
Representation Similarity Reveals Implicit Layer
Grouping in Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Providing human-understandable insights into the inner workings of neural net-1

works is an important step toward achieving more explainable and trustworthy AI.2

Analyzing representations across neural layers has become a widely used approach3

for this purpose in various applications. In this work, we take a step toward a more4

holistic understanding of neural layers by investigating the existence of distinct5

layer groupings within them. Specifically, we explore using representation similar-6

ity within neural networks to identify clusters of similar layers, revealing potential7

layer groupings. We achieve this by proposing, for the first time to our knowl-8

edge, the use of Gromov-Wasserstein distance, which overcomes challenges posed9

by varying distributions and dimensionalities across intermediate representations–10

issues that complicate direct layer-to-layer comparisons. On algebraic, language,11

and vision tasks, we observe the emergence of layer groups that correspond to func-12

tional abstractions within networks. These results reveal implicit layer structure13

pattern, and suggest that the network computations may exhibit abrupt shifts rather14

than smooth transitions. Through downstream applications of model compression15

and fine-tuning, we validate our measure and further show the proposed approach16

offers meaningful insights into the internal behavior of neural networks.17

1 Introduction18

Recent advances in neural networks, in particular large models, has prompted increased interest19

in understanding the underlying causes of new capabilities. Since neural models, including large20

language models (LLMs), are mostly black-box models, explainable AI aims to offer insights and21

improve human understanding of these neural models. A widely adopted strategy involves analyzing22

the inner representations across network layers, as these offer valuable information about how23

intermediate computations evolve. As a result, measures to quantify representation similarity of24

these layers have been widely applied in the literature to gain novel insights [22], including learning25

dynamics, impact of different network hyperparameters, knowledge distillation, and more.26

Despite substantial progress, relatively little attention has been devoted to understanding the structure27

of the layers themselves. Neural networks, especially those with many layers and parameters, often28

exhibit behaviors that are difficult to interpret holistically. Given such depth and opacity of modern29

networks, identifying coherent layer groupings can serve as a principled way to decompose models30

into more interpretable sub-units. Such structural insights may illuminate how specific portions31

of a network contribute to its overall functionality and enable a more modular understanding of32

computation.33

In this work, we ask a fundamental question: can we detect the existence of distinct layer groups34

within a trained neural network? We answer this in the affirmative by demonstrating that representa-35

tion similarity across layers can reveal meaningful structural boundaries. Surprisingly, our results36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



indicate that layer transitions are not always smooth; instead, networks may exhibit abrupt shifts in37

computation, manifesting as changes in representation.38

Comparing representation across different layers is natural, as it is akin to comparing functions39

by evaluating their outputs on shared inputs. This leads to the task of identifying layer groups as40

regions of functional similarity, with significant shifts marking transitions between layer groups.41

As illustrated in Figure 1, representational-similar layers (darker colors) cluster together, while less42

similar layers (brighter colors) highlight potential boundaries between groups.43

Logits

Unembed

ℎ0

Embed

Token

ℎ1 ℎ2 ℎ3

+

+

Pairwise Similarity between Layers

MLP

• Insights from Training Dynamic
• Reduce Model Size

• More Efficient Fine-tuning
• …

Applications

Pre-
Attention
Layers

Attention
Layers

Post-
Attention
Layers

Figure 1: Overview of our approach, where we use representations
from different neural network layers to identify functionally distinct
layer groups (darker blocks) leveraging GW distance. The figure is
an illustration based on a single transformer block, and the proposed
technique can be applied to other types of network structures.

A central challenge in this endeavor44

is defining a robust similarity mea-45

sure. Standard metrics (e.g., cosine,46

Euclidean) are inadequate due to the47

varying dimensionality and metric48

space of layer outputs, especially in49

architectures like CNNs and trans-50

formers. Additionally, representations51

should be invariant to transformations52

such as rotation, scaling, permutation,53

and reflection. While many special-54

ized similarity measures have been55

proposed, it is not clear which mea-56

sure would be better for measuring the57

representation similarity. To this end,58

we propose to measure representation59

similarity using Gromov-Wasserstein60

(GW) distance [52] between represen-61

tations from different layers of the net-62

work. As elaborated further in Sec-63

tion 4.1, GW allows distance compu-64

tation between distributions supported65

on two different metric spaces with different supports and potentially different dimensions, which66

is common across different layers in neural networks. GW is also invariant to permutation of the67

representation within a layer, a crucial property since neural networks are known to have permutation68

symmetries [15]. As such, GW can effectively identify genuinely distinct behaviors across (groups69

of) layers.70

We validate our approach on algebraic, language, and vision tasks, showing that GW distance provides71

a systematic and architecture-agnostic way to analyze and identify layer structure. Additionally, our72

findings provides a holistic view on differences in representations of models trained with different73

strategies. We observe clear patterns in the form of block structures among different layers, suggesting74

there exist layer group that potentially compute different functions, particularly at the transition75

layers where major functional changes may occur. Moreover, our approach is applicable to various76

downstream tasks, such as tracking the emergence of layer groups during training process (§ 5.3) and77

identifying potentially redundant layers in model compression and fine-tuning (§ 5.2) Overall, our78

method can improve the efficiency of mechanistic interpretation by finding layer groups in any neural79

model, reducing the need for extensive human effort and contributing to a further understanding of80

neural network behaviors.81

2 Background and Related Work82

Neural network interpretability has always been a hot research topic, and has become a disparate83

area with many different applications in vision [37], and language [36, 18, 51], and we survey a few84

closely related directions within it.85

Layer Grouping v.s. Other Types of Subnetwork Automated circuit discovery [5, 41] aims to find86

a computational graph that is much more sparse without sacrificing performance. Moreover, Various87

work have explored neuron semantics and possible disentanglement of semantics [2, 11, 20] and88

concepts [38]. Instead of studying circuits and neurons, we investigate differences among neural89

