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Abstract

Providing human-understandable insights into the inner workings of neural net-
works is an important step toward achieving more explainable and trustworthy Al
Analyzing representations across neural layers has become a widely used approach
for this purpose in various applications. In this work, we take a step toward a more
holistic understanding of neural layers by investigating the existence of distinct
layer groupings within them. Specifically, we explore using representation similar-
ity within neural networks to identify clusters of similar layers, revealing potential
layer groupings. We achieve this by proposing, for the first time to our knowl-
edge, the use of Gromov-Wasserstein distance, which overcomes challenges posed
by varying distributions and dimensionalities across intermediate representations—
issues that complicate direct layer-to-layer comparisons. On algebraic, language,
and vision tasks, we observe the emergence of layer groups that correspond to func-
tional abstractions within networks. These results reveal implicit layer structure
pattern, and suggest that the network computations may exhibit abrupt shifts rather
than smooth transitions. Through downstream applications of model compression
and fine-tuning, we validate our measure and further show the proposed approach
offers meaningful insights into the internal behavior of neural networks.

1 Introduction

Recent advances in neural networks, in particular large models, has prompted increased interest
in understanding the underlying causes of new capabilities. Since neural models, including large
language models (LLMs), are mostly black-box models, explainable Al aims to offer insights and
improve human understanding of these neural models. A widely adopted strategy involves analyzing
the inner representations across network layers, as these offer valuable information about how
intermediate computations evolve. As a result, measures to quantify representation similarity of
these layers have been widely applied in the literature to gain novel insights [22], including learning
dynamics, impact of different network hyperparameters, knowledge distillation, and more.

Despite substantial progress, relatively little attention has been devoted to understanding the structure
of the layers themselves. Neural networks, especially those with many layer{] and parameters, often
exhibit behaviors that are difficult to interpret holistically. Given such depth and opacity of modern
networks, identifying coherent layer groupings can serve as a principled way to decompose models
into more interpretable sub-units. Such structural insights may illuminate how specific portions
of a network contribute to its overall functionality and enable a more modular understanding of
computation.

!The term layer is used broadly to refer to any intermediate or final output produced by internal computa-
tions.The generality of the term allows it to encompass everything from input preprocessing to hidden states and
final predictions.
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In this work, we ask a fundamental question: can we detect the existence of distinct layer groups
within a trained neural network? We answer this in the affirmative by demonstrating that representa-
tion similarity across layers can reveal meaningful structural boundaries. Surprisingly, our results
indicate that layer transitions are not always smooth; instead, networks may exhibit abrupt shifts in
computation, manifesting as changes in representation.

Comparing representation across different layers is natural, as it is akin to comparing functions
by evaluating their outputs on shared inputs. This leads to the task of identifying layer groups as
regions of functional similarity, with significant shifts marking transitions between layer groups.
As illustrated in Figure[T] representational-similar layers (darker colors) cluster together, while less
similar layers (brighter colors) highlight potential boundaries between groups.

A central challenge in this endeavor
is defining a robust similarity mea-
sure. Standard metrics (e.g., cosine,
Euclidean) are inadequate due to the
varying dimensionality and metric
space of layer outputs, especially in
architectures like CNNs and trans-
formers. Additionally, representations
should be invariant to transformations
such as rotation, scaling, permutation,
and reflection. While many special-
ized similarity measures have been
proposed, it is not clear which mea-
sure would be better for measuring the - isthts fom T Dyamie. « More Effcient Fne-tuning
representation similarity. To this end, R o Lang Bynamie. T

we propose to measure representation

similarity using Gromov-Wasserstein
(GW) distance [52] between represen-
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Figure 1: Overview of our approach, where we use representations

from different neural network layers to identify functionally distinct
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vyork. As elaborated further in Sec- former block, and the proposed technique can be applied to other

tion[d.T} GW allows distance compu-  types of network structures.

tation between distributions supported

on two different metric spaces with

different supports and potentially different dimensions, which is common across different layers in
neural networks. GW is also invariant to permutation of the representation within a layer, a crucial
property since neural networks are known to have permutation symmetries [[L5]]. As such, GW can
effectively identify genuinely distinct behaviors across (groups of) layers.

We validate our approach on algebraic, language, and vision tasks, showing that GW distance provides
a systematic and architecture-agnostic way to analyze and identify layer structure. Additionally, our
findings provides a holistic view on differences in representations of models trained with different
strategies. We observe clear patterns in the form of block structures among different layers, suggesting
there exist layer group that potentially compute different functions, particularly at the transition
layers where major functional changes may occur. Moreover, our approach is applicable to various
downstream tasks, such as tracking the emergence of layer groups during training process (§[5.3) and
identifying potentially redundant layers in model compression and fine-tuning (§ Overall, our
method can improve the efficiency of mechanistic interpretation by finding layer groups in any neural
model, reducing the need for extensive human effort and contributing to a further understanding of
neural network behaviors.

2 Background and Related Work

Neural network interpretability has always been a hot research topic, and has become a disparate
area with many different applications in vision [37], and language [36 18} 51], and we survey a few
closely related directions within it.

Layer Grouping v.s. Other Types of Subnetwork Automated circuit discovery [5}41] aims to find
a computational graph that is much more sparse without sacrificing performance. Moreover, Various



work have explored neuron semantics and possible disentanglement of semantics [2} 11}, 120]] and
concepts [38]. Instead of studying circuits and neurons, we investigate differences among neural
network layers as a whole, based on an existing line of work [34]]. Related, block structures within
neural network layers have been observed in previous studies [35]].

Representation Similarity v.s. Other Methods of Studying Mechanisms There are many other
approach to understand neural network inner mechanism, such as weight inspection and manipulation
[36}132]]. Modifying or ablating the representation of a specific model components [21} [24]], including
attention knockout [50], and even direct modification of attention matrix [36, [14] are prevalent.
Another popular approach involves inspection of representation properties [32f], including logit
patterns [S3], residual stream [36]], and periodicity [34]. Rather than just inspection of representation,
many works have proposed to map the output to some target and is a popular technique for analyzing
how neural activations correlate with high-level concepts [20} [19]. Here we instead focus on studying
and compare representation similarity across layers.

Similarity Measure between Neural Network Layers There are studies that quantify the similarity
between different groups of neurons [22]], typically layers [10, 51]], to compare different neural
networks. Generally a normalized representation with desired properties is used to compare different
transformer blocks, such as invariance to invertible linear transformation in canonical correlation
analysis [33]], orthogonal transformation, isotropic scaling, and different initializations in centered
kernel alignment [23]]. Other measures include representational similarity analysis [30], which
studies all pairwise distances across different inputs. Wasserstein distance has been explored in
measuring similarities in the context of neural networks [[12} 3} [28]], but they assume that different
layer representations belong to the same metric space, which is very unlikely even if they have the
same dimensionality as the semantics captured by each layer are likely to differ significantly. Several
similarity measures [45] 6] seek different approximation or or addition to GW distance. While GW
distance has been used for model merging as a regularization [42, |43]], it has not been fully explored
in discovering layer structures and subnetwork identification.

3 Representation Similarity Within Neural Networks

We aim to identify layer groupings of a neural network based on their representation at each layer. To
find these layer groups, the problem can be formulated as a search problem: among candidate layers,
we seek to find which candidate layers are the most dissimilar to its previous layers, indicating the
formation of a new group.

