adds only minimal overhead during training and inference.

3.4 TRAINING PROCEDURE

We first train a motion VAE to obtain a compact, continuous latent space, following prior works (Rom/
bach et al., [2022; [Xin et al., |2023)). The bimodal backbone then adopts a pretrained decoder-only
LLM (Radford et al., 2019) as the text branch 7. As described in Fig. E], the motion branch M is
initialized from scratch and brought into alignment with 7 through a three-stage schedule.

Stage I: Text-to-motion pretraining We begin by pretraining M on text-to-motion, while freezing7 .
This provides stable linguistic conditioning and biases the model toward motion-specific semantics.
In this stage, M conditions on the frozen language representations and is trained via diffusion, to
synthesize VAE motion latentss, where diverse text—motion pairs encourages a rich and flexible
mapping from language to the latent space (Rombach et al.| [2022; Xin et al., 2023)).

Stage II: Cross-Modal Alignment Keeping 7 frozen, we introduce additional objectives to couple
understanding and generation. Concretely, training includes multiple tasks of text-to-motion (T2M),
motion-to-text (M2T), and motion prediction. Following instruction-style formulations in|Jiang et al.
(2023)), these tasks are further presented as prompts covering generation, captioning, prediction, and
inbetweening. Multi-task optimization fosters bidirectional alignment without forcing a single shared
representation and encourages motion representations that are semantically coherent with language
features (Alayrac et al.| [2022} |Li et al.| 2023).

Stage III: Joint Fine-Tuning Finally, we unfreeze 7 and fine-tune all parameters via instruction
tuning on a mixture of paired text—-motion data and, optionally, text-only prompts (Dai et al.| 2023}
Liu et al., [2023b; [Wei et al., 2021)). Including text-only prompts can further improve language
competence for downstream applications.

4 EXPERIMENTS

We empirically validate MotionGPT3, a dual-stream architecture for efficient, language-grounded
multimodal motion understanding and generation, across motion-centric tasks. Dataset configurations,
evaluation metrics, and implementation details are summarized in Sec.[d.1] Begin with analyzing
optimization dynamics and inference efficiency via training loss and validation curves (Sec. d.2),
we then present controlled ablations that isolate the contributions of the continuous VAE motion
representation and the bimodal design (Sec. [d.4). Next, We benchmark MotionGPT3 on text-to-
motion generation and motion-to-text understanding, comparing against both specialized single-task
methods and unified state-of-the-art systems (Sec.[4.3). Finally, we ablate the proposed three-stage
training scheme (Sec.4.4). Additional qualitative results are provided in the supplement.

4.1 EXPERIMENTAL SETUP

Datasets We train and evaluate our model mainly on HumanML3D (Guo et al.,[2022b), alarge-scale
benchmarks for text-motion generation and understanding, and KIT-ML (Plappert et al.,[2016)) with
3,911 motionsequences. For comparison with prior works (Xin et al., 2023} Jiang et al.,[2023), we
adopt the 263-dim pose proposed in|Guo et al.|(2022b), which combines joint velocities/ positions/
rotations, and foot-contact signals, following the standard data split.

Evaluation Metrics We evaluate two tasks. For the fext-to-motion, we follow the previous
works (Guo et al.|[2022¢} Jiang et al.l 2023} |Xin et al.| 2023} |[Zhang et al.l 2023b) to report motion
quality (FID), diversity (DIV and MM), and text-motion alignment (R-Precision and MMDist). For
motion-to-text, we use both alignment metrics (R-Precision and MMDist) and linguistic metrics
from NLP (Bleu (Papineni et al., [2002), Rouge-L (Lin, |[2004), CIDEr (Vedantam et al.| 2015}, and
BertScore (Zhang et al., 2019)). See Sec. for metric definitions and computation details.
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Figure 3: Training loss and validation curves on motion generation on HumanML3D for architecture
variants of dual-stream and single-stream and representation variants of VAE and VQ latents. The
right figures illustrate validation metrics of R-Precision TOP 3 (R@31) and Multimodal Distance
(MMDist]). Triangle markers indicate matched-loss checkpoints (~0.22). Our hybrid architecture
with continuous motion representation helps accelerating convergence for about 2x, as well as
achieves better quality especially in early training stage.

Implementation Details Our framework comprises three main components: a motion VAE, a
lightweight diffusion head, and a dual-stream backbone. We adopt the Transformer-based motion
VAE of Xin et al.| (2023)), where both encoder and decoder consists of 9 layers and 4 heads with
skip connections, producing a 1 x 1 x 256 latent per motion sequence. Our Diffusion Head H is
implemented as a 3-layer MLP with ResBlock-style layers and hidden dimension 1024, following |Li
et al.| (2024a). We train diffusion with a scaled linear noise schedule for 1000 denoising steps, while
inference uses 100 steps by default. The text and motion branches share the GPT-2 base configuration
but use disjoint parameters, both are decoder-only with 12 Transformer layers, model dimension 768,
and MLP dimension 3072, unless stated otherwise. The text branch is initialized from a pretrained
124M GPT-2 checkpoint, while the motion branch from scratch, yielding total 238M parameters.

Training Protocol We use AdamW for all components, with a learning rate of 1 x 10~ for the
motion backbone and 2 x 10~ for the diffusion head. Training uses a mini-batch size of 32 on 2
NVIDIA RTX 3090 GPUs, with identical training/inference settings on HumanML3D (Guo et al.,
2022b). The motion VAE is trained with a learning rate of 1 x 104, batch size 256, over 150K
iterations. The motion-language backbone is trained for 100k iterations in text-to-motion pretraining,
followed by 300k iterations for cross-modal alignment.

4.2 TRAINING EFFICIENCY WITH BIMODAL ARCHITECTURE AND CONTINUOUS LATENTS

To assess our two main design choices: (i) the dual-stream (bimodal) backbone and (ii) continuous
representation from motion VAE, we analyze training dynamics on the text-to-motion task under
identical settings on HumanML3D. Fig. [3| plots training loss and validation metrics over time for
three variants of single-stream+VAE, dual-stream+VAE, and dual-stream+VQ.

We observe that i) Discrete VQ latents plateau at a lower quality ceiling. The VQ baseline (VQ +
bimodal; green curve) reaches ~0.5 R-Precision Top 3 (R@3) early in training and then saturates,
yielding substantially lower R@3 and higher MultiModal Distance (MMDist) than the VAE-based
counterparts. This likely stems from quantization-induced information loss (Guo et al.| 2024; Wang
et al.,[2025a)) and tokenization that disrupts the semantic continuity of motion. ii) Bimodal design
accelerates optimization. Compared with single-stream backbone, the dual-stream variant reduces
diffusion loss roughly 2x faster and sustains superior validation performance over the entire training
trajectory, in terms of R@3 and MMDist. iii) Superior quality at matched optimization states. At
comparable diffusion loss, the dual-stream model still leads. For instance, we mark by triangles a
loss of ~0.22, reached at ~20 epochs for dual-stream model and ~40 epochs for the single-stream
model, the former achieves higher R@3 and lower MMDist.

We attribute these effects to modality-aware optimization: the motion branch learns motion-specific
semantics while the language branch focuses on textual cues. Decoupling the streams and supervising
them separately mitigates gradient interference and avoids the representational compromises common
in single-stream models (Liu et al., 2021} Sener & Koltun, 2018} Yu et al.,[2020). Although a shared
space might be expected to bring modalities "closer", in practice single-stream coupling can entangle
modality structure and yield counterintuitive outcomes. In summary, continuous VAE latents within a
dual-stream backbone strike a favorable efficiency—fidelity trade-off, enabling high-quality motion
synthesis with reduced training time.
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Table 1: Evaluation of text-guided motion generation on HumanML3D (Guo et al.|[2022a)). Rows are
grouped by training tasks: Gen. only for generation-only and Gen. & Und. for both. Real is obtained
by ground-truch motions, and — indicate values closer to Real are desirable. ¥ marks our single-task
model trained for 200 epochs, and MotionGPT3 is a three-stage model trained with unified tasks.
Best and second-best results are highlighted in bold and underline.