2



network layers as a whole, based on an existing line of work [34]. Related, block structures within90

neural network layers have been observed in previous studies [35].91

Representation Similarity v.s. Other Methods of Studying Mechanisms There are many other92

approach to understand neural network inner mechanism, such as weight inspection and manipulation93

[36, 32]. Modifying or ablating the representation of a specific model components [21, 24], including94

attention knockout [50], and even direct modification of attention matrix [36, 14] are prevalent.95

Another popular approach involves inspection of representation properties [32], including logit96

patterns [53], residual stream [36], and periodicity [34]. Rather than just inspection of representation,97

many works have proposed to map the output to some target and is a popular technique for analyzing98

how neural activations correlate with high-level concepts [20, 19]. Here we instead focus on studying99

and compare representation similarity across layers.100

Similarity Measure between Neural Network Layers There are studies that quantify the similarity101

between different groups of neurons [22], typically layers [10, 51], to compare different neural102

networks. Generally a normalized representation with desired properties is used to compare different103

transformer blocks, such as invariance to invertible linear transformation in canonical correlation104

analysis [33], orthogonal transformation, isotropic scaling, and different initializations in centered105

kernel alignment [23]. Other measures include representational similarity analysis [30], which106

studies all pairwise distances across different inputs. Wasserstein distance has been explored in107

measuring similarities in the context of neural networks [12, 3, 28], but they assume that different108

layer representations belong to the same metric space, which is very unlikely even if they have the109

same dimensionality as the semantics captured by each layer are likely to differ significantly. Several110

similarity measures [45, 6] are related to, but not exactly equivalent to, GW distance. While GW111

distance has been used for model merging as a regularization [42, 43], it has not been fully explored112

in discovering layer structures and subnetwork identification.113

3 Representation Similarity Within Neural Networks114

We aim to identify layer groupings of a neural network based on their representation at each layer. To115

find these layer groups, the problem can be formulated as a search problem, consisting of two key116

elements: the search space and the similarity measures used to evaluate how closely the candidates in117

the search space match another (target) representation. We first discuss the notation of representation118

similarity as the measure for searching and the search space for candidates. We then discuss specific119

choices on the similarity measure.120

Similarity Measures Let f : X → Y be a function that map x in a set of input X = {xi : xi ∈121

Rdx}ni=1 to y in a set of output Y = {yi : yi ∈ Rdy}ni=1. Each element in Y and X are assumed122

to be a vector with dimensions dy and dx, respectively, with n being the set size, without loss of123

generality. Note sets can be concatenated into matrix forms as Y ∈ Rn×dy and X ∈ Rn×dx .124

Definition 3.1. Representation Similarity. Consider neural networks have the form f = f (L) ◦125

f (L−1) ◦ · · · ◦ f (1)(X), where each layer l ∈ {1, . . . , L} computes a function F (l)(X) = f (l) ◦126

f (l−1) ◦ · · · ◦ f (1)(X) given the input X . Representation similarity between two neural layers i and127

j can be seen as a similarity between their output sets Yi = F (i)(X) and Yj = F (j)(X), over the128

same set of input X .129

Each intermediate representations of a neural network can be naturally treated as function outputs,130

given inputs X . We can use a scoring or distance function D(Y i, Y j) as a measure between131

representations similarity between F (i)(X) and F (j)(X). If they are close according to D, then the132

layer should be similar to each other locally at a set of points X . Otherwise, these layers should be133

different at X . Popular measures such as Euclidean distance have been used for this purpose [22].134

The Need for Complex Representation Similarity Measure. Since we cannot exactly control the135

behavior of a trained neural network, the layer-wise functions F that it learns can be complex and136

thus the learned representation Y from each layer may be a complex function from each other rather137

than a simpler transformation. For example, let Yi = sin(X) and Yj = sin2(X) = (Y i)2. They138

share strong similarity, but a linear transformation will have trouble to fully capture their similarity.139

If we want to truly understand where function F might be approximately computed, we should140

3



consider some functions of target Y , but naively listing out all possibilities can be prohibitive. As a141

consequence, one may need to use more complex measures to deal with such a space.142

Search Space We consider multiple candidate Y ’s to form the search space for comparison. In143

the context of MLP neural networks for example, where σ(.) denotes the non-linearity and W s are144

the parameter matrices, we have Y ∗ = Wn(σ(Wn−1 . . . σ(W1X))) for the whole network. We can145

extract many Y ’s from intermediate layers of the model, for instance Y1 = W1X , Y2 = σ(W1X),146

and so on. These Y ’s are often called representations, activations, or sometimes even “outputs” from147

each layer. We use these terms interchangeably here. For attention modules in transformer neural148

networks [47], we can similarly extract Y ’s from attention key, query, and value functions as well149

as MLP functions. We list the exact equations and locations of representations considered in the150

transformer models in Table 2 in Appendix A, which serves as the focus of this paper. We consider151

attention-based models first, and later we also consider convolutional neural networks with residual152

layers, with candidate representations listed in Table 3 in in Appendix A.153

4 Gromov-Wasserstein Distance as a Similarity Measure154

We aim to identify the similarities among the representations at each intermediate layer. Each155

layer, however, posits a representation that potentially has a different distribution, not to mention156

even different dimensionality depending on the architectures and layers one considers (viz. mlp157

and attention layers in transformer blocks). Consequently, representations across layers may be158

incomparable using standard distance metrics, such as the ℓp norm amongst others.159