The problem consisting of two key elements: the search space and the similarity measures used to
evaluate how closely the candidates in the search space match another (target) representation. We first
discuss the notation of representation similarity as the measure for searching and the search space for
candidates. We then discuss specific choices on the similarity measure.

Similarity Measures Let f : X — Y be a function that map « in a set of input X = {x; : ; €
R%= ? ,toyinasetof output Y = {y; : y; € R i,. Each element in Y and X are assumed
to be a vector with dimensions d,, and d,, respectively, with n being the set size, without loss of
generality. Note sets can be concatenated into matrix forms as Y € R"*% and X € R"¥¢=,

Definition 3.1. Representation Similarity. Consider neural networks have the form f = f(%) o
fEDo...o fM(X), where each layer | € {1,..., L} computes a function F(X) = f® o
fVo...0 fM(X) given the input X. Representation similarity between two neural layers i and
j can be seen as a similarity between their output sets Y; = F()(X) and Y; = FU)(X), over the
same set of input X.

Each intermediate representations of a neural network can be naturally treated as function outputs,
given inputs X. We can use a scoring or distance function D(Y?,Y7) as a measure between
representations similarity between F () (X) and F()(X). If they are close according to D, then the
layer should be similar to each other locally at a set of points X. Otherwise, these layers should be
different at X. Popular measures such as Euclidean distance have been used for this purpose [22].

The Need for Complex Representation Similarity Measure. Since we cannot exactly control the
behavior of a trained neural network, the layer-wise functions F that it learns can be complex and
thus the learned representation Y from each layer may be a complex function from each other rather



than a simpler transformation. For example, let Y; = sin(X) and Y; = sin*(X) = (Y*)2. They
share strong similarity, but a linear transformation will have trouble to fully capture their similarity.
If we want to truly understand where function F might be approximately computed, we should
consider some functions of target Y, but naively listing out all possibilities can be prohibitive. As a
consequence, one may need to use more complex measures to deal with such a space.

Search Space We consider multiple candidate Y’s to form the search space for comparison. In
the context of MLP neural networks for example, where o(.) denotes the non-linearity and W's are
the parameter matrices, we have Y* = W, (6(W,,_1 ...c(W; X))) for the whole network. We can
extract many Y’s from intermediate layers of the model, for instance Y1 = W1 X, Y5 = o(W1 X),
and so on. These Y’s are often called representations, activations, or sometimes even “outputs” from
each layer. We use these terms interchangeably here. For attention modules in transformer neural
networks [47], we can similarly extract Y’s from attention key, query, and value functions as well
as MLP functions. We list the exact equations and locations of representations considered in the
transformer models in Table 2)in Appendix [A] which serves as the focus of this paper. We consider
attention-based models first, and later we also consider convolutional neural networks with residual
layers, with candidate representations listed in Table3]in in Appendix [A]

4 Gromov-Wasserstein Distance as a Similarity Measure

We aim to identify the similarities among the representations at each intermediate layer. Each
layer, however, posits a representation that potentially has a different distribution, not to mention
even different dimensionality depending on the architectures and layers one considers (viz. mlp
and attention layers in transformer blocks). Consequently, representations across layers may be
incomparable using standard distance metrics, such as the £, norm amongst others.

To address these challenges, we propose computing distances between representations at the same
layers for different inputs, and match the vertices of a weighted graph — where each dimension of the
representation are vertices and the distances indicate weights on the edges — with the vertices of a
similarly constructed weighted graph from another layer. Essentially, we assume the representations in
a layer are samples of the underlying distribution, and we want the best permutation of representation
dimensions in one layer that aligns with vertices in another layer, thereby deriving the inter-layer
distance. If this inter-layer distance is low, then we consider the two layers similar.

Formally, without loss of generality, let Y = {y1; : y1; € R" ™, and Yo = {yg; : y2; € R%2}7_,
be representations of n examples from two different layers, where the discrete distributions over
the representations are p1 and o respectively, with dimension d; possibly being different from ds.
Direct distance computation between them is not reasonable. Instead, we seek to compute a coupling
or matching m € II(u1, p2) between the n examples in each set such that given the pairwise distances
D1, Dy € R™™ within representations Y7 and Y5 respectively, the sum of differences between the
distances of the matched examples is minimized. Loosely speaking, we aim to find a matching that

preserves the pairwise distance as much as possible. In particular, we want to minimize the following:
p(Y1,Ya, i1, pio, D1, Dy) =

min D1 (i, k) — Da(4, 1) i
weH(m,uz)ijZkl( 1(i, k) 2(7, 1)) mi ik

S. t. 7TI=,LL1;7TTI=/.L2;7TZO. (1)

It turns out that p corresponds to the Gromov-Wasserstein (GW) distance [7], used to map two sets
of points in optimal transport. We thus utilize this distance as a measure of inter-layer functional
similarity in the setting where the target is unknown.

4.1 Justification for GW Distance as a Functional Similarity Measure

Let (Y1, D1, p1) and (Yz, Da, p12) be two given metric measure space (mm-space), where (Y, D) is
a compact metric space and p is a Borel probability measure with full support: supp() =Y. An
isomorphism between Y7, Y5 is any isometry ¥ : Y; — Y5, i.e., a distance-preserving transformation
between metric spaces, such that W, = u(¥~1) = po.



Theorem 4.1. [37|]. The Gromov-Wasserstein distance in equation[I|defines a proper distance on the
collection of isomorphism classes of the mm-spaces.

Remark. The Gromov-Wasserstein distance itself is defined on isomorphism-classes of metric measure
spaces, which means that any distance preserving (isometric) transformation of a space should
preserve GW distance between the points in that space and any other space [31]]. These isometric
transformations include rigid motions (translations and rotations) and reflections or compositions of
them. Additionally, permutations of points in a space also preserve GW distances, as the points are
unlabeled. Hence, GW distance captures much richer transformations across layers.

Favorable Properties of GW. Besides the above noteworthy prop-
erty of GW, it also has other favorable properties [7: i) It is
symmetric and satisfies the triangle inequality. ii) It is invariant under
any isometric transformation of the input, which is advantageous be-
cause we do not want rotations and reflections to affect our similarity
search. This invariance also includes permutation invariance, which
is beneficial since the distance between layer representations should
remain unaffected by permutations of neurons. iii) GW is scalable
since it does not require estimating high-dimensional distributions,
which is scalable to larger hidden dimensions of intermediate layers;
instead, it only compare them to obtain a distance measure. iv) GW
is monotonic in (positive) scaling of pairwise distances, and hence
similar layers should appear to be closer than others with scaling.

histogram on layer 0, KL'D 0.0

1, KLD 0.13237723296645853

0.051890194752387736

0.015864240194420405

Distance Distributions. As an illustrative example, we plot the
histogram on pairwise distances for a batch of samples across all
transformer blocks in BERT models from the YELP review dataset
in Figure 2] For more details on YELP, we provide a comprehensive
discussion of experiments § [5.2] The results in Figure [2] show the
distributions on pairwise distances begin to differ from block 9,
consistent with GW distance observed in Figure[5] suggesting that
significant transformations occur and can be effectively captured by
GW. We include the full results and discussion in Appendix[F
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Neighborhood Change. Complementary to the distribution of pair-
wise distances, the changing representations of samples could also
alter their relative neighborhoods across transformer blocks. We
plot a tSNE projection [46] of representations from a batch of
samples on YELP, and visualize it in Figure Zb and Figure [10¢]
of Appendix [F] The Jaccard similarity, measuring the overlap be- -
tween top-5-neighbors of 3 selected samples across different trans- -
former blocks, ranges from 0.0 to 0.43, with average values of -
{0.27,0.26,0.26}. The full details are shown in Table [5| of Ap-
pendix [F] Hence, the sample neighborhood changes across blocks,
which can be indicative of functional changes that are not captured

histogram on layer 10, KLD.

i
istogram on layer 11, KL.D 0.19134340675578332

histogram on layer 12, KLD 0.006395452336670349

by comparing distributions alone. However, GW can account for
such changes as well.