Types Methods R@l1 R@2 R@3 FID| MMDist]  Diversity—  MModality?
Real 0.511  0.703  0.797  0.002 2.974 9.503
T2M-GPT Zhang et al. |(2023b) 0.491 0.680 0.775 0.116 3.118 9.761 1.856
DiverseMotion Lou et al. [(2023] 0.515 0.706 0.802 0.072 2.941 9.683 1.869

Gen. only MotionDiffuse[Zhang et al. (2024a) 0.491 0.681 0.782  0.630 3.113 9.410 1.553
MoMask |Guo et al. [(2024] 0.521  0.713  0.807 0.045 2.958 9.620 1.241
MotionGPT37 0.533 0.731 0.826 0.239 2.797 9.688 1.560
TM2T Guo et al. |(2022c] 0.424 0.618 0.729 1.501 3.467 8.589 2.424
MotionGPT Jiang et al. (2023) 0.492 0.681 0.733  0.232 3.096 9.528 2.00

Gen. & Und.  MoTe|Wu et al. |(2024c) 0.548 0.737 0.825 0.075 2.867 - 2.399
MG-MotionLLM|Wu et al. |(2025) 0.516  0.706  0.802  0.303 2.952 9.960 2.125
MotionGPT3 0.553 0.747 0.837 0.208 2.725 9.700 1.018

Table 2: Evaluation of text-guided motion generation on KIT-ML (Plappert et al.| 2016).

Methods R@]1 R@2 R@3 FIDJ MMDist]  Diversity— MModalityt
Real 0424  0.649 0.779  0.031 2.788 11.08 -
MLD [Xin et al. (2023} 0.390 0.609 0.734  0.404 3.204 1.080 2.192
MotionGPT Jiang et al.|(2023) 0.366  0.558  0.680  0.510 3.527 10.350 2.328
MotionDiffuse|[Zhang et al. |(2024a)  0.417  0.621 0.739 1.954 2.958 11.100 0.730
ReMoDiffuse|Zhang et al. |(2023c) 0.427 0.641 0.765 0.155 2.814 10.800 1.239
MoMask|Guo et al. (2024} 0433  0.656 0.781 0.204 2.779 - 1.131
MoTe Wu et al. |(2024c) 0419  0.627  0.741 0.256 3.216 - 2.615
MoGenTS |Yuan et al. (2024} 0445 0.671 0.797  0.143 2711 10918 -
MotionGPT37 0456 0.680 0.803 0.227 2.704 11.026 0.9036

4.3 COMPARISONS

By modeling human motion as a second modality alongside language, our bimodal motion-language
model supports both text-to-motion (T2M) and motion-to-text (M2T). We report results for two
settings: (i) single-task models trained specifically for target task (MotionGPT3") , and (ii) a unified
model (MotionGPT3) trained on both tasks with the three-stage scheme .

Text-to-Motion Generation The text-to-motion task involves generating realistic and diverse
motion sequences conditioned on natural language descriptions. We evaluate a single-task generator
MotionGPT37 as well as a multi-task generator MotionGPT3. We compare MotionGPT37 against
recent methods (Guo et al., 2022bjc; |Lou et al., 2023 [Jiang et al.| 2023} Xin et al., 2023} [Zhang
et al.,[2023bic; |Guo et al., 2024} (Wu et al., |2024c; |Li et al., [2024b; Zhang et al., [2025) and evaluate
the performance on both HumanML3D and KIT-ML datasets. Following |Guo et al.|(2022b), each
evaluation is repeated 20 times and reported with 95% confidence intervals. As shown in Tab.[T|and
Tab. 2] MotionGPT31 matches or exceeds generation-only baselines (Zhang et al.l[2023b; [Lou et al.|
2023};|Guo et al.}2024) on alignment metrics (R@k, MMDist), with competitive FID and diversity.
Further, the unified MotionGPT3performs better than recent unified systems (Guo et al., [ 2022c}; |Jiang
et al.,[2023; Wu et al., |2024c} [2025). See comaprison with more approaches in Sec. @

Motion-to-Text Understanding The motion-to-text task involves understanding motion sequences
and generating semantically appropriate textual descriptions. We train a single-task captioner
MotionGPT3' for 100 epochs and compare with recent SOTA (Guo et al., [2022c} Jiang et al.| 2023}
Li et al., [2024b; |Wu et al.||2024c). Following|Jiang et al.|(2023)), we evaluate on the raw ground truth
texts using the TM2T protocol (Guo et al., 2022c). Results in Tab.|3|show that both MotionGPT3t
and MotionGPT3 achieve strong retrieval performance and language metrics. Notably, we observe a
marked reduction in Multimodal Distance (MMDist), indicating effective motion—language alignment
under the dual-stream design.
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Table 3: Comparison of motion captioning on HumanML3D (Guo et al., [2022a), evaluation follows
(Guo et al.l 2022c). MotionGPT3 { denotes our single-task captioning model trained for 100 epochs,
and MotionGPT3 is an unified model trained on both tasks with the three-stage scheme (Sec. [3.4).
Both variants achieve R@k on par with recent state of the art, and surpass the GT metrics.

Methods R@] R@2 R@3 MMDist| Bleu@lt Bleu@41 Rouge? Cider?T BertScore 1
Real 0.523 0.725 0.828 2.901 - - - -

TM2T (Guo et al.|[2022c) 0.516 - 0.823 2.935 48.9 7.00 38.1 16.8 322
MotionGPT (Jiang et al.[2023)  0.543 - 0.827 2.821 48.2 12.5 374 29.2 324
LaMPM2T (L1 et al.[|2024b) 0.547 - 0.831 2.808 47.8 13.04 37.1 28.9 32.7
MoTe (Wu et al.[|2024c) 0.577 - 0.871 2.649 46.7 11.15 374 31.5 30.3
MotionGPT3} 0.553 0.756 0.853 2.524 56.363 17.661 44.997  30.980 35.850
MotionGPT3 0.573 0.773 0.864 2.426 59.083 19.412 46.173  28.721 35.231

Table 4: Component ablations on HumanML3D for representation choice and architecture design.
Unified denotes a single-stream backbone, where one branch is shared by text and motion, as employed
in {Jiang et al.|(2023)), and Bimodal denotes a dual-stream backbone described in Sec. @} VQ and
VAE indicate discrete and continuous motion latents, respectively. For each configuration we train
separate models for motion generation (T2M) and motion captioning (M2T) under the same protocol
and report test-set metrics. All variants share the same GPT-2-style branch and hyperparameters. and
training is run for 100 epochs on M2T and 200 epochs on T2M. Best and second-best results are
highlighted in bold and underline.

Settings Text-to-Motion Motion-to-Text

R@1 1 R@3 1 MMDist | FID | R@11t R@31 MMDist| BertScore 1
Real 0.511%0:003 797£0.002 5 g7430.008 0.002%° 0.523 0.828 2,901
Unified+VQ 0.237%0:003 (g 435+0.003 5 gq+0.018 (5 493+0.014 - - - -
Unified+VAE ~ 0.501%F0-003 (. 799+0.:002 9 gq7+0.011  ( 4g9+0.017 (334 0.426 5.976 16.197
Bimodal+VQ  0.300%°:005  532%0:02 4 g37+0.077 (45440078 379  0.702 3.545 18.085
Bimodal+VAE ~ 0.533F0:002  (,826%0:003  2797%0.007 33940.008 0.553 0.853 2.524 35.850

T2M with Bimodal+VQ and Unified+V(Q is extended to 400 epochs to approach convergence.
M2T results for Unified+VQ is not reported are omitted because performance remained unevaluable after more than 400 training epochs.