To address these challenges, we propose computing distances between representations at the same160

layers for different inputs, and match the vertices of a weighted graph – where each dimension of the161

representation are vertices and the distances indicate weights on the edges – with the vertices of a162

similarly constructed weighted graph from another layer. Essentially, we assume the representations in163

a layer are samples of the underlying distribution, and we want the best permutation of representation164

dimensions in one layer that aligns with vertices in another layer, thereby deriving the inter-layer165

distance. If this inter-layer distance is low, then we consider the two layers similar.166

Formally, without loss of generality, let Y1 = {y1i : y1i ∈ Rd1}ni=1 and Y2 = {y2i : y2i ∈ Rd2}ni=1167

be representations of n examples from two different layers, where the discrete distributions over168

the representations are µ1 and µ2 respectively, with dimension d1 possibly being different from d2.169

Direct distance computation between them is not reasonable. Instead, we seek to compute a coupling170

or matching π ∈ Π(µ1, µ2) between the n examples in each set such that given the pairwise distances171

D1, D2 ∈ Rn×n within representations Y1 and Y2 respectively, the sum of differences between the172

distances of the matched examples is minimized. Loosely speaking, we aim to find a matching that173

preserves the pairwise distance as much as possible. In particular, we want to minimize the following:174

ρ(Y1,Y2, µ1, µ2, D1, D2) ≜

min
π∈Π(µ1,µ2)

∑
i,j,k,l

(D1(i, k)−D2(j, l))
2πi,jπk,l

s. t. πI = µ1;π
T I = µ2;π ≥ 0. (1)

It turns out that ρ corresponds to the Gromov-Wasserstein (GW) distance [7], used to map two sets175

of points in optimal transport. We thus utilize this distance as a measure of inter-layer functional176

similarity in the setting where the target is unknown.177

4.1 Justification for GW Distance as a Functional Similarity Measure178

Let (Y1, D1, µ1) and (Y2, D2, µ2) be two given metric measure space (mm-space), where (Y , D) is179

a compact metric space and µ is a Borel probability measure with full support: supp(µ) = Y . An180

isomorphism between Y1,Y2 is any isometry Ψ : Y1 → Y2, i.e., a distance-preserving transformation181

between metric spaces, such that Ψ#µ1 = µ(Ψ−1) = µ2.182

Theorem 4.1. [31]. The Gromov-Wasserstein distance in equation 1 defines a proper distance on the183

collection of isomorphism classes of the mm-spaces.184

Remark. The Gromov-Wasserstein distance itself is defined on isomorphism-classes of metric measure185

spaces, which means that any distance preserving (isometric) transformation of a space should186

4



preserve GW distance between the points in that space and any other space [31]. These isometric187

transformations include rigid motions (translations and rotations) and reflections or compositions of188

them. Additionally, permutations of points in a space also preserve GW distances, as the points are189

unlabeled. Hence, GW distance captures much richer transformations across layers.190

Figure 2: Histogram on pair-
wise distances for outputs from all
transformer blocks in a fine-tuned
BERT model trained on YELP
dataset. TOP to BOT: layer 0 to
layer 12.

Favorable Properties of GW. Besides the above noteworthy prop-191

erty of GW, it also has other favorable properties [52, 7]: i) It is192

symmetric and satisfies the triangle inequality. ii) It is invariant under193

any isometric transformation of the input, which is advantageous be-194

cause we do not want rotations and reflections to affect our similarity195

search. This invariance also includes permutation invariance, which196

is beneficial since the distance between layer representations should197

remain unaffected by permutations of neurons. iii) GW is scalable198

since it does not require estimating high-dimensional distributions,199

which is scalable to larger hidden dimensions of intermediate layers;200

instead, it only compare them to obtain a distance measure. iv) GW201

is monotonic in (positive) scaling of pairwise distances, and hence202

similar layers should appear to be closer than others with scaling.203

Distance Distributions. As an illustrative example, we plot the204

histogram on pairwise distances for a batch of samples across all205

transformer blocks in BERT models from the YELP review dataset206

in Figure 2. For more details on YELP, we provide a comprehensive207

discussion of experiments § 5.2. The results in Figure 2 show the208

distributions on pairwise distances begin to differ from block 9,209

consistent with GW distance observed in Figure 4, suggesting that210

significant transformations occur and can be effectively captured by211

GW. We include the full results and discussion in Appendix F.212

Neighborhood Change. Complementary to the distribution of pair-213

wise distances, the changing representations of samples could also214

alter their relative neighborhoods across transformer blocks. We plot215

a tSNE projection [46] of representations from a batch of samples on216

YELP, and visualize it in Figure 2b and Figure 9e of Appendix F. The217

Jaccard similarity, measuring the overlap between top-5-neighbors218

of 3 selected samples across different transformer blocks, ranges219

from 0.0 to 0.43, with average values of {0.27, 0.26, 0.26}. The220

full details are shown in Table 5 of Appendix F. Hence, the sample221

neighborhood changes across blocks, which can be indicative of222

functional changes that are not captured by comparing distributions223

alone. However, GW can account for such changes as well.224

Computation Details. We use an existing optimal transport toolbox,225

pythonot [13], for computing GW distance. Specifically, we use226

an approximate conditional gradient algorithm proposed in [44],227

which has a complexity of O(mn2 +m2n), where m and n are the228

dimensions of two spaces (here the number of data samples from two229

layers being compared). In comparison, the Wasserstein distance230

[28] may require O(n3log(n)) for exact computation. When the231

dataset is large, we can also sub-sample the dataset to improve the computational efficiency.232