Computation Details. We use an existing optimal transport toolbox,
pythonot| [13]], for computing GW distance. Specifically, we use
an approximate conditional gradient algorithm proposed in [44],
which has a complexity of O(mn? + m?n), where m and n are
the dimensions of two spaces (here the number of data samples
from two layers being compared). In comparison, the Wasserstein

Figure 2: Histogram on pair-
wise distances for outputs from all
transformer blocks in a fine-tuned
BERT model trained on YELP
dataset. TOP to BOT: layer O to
layer 12.

distance [28] may require O(n3log(n)) for exact computation. When the dataset is large, we can
also sub-sample the dataset to improve the computational efficiency.

S Empirical Study and Findings

We compare the proposed similarity measure for layer grouping against a set of baselines across
multiple datasets, including those from algebraic operation, NLP, and computer vision tasks. We
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Figure 3: Pairwise GW distance on the synthetic Modular Sum dataset.

compare 10 different similarity measures, including Euclidean, cosine, mutual information (MI),
RSM[22], RSA[22]], CCA[33]], CKA[23]], MSID[45]], Wasserstein[12]], and AGW[6]. For more
details about implementation, please see Appendix

5.1 Validation: Synthetic Modular Sum Tasks

Modular sum algorithms [34, 53] and related math problems [[17, 4] are often studied to understanding
the NN computation due to their precise function definitions. These works have shown that there
may exist many different sub-functions in the computation, at different part of neural network. We
begin by validating the Gromov-Wasserstein distance by comparing it against known partitions of the
networks to determine whether it can successfully identify different layer groups. We first introduce
the setup for the experiment, including data generation and models to be investigated.

Setup As a test case, we focus on a modular sum problem, following existing works [34]]. We
consider two datasets: the first generated by a single modular sum function with ¢ = fi,ea(a + b) =
(a + b)mod p, where a,b,c = 0,1,...,p — 1, with p = 59. The second dataset is more complex,
with ¢ = fieas(a, b) of three levels of modular sums, namely: ¢; = (a 4+ b)mod p1,ce = (¢1 +
b)mod pa, ¢ = (c2 + b)mod p3, where p = [59, 31, 17].

Training procedure We train 3 different neural networks with transformer blocks to predict ¢ given
(a,b), with learned input embedding of size d and a decoding layer for categorical output. For the
first simpler f,0q dataset, we train a neural network consisting of a one-block ReLLU transformer [47]],
following the same protocol and hyperparameter choices as previous works [|34}153]]. We call this
Model 0. For the more complex fy,0q3 dataset, we train two neural networks consisting of three-block
ReLU transformers, with 3 transformer blocks corresponding to the three levels of modular sum
functions, and 4 attention heads within each block. The first network, which we call Model E,
employs an end-to-end training procedure to directly learn output c. For the second network, which
we call Model L, we use the same architecture as Model E but is trained layer-wise: block 1 predicts
(c1,b), block 2 predicts (ca,b) with frozen earlier layers, and block 3 predicts ¢ from (c2,b). All
models achieve 100% accuracy on a held-out validation set. More details can be found in appendix B}

Table 1: Gromov-Wasserstein Distance Results for Various Targets in Model L, for fi,,q3 dataset.

GW-D for Top Similar Layers Diin =
¢ Resid-Post? 0.02
Co Resid-Post? 0.03
c Resid-Post?, Resid-Post®, and 7 others | 0.04

Results The results are shown in the Table E} We see that in the Model L, the GW distance correctly
identifies the most similar layers in accordance with different intermediate ¢’s. The final target ¢
contains 9 similar layers all with distance around 0.04. In Appendix [C] we also test probes as the
prediction targets are given. Results shows GW distance can be a reliable alternative to the probes
to find layer structures. Moreover, as previously mentioned GW distance can naturally compare
representations across and within transformer blocks with different dimensions. In Fig[3aland Fig[3b]
we visualize the pairwise GW distance between layer representations without a target for Model L
and Model E. Looking at Model L we see predominantly 3 groupings of layers: i) layers roughly
from 20 to 44 are similar to each other and to layers 52 to 72, ii) layers roughly 12 to 19 are similar to



each other and layers 45 to 51 and iii) the initial and last few layers are mainly similar to themselves.
Interestingly, the number of groupings corresponds to the 3 functions trained layer-wise in Model
L. We also observe differences in patterns across Model L and Model E, suggesting layer-wise and
end-to-end training return different networks. Compared to the fixed layer-wise training, end-to-end
training in Model E may learn faster in the earlier layers and may not have much to learn in later
layers, as the function may not be particularly challenging for it. This could explain why, starting
from layer 64, all layers in Model E exhibit similar representations. Moreover, magnitudes of the
distances are also different, with Model L showing larger distances, indicating that learning the
targets ¢, co result in more functional differences. One possible explanation could be that Model E
directly operates in the trigonometry space [34]], without having to predict the exact integer values
until later, thereby suppressing the distances. We include results from baseline methods capable of
handling different dimensions between subspaces in Figure [ and some discussion in Appendix [D]
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Figure 4: Pairwise (layer) distances on Modular Sum dataset, with layer-wise trained models. Different figures
from left to right, top to bottom: RSA, RSM, CKA, MSID, AGW, and the proposed GW distance.
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To gain a deeper understanding of the operations within each transformer block, we visualize pairwise
GW distances among layers for Model 0 for dataset fmoq in Figure[3c| It shows meaningful intra-
block transitions (especially at attention components), and shows GW can reveal intra-block as well
as inter-block structure. For discussion, we refer the readers to Appendix

5.2 Real Dataset: NLP Tasks

Setup We now apply GW distance to real natural language processing tasks. We experiment on
benchmark sentiment analysis datasets, Yelp reviews and Stanford Sentiment Treebank-v2 (SST2)
from the GLUE NLP benchmark [49], with the goal to predict of the text has positive or negative
sentiment, and analyze how different layers from fine-tuning BERT(-base) [8]] models perform on
these datasets. We use the pretrained BERT to generate 4 fine-tuned models, corresponding to a
dense model and 3 sparse models with sparsity levels of 25%, 70% and 95% using a state-of-the-art
structured pruning algorithm [9], but only show results on densely fine-tuned models here. Training
details and more results are in Appendix [E|and[I] Due to the size of BERT models, we limit our
analysis to comparing the final representations from each of the 12 transformer blocks, rather than
examining all intermediate representations within transformer blocks.