4.4 ABLATION STUDIES

This section reports quantitative ablations. In contrast to training-curve analysis in Sec. {.2] we
evaluate final test-set performance on both text-to-motion (T2M) and motion-to-text (M2T). First, we
assess the contributions of a dual-stream backbone and continuous VAE motion latents by varying
one factor at a time. Then, we analyze the proposed three-stage training schedule and quantify its
effects We also examine the impact of hidden-state processing in the Diffusion Head H and the use
of classifier-free guidance (CFG). See Sec.|C|for more detailed experiments.

Model Design Tab. E] summarized test-set results on HumanML3D (Guo et al., [2022a). We evaluate
T2M and M2T separately and compare four variants obtained by crossing architecture (single- vs.
dual-stream) with representation (discrete VQ vs. continuous VAE). Under the same evaluation
protocol, replacing VAE with VQ or replacing a dual-stream backbone (Bimodal) with a single-stream
one (Unified) consistently degrades performance on both tasks. Notably, changing the architecture
change to Bimodal yields larger gains on M2T, whereas changing the representation to VAE yields
larger gains on T2M. This task-dependent sensitivity is consistent with Sec.[d.2} decoupling streams
mitigates cross-modal interference and benefits semantic-level alignment, while continuous latents
reduce quantization loss and improve synthesis fidelity for motion generation.

Cross-Modal Attention We further enable CMA in the last L layers and sweep L (Fig.[d). Increasing
L from 2 to 5 generally improves quality, reflected by lower FID scores and MMDist and higher
R-Precision. However, the trend is non-monotonic: we observe a slight drop at L = 6 in R-Precision,
relative to L = 5, may suggesting that late but not ubiquitous CMA is preferable. More results on
CMA schedules can be found in Sec.[C3l

Training Stage We ablate the three-stage schedule in Sec. [3.4] including 100k iters on text-to-
motion pretraining (SI), 300k iters on cross-modal alignment (SII), and 50k iters on joint fine-tuning
(SIII), and evaluate on both T2M and M2T. Results are summarized in Tab. [5} SI already yields
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Figure 4: Ablation on the number of cross-modal attention (CMA) layers for T2M on HumanML3D.
CMA is enabled in the last L layers (L € 1,...,6). Performance improves as L increases up to 5
layers, then shows slight degradation at 6, indicating a non-monotonically pattern.

Table 5: Ablation on training-scheme. Enabled stages are marked with v , and colors encode the text
branch updated or frozen. Best results are bold and second best are underlined.

Text-to-Motion Motion-to-Text
RTOP31 FID| MMDist] RTOPI{T Bleu@4t Bertf

Stage I StageII  Stage III

v X X 0.826  0.239 2.797 - - -

v v X 0.831 0.215 2.755 0.571 18328  33.993
v v v 0.837  0.208 2.725 0.573 19.412 35231
X v v 0772 0325 3.108 0.573 18.277  35.546

strong generation and provides a motion-specialized initialization. Optimization in SII confers
M2T capability and, importantly, further improves T2M, by —0.10 on FID and —0.2 on MMD.
indicating that explicit alignment benefits both directions. Without extra text-only supervision, SIII
adds small additional gains on M2T while preserving T2M, serving as a light joint refinement rather
than a substitute for S2. As shown in the last row of Tab. 5] a two-stage model that omits SI keeps
M2T largely intact but markedly degrades T2M, underscoring the role of S1 in learning motion-
specific features. Overall, the full three-stage schedule provides the best trade-off, delivering reliable
generation and captioning with well-aligned motion—language representations. Additional variants
are reported in Sec.[C.6] including experiments with an unfrozen text branch.

5 DISCUSSION

To address quantization-induced degradation and cross-modal interference in multi-objective training,
we present MotionGPT3, a dual-stream motion-language framework that unifies motion under-
standing and generation while preserving modality-specific inductive biases. By encoding motion
as continuous VAE latents and generating in latent space with a lightweight diffusion head, the
model avoids quantization artifacts and improves synthesis fidelity. The dual-stream Transformer
with shared attention enables controlled bidirectional exchange, which strengthens text—-motion
alignment, reduces cross-modal interference, and empirically accelerates single-task convergence
without degrading quality. For joint training of understanding and generation, a generate-then-align
three-stage training schedule further stabilizes optimization and mitigates cross-task interference.

Limitations and Failure Cases Fine-grained control cam fail on directional cues (e.g., left/right).
Because the current VAE yields a single latent per sequence, segment-level composition and local
semantic alignment for long motions are not explicitly supported. Generalization to out-of-domain
descriptions is constrained by data coverage. Potential remedies include incorporating diverse text-
only corpora in the final alignment stage, adopting stronger language backbones, and exploring
hierarchical or segment-wise latent representations to enable compositional control. Future Work
We will scale training to (i) larger, more diverse datasets, (ii) develop controllable motion with local
semantic alignment and segment-level for long-horizon generation, and (iii) evaluate the framework
with stronger language models and larger-scale training regimes to assess efficiency and robustness.
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APPENDIX

This appendix provides qualitative comparison results (Sec. [B), disccusion of continuous/ discrete
motion representation (Sec. [A), additional quantitative results and ablation (Sec. [C) on motion
branch size and connection type, motion supervision scheme, training stages. We also provide more
implementation details in Sec. |[D} Please note our examination of metrics report on TMR evaluator
(Sec.|[C.2), analysis on bimodal architecture (Sec.[C.3), and ablation on our training scheme (Sec.[C.6).

Website & Video A supplementary website provides visualizations of quantitative results, mo-
tion data, and demonstration videos. A standalone video is also available on the website and
at supp/website_video/static/videos/MotionGPT3/_Video.mp4, showcasing (i)
text-to-motion comparisons, (ii) motion-captioning comparisons, and (iii) additional results on motion
generation and captioning.

Code Example code files are available in the supplementary materials, which cover the training and
evaluation processes of our MotionGPT3 models, along with several example results.

A DISCRETE TOKEN VS CONTINUOUS TOKEN

Reconstruction Task We compare continuous latents from MLD VAE (Xin et al.,[2023)) with discrete
latents from VQ-VAE (Jiang et al., [2023) for motion reconstruction under identical settings. As
shown in Sec. @ VQ-VAE yields higher errors on MPJPE, PAMPJPE, ACCL, and APE/AVE for root,
trajectory, pose, joints, indicating reduced fidelity and temporal smoothness relative to the continuous
VAE. This gap is expected: quantization maps a continuous motion manifold to a finite codebook and
turns motion modeling into token classification, introducing unavoidable approximation error and
information loss. In practice, many distinct frames collapse to the same code (one-to-many mapping),
yielding ambiguous reconstructions and frame-wise noise that harms smoothness.

Table 4: Reconstruction performance of a continuous VAE (Xin et al.,2023)) versus a discrete VQ-
VAE (Jiang et al.,|2023)). The VQ-VAE shows consistently higher errors, consistent with information
loss introduced by quantized encoding and decoding. Sec. @ presents the metric definitions.