5 Empirical Study and Findings233

We compare the proposed similarity measure for layer grouping against a set of baselines across234

multiple datasets, including those from algebraic operation, NLP, and computer vision tasks. We235

compare 10 different similarity measures, including Euclidean, cosine, mutual information (MI),236

RSM[22], RSA[22], CCA[33], CKA[23], MSID[45], Wasserstein[12], and AGW[6]. For more237

details about implementation, please see Appendix H.238

5

pythonot


(a) Model L (layer-wise training)
pairwise GW distance, on fmod3
dataset.

(b) Model E (end-to-end training)
pairwise GW distance, on fmod3
dataset.

(c) Model 0 Pairwise GW dis-
tance, on fmod dataset.

Figure 3: Pairwise GW distance on the synthetic Modular Sum dataset.

5.1 Validation: Synthetic Modular Sum Tasks239

Modular sum algorithms [34, 53] and related math problems [17, 4] are often studied to understanding240

the NN computation due to their precise function definitions. These works have shown that there241

may exist many different sub-functions in the computation, at different part of neural network. We242

begin by validating the Gromov-Wasserstein distance by comparing it against known partitions of the243

networks to determine whether it can successfully identify different layer groups. We first introduce244

the setup for the experiment, including data generation and models to be investigated.245

Setup As a test case, we focus on a modular sum problem, following existing works [34]. We246

consider two datasets: the first generated by a single modular sum function with c = fmod(a+ b) =247

(a + b)mod p, where a, b, c = 0, 1, . . . , p − 1, with p = 59. The second dataset is more complex,248

with c = fmod3(a, b) of three levels of modular sums, namely: c1 = (a + b)mod p1, c2 = (c1 +249

b)mod p2, c = (c2 + b)mod p3, where p = [59, 31, 17].250

Training procedure We train 3 different neural networks with transformer blocks to predict c given251

(a, b), with learned input embedding of size d and a decoding layer for categorical output. For the252

first simpler fmod dataset, we train a neural network consisting of a one-block ReLU transformer [47],253

following the same protocol and hyperparameter choices as previous works [34, 53]. We call this254

Model 0. For the more complex fmod3 dataset, we train two neural networks consisting of three-block255

ReLU transformers, with 3 transformer blocks corresponding to the three levels of modular sum256

functions, and 4 attention heads within each block. The first network, which we call Model E,257

employs an end-to-end training procedure to directly learn output c. For the second network, which258

we call Model L, we use the same architecture as Model E but is trained layer-wise: block 1 predicts259

(c1, b), block 2 predicts (c2, b) with frozen earlier layers, and block 3 predicts c from (c2, b). All260

models achieve 100% accuracy on a held-out validation set. More details can be found in appendix B.261

Table 1: Gromov-Wasserstein Distance Results for Various Targets in Model L, for fmod3 dataset.
GW-D for Top Similar Layers Dmin =
c1 Resid-Post1 0.02
c2 Resid-Post2 0.03
c Resid-Post2, Resid-Post3, and 7 others 0.04

Results The results are shown in the Table 1. We see that in the Model L, the GW distance correctly262

identifies the most similar layers in accordance with different intermediate c’s. The final target c263

contains 9 similar layers all with distance around 0.04. In Appendix C, we also test probes as the264

prediction targets are given. Results shows GW distance can be a reliable alternative to the probes265

to find layer structures. Moreover, as previously mentioned GW distance can naturally compare266

representations across and within transformer blocks with different dimensions. In Fig 3a and Fig 3b,267

we visualize the pairwise GW distance between layer representations without a target for Model L268

and Model E. Looking at Model L we see predominantly 3 groupings of layers: i) layers roughly269

from 20 to 44 are similar to each other and to layers 52 to 72, ii) layers roughly 12 to 19 are similar to270

each other and layers 45 to 51 and iii) the initial and last few layers are mainly similar to themselves.271

Interestingly, the number of groupings corresponds to the 3 functions trained layer-wise in Model272

L. We also observe differences in patterns across Model L and Model E, suggesting layer-wise and273

end-to-end training return different networks. Compared to the fixed layer-wise training, end-to-end274

6



training in Model E may learn faster in the earlier layers and may not have much to learn in later275

layers, as the function may not be particularly challenging for it. This could explain why, starting276

from layer 64, all layers in Model E exhibit similar representations. Moreover, magnitudes of the277

distances are also different, with Model L showing larger distances, indicating that learning the278

targets c1, c2 result in more functional differences. One possible explanation could be that Model E279

directly operates in the trigonometry space [34], without having to predict the exact integer values280

until later, thereby suppressing the distances. We include results from baseline methods capable of281

handling different dimensions between subspaces in Appendix D.282

To gain a deeper understanding of the operations within each transformer block, we visualize pairwise283

GW distances among layers for Model 0 for dataset fmod in Figure 3c. For discussion, we refer the284

readers to Appendix D.285

5.2 Real Dataset: NLP Tasks286

(a) Pre-trained (b) Cosine (c) Euclidean (d) MI (e) 95% Sparse

(f) RSA (g) RSM (h) Wasserstein (i) AGW (j) GW, proposed

Figure 4: Pairwise (layer) distances on Yelp, across pre-train and densely fine-tuned BERT models,
using the various similarity measure. As can be seen GW clearly demarcates the layer groups. Due to
page limit, we show more results in Appendix I.