Results In Figure[5a] we see that the pre-trained BERT does not have major differences among blocks,
which is not surprising given its accuracy on YELP is only 49.3% (roughly equivalent to random
guessing). In Figures [5b|to[5]] we show similarity measures from difference baselines. We can see
an interesting pattern emerge, revealing two major block structures in the fine-tuned BERT models
identified by our approach. The first major differences occur at block 9 and then the last three blocks
(10, 11, 12) seem to form a distinct block. This seems to indicate that most of the function/task fitting
occurs at these later blocks. GW distance gives the most distinctive layer groups.
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Figure 5: Pairwise (layer) distances on Yelp, across pre-train and densely fine-tuned BERT models,
using the various similarity measure. As can be seen GW clearly demarcates the layer groups. Due to
page limit, we show more results in Appendix

The pattern indicates that later blocks differ significantly from earlier ones. This observation is
consistent with fine-tuning and sparsification literature [26} 9l], where it has been observed that
later blocks typically undergo substantial changes during fine-tuning as they focus on task-specific
solutions, while the earlier middle blocks remain stable as they capture syntactic and semantic patterns
of the language necessary for various tasks. In appendix [J]] we further investigate the GW distance
between blocks from two different models, providing insights into how representations vary across
architectures.

On SST2 dataset, we also observe very similar patterns with the GW distance and 3 baselines, for
which we refer the readers to appendix |K|for detailed results. In both datasets, low distance measure
are consistently observed in the diagonal elements, but the overall block structures are not as obvious
in the baselines as they are with GW distance, highlighting the effectiveness of the GW distance.

Model Compression and Fine-Tuning The presence of block structures in the GW-distance
matrices indicates major functional changes may concentrate at these transition blocks. This finding
may suggest that for other downstream tasks, we may consider freezing the model up to Block 8 and
only fine-tuning the blocks after that. We validate this observation in appendix [G] showing minimal
accuracy drop. We also consider a model compression application where only 4 transformer blocks
can achieve similarly good performance, as discussed in Appendix [}

Clustering Besides visualization above, one can also utilize clustering methods to automatically
identify the layer groups from the GW distance. We tested spectral clustering [48] on a similarity
matrix computed as the reverse pairwise GW distance matrix. This method successfully identified 2
groups with block 1 ~ 8 and block 9 ~ 12. Note that one could use a clustering algorithm and use
some quantitative evaluations, such as clustering metrics like silhouette scores, to measure which
metrics provide better clusters. However, since different metrics produce different scores, it is hard to
compare clustering groups when the inputs to a cluster algorithm are different.

5.3 Training Dynamics: Emergence of Layer Groups During Training

We also visualize the GW distance between blocks while fine-tuning the pretrained BERT model on
YELP datasets in the entire training process, in order to observe when these layer grouping structures
begin to emerge. Figure[6]show a few visualization on GW distances at selected training iterations.
Block distances are low in the beginning (observed in Figure[5a)), but by iteration 300 the last block
begin to differ from other blocks. As training progresses, block 9, 10, and 11 begin to show at
iteration 3k and 15k. These growing differences in GW distance reflect the model’s increasing F1
score on the test data. Overall it show the gradual specialization of blocks into distinct sub-networks,
with each sub-network potentially focusing on different aspects of the task.
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Figure 6: Pairwise GW distance in YELP datasets, over training iterations.

We also plot the mean GW distance of all block pairs in Figure[7} Figure[7h show the mean GW
distance over training iterations, and show it grows over time. Figure [7b shows that mean GW
distance versus two different accuracy metric on the test dataset. GW distance grow slowly at first,
followed by a rapid increase as the model achieves better accuracy and F1 scores. Such observation
is consistent with existing “grokking" behavior, where validation accuracy can suddenly increases
well after achieving near perfect training accuracy [34]]. Similarly, Figure [7c shows a rapid increase
in mean GW distance in order to achieve a lower training loss.
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Figure 7: Pairwise GW distance in YELP datasets, over training iterations.
5.4 ResNet and Computer Vision Dataset

In addition to the attention-based architectures, we also test our approach on ResNet9, a popular
convolutional neural network architecture [16,[39]. We compare a randomly initialized ResNet9 and
a trained one on CIFAR 10 image dataset CIFAR-10 [23]], achieving 91.63% accuracy on the test
data. For more details on the setup, we refer the readers to Appendix [N] In Figure[I9] we show the
pairwise distance among layers using baselines that handle different input dimensions. Overall, GW
distance show the most clear divisions of layer grouping.

To further examine how the sub-network structures align with learned representation, we visualize
the computed distances alongside the learned representations of an image of class ""ship" across
all layers in Figure [§] The top row shows the representations of a ship at each layer. To see the
gradual changes over layers, we visualize the distance between every layer and its previous layer,
using various methods capable of handling different dimensions between compared spaces. Overall,

FERrs R P REGENEEE

Figure 8: Pairwise layer distance between every layer and its previous layer on CIFAR-10, for various baselines,
including RSM, RSA, MSID, CKA, AGW, and GW. Each Row Represents one method.



RSM, RSA, MSID, and CKA show indicate significant changes across many layers, without clear
evidence of sub-network structures. AGW highlights the changes in the final few layers only. In
comparison, GW distance demonstrates the most consistency with the image representations visually.
Specifically, the 3rd convolution layer (Layer ID 2.ReL.U) introduces the first notable differences,
where the ship’s shape becomes less distinct, signaling the learning of mid-level features. The
shapes become increasingly blurred in the Sth convolution layers (Layer ID 4.Conv2d) and by Layer
4.ReLU the ship’s shape is nearly absent. The final convolutional layer (Layer ID 7.Conv2d) shows
significant changes from its preceding layer (Layer ID 6.ReLU), marking the point where class-
specific information is consolidated. These results suggest that GW distance aligns most effectively
with the learned representations, providing strong evidence that it reveals meaningful layer structures.

6 Discussion

We proposed to model interpretation based on representation similarity within intermediate layers
of neural networks, using GW distance to compute such similarities. To the best of our knowledge,
our application of GW distance in this context is novel. On algebraic, real NLP, and vision tasks, we
identified the existence of major groups amongst layers, corresponding to functionally meaningful
abstractions. These results reveal implicit layer structure within neural networks, and highlight the
potential sudden transition in network computation instead of smooth function change.

There are several limitations to our approach. GW is computationally more expensive than co-
sine/Euclidean and existing approximate solvers may introduce variance. Moreover, there are cases
when invariance properties (such as permutation invariance) might mask meaningful structural
differences, GW may not fail to reveal these changes.

Future work could investigate other models and applications to observe general trends. Theoretical
study of special properties of GW distances within the context of neural network interpretability is
also an interesting future direction.

Limitations and Broader Impact Our approach first assumes we have access to the intermediate
layer representations, which may not be available for some black-box models. Our approach is
general, but assumes the proposed distances correctly represent the representation similarities. Our
findings are also limited to the datasets and models studied and are not guaranteed to be observed in
other scenarios. In terms of broader impact, our approach could be applied widely given its simplicity
for identifying layer grouping in neural networks. However, more investigations on inner mechanisms
will have to be done, perhaps building on our approach, in order to fully understand the behavior of
neural models.
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [NA]
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8. Experiments compute resources
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Answer: [Yes]
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* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
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Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
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e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: At the end of paper.
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
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Answer: [NA]
Justification:
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Answer: [Yes]
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» The answer NA means that the paper does not release new assets.
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limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:
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15.