Method MPIPE PAMPIPE ACCL APE AVE

root traj pose joints root traj pose joints
VAE 43.906 31.356 593 0.0581 0.0504 0.0277 0.0619 0.0179 0.0177 0.0012 0.0185
vQ 46.828 33.668 7.629 0.0829 0.0804 0.0316 0.0930 0.0240 0.0239 0.0015 0.0253

On Discrete VQ Latents Recent work |Guo et al.| (2024) addresses the limitations of codebook
capacity using hierarchical Residual Vector Quantization (RVQ) with separate predictors for base and
residual tokens. |Wang et al.|(2025b) combines quantized and continuous latents via post-training
quantization. [Cho et al.|(2025) introduces a diffusion-based decoder that progressively maps discrete
tokens back to continuous raw motions, improving fidelity and smoothness, and uses the symmetric
Jerk Percentage Error (sJPE) to detect under-reconstruction and frame noise. Despite these advances,
discrete pipelines remain prone to expressiveness bottlenecks and token-induced jitter. We further
evaluate VQ and VAE latents within dual-stream architecture under single-task training. The results
(Tab. [5) consistently favor continuous representations for both generation and understanding. While
discrete codes facilitate token-based modeling, continuous representations better capture fine-grained
dynamics and motion continuity, achieving higher alignment and synthesis quality with fewer epochs.

Table 5: Discrete (VQ) vs. continuous (VAE) motion representations under single-task training. We
report both T2M on R@ 1, FID, MMDist, DIV and M2T on R@3, BLEU@ 1/4, ROUGE. With fewer
training epochs, VAE-variants achieve stronger alignment and better quality. VQ requires extended
training of 399 epochs while still remains behind on most alignment and language scores.

. Text-to-Motion Motion-to-Text
Representation
epoch R@I17 FID | MM Dist | DIV— epoch R@31T Bleu@1T Bleu@41  Rouge?
vQ 199 0.258  0.542 5.364 9.274 99 0.765 47.043 7.234 39.244
399 0.300 0.454 4.937 9.626 199 0.752 41.579 6.304 35.746
VAE 199 0.525 0.191 2.667 10.095 99 0.859 50.707 8.383 38.225
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“4A woman standing up throws “Person walks to the right and makes a  “A person squats down, her left
something forward, which makes u-turn clockwise and returns to the left ~ leg crosses her right leg, and then
one step forward with her right foot.” of her initial position facing away.” she stands back up.”
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Figure 5: Qualitative comparison of text-driven motion generation on HumanML3D (Guo et al.[,
[2022a)). Baselines ( (Jiang et al, 2023 [Guo et al.| 2024; Xin et al.| 2023)) are run with their official
released checkpoints. Red annotations (text, boxes, curves) highlight prompt—motion mismatches.
Our bimodal motion-language framework yields motions that with closer correspondence to the
textual prompt and smoother temporal coherence.
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Input {
Motions ‘

“a person who seems to evade

a person with his hands on his “figure walks forward 3 steps with something from their lefi side and run

Real

hips does two brief squats. arms straight in front of him. 4t @ insane pace.”
. “a person sits down in a chair and ., . . ., “aperson runs forward, then turns
MotionGPT stands up.” ‘person is walking down slowly. and runs to the right."
“a person is stand with their leg “a person walk forward with both “a person run forward and jump

TM2T W . ; P o

apart and arm bent at the elbow. arm raise above their head. over something.

“a standing to step slightly blegged vz];zaz;i“zg;ﬁ%g t;Z t?;:;nf;f “running fast against a small
Ours with right leg in a arched bend.” obstacle.”

in front of him.”

Figure 6: Example results on motion caption. The misalignment is hilighted with red.

Text-to-Motion Task
'someone execures a rounc,l’house ‘a figure steps backward cockily, “a person walks in a curved line.”
kick with his left foot. swinging their arms.
“A person runs to his right and then curves to the “Person runs forward, pauses, then
Q left and continues to run then stops.” continues running.”’

Motion-to-Text Task

i 3

“A person swings their left arm back to
the side and then throws something with
their right hand."”

“Person runs to right and then turns ‘A person raises their right arm
right, while rasing their right hand."” and puts it back down.”

Textual Question-to-Answer Task

Q Can you give me a random motion description?

“A person hops forward then turns counterclockwise and starts walking back.”
“A person hops four times, walking from right to left.”
“A person lifts both his hands and rubs them.”

Figure 7: Gallery for the results of MotionGPT3. Top: text-to-motion generation. Middle: motion-to-
text captioning. Bottom: textual question answering about motion. Examples are produced by our
unified model trained with instruction-based objectives (three-stage scheme). Animated visualizations
are provided in the supplementary video.

18



Under review as a conference paper at ICLR 2026

Generation Task (T2M) With the same 200 training epochs, the VAE representation delivers
substantially better quality than VQ, with 0.525 vs. 0.258 on R@1 and 2.667 vs. 5.364 on MMDist,
while maintaining competitive diversity(DIV). Extending VQ to 399 epochs reduces FID to 0.454,
however, it still lags in alignment, with R@1 0.300 and MMDist 4.937, indicating a lower quality
ceiling for discrete codes.

Understanding Task (M2T) At matched training over 99 epochs, VAE attains stronger retrieval
and language scores than VQ, with 0.859 vs. 0.765 on R@3 and 50.707 vs. 47.043 on BLEU@]1,
while ROUGE is comparable. Prolonged VQ training to 199 epochs unexceptedly reduces perfor-
mance across all language scores with R@3 dropping by 0.13 and BLEU@1 by 5.464, suggesting
optimization instability and poorer generalization under the discrete setting.

B  QUALITATIVE RESULTS

We provide qualitative comparisons for text-to-motion (T2M) Fig.[5| motion-to-text (M2T) Fig. [6]
and a multi-task gallery Fig.[7} To ensure fair visualization, we use a fixed list of prompts from the
HumanML3D test split; all clips are rendered at 20 FPS with identical camera and skeleton settings.
Baselines are run with the their official checkpoints. Overall, MotionGPT3 exhibits stronger smoother
transitions and text-motion alignment. Discrete-code variants tend to show token-induced frame noise
and temporal drift, whereas single-stream models can produce semantically inconsistent motions on
complex prompts. Additional examples and animations are provided in the supplementary video.

C ADDITIONAL EXPERIMENTS

This section provides supplementary evaluations that complement the main results. First, we report a
comprehensive comparison including additional generation-only (Gen. only) and unified dual-task
baselines (Gen. & Und.) (Sec.[C.I)) and further assess text-to-motion with the TMR retrieval evaluator
(Sec.[C.2). We then analyze design choices of the Cross-Modal Attention (CMA) (Sec.[C.3), examine
scaling effects of both language and motion branches (Sec. [C.4), and analyze the diffusion-based
supervision used for motion generation (Sec. [C.5). Fianlly, we evaluate the effectiveness of the
three-stage training strategy (Sec.[C.06).

C.1 QUANTITATIVE RESULTS

Tab. [6]reports the full text-to-motion results on HumanML3D, grouped by training regime (generation-
only vs. unified dual-task). Notably, evaluated on the HumanML3D dataset by T2M evaluator (Guo
et al.| 2022b), recent models consistently achieve very high scores, and several recent approaches
(Guo et al.| 2024; Zhang et al., 2025} |Li et al., 2024b; Wu et al., 2024c};2025), including MotionGPTS3,
achieve scores even above those of the ground-truth data (Real).

Table 6: Comprehensive comparison of text-to-motion generation on HumanML3D (Guo et al.,
2022a). We report generation-only models (Gen. only) here, and visualize unified dual-task models
(Gen. & Und.) in Fig.[8] Real denotes ground-truth statistics; arrows (—) indicate that values closer
to Real are desirable. T marks our single-task model trained for 200 epochs, and MotionGPT3 is the
unified three-stage model. Best and second-best results are bold and underlined.