Setup We now apply GW distance to real natural language processing tasks. We experiment on287

benchmark sentiment analysis datasets, Yelp reviews and Stanford Sentiment Treebank-v2 (SST2)288

from the GLUE NLP benchmark [49], with the goal to predict of the text has positive or negative289

sentiment, and analyze how different layers from fine-tuning BERT(-base) [8] models perform on290

these datasets. We use the pretrained BERT to generate 4 fine-tuned models, corresponding to a291

dense model and 3 sparse models with sparsity levels of 25%, 70% and 95% using a state-of-the-art292

structured pruning algorithm [9], but only show results on densely fine-tuned models here. Training293

details and more results are in Appendix E and I. Due to the size of BERT models, we limit our294

analysis to comparing the final representations from each of the 12 transformer blocks, rather than295

examining all intermediate representations within transformer blocks.296

Results In Figure 4a, we see that the pre-trained BERT does not have major differences among blocks,297

which is not surprising given its accuracy on YELP is only 49.3% (roughly equivalent to random298

guessing). In Figures 4b to 4j, we show similarity measures from difference baselines. We can see299

an interesting pattern emerge, revealing two major block structures in the fine-tuned BERT models300

identified by our approach. The first major differences occur at block 9 and then the last three blocks301

(10, 11, 12) seem to form a distinct block. This seems to indicate that most of the function/task fitting302

occurs at these later blocks. GW distance gives the most distinctive layer groups.303

The pattern indicates that later blocks differ significantly from earlier ones. This observation is304

consistent with fine-tuning and sparsification literature [26, 9], where it has been observed that305

later blocks typically undergo substantial changes during fine-tuning as they focus on task-specific306

solutions, while the earlier middle blocks remain stable as they capture syntactic and semantic patterns307

of the language necessary for various tasks. In appendix J, we further investigate the GW distance308

7



between blocks from two different models, providing insights into how representations vary across309

architectures.310

On SST2 dataset, we also observe very similar patterns with the GW distance and 3 baselines, for311

which we refer the readers to appendix K for detailed results. In both datasets, low distance measure312

are consistently observed in the diagonal elements, but the overall block structures are not as obvious313

in the baselines as they are with GW distance, highlighting the effectiveness of the GW distance.314

Model Compression and Fine-Tuning The presence of block structures in the GW-distance315

matrices indicates major functional changes may concentrate at these transition blocks. This finding316

may suggest that for other downstream tasks, we may consider freezing the model up to Block 8 and317

only fine-tuning the blocks after that. We validate this observation in appendix G, showing minimal318

accuracy drop. We also consider a model compression application where only 4 transformer blocks319

can achieve similarly good performance, as discussed in Appendix L.320

Clustering Besides visualization above, one can also utilize clustering methods to automatically321

identify the layer groups from the GW distance. We tested spectral clustering [48] on a similarity322

matrix computed as the reverse pairwise GW distance matrix. This method successfully identified 2323

groups with block 1 ∼ 8 and block 9 ∼ 12.324

5.3 Training Dynamics: Emergence of Layer Groups During Training325

We also visualize the GW distance between blocks while fine-tuning the pretrained BERT model on326

YELP datasets in the entire training process, in order to observe when these layer grouping structures327

begin to emerge. Figure 5 show a few visualization on GW distances at selected training iterations.328

Block distances are low in the beginning (observed in Figure 4a), but by iteration 300 the last block329

begin to differ from other blocks. As training progresses, block 9, 10, and 11 begin to show at330

iteration 3k and 15k. These growing differences in GW distance reflect the model’s increasing F1331

score on the test data. Overall it show the gradual specialization of blocks into distinct sub-networks,332

with each sub-network potentially focusing on different aspects of the task.333

(a) Iteration = 300 (b) Iteration = 3k (c) Iteration = 15k (d) Iteration = 26k

Figure 5: Pairwise GW distance in YELP datasets, over training iterations.

We also plot the mean GW distance of all block pairs in Figure 6. Figure 6a show the mean GW334

distance over training iterations, and show it grows over time. Figure 6b shows that mean GW335

distance versus two different accuracy metric on the test dataset. GW distance grow slowly at first,336

followed by a rapid increase as the model achieves better accuracy and F1 scores. Such observation337

is consistent with existing “grokking" behavior, where validation accuracy can suddenly increases338

well after achieving near perfect training accuracy [34]. Similarly, Figure 6c shows a rapid increase339

in mean GW distance in order to achieve a lower training loss.

Figure 6: Pairwise GW distance in YELP datasets, over training iterations.340

8



Figure 7: Pairwise layer distance between every layer and its previous layer on CIFAR-10, for various baselines,
including RSM, RSA, MSID, CKA, AGW, and GW. Each Row Represents one method.