16.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Use BERT models only.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Representations in Transformer-based and Convolution Neural Network

We consider multiple candidate Y’s to form the search space for target Y. In the context of MLP
neural networks for example, where o (.) denotes the non-linearity and W's are the parameter matrices,
we have Y* = W, (c(W,_1 ...0(W1X))) for the whole network. We can extract many Y’s from
intermediate functions of the model, for instance Y7 = W1 X, Yo = o(W; X), and so on. These Y’s
are often called representations, activations, or sometimes even “outputs” from each layer.

For attention modules in transformer neural networks [47], we can similarly extract Y’s from attention
key, query, and value functions as well as MLP functions. More specifically, a deep transformer
architecture of depth [ is formed by sequentially stacking ! transformer blocks. Each transformer
block takes the representations of a sequence Xj, € R”*?, where Xj, = Emb(X) with embedding
layer Emb and input X, T is the number of tokens and d is the embedding dimension, and outputs
Xout, Where:

Xouw = arr X + BrrMLP(Norm (X))
where, MLP(X,,) = o(X,, W) W?

X = aspa X + BSAMHA(NOI‘m(Xin)),

MHA(X) = [Attn; (X)), . .., Attng (X)) |W7, @
Attn(X) = A(X)XWV,
A(X) = softmax (\/%XWQWKTXT + M) :

with scalar weights agg, O , aisa, and Bsa usually set to 1 by default. Here FF stands for feedforward
network, SA stands for self-attention, MHA is Multi-Head Attention, and Norm is a normalization
layer. MLP usually has a single hidden layer with dimension d and ReLU activation. The MHA sub-
block shares information among tokens by using self-attention with W%, WX and WV indicating
query, key and value matrices. We list the exact locations of representations considered in the
transformer models in Table

Table 2: Representations Y in the attention-based model considered in experiments as per equation
Omitting Y in most names for readability.

(Across Blocks)

Name | Resid-Pre’ Y, at each block

Value | = X}, = X!,

(Within Each Block [)

Name | Attn-Out! Resid-Mid' Pre Post MLP-out’ Resid-Post’
Value | =MHA(X)! =X =XW! =MLP(X) =MLP(X) = Xou
(Within Each Attention Head h)

Name | kj qn Attn-Pre;,  Attny, Vi Zn

Value | = XW¥ =XW¢% =qkl =AX) =XwWV =Attn(X)

We also consider convolution neural networks for computer vision datasets. Specifically, we use
a relatively lightweight ResNet9 [16] 39]. The exact locations of the candidate representations
considered are listed in Table

B Modular Sum Experiment Details

We use the same architecture and protocols in training, as previous modular papers [34, /53], based
on their available Github repos. Specifically, we use transformer width d = 128, and each attention
head has 32 dimensions. As a result, MLP has 512 hidden neurons. ReLU is used as the activation
throughout the models,

Data Among all data points (592 = 3481 of them), we randomly select 80% as training samples
and 20% as validation samples.
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Table 3: All representations Y considered in ResNet 9 in experiments.

(Module 0)
Name 0.Conv2d 0.BatchNorm 0.ReLU
Details | in-channel = 3, out =64, kernel size = (3,3) Batch Normalization  activation
(Module 1)
Name 1.Conv2d 1.BatchNorm 1.ReLU
Details | in-channel = 64, out =128, kernel size = (5,5) Batch Normalization activation
(Module 2 & 3: Residual Block )
Name 2.Conv2d 2.BatchNorm 2.RelLU
Name 3.Conv2d 3.BatchNorm 3.ReLU
Details | in-channel = 128, out =128, kernel size = (3,3) Batch Normalization activation
(Module 4)
Name 4.Conv2d 4.BatchNorm 4 ReLU 4. MaxPool
Details | in-channel = 128, out =256, kernel size = (3,3) Batch Normalization activation  Kernel (2,2)
(Module 5 & 6: Residual Block )
Name 5.Conv2d 5.BatchNorm 5.ReLU
Name 6.Conv2d 6.BatchNorm 6.ReLU
Details | in-channel = 256, out =256, kernel size = (3,3) Batch Normalization
(Module 7)
Name 7.Conv2d 7.BatchNorm 7.ReLU 7. MaxPool
Details | in-channel = 256, out =128, kernel size = (3,3)  Batch Normalization activation = Adaptive
(Module 8)
Name 8.Linear (classification)
Details | in-feature = 128, out =10
Hyperparameters We used AdamW optimizer [29] with learning rate v = 0.001 and weight decay

factor # = 2. We use the shuffled data as one batch in every epoch. We train models from scratch
and train for 26,000 epoches.

Search Space For the f,,q43 dataset, we consider all layers in the network, including all representa-
tions within transformer blocks. As shown in Table 2] each attention head has 6 intermediate layers,
for a total of 24. Each block has an additional 7 layers (1 input layer, Resid-Pre, and 6 intermediate
layers). Hence, for three blocks each with four attention heads, we have a total of 93 representations
to evaluate, as each block has 31 = 24 4 7 representations.

Training procedure We train 3 different neural networks with transformer blocks to predict ¢ given
(a,b). These networks contain input embeddings for a and b, each of size d, i.e., [E,, E] € R?¢,
and predict a categorical output ¢ via an unembedding/decoding layer. All parameters in the network
are learned. For the first simpler f,,q dataset, we train a neural network consisting of a one-block
ReLU transformer [47]], following the same protocol and hyperparameter choices as previous works
[34.53]]. We call this Model 0. For the more complex fioq3 dataset, we train two neural networks
consisting of three-block ReLU transformers, with 3 transformer blocks corresponding to the three
levels of modular sum functions, and 4 attention heads within each block. The first network, which
we call Model E, employs an end-to-end training procedure to directly learn output c given input
(a,b). For the second network, which we call Model L, we use the same architecture as Model E but
with a layer-wise training approach instead of end-to-end training. Specifically, we use the following
3-step procedure:

1) We train the first transformer block of Model L to predict (1, b) using an additional linear layer on
top, given inputs (a, b). 2) Once block 1 is fully trained, we discard the linear layer, freeze everything
before the linear layer, and use its representations of (c1, b) to train the second block to predict (cz, b),
again incorporating an additional layer on top. 3) Finally, we repeat the above step by freezing the
first and second block and training the last block to predict ¢, using representations of (cg, b).

In all these models, we are able to achieve 100% prediction accuracy on a separate validation dataset.

To evaluate the capability of handling different dimensions, we directly measure GW distance between
the 93 intermediate representation Y (see appendix [B] for search space details) and ¢’s. To speed
up computation of GW distance, we randomly sub-sample 1000 data from a total of 3600 samples,
reducing time from 2 min to 5 seconds for each computation.
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C Probes on Modular Sum Dataset: When Target is Known

When the target is a value from a known function, we can directly compare outputs between
representations from each layer and the known function output. Representations from each layer can
be directly compared with the target via a probe. We first consider Model E and then Model L.

Linear Probe Popular linear probes can be used to assess the similarity between a target and
any layer’s representation. We perform linear regression of each target (c1, ¢2, ¢) on each of the 93
representations Y, and report the residual error as the scoring distance function between Y and ¢’s.

Table 4: Linear and Nonlinear Probe Results, for fnoq3 dataset.