Types Methods R@I R@2 R@3 FID| MMDist, DIV— MModality?
Real 0.511%:003  0.703%:003 7975002 0 002E0 2974008 g 503000
T2M (Guo et al.|[2022b) 0.457%:002  ,639F003  74E003 gg7E:002 334008 g qggH.002 5 gg.083
MLD (Xin et al.}2023] 0.481%:003 06735003 (g 772£:002 (473013 3 569+ 01 g 794F.082 9 4q3+.079
MotionDiffuse (Zhang et al.[2024a] ~ 0.491%:001  0.681F:001  .782%:001  (.630%:001 3113001 g 410049 553042
T2M-GPT (Zhang et al.|2023b) 0.491%:003  g8%003 o 775E002 g 116%:004 3918011 g 761081 grgE-0ll

Gen. only ReMoDiffuse (Zhang et al.]2023c] 0.510095  0.698%:006  .795E:004 g 103%:004 9 g74F016 g 18+ 075 7g5+-043
DiverseMotion (Lou et al.|2023] 0.515%:003  0.706%:002  .802%:002  (,072%:000  2.941%:007 g gg3*-102 1 ggg*-089
MoMask (Guo et al.}2024] 0.521%:002 0, 713%:002 . go7+-002  (q5%:002 2 g58+-008 g gogE-064 g 941404
MoGenTs (Yuan et al.}2024] 0.529%:003 0 719%:002  g1p+:002  ( g33+.001 9 gg7E006 g 57E.07 -
MotionAnything (Zhang et al.[2025]  0.546%003  0.735%:002  (.g29®:002  ,028%+:005 9 g5gE-01 9531 E:083 g 705%.06
MotionGPT3{ 0.533%:002 731002 (gt 003  (.239F008 9 7g7E00T g gggE10T g 560+ 052
TM2T|Guo et al. [(2022c] 0.424%:003  0,618%003 (. 729%:002 1 501F-046 3 467H008 g 5ggH-058 5 gpqH.093
MotionGPT Jiang et al. (2023 0.492+003 0681003 (733006 939%:008 3 gggE008 g 598071 9 gogE-084
MotionGPT-2|Wang et al. [(2024] 0.496F092  0.691F:003  .782%:004  ( 191%:004 3 ggE:013 9.86F:026 9 137+:022

Gen. & Und. 1 aMP|Li et al. [(2024b)] 0.557+:003  0751£:002 843+ 001 39E002 9 7594007 g 571+.069 -
MoTe|Wu et al. [(2024c] 0.548+:002 737002 g go5+.002 g g75E.004 g ggrd.012 - 2.399+ 073
MG-MotionLLM|Wu et al. (2025 0.5165092  0.706F:002  0.802%:003  0.303F:010  2.952%:009 9 960073 o 195%-159
MotionGPT3 0.553%:003  0.747%:002  .837+:003  (.208%:006 2725008 9.700*:096 1 018%038
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Figure 8: Comparison on text-to-motion, with recent approaches trained with unified tasks(Gen. &
Und.). Our model performs betther than recent unified models: MotionGPT (Jiang et al.l [2023]),

TM2T (Guo et al,2022c)), MotionGPT-2 (Wang et al.l 2024), MG-MotionLLM (Wu et al.,[2025),
MoTe (Wu et al| [2024¢), and comparable with LaMP (L1 et al.; 2024b).

Generally speaking, high evaluation scores indicates that the generated motions can correspond well
with the text, and approximate high-fidelity motions. However, considering that the GT embeddings
effectively represent an upper bound for matching scores, the practical significance of differences
among methods achieving near or above GT performance might be limited. This reflects a limitation
of the T2M evaluator, where the metrics are computed in a learned embedding space which relies
on contrastive learning on HumanML3D. Methods that overfit to that space can saturate the proxy
and even surpass the ground-truth reference, without a proportionate improvement in motion fidelity.
Hence, differences among methods near or above the Real line are hard to interpret.

C.2 EVALUATION WITH TMR

For a more nuanced assessment, we further evaluate with the TMR retrieval framework
[2023)), under four gallery protocols: All, entire test set, All with threshold, gallery items whose
textual similarity to the query exceeds a fixed threshold, Dissimilar, a 100-pair subset with mutually
distant texts, and Small batches, mini-batch of size 32 to mimic|Guo et al| setting. We report
text-motion retrieval with R@1/2/3/5/10 and MedR, results are summarized in Tab. [7]

Not all methods in Tab. [f] release TMR results or checkpoints, so the comparison is limited to
publicly available models. Within this scope, although inferior to [Li et al.| (2024b) on T2M metrics
(Fig.[8), our method achieves significantly stronger retrieval under the TMR evaluator and improves
substantially over the T2M baseline (2022D) across protocols. These findings suggest that
our model achieves more robust cross-modal alignment rather than overfitting to a specific evaluator.

Table 7: Retrieval on HumanML3D with the TMR evaluator (Petrovich et al., 2023). We report
R@1/2/3/5/10 and MedR for text-motion retrieval under the four official protocols: (a) All, (b) All
with threshold, (c) Dissimilar subset, and (d) Small batches (see Sec. [C.2] for definitions). Results
for TEMOS (Petrovich et al. 2022), T2M [2022b)), and TMR (Petrovich et al.| 2023)
are taken from the TMR paper. LaMP is reported only for (d). MotionGPT
and MotionGPT3 are evaluated with the released checkpoints using the official TMR code. Mo-
tionGPT?3 attains strong performance across protocols.

Protocol Methods Text-motion retrieval Motion-text retrieval
R@l1t R@2t R@31t R@51t R@10T MedR| | R@1T R@27 R@317 R@57 R@I10T MedR|
All TEMOS 2.12 4.09 5.87 8.26 13.52 173.00 | 3.86 4.54 6.94 9.38 14.00 18325
T2M 1.80 342 4.79 7.12 12.47 81.00 2.92 3.74 6.00 8.36 12.95 81.50
TMR 5.68 10.59 14.04 2034 3094 28.00 9.95 12.44 1795 2356  32.69 28.50

MotionGPT 7.16 1250  15.85 21.53 30.20 38.00 11.31 1391 1939 24.13 31.80 36.25
MotionGPT3 | 9.60 17.36 2245 3043  41.06 17.00 | 1490 1820 2443 3132 40.72 17.50

All with threshold TEMOS 521 8.22 11.14  15.09 22.12 79.00 5.48 6.19 9.00 12.01 17.10 129.00
T2M 5.30 7.83 1075 14.59 2251 54.00 4.95 5.68 8.93 11.64 16.94 69.50
TMR 11.60 1539 20.50 27.72 38.52 19.00 1320 1573 22.03  27.65 37.63 21.50

MotionGPT 1432 21.01 2594 3339 43.84 15.00 1442 1683 2270 27.69  35.06 30.50
MotionGPT3 | 20.73 27.03 34.03 42.66 52.97 9.00 19.34 2240 2940 3691  46.30 13.00

Dissimilar subset ~ TEMOS 33.00 4200 49.00 57.00  66.00 4.00 3500 4400 50.00 56.00  70.00 3.50
T2M 3400 4800 57.00 72.00  84.00 3.00 3400 47.00 59.00 72.00  83.00 3.00
TMR 47.00 61.00 71.00 80.00  86.00 2.00 48.00 63.00 69.00 80.00  84.00 2.00
MotionGPT 51.00 6400 71.00 7400  80.00 1.00 53.00 62.00 68.00 76.00  81.00 1.00
MotionGPT3 | 68.00 77.00 85.00 92.00  95.00 1.00 63.00 73.00 83.00 89.00 93.00 1.00

Small batches TEMOS 4049 5352  61.14 7096  84.15 2.33 39.96 5349 61.79 7240  85.89 2.33
T2M 5248 71.05 80.65 89.66  96.58 1.39 52,00 7121 81.11 89.87 96.78 1.38
TMR 67.16 8132 86.81 9143 9536 1.04 6797 8120 8635 9170 9527 1.03
LaMP 67.18 8190 87.04 9200 9573 - 68.02 8210 87.50 9220  96.90

MotionGPT 5807 6991 7434 79.17  86.36 1.18 5871 69.64 7436 7945  86.02 1.16
MotionGPT3 | 74.25 86.70 91.29 94.82 97.35 1.00 74.00 86.86 91.04 94.62 97.35 1.00

20



Under review as a conference paper at ICLR 2026

C.3 MOTION BRANCH WITH CROSS-MODAL CONNECTION

Our hybrid model allows asymmetric capacities for the text and motion branches and supports
different patterns of cross-modal information exchange. In this section we focus on where to place
cross-modal attention (CMA) in the backbone for the text-to-motion task, keeping all other factors
fixed (Tab.[9). Ablation on branch capacity is deferred to Sec.