5.4 ResNet and Computer Vision Dataset341

In addition to the attention-based architectures, we also test our approach on ResNet9, a popular342

convolutional neural network architecture [16, 39]. We compare a randomly initialized ResNet9 and343

a trained one on CIFAR 10 image dataset CIFAR-10 [25], achieving 91.63% accuracy on the test344

data. For more details on the setup, we refer the readers to Appendix N. In Figure 18, we show the345

pairwise distance among layers using baselines that handle different input dimensions. Overall, GW346

distance show the most clear divisions of layer grouping.347

To further examine how the sub-network structures align with learned representation, we visualize348

the computed distances alongside the learned representations of an image of class ""ship" across349

all layers in Figure 7. The top row shows the representations of a ship at each layer. To see the350

gradual changes over layers, we visualize the distance between every layer and its previous layer,351

using various methods capable of handling different dimensions between compared spaces. Overall,352

RSM, RSA, MSID, and CKA show indicate significant changes across many layers, without clear353

evidence of sub-network structures. AGW highlights the changes in the final few layers only. In354

comparison, GW distance demonstrates the most consistency with the image representations visually.355

Specifically, the 3rd convolution layer (Layer ID 2.ReLU) introduces the first notable differences,356

where the ship’s shape becomes less distinct, signaling the learning of mid-level features. The357

shapes become increasingly blurred in the 5th convolution layers (Layer ID 4.Conv2d) and by Layer358

4.ReLU the ship’s shape is nearly absent. The final convolutional layer (Layer ID 7.Conv2d) shows359

significant changes from its preceding layer (Layer ID 6.ReLU), marking the point where class-360

specific information is consolidated. These results suggest that GW distance aligns most effectively361

with the learned representations, providing strong evidence that it reveals meaningful layer structures.362

6 Discussion363

We proposed to model interpretation based on representation similarity within intermediate layers364

of neural networks, using GW distance to compute such similarities. To the best of our knowledge,365

our application of GW distance in this context is novel. On algebraic, real NLP, and vision tasks, we366

identified the existence of major groups amongst layers, corresponding to functionally meaningful367

abstractions. These results reveal implicit layer structure within neural networks, and highlight the368

potential sudden transition in network computation instead of smooth function change. Future work369

could investigate other models and applications to observe general trends.370

Limitations and Broader Impact Our approach first assumes we have access to the intermediate371

layer representations, which may not be available for some black-box models. Our approach is372

general, but assumes the proposed distances correctly represent the representation similarities. Our373

findings are also limited to the datasets and models studied and are not guaranteed to be observed in374

other scenarios. In terms of broader impact, our approach could be applied widely given its simplicity375

for identifying layer grouping in neural networks. However, more investigations on inner mechanisms376

will have to be done, perhaps building on our approach, in order to fully understand the behavior of377

neural models.378

9



References379

[1] N. Bonneel, M. Van De Panne, S. Paris, and W. Heidrich. Displacement interpolation using380

lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH Asia conference, pages 1–12,381

2011.382

[2] T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly, N. Turner, C. Anil, C. Deni-383

son, A. Askell, R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell, N. Joseph, Z. Hatfield-384

Dodds, A. Tamkin, K. Nguyen, B. McLean, J. E. Burke, T. Hume, S. Carter, T. Henighan, and385

C. Olah. Towards monosemanticity: Decomposing language models with dictionary learn-386

ing. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-387

features/index.html.388

[3] J. Cao, J. Li, X. Hu, X. Wu, and M. Tan. Towards interpreting deep neural networks via layer389

behavior understanding. Machine Learning, 111(3):1159–1179, 2022.390

[4] F. Charton. Learning the greatest common divisor: explaining transformer predictions. In The391

Twelfth International Conference on Learning Representations, 2023.392

[5] A. Conmy, A. Mavor-Parker, A. Lynch, S. Heimersheim, and A. Garriga-Alonso. Towards393

automated circuit discovery for mechanistic interpretability. Advances in Neural Information394

Processing Systems, 36, 2024.395

[6] P. Demetci, Q. H. Tran, I. Redko, and R. Singh. Revisiting invariances and introducing priors in396

gromov-wasserstein distances. arXiv preprint arXiv:2307.10093, 2023.397

[7] P. Demetci, Q. H. Tran, I. Redko, and R. Singh. Revisiting invariances and introducing priors in398

gromov-wasserstein distances. arXiv:2307.10093, 2023.399

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional400

transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors,401

Proceedings of the 2019 Conference of the North American Chapter of the Association for402

Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-403

pers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational404

Linguistics.405

[9] A. Dhurandhar, T. Pedapati, R. Luss, S. Dan, A. Lozano, P. Das, and G. Kollias. Neuroprune: A406

neuro-inspired topological sparse training algorithm for large language models. Findings of the407

Association for Computational Linguistics, 2024.408

[10] F. Ding, J.-S. Denain, and J. Steinhardt. Grounding representation similarity with statistical409

testing. arXiv preprint arXiv:2108.01661, 2021.410

[11] M. Dreyer, E. Purelku, J. Vielhaben, W. Samek, and S. Lapuschkin. Pure: Turning polysemantic411

neurons into pure features by identifying relevant circuits. arXiv preprint arXiv:2404.06453,412