Model L Linear Probe for Perfect Match? | Top Similar Layers Dpin =
c1 ve Resid-Post® and 21 others 0
Co v Resid-Post? and 21 others 0
c v Resid-Post® and Post? 0
Model E Linear Probe for Perfect Match? | Top Similar Layers Dnin =
e X Post? 0.522
Co X Post* 0.93
c v Resid-Post® and 5 others 0
Model E | Nonlinear Probe for | Perfect Match? | Top Similar Layers Dnin =
c1 Ve Resid-Post! and 15 others 0
Co ve Resid-Post® and 4 others 0
c v Resid-Post® and 9 others 0

Results Since we perform layer-wise training with Model L, we know the true locations of ¢; and
c2, which sit at X}, and X2 with names Resid-Post' and Resid-Post?, respectively. As shown in
the top part of Table[d] a linear regression probe can predict targets perfectly with these two layers.
In fact, there are 21 other layers which also show perfect accuracy. For ¢y, these consist of Post® and
MLP-out® from the same block and some layers from the next block, including linear operations
with all k’s, ¢’s, v’s. The final prediction c can be linearly predicted as expected, due to the model’s

perfect prediction accuracy.

Naturally we would like to confirm if the same happens with Model E: if we use the same linear
probe, does each block in Model E learn the corresponding c at the output of the transformer block?
As shown in the mid part of Table ] we are not able to find any layer that produces a representation
that is linearly predictive of ¢; and co, with the lowest prediction errors at 52% and 93%, respectively.
Moreover, the most similar layers to ¢; and c5 are in the 2nd block and 1st block respectively, instead
of the expected 1st and 2nd blocks. This seems to suggest that Model E does not actually learn any
function of ¢; and cs.

Non-linear Probe As discussed previously, to deal with the potentially large search space of
functions of the target, a more powerful probe (such as a nonlinear MLP function) may have to be
used so that it can detect more complex similarities to c. Therefore, we train a two-layer MLPE] to
predict ¢’s. As shown at the bottom of Tabled] these two-layer MLPs have more predictive power and
can perfectly predict the targets, while still showing differences among various layers indicating that
the matched layers do capture the intended target functions while other layers do not. Many layers
in the 3rd block, for example, have only 1% accuracy relative to ¢;. This indicates that non-linear
probes can be used to find subgroups of layers in neural networks. Unlike existing work that primarily
focuses on linear probes, we show that non-linear probes, still with limited capacity, are useful.

One issue with using predictive probes to compute the distance measure D is that the target function
has to be known. In practice, however, we may not know any intermediate targets, as suggested in the
end-to-end training of Model E. While we still can try different target functions and use non-linear
probes, the infinite number of possible targets makes such an approach inefficient. This calls for a
different strategy to differentiate sub-components in a network through representation similarity.

We use the neural network classifier from the scikit-learn package, with default parameters.
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D Baseline Comparison Results on Modular Sum

To gain a deeper understanding of the operations within each transformer block, we visualize pairwise
GW distances among layers for Model 0 for dataset f,,q in Figure In this case, we have a total
of 31 representations since only one transformer block is used. We notice the first major difference
occurs between layers 13 and 16, which are 4 Attn-Pre (computing key and value product). The
second difference occurs between layers 17 and 20, which are the first 3 Attn (computing A(X)).
This suggests that major computation seems to be done by the attention mechanism. Note that
distances are not monotonically increasing across layers, which is expected as the representation
spaces can change significantly given the heterogeneity of the operations such as those performed by
residual connections and attention within a transformer block.

We have also tested a few baselines that can handle different space dimensions, shown in Figure [0}
RSA and CKA reveal different levels of lay grouping within attention layers and across transformer
blocks. AGW demonstrates the highest sensitivity to attention computations, while RSM finds the
last few layers within each transformer block.

RSAdistance between layers, Model L CKAdistance between layers, Model L

RSMdistance between layers, Model L

- 200000
[l IR
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2
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25000

layer output layer output

GW distance, Model L

MSIDdistance between layers, Model L

Figure 9: Pairwise (layer) distances on Modular Sum dataset, with layer-wise trained models. Different figures
from left to right, top to bottom: RSA, RSM, CKA, MSID, AGW, and the proposed GW distance.

E Real NLP Experiment Details

We analyze a BERT-base-uncased [8] model based on our optimal matching in-
spired mechanistic interpretability approach. We fine tune it on two well known
datasets in NLP; i) Yelp reviews (https://www.kaggle.com/code/suzanaiacob/
sentiment-analysis-of-the-yelp-reviews-data) and ii) Stanford Sentiment Treebank-v2
(SST2), which is part of the GLUE NLP benchmark [49]. Both of these are sentiment analysis tasks,
where the goal is to predict if a piece of text has positive or negative sentiment. The Yelp dataset
has hundreds of thousands of reviews, while the SST2 dataset has tens of thousands of sentences.
The training details are as follows: i) Hardware: 1 A100 Nvidia GPU and 1 intel CPU, ii) Max.
Sequence Length : 256, iii) Epochs: 1, iv) Batch Size: 16 and v) Learning Rate: 2e~> with no weight
decay. The accuracy on Yelp was 97.87%, while that on SST2 was 92.4%. Without fine tuning
the pre-trained BERT models accuracy on Yelp and SST2 was 49.29% and 50.34% respectively
indicative of random chance performance.

We also fine tuned a series of sparse models on these datasets. The method we used to sparsify was a
state-of-the-art dynamic sparse training approach NeuroPrune [9], which leads to high performing
structured sparse models. Using this approach and the same training settings as above we created
BERT models with 25%, 70% and 95% sparsity which had accuracies of 96.31%, 97.53% and
96.22% respectively for the Yelp dataset and accuracies of 90.25%, 88.5% and 84.4% respectively
for the SST2 dataset. We then used the resultant models for our analysis.
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F GW Justification and Alignment

Distance Distributions. As an illustrative example, we plot the histogram on pairwise distances for a
batch of samples across all transformer blocks in BERT models from the YELP review dataset in
Figure 2] The results in Figure [2]show the distributions on pairwise distances begin to differ from
block 9, consistent with GW distance observed in Figure[5] suggesting that significant transformations
occur and can be effectively captured by GW.

Neighborhood Change. Complementary to the distribution of pairwise distances, the changing
representations of samples could also alter their relative neighborhoods across transformer blocks.
We plot a tSNE projection [46] of representations from a batch of samples on YELP, and visualize it
in Figure [Zp and Figure[I0¢] The Jaccard similarity, measuring the overlap between top-5-neighbors
of 3 selected samples across different transformer blocks, ranges from 0.0 to 0.43, with average
values of {0.27,0.26,0.26}. The full details are shown in Table[] as discussed below. Hence, the
sample neighborhood changes across blocks, which can be indicative of functional changes that are
not captured by comparing distributions alone. However, GW can account for such changes as well.

We plot a tSNE projection [46] down to 2 dimensions, on a batch of 16 samples (color indicative of
sample) on YELP, and visualize it in Figure[TOe] As one can see, the sample neighborhood changes
across layers, which can be indicative of functional changes but something that is not captured by
comparing distributions. However, GW can also account for such changes.