We explore several CMA schedules that differ only in the layers where cross-modal connections
are enabled(Tab. [0). Across paired settings with the same spacing pattern, shifting the CMA blocks
to later layers typically improves generation quality and distribution similarity to the ground-truth
(i.e., lower FID and MMDist, higher R-Precision). This is most evident in B; v.s. Bs: both use
uniformly spaced CMA with identical count, B; enable CMA from the first to the second-last layer,
while Bs shifts them by one layer to span the second through the last layer. Despite the minor offset,
By achieves noticeably better scores. The same tendency appears in B3—B4, C1-C3, and D;-D-,
where the distribution pattern is matched but the CMA positions differ.

Table 8: Cross-modal attention(CMA) configurations used in ablation. (a) Layer-wise CMA schedules
for configurations A-D across the 12-layer backbones. Within each branch, the symbol = marks
a cross-modal attention (CMA) operation at that layer, blanks empty indicate intra-modal attention
only. (b) Schematics diagrams for configurations A, By, Cj.

A ltexttokens  Bi Cy
CMA

Model 0 1 2 3 4 5 6 7 8 9 10 11

© NG A WN R

Cy = =5 = = 9 9
C3 = = = = 10510
Dy . 1 1
Dg s 12 12 )
output hiddens

(a) Layer-wise CMA settings of each experiment in Tab. E} (b) Connection visualization of A, B; and C1.

Table 9: Quantitative results for several CMA settings on T2M with 200K training iterations, settings
visualized in Tab. @ The text branch is pretrained GPT-2 (124M) and the motion branch has 114M
parameters. Increasing the number of CMA layers and placing them later in the network generally
improves performance, and A is the best among tested settings. See Sec. @ for further analysis.

R@11 R@2t R@37 FID| MMDist, DIV— MModality}
Real 0518 0713 0813 - 2811 9.976 -

A 0.536 0.728 0.819 0.241 2.767 10.379 2.454
By 0.502 0.707 0.807 0.311 2.895 10.318 2.489
By 0.508 0.714 0.812 0.288  2.8637 10.261 2315
B3 0.508 0.712 0.811 0.22 2.879 10.405 2.664
By 0.514 0.716 0.814 0.243 2.839 10.347 2.534
o 0.506  0.701  0.801 0.236 2.894 10.386 2.684
Cs 0.502  0.702 0.795 0.285 2.948 10.333 2.631
Cs 0.503 0.705 0.803 0.171 2.886 10.221 2.819
Dy 0473  0.663 0.767 0.283 3.105 10.176 3.770
D 0477 0.672 0.777 0.164 3.092 10.189 3.197

C.4 ABLATION ON MODEL SIZE

We examine model size along three axes while keeping all other settings fixed: (i) the overall capacity,
achieved by scaling the text and motion branches proportionally, (ii) motion-branch capacity with a
fixed text branch, and (iii) language-backbone size with a comparable motion branch.

Tab. [I0] compares overall backbone sizes. With roughly 3x parameters, the medium model yields
modest gains on R@k and MMDist despite slightly higher FID. This suggests greater capacity helps
capture high-level semantics, though realizing its full benefit may require careful optimization.
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Figure 9: Ablation on branch capacity on motion generation. All models are trained for 200K itera-
tions. A 124M text branch already performs competitively with much larger backbones (355M/774M).
Our model can achieve competitive performance with only halfed motion parameters (~51M).

With the text branch fixed to GPT-2 small (124M), we scale the motion branch from 23M to 114M
parameters by setting hidden size to 76, 192, 384, 576, 768 (Fig.[9). Increasing motion capacity
generally improves text—motion alignment (higher R@k) and reduces MMDist, while diversity
remaining stable. in a high level A half-sized motion branch (~51M) already offers a strong trade-off,
delivering competitive overall performance, and, the best FID among the 124M-text configurations.

Text-branch Size. To isolate the effect of the language backbone, we replace GPT-2 small (124M)
with GPT-2 medium (355M) and GPT-2 large (774M), keeping the motion branch of comparable size
(pairs: 355M/59M vs. 124M/51M, and 774M/116M vs. 124M/114M). Larger text branches further
improve alignment and lower MMDist, and tend to increase diversity/MModality.

Table 10: Effect of GPT-2 backbone size and CFG guidance scale w on text-to-motion task. All
models are trained for 200K iterations. The medium backbone, with more parameters (692M v.s.
238M) consistently outperforms the small model.

Size Text Params Total Params w R@11 R@21 R@31 FID| MMDist] DIV—
small 124M 238M 1.0 0.534 0.739 0.842  0.222 2.61 10.256
medium 355M 692M 1.0 0.558 0.756 0.852  0.235 2.553 10.238
small 124M 238M 3.0 0.552 0.759 0.852  0.173 2.554 10.239
medium 355M 692M 3.0 0.568 0.766 0.860  0.192 2.489 10.084

C.5 VAE AND DIFFUSION HEAD

Ablation on Diffusion Head. We ablate the diffusion head # in our motion branch to study how
conditioning design affects generation. We vary (i) supervision with a diffusion head H v.s. direct
MSE regression, (ii) the mapping from backbone hidden states to the diffusion condition (multi-head
attention, MHA vs. linear layer), (iii) the number of motion holders h_num € {1,4, 8} used to query
hidden states from the autoregressive backbone, and (iv) classifier-free guidance (CFG) at sampling.
All variants are trained for 200K iterations with results in Tab. [TT}

Table 11: Ablation of motion generation head and loss on HumanML3D. All variants are trained on
T2M task for 200k iterations, with same backbone and data. We vary: (i) supervision with diffusion
head H (Diff.) or direct MSE regression (MSE), (ii) mapping of multi-head attention (MHA) or
Linear layer in #, (iii) number of motion holder <motion_out> (h_num) (i.e., the count of hidden
states passed from the backbone to #), and (iv) classifier-free guidance (CFG) at sampling.

ID Loss h_num Head CFG R@l11 R@21 R@3{ FID| MMDist{ DIV—  MModality 1

(@)  Diff. MHA 4 v 0547 0751 0850  0.149 2.578 10.041 2.265
(b)  Diff. MHA 8 X 0531 0733 0836  0.185 2.655 10.154 2.198
(c)  Diff. MHA 4 X 0529 0730  0.839  0.166 2.645 10.012 2.350
(d)  Diff. MHA 1 X 0525 0729 0831  0.164 2.678 10.090 2.514
() Diff.  Linear 4 X 0.521 0.731 0829  0.178 2713 9.985 2.603
(H  Diff.  Linear 1 X 0525 0729 0829  0.283 2.689 10.069 2.719
(¢ MSE  Linear 4 . 0518 0725 0823 0276 2705 9.758 2.175

Following MotionGPT’s evaluation protocol (Jiang et al.|[2023), results are averaged over two runs.
Best results are bold, second-best are underlined. The default configuration is gray-shaded.
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We observe that (i) Direct MSE supervision (the last row) yields the weakest performance, confirming
the benefit of diffusion-based training. (ii) Increasing h_num (b-d) enriches the conditioning signal
and improves retrieval accuracy R@Xk, but also raises FID, suggesting a harder denoising problem.
A moderate setting of h_num = 4 offers the best trade-off. (iii) With A_num = 4 and no CFG
(c)(e), an MHA head outperforms a linear mapper, achieving higher R@3 (0.529 v.s. 0.521), lower
MMDist ( 2.645 v.s.2.713), and lower FID (0.166 v.s. 0.178) The advantage is even larger under
sparse conditioning (h_num = 1 in (d)(e), FID: 0.164 vs. 0.283); (iv) Enabling CFG on the
same configuration further improves both alignment and fidelity. Accordingly, we adopt diffusion
supervision with an MHA head and h_num = 4 as the default.