2024.413

[12] K. Dwivedi and G. Roig. Representation similarity analysis for efficient task taxonomy &414

transfer learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern415

Recognition, pages 12387–12396, 2019.416

[13] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel,417

A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Janati, A. Rakotomamonjy,418

I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer.419

Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.420

[14] M. Geva, J. Bastings, K. Filippova, and A. Globerson. Dissecting recall of factual associations421

in auto-regressive language models. arXiv preprint arXiv:2304.14767, 2023.422

[15] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.423

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In424

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–425

778, 2016.426

10



[17] T. He, D. Doshi, A. Das, and A. Gromov. Learning to grok: Emergence of in-context learning427

and skill composition in modular arithmetic tasks. arXiv preprint arXiv:2406.02550, 2024.428

[18] E. Hernandez, A. S. Sharma, T. Haklay, K. Meng, M. Wattenberg, J. Andreas, Y. Belinkov,429

and D. Bau. Linearity of relation decoding in transformer language models. arXiv preprint430

arXiv:2308.09124, 2023.431

[19] Y. Hou, J. Li, Y. Fei, A. Stolfo, W. Zhou, G. Zeng, A. Bosselut, and M. Sachan. Towards432

a mechanistic interpretation of multi-step reasoning capabilities of language models. arXiv433

preprint arXiv:2310.14491, 2023.434

[20] J. Huang, Z. Wu, C. Potts, M. Geva, and A. Geiger. Ravel: Evaluating interpretability methods435

on disentangling language model representations. arXiv preprint arXiv:2402.17700, 2024.436

[21] X. Huang, M. Panwar, N. Goyal, and M. Hahn. Inversionview: A general-purpose method for437

reading information from neural activations. arXiv preprint arXiv:2405.17653, 2024.438

[22] M. Klabunde, T. Schumacher, M. Strohmaier, and F. Lemmerich. Similarity of neural network439

models: A survey of functional and representational measures. arXiv preprint arXiv:2305.06329,440

2023.441

[23] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations442

revisited. In International conference on machine learning, pages 3519–3529. PMLR, 2019.443

[24] J. Kramár, T. Lieberum, R. Shah, and N. Nanda. Atp*: An efficient and scalable method for444

localizing llm behaviour to components. arXiv preprint arXiv:2403.00745, 2024.445

[25] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.446

[26] J. Li, R. Cotterell, and M. Sachan. Differentiable subset pruning of transformer heads. Trans.447

Assoc. Comput. Linguistics, 9:1442–1459, 2021.448

[27] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft. Convergent learning: Do different449

neural networks learn the same representations? arXiv preprint arXiv:1511.07543, 2015.450

[28] S. Lohit and M. Jones. Model compression using optimal transport. In Proceedings of the451

IEEE/CVF Winter Conference on Applications of Computer Vision, pages 2764–2773, 2022.452

[29] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint453

arXiv:1711.05101, 2017.454

[30] J. Mehrer, C. J. Spoerer, N. Kriegeskorte, and T. C. Kietzmann. Individual differences among455

deep neural network models. Nature communications, 11(1):5725, 2020.456

[31] F. Mémoli. Gromov–wasserstein distances and the metric approach to object matching. Foun-457

dations of computational mathematics, 11:417–487, 2011.458

[32] K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in459

gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.460

[33] A. Morcos, M. Raghu, and S. Bengio. Insights on representational similarity in neural networks461

with canonical correlation. Advances in neural information processing systems, 31, 2018.462

[34] N. Nanda, L. Chan, T. Lieberum, J. Smith, and J. Steinhardt. Progress measures for grokking463

via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.464

[35] T. Nguyen, M. Raghu, and S. Kornblith. On the origins of the block structure phenomenon in465

neural network representations. arXiv preprint arXiv:2202.07184, 2022.466

[36] F. Ortu, Z. Jin, D. Doimo, M. Sachan, A. Cazzaniga, and B. Schölkopf. Competition of467

mechanisms: Tracing how language models handle facts and counterfactuals. arXiv preprint468

arXiv:2402.11655, 2024.469

[37] V. Palit, R. Pandey, A. Arora, and P. P. Liang. Towards vision-language mechanistic inter-470

pretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF International471

Conference on Computer Vision, pages 2856–2861, 2023.472

11



[38] K. Park, Y. J. Choe, Y. Jiang, and V. Veitch. The geometry of categorical and hierarchical473

concepts in large language models. arXiv preprint arXiv:2406.01506, 2024.474

[39] S. M. Park, K. Georgiev, A. Ilyas, G. Leclerc, and A. Madry. Trak: Attributing model behavior475

at scale. arXiv preprint arXiv:2303.14186, 2023.476

[40] G. Peyré, M. Cuturi, et al. Computational optimal transport: With applications to data science.477

Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.478

[41] C. Shi, N. Beltran-Velez, A. Nazaret, C. Zheng, A. Garriga-Alonso, A. Jesson, M. Makar,479

and D. Blei. Hypothesis testing the circuit hypothesis in llms. In ICML 2024 Workshop on480

Mechanistic Interpretability, 2024.481

[42] S. P. Singh and M. Jaggi. Model fusion via optimal transport. Advances in Neural Information482