* *
| |
| | S
SIS BN NSV SRS DN
DU DEDS TN NERCIENSN IENTSINSE SRS
| |
| |
| |
| |
| |

(a) Pretrained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 90% Sparse

Figure 10: tSNE projection on intermediate representations on Yelp, across BERT models with different
sparsity levels. Different Rows: Results from all 12 transformer blocks, from top to bottom. Different columns:
first column is the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense,
25%, 70% and 95% sparsity).

We also show Jaccard similarity measure on top-5-neighbors, per Euclidean distances on tSNE
projection, of each of 3 samples across different transformer blocks. Jaccard similarity is a measure
of two sets, computed as their intersection divided by their union. Results are shown in Table[5] This
further shows the sample neighborhood changes across layers, and representation similarity measures
should account for such changes.

To show the exact transportation plan from GW distances, we choose plot one batch of data with size
16, and show the transportation plan over 5 random layer pairs in Figure[TT] As one can see, the
transportation plan does not conform to identity-mapping. Both Wasserstein and Euclidean distance
will likely have trouble handle in this case. We also note that the transportation plan shown Figure [IT]
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Table 5: Jaccard Similarity on top-5-neighbors of Selected Samples across all transformer blocks.

Sample 1 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Block 0 v.s. 0.25 0.25 0.25 0.11 0.43 0.11 0.25 0.25 0.11 0.11 0.25 0.25 0.27
Sample 2 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Block 0 v.s. 0.11 043 0.11 0.11 0.11 0.0 0.11 0.25 0.25 0.43 0.25 0.25 0.26
Sample 3 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Block 0 v.s. 0.0 0.11 0.43 0.25 0.25 0.25 0.11 0.66 0.11 0.11 0.11 0.0 0.26

is a permutation of the original data, rather than a distributed transportation plan. This behavior is
consistent with existing Wasserstein optimal transport plan under certain conditions [40].

Figure 11: Pairwise GW transportation plan on Yelp, across BERT models. 5 of randomly chosen layer pairs
are shown.

To complement Figure 2[on other fine-tuned BERT models on YELP, we also plot all the histograms
of pairwise distances between two samples in a batch, across all layers for each of 5 models in
Figure Pre-trained models are publicly available models training on other datasets. Row b) to )
are the fine-tuned models on YELP, with different sparsity levels. As one can see, pretrained models
do not have much differentiations across layers in the histograms, with maximal KL-divergence of
0.11 between histogram in consecutive layers. Fine tuned models, on the other hard, show larger
KL-divergence values, in particular in later layers. For example, Layers 9 in the Dense BERT model
contains KL distance of 1.58 from its previous layer. The results show that significant transformations
in pairwise distances occur across layers and such distances would be captured by GW distances, as
show in Figure [5|and Figure

G Fine-tuning with Different Layers

Since the GW distance indicates significant changes occurs only at later layers in YELPS, we
investigate performance of fine-tuning only partial layers from pretrained models, by freezing early
layers during training and training only later layers alongside a classification layer (denoted as C)
at the end. In Table[6] we can see that there is no significant performance differences between
fine-tuning layer 8 to 12 and fine-tuning layer 9 to 12 (0.04% drop). On the other hand, the accuracy
drops 6 times more by freezing layer 1 to 9, with 0.25%. Freezing layer 1 to 10 results 0.49% drop,
and finally fine-tuning only 12 results 3.59% drop. These findings validate that the later layers are
crucial for significant functional changes.

Table 6: Accuracy of fine-tuning partial layers in various BERT models. C denotes the classification
layer on top of BERT models.

Fine-tune || All | 8~124C | 9~124C | 10~124C | 11~12+C | Only 12+ C
Accuracy (%) || 97.87 | 9747 | 9743 | 9719 | 967 | 93.11

H Baseline Methods and Implementation Details

Besides the standard Euclidean, mutual information (MI) and cosine distances, we compare a few
other baselines, as discussed below.

Wasserstein Distance [[12]]: We use the POT, python optimal transport library pythonot|[13], with
the algorithm proposed in [[1]].
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(a) Pretrained (b) Dense () 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 12: Histogram on pairwise distances on Yelp, across BERT models with different sparsity levels. a)
is the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity levels: (b)densely
fine-tuned, ¢) 25%, d) 70% and e) 95% sparsity.

Representational similarity metric (RSM) [22]]: RSM compares two different spaces by using the
Ls norms on differences in inter-instances distances. This can be seen as approximation to GW
using the fixed and identity transportation plan (i.e., the samples map to itself). We use exist-
ing implementation at: https://github.com/mklabunde/11lm_repsim/blob/main/llmcomp/
measures/rsm_norm_difference.py.

Representational Similarity Analysis (RSA) [22]]: RSA is similar to RSM but use correlation instead
of Ly-norm to compute the final distance. Implementation at: https://github. com/mklabunde/
11lm_repsim/blob/main/llmcomp/measures/rsa.py

Canonical Correlation analysis (CCA) [33]]: CCA compute distances based on variances and covari-
ances. Implementation at: https://github.com/google/svcca/blob/master/cca_core.py

Centered Kernel Alignment (CKA) [23]]: CKA is based on normalized Hilbert-Schmidt Indepen-
dence Criterion (HSIC). Implementation at: https://github.com/mklabunde/11lm_repsim/
blob/main/llmcomp/measures/cka.py

Multi-Scale Intrinsic Distance (MSID) [43]]: MSID compute the intrinsic and multiple distance, and
can be considered as a lower bound of the GW distance. Implementation at: https://github. com/
xgfs/imd/blob/master/msid/msid.py. We have explored different hyperparameter settings
with different neighbors k (5 or all batch data available) and number of iterations for SLQ, but results
are all similar to the default parameter setting.

Augmented GW (AGW) [6]: AGW considers feature alignment in addition to sample alignment. Its
overall objective can be seen as a penalized GW distance. Implementation at: https://github,
com/pinardemetci/AGW-AISTATS24/tree/main,

For all methods, we use default parameter settings to obtain results in the paper. Note that RSM,
RSA, CCA, MSID, and AGW, along with our proposed approach can handle different dimensions of
inputs.

Gromo-Wasserstein Distance [[12]: We use the POT, python optimal transport library pythonot|[13].
We use the solver based on the conditional gradient [44]].
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I More Results on YELP

Due to the page limit, here we include baseline results on Yelp Datasets in Figure[I3]and Figure[T4]

Setup We now apply GW distance to real natural language processing tasks. We experiment on
benchmark sentiment analysis datasets, Yelp reviews and Stanford Sentiment Treebank-v2 (SST2)
from the GLUE NLP benchmark [49], with the goal to predict of the text has positive or negative
sentiment, and analyze how different layers from fine-tuning BERT(-base) [8] models perform on
these datasets. We use the pretrained BERT to generate 4 fine-tuned models, corresponding to a
dense model and 3 sparse models with sparsity levels of 25%, 70% and 95% using a state-of-the-art
structured pruning algorithm [9]]. Sparsity are used to force models to condense information into the
limited remaining weights, enabling us to examine potential links between this constraint and their
structural similarity. Training details are in Appendix [E] Due to the size of BERT models, we limit
our analysis to comparing the final representations from each of the 12 transformer blocks, rather
than examining all intermediate representations.