Guidance scale. We sweep the CFG guidance scale w on the unified model (results in Tab.[7). Note
that guidance is applied only to motion generation. Moderate guidance performs best: w = 5.0
minimizes FID on the T2M, while w = 3.0 yeilds the best R-Precision and MultiModal Distance.
Very weak (w = 1) or overly strong (w > 10) guidance degrades alignment and diversity. We thus
use w = 4 in all main results.

Table 12: Ablation on guidance scale w in CFG, for motion latent diffusion on HumanML3D, with
model trained on unified tasks. Best and second-best results are bold and underlined.

w R@1 R@2 R@3 FID] MMDist | DIV— MModality
Real 0.519 0.724  0.820 0.002 2.753 9.941 -

1 0.534 0.727 0.828  0.143 2.714 10.086 1.717
2 0.555 0.754 0.843 0.123 2.601 10.006 1.321
3 0.554 0.756 0.850 0.103 2.585 9.926 1.272
4 0.552  0.753 0.848 0.098 2.589 9.911 1.258
5 0.552  0.752  0.848 0.094 2.593 9.906 1.248
6 0.546  0.751  0.849 0.094 2.598 9.900 1.243
10 0.546 0.748 0.844 0.109 2.620 9.870 1.281
15 0.541 0.739  0.839 0.12 2.653 9.873 1.312
20 0.533 0.728 0.826  0.134 2.739 9.827 1.385

Following MotionGPT’s protocol, results are averaged over two runs.
The default configuration is gray-shaded.

C.6 EFFECTIVENESS OF TRAINING SCHEME

We adopt a three-stage schedule (see Sec. [3.4] Fig.[2): SI, text-to-motion (T2M) pretraining; SII,
cross-modal alignment with joint optimization on T2M and motion-to-text (M2T) (SII); and SIII,
joint fine-tuning. We evaluate three settings: (i) Three Stages, the full three-stage schedule, (ii) Two
Stage, a two-stage schedule without SI, and (iii) Trained Text Branch, a two-stage variant in which
the text branch is unfrozen during SI-SII, rendering SIII unnecessary. We report results on both
generation (T2M) and understanding (M2T) in Tab.

Table 13: Training-scheme evaluation on HumanML3D (Guo et al.,|2022a)), with protocol in Jiang
et al.[(2023). Stagel: T2M Pre-training, Stage2: Cross-Modal Alignment, Stage3: Joint Fintuning.
v/ marks enabled stages, while colors encode the state of text branch, updated or frozen. Jointly
updating the text branch from the start improves early T2M in SI but degrades final T2M after SII
and markedly lowers M2T scores (rows “Trained Text Branch”).

Type Stagel Stage2 Stage3 Text-to-Motion Motion-to-Text
R@31T FID] MMDist] R@I11T Bleu@41 BertScore?t

v X X 0.826  0.239 2.797 - - -
Three Stages v v X 0.831 0215 2.755 0.571 18.328 33.993

v v v 0.837  0.208 2725 0.573 19.412 35.231

X v X 0755  0.298 3213 0.561 18.295 34.676
Two Stages

X v v 0772 0325 3.108 0.573 18.277 35.546
Trained Text Branch 4 x - 0.822 0239 2832 B } -

v v - 0.801 0243 2.942 0.505 14.119 33.385

Following MotionGPT’s protocol, metrics are averaged over two runs.
Best and second-best results are bold and underlined.
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Text-to-motion Pre-training and Cross-Modal Alignment. Pretraining on T2M (SI) yields strong
motion generation and provides a motion-specialized initialization. Entering SII confers M2T
capability and further improves T2M (alignment improves and MMDist/FID drop), indicating
that explicit cross-modal alignment benefits both directions. Training directly with multi-task
objectives from scratch (i.e., without SI) markedly degrades T2M quality, even after subsequent
joint optimization, underscoring the importance of a motion-specific warm start, i.e., initializing the
motion branch by T2M pretraining.

Joint Fine-tuning. Once SII has established cross-modal alignment, SIII yields modest gains,
primarily stabilizing M2T while preserving T2M, and thus serves as a light refinement. The “Two
Stages” variants (SII+SIII without SI) show that joint optimization can boost both tasks when the
model is under-initialized. However, it also degrades the language branch’s competence, leading to
worse T2M and M2T than the full three-stage schedule. Although incremental gains beyond SI+SII
are modest, SIII can mitigate residual negative transfer and calibrate cross-modal alignment under
noisy or shifted training conditions, yielding more stable results.

Freezing v.s. training the text branch. To promote modality-specific representations and reduce
negative transfer onto a well-trained language branch, we propose to freeze the text branch in SI-SII.
Freezing preserves linguistic competence while the motion branch specializes. By contrast, updating
all parameters from the start (“Trained Text Branch™) can give slightly higher T2M scores in SI
(e.g., R@3 0.834 vs. 0.820; MMDist 2.698 vs. 2.787), but after SII these models exhibit degraded
T2M and notably weaker M2T (e.g., BertScore 0.713; Bleu@4 3.577), consistent with ’catastrophic
forgetting’. We attribute this decline to negative transfer from the new motion branch onto the text
branch during early training. In practice, keeping the LM frozen lets the motion branch learn a more
stable, modality-specific space and achieve more reliable alignment under limited paired data.

In summary, SI provides essential motion-specific initialization; SII delivers the bulk of cross-modal
gains; SIII offers small, stabilizing improvements. Freezing the text branch through SI-SII prevents
loss of linguistic ability and yields the best overall balance between understanding and generation.

C.7 CHOICE OF BACKBONE

We instantiate our framework with three language backbones of GPT-2 Radford et al.|(2019), Flan-
T5-base (Chung et al.|(2022), and Qwen2.5-0.5B-Instruct Qwen et al.|(2025)), under both single- and
dual-stream architectures. In the dual-stream setting, we set the hidden dimension of the motion
branch to 374 for T5 and 448 for Qwen2.5, so as to roughly balance the number of newly introduced
parameters. In preliminary experiments, using a motion branch with the same size as the text branch
in Qwen2.5 led to unstable training and degraded performance, presumably because a large number
of parameters trained from scratch would require a much larger benchmark. Exploring larger-capacity
motion branches with stronger pretraining or larger-scale datasets is left for future work.

As shown in Tab. across all three language backbones, introducing our dual-stream architecture
consistently improves retrieval metrics and MMDist over the single-stream variants, indicating that
our framework is not tied to a particular language model and scales well to more recent LLMs.

Table 14: Text-to-motion generation results with GPT-2, Flan-T5, and Qwen2.5 backbones under
single- and dual-stream architectures. All models are trained on 2 NVIDIA RTX 3090 GPUs, for 400
epochs in single-stream setting and 200 epochs in dual-streamm setting. For each configuration, we
report metrics from the checkpoint with the lowest validation FID.

Architecture Backbone Parameters R@1 R@2 R@3 FID|, MMDist] Diversity—

Real - - 0.511 0.703 0.797 0.002 2974 9.503
GPT2 152M 0.513 0.708 0.808 0.485 2.962 9.633
single T5 275M 0491 0.681 0.777 0.243 3.102 9.365
Qwen 524M 0483 0.669 0.768 0.491 3.143 9.653
GPT2 238M 0.533 0.731 0.826 0.239 2.797 9.688
dual T5 36OM 0.509 0.702 0.799 0.285 2.978 9.772
Qwen 617M 0.542 0.739 0.832 0.309 2.782 9.878
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Figure 10: Details of our bimodal motion-language model. and text inputs are encoded

by separate branches and then reordered to their original sequence order before cross-modal self-
attention. After IV hybrid layers, text is generated autoregressively by next-token prediction, while
motion is produced via a diffusion head 7{. Panels correspond to motion representation (Sec. [3.1),
the dual-stream motion-language backbone (Sec.[3.2), and the diffusion module (Sec.[3.3).

D DETAILS ON MOTIONGPT?3

D.1 MOTION GENERATION IN UNIFIED MODEL

Diffusion Loss We use a diffusion head H to map backbone hidden states into a denoised motion
latent. As illustrated in Figs. 2|and[I0} we insert K motion holder tokens as queries to
extract the corresponding output states from the motion branch. Let the backbone hidden size be d;
and the motion latent size be d,,, (we set d;=T768, d,,,=256 in our default model). After one forward
pass, the queried states form h € R¥*d: An MHA pooling module aggregates h and produces a
global condition vector ¢ € R'*9m via an internal mapping to match the motion-latent dimensionality,
which is then fused with the timestep embedding 7(t) to condition ¢. With the cumulative product of

the noise schedule &y = HZ:l a, , we sample ¢t ~ U{1,...,T} and corrupt the ground-truth motion

latent zg € R% by

2 =+asz0+vV1—are, e€~N(0,I), )
Given a noisy latent z, € R'*%m at timestep ¢, the head predicts the noise éy and is trained with the
standard e-prediction objective

Ldiff = 820»6775”6 - ég(atZO + o€, tv C)”g? 69 :H(Zt, tv C) (3)

where oy, o, follow a linear schedule equivalent to the forward noising process. At inference, we
start from z7 ~N(0, I) iteratively denoise with the sampler of H down to t=0 to obtain 2, which is
then decoded by the motion decoder D into a raw motion sequence.

Architecture of 7. The diffusion head first processes the K queried hidden states with a Trans-
formerEncoderLayer and aggregates them via multi-head attention pooling into a single condition
vector c. We fuse ¢ with the timestep embedding and modulate each block via AdaLN. # consists of
a stack of 1024-wide residual blocks. Each block applies AdaLN followed by a two-layer MLP with
SiLU nonlinearity, and the final block projects to the noise prediction ég.

Cross-Entropy Loss for Boundary Tokens To delimit motion from text decoding, we introduce two
boundary tokens (start of motion) and (end of motion). At inference, once the LM
predicts via next-token prediction, we generate the motion latent in a single forward pass, with
K holders concatenated to the sequence, and then append deterministically.
During training, we apply cross-entropy only to the prediction, and is not supervised.
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D.2 MotioN VAE

AutoEncoder We adopt a Transformer-based motion VAE (Xin et al., 2023) with an encoder £ and a
decoder D that maps an M -frame motion sequence m'*M to a compact continuous latent z € R™*¢
(n = 1,d = 256) and reconstructs the motion via m'*™ = D(z) = D(E(m**M). Both £ and D are
transformers (Vaswani et al.;2017)) with long skip connection (Ronneberger et al., 2015)), and without
the action biases used in |Petrovich et al.[(2021). This design yields an expressive latent space that
supports accurate semantic understanding and high-fidelity, diverse motion synthesis.

Architecture Given an input motion sequence m'*™ of length M, the encoder £ processes the

sequence together with a small set of learnable distribution tokens and outputs the Gaussian parameters
(ttm,0m). A latent z is sampled by reparameterization z = pi,, + o€, €inN (0, I). The decoder
Dniq performs cross-attention over the latent vector z to query L motion tokens, which are then
projected back into 72'*% in the raw motion space.

ml:L — D(S(mlM) (4)

Loss We train the motion VAE with reconstruction term over framewise poses and KL regularizer on
the latent, following standard practice in VAEs (Kullback & Leibler, |1951} Kingma & Welling, [2013).
Let m"*M denote a sequence of M ground-truth poses m; € R?%3 and /"M the decoder outputs.
The encoder produces a Gaussian posterior gs(z | m*™) = N(u, diag(c?)). The objective is

L = Liee + k1 LxL, Q)
with
1 r 2
Lree = ) [me =i, 6)
t=1
Lxr = Dxi(N(p, diag(c?)) | N(0,1)) . )

For completeness, the KL term admits the closed form Lxp, = £ > i (u? + 07 —logo} — 1).

Raw Motion Representation Following (Guo et al.| (2022a), each frame m’ € R?%3 concate-
nates a tuple of root angular velocity 7* € R along Y-axis, root linear velocities (7*,7*) € R
on XZ-plane, root height ¥ € R, local joints positions j7 € R3N; | velocities Jv € R3N; | and
rotations j© € R®YJ in root space, with N; denotes the joint number, and binary foot ground
contact features ¢/ € R* by thresholding the heel and toe joint velocities. This finally results in
mt = {777y, GP g g e )

D.3 METRICS DEFINITIONS

We adopt standard metrics for text—-motion alignment, motion quality and diversity, caption quality,
and (for VAE analysis) motion reconstruction. Unless noted, features are computed with the official
HumanML3D/T2M evaluator (Guo et al.,[2022b), with motion encoder ¢(m) and text encoder ) (t).

Text-motion alignment To evaluate semantic consistency between generated motions and input
texts, we adopt motion-text retrieval precision (R-Precision) at Top-k(R@k), and the Multimodal
Distance (MMDist), which measures the embedding-space distance between paired modalities. R@k
measures retrieval accuracy within a candidate set: for each query (text or motion), we rank candidates
of the other modality by cosine similarity and report the fraction of cases where the paired item
appears in the top-k. MMDist is the average embedding distance between paired items:

1
MMDist = Nan:1||¢>(mn) —P(tn)ll2 ®)

Motion quality FID assess how closely generated motions match ground truth ones in feature
space, indicating overall quality, and is computed between the Gaussian fits of {¢(m)} for generated
and ground-truth motions in the evaluator feature space.
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Diversity Diversity (DIV) measures feature variation across samples, and MultiModality (MM),
which quantifies variation among motion generations from the same textual description. Following
Guo et al.[(2022b); Xin et al.|(2023), we randomly sample all generated motions into two subsets,
{z:};-4 and {2 };%, of the same size X . Then DIV is formalized as:
I «x

DIV = EZi;lei — x| 9)
Randomly sample a set of text descriptions with size J,,, and sample two subsets of X,,, motions
generated by j-th for each text description, denote as {x; ; };-7 and {a:;-’i}f(:”é. MM is calculated as:

1 T 51X
MM = ————— 3" 3.

Im X X (10)

Lji — ‘r;z”

Motion captioning We follow prior work ¢huan2022tm?2t and adopt standard NLP metrics in-
cluding BLEU (Papineni et al., [2002), ROUGE-L (Lin, |[2004), CIDEr (Vedantam et al.,[2015), and
BERTScore (Zhang et al.; 2019) to evaluate the fluency, relevance, and diversity of generated captions.

Reconstruction We evaluate reconstruction fidelity of motion autoencoders with: MPJPE and
PAMPJPE for global and local errors in millimeter, ACCL (Acceleration Error) computed from
second-order finite differences, and APE/AVE (Absolute Position/Velocity Error) reported over root,
trajectory, pose, and joints components.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT only for grammar/typo checks; all technical content, experiments, and analyses
were authored and verified by the authors without substantive LLM contribution.
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