Results In Figure [5a we see that the pre-trained BERT does not have major differences among
blocks, which is not surprising given its accuracy on YELP is only 49.3% (roughly equivalent to
random guessing). In Figures[5b|to[Se] we see an interesting pattern emerge, revealing two-to-three
major block structures in the (sparse) fine-tuned BERT models identified by our approach. The first
major differences occur at block 9 and then the last three blocks (10, 11, 12) seem to form a distinct
block. This seems to indicate that most of the function/task fitting occurs at these later blocks.

We compare the proposed GW distance with Euclidean, Cosine, and Wasserstein distance as baselines
in Figure [13] on the same YELP dataset and with the same settings. Euclidean distance between
two layers’ outputs, shown in the first row of Figure [I3] can be seen as the GW distance with a
fixed identity-mapping transportation plan for each sample. This validates the low-valued diagonal
elements. Off-diagonal elements show greater variation, and it is less obvious there are two distinct
sub-groups within layers. The similar pattern is also observed with Cosine and Wasserstein distances,
with similar strong diagonal pattern but more pronounced block structures than Euclidean distance.
we also include 6 other baseline similarity measure in Figure[T4] Overall, CKA produces also similar
block structures to the proposed GW distance, though with greater variability within block structures.
In contrast, other baselines fail to reveal such clear block structures.

J Cross Model Comparison

We can also use GW distance to compare layers from different BERT models. Shown in Figure[13]
pretrained and densely fine-tuned BERT models exhibit different similarity measures when compared
to fine-tuned BERT models with different levels of sparsity.

K SST2 Datasets

Besides YELP Datasets, we also tested the GW distance on SST?2 dataset. Results on SST2 dataset
are shown in Figure|16|again confirm there exist two-three different groups in terms of functional
similarity. The first major difference is seen at layers 10 and 11, while layer 12 forms its own block.
When sparsifying these models, lesser differences are observed in general as also seen on the YELP
dataset. Other baselines provide less clarity on the division of sub-components.

More baselines are included in Figure|I'/} as they do not all fit into the one page. Overall, RSA and
CKA identify block structures but with larger 2nd block.

L. Model Pruning/Compressing

Another another potential application beside freezing-and-fine-tuning specific transformer blocks, we
study the problem of model compress or pruning with the discovered layer groupings.

For each of desired block sizes, we take the original pre-trained BERT and only use the first
n = {12,8,4,2,1,0} transformer blocks while discarding the rest. Note that n = 12 means we use
all the transformer blocks, resulting the same BERT model. n = 0, on the other hand, means that we
only use a (linear) classifier layer (after embedding layer) to predict the class label. The results are

27



Euclidean distance between layers, Yelp, Dense Euclidean distance between layers, Yelp, Dense Euciidean distance between layers, Yelp, Sparse25 Euciidean distance between layers, Yelp, Sparse70 Euciidean distance between layers, Yelp, Sparse95

- cao -

Yelp, Sparse70

(a) Pre-trained (b) Dense (c) 25% Sparse (d) 70% Sparse () 95% Sparse

Figure 13: Pairwise (layer) distances on Yelp, across different BERT models. Different Rows: Euclidean,
Cosine, mutual information (MI), Wasserstein, and the proposed GW distance, from top to bottom. Different
columns: first column is the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity
(dense, 25%, 70% and 95% sparsity). As can be seen GW clearly demarcates the (functional) sub-network
blocks.

shown in Table[7} As a reminder, GW distance suggest the last 4 blocks in YELP (see Figure[5) and
the last 2 blocks in SST (see Figure are mostly different, which is marked by star () in the table.
It shows that by using a limited number of layers, we can achieve similar performance with the full
12 block model, with 0.01% and 0.54% differences in YELP and SST, respectively. Using one fewer
transformer block can risk much worse reduction of performance, with 0.10% and 8.60% differences
(about 10 times worse performance reduction).

Table 7: Accuracy of pruning BERT with a smaller number of blocks on YELP and SST. N denotes
the number of transformer blocks in the new BERT models.

Number of Transformer Blocks || 12 (all) 8 4 2 1 0 (only classifier)
YELP 97.87 | 97.87 | 97.86* | 97.76 | 97.11 60.3
SST 92.40 | 90.25 | 90.25 | 91.86" | 83.26 50.92

M GW Distance with Different Random Seeds

Neural networks initialized with different random seeds can converge to distinct representations
[27, 133, 123]], even when their performance is comparable. To study the impact of initialization seeds
on the learned representations, we train the same BERT model on YELP datasets with different seeds,
with identical hyperparameters for a total of 27,000 iterations. As shown in Figure [I8] while the
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Figure 14: Pairwise (layer) distances on Yelp, across different BERT models. Different Rows: RSA, RSM, CKA,
CCA, MSID, AGW, and the proposed GW distance, from top to bottom. Different columns: first column is the
pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and 95%
sparsity). As one can be seen, GW clearly demarcates the (functional) sub-network blocks.

learned representations vary across seeds, but the general block structures remain consistent when
analyzed using GW distances.

N Computer Vision Application: CIFAR-10 Datasets

In addition to the attention-based architectures, we also test our approach on ResNet9, a popular
convolutional neural network architecture[16], [39]. We compare a randomly initialized ResNet9
and a trained model on CIFAR 10 image dataset CIFAR-10 [25]], achieving 91.63% accuracy on
the test data. CIFAR-10 dataset consists of 60000 32x32 color images in 10 image classes, with
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Figure 15: Pairwise distances on YELP dataset, of layers across two different BERT models. TOP: Densely
fine-tuned BERT model vs fine-tuned BERT models with different sparsity levels. Botfom: Pretrained BERT
model vs fine-tuned BERT models with different sparsity levels.

6000 images per class. There are 50000 training images and 10000 testing images. The classes
are completely mutually exclusive. ResNet is a convolutional neural network with many residual
connections. ResNet9 specifically contains 9 convolution layers, each followed by BatchNorm and
ReLU activation. The exact details of the ResNet 9 is listed in Table 3

We show the pairwise distance of all layers in consideration using all methods, that can handle
difference dimensions of inputs, in Figure [I9] The first column shows results from randomly
initialized pre-trained models, and the second columns shows results from the trained ResNet. Pre-
trained models generally do not show clear sub-network structures, while the trained models shows
differences across layers. RSA, RSM, and CKA show progressive changes over the network layers,
which is not too informative. AGW only shows the last a few layers contain significant changes, and
MSID distance does not contain clear patterns. In comparison, GW distance shows clear division of
4 groups.
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Figure 16: Pairwise distances on SST dataset, across different BERT models. Different Rows: Euclidean,
Cosine, Wasserstein, and the proposed GW distances, from top to bottom. Different columns: first column is the
pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and 95%

sparsity).
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Figure 17: More Pairwise distances on SST dataset, across different BERT models. Different Rows: RSA, RSM,
CCA, CKA, MSID, AGW, and the proposed GW distance, from top to bottom. Different columns: first column is
the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and
95% sparsity).
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Figure 18: Pairwise GW (layer) distances on Yelp, across BERT models trained with 3 different random seeds.
As one can be seen, the (functional) sub-network blocks stay rather consistent with different seeds even though
there is some variations among the models.
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Figure 19: Pairwise (layer) distances on CIFAR-10, across different BERT models. Different Rows: RSA, RSM,
CKA, MSID, AGW, and the proposed GW distance, from top to bottom. Different columns: the first column is
the pre-trained ResNet9, and the 2nd column contains the fine tuned ResNet models.
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