Processing Systems, 33:22045–22055, 2020.483

[43] G. Stoica, D. Bolya, J. Bjorner, P. Ramesh, T. Hearn, and J. Hoffman. Zipit! merging models484

from different tasks without training. arXiv preprint arXiv:2305.03053, 2023.485

[44] V. Titouan, N. Courty, R. Tavenard, and R. Flamary. Optimal transport for structured data with486

application on graphs. In International Conference on Machine Learning, pages 6275–6284.487

PMLR, 2019.488

[45] A. Tsitsulin, M. Munkhoeva, D. Mottin, P. Karras, A. Bronstein, I. Oseledets, and E. Müller.489

The shape of data: Intrinsic distance for data distributions. arXiv preprint arXiv:1905.11141,490

2019.491

[46] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning492

research, 9(11), 2008.493

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and494

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,495

30, 2017.496

[48] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.497

[49] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task498

benchmark and analysis platform for natural language understanding. In Proceedings of the499

24th International Conference on Learning Representations, 2019.500

[50] K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild:501

a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593, 2022.502

[51] L. Yu, M. Cao, J. C. K. Cheung, and Y. Dong. Mechanisms of non-factual hallucinations in503

language models. arXiv preprint arXiv:2403.18167, 2024.504

[52] L. Zheng, Y. Xiao, and L. Niu. A brief survey on computational gromov-wasserstein distance.505

Procedia Computer Science, 199:697–702, 2022. The 8th International Conference on Infor-506

mation Technology and Quantitative Management (ITQM 2020 & 2021): Developing Global507

Digital Economy after COVID-19.508

[53] Z. Zhong, Z. Liu, M. Tegmark, and J. Andreas. The clock and the pizza: Two stories in509

mechanistic explanation of neural networks. Advances in Neural Information Processing510

Systems, 36, 2024.511

NeurIPS Paper Checklist512

1. Claims513

Question: Do the main claims made in the abstract and introduction accurately reflect the514

paper’s contributions and scope?515

Answer: [Yes]516

Justification: Experiment result validation.517

12



Guidelines:518

• The answer NA means that the abstract and introduction do not include the claims519

made in the paper.520

• The abstract and/or introduction should clearly state the claims made, including the521

contributions made in the paper and important assumptions and limitations. A No or522

NA answer to this question will not be perceived well by the reviewers.523

• The claims made should match theoretical and experimental results, and reflect how524

much the results can be expected to generalize to other settings.525

• It is fine to include aspirational goals as motivation as long as it is clear that these goals526

are not attained by the paper.527

2. Limitations528

Question: Does the paper discuss the limitations of the work performed by the authors?529

Answer: [Yes]530

Justification: At the end of main paper.531

Guidelines:532

• The answer NA means that the paper has no limitation while the answer No means that533

the paper has limitations, but those are not discussed in the paper.534

• The authors are encouraged to create a separate "Limitations" section in their paper.535

• The paper should point out any strong assumptions and how robust the results are to536

violations of these assumptions (e.g., independence assumptions, noiseless settings,537

model well-specification, asymptotic approximations only holding locally). The authors538

should reflect on how these assumptions might be violated in practice and what the539

implications would be.540

• The authors should reflect on the scope of the claims made, e.g., if the approach was541

only tested on a few datasets or with a few runs. In general, empirical results often542

depend on implicit assumptions, which should be articulated.543

• The authors should reflect on the factors that influence the performance of the approach.544

For example, a facial recognition algorithm may perform poorly when image resolution545

is low or images are taken in low lighting. Or a speech-to-text system might not be546

used reliably to provide closed captions for online lectures because it fails to handle547

technical jargon.548

• The authors should discuss the computational efficiency of the proposed algorithms549

and how they scale with dataset size.550

• If applicable, the authors should discuss possible limitations of their approach to551

address problems of privacy and fairness.552

• While the authors might fear that complete honesty about limitations might be used by553

reviewers as grounds for rejection, a worse outcome might be that reviewers discover554

limitations that aren’t acknowledged in the paper. The authors should use their best555

judgment and recognize that individual actions in favor of transparency play an impor-556

tant role in developing norms that preserve the integrity of the community. Reviewers557

will be specifically instructed to not penalize honesty concerning limitations.558

3. Theory assumptions and proofs559

Question: For each theoretical result, does the paper provide the full set of assumptions and560

a complete (and correct) proof?561

Answer: [Yes]562

Justification: with citations.563

Guidelines:564

• The answer NA means that the paper does not include theoretical results.565

• All the theorems, formulas, and proofs in the paper should be numbered and cross-566

referenced.567

• All assumptions should be clearly stated or referenced in the statement of any theorems.568

13



• The proofs can either appear in the main paper or the supplemental material, but if569

they appear in the supplemental material, the authors are encouraged to provide a short570

proof sketch to provide intuition.571

• Inversely, any informal proof provided in the core of the paper should be complemented572

by formal proofs provided in appendix or supplemental material.573

• Theorems and Lemmas that the proof relies upon should be properly referenced.574

4. Experimental result reproducibility575

Question: Does the paper fully disclose all the information needed to reproduce the main ex-576

perimental results of the paper to the extent that it affects the main claims and/or conclusions577

of the paper (regardless of whether the code and data are provided or not)?578

Answer: [Yes]579

Justification: Details discussed in appendix.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• If the paper includes experiments, a No answer to this question will not be perceived583

well by the reviewers: Making the paper reproducible is important, regardless of584

whether the code and data are provided or not.585

• If the contribution is a dataset and/or model, the authors should describe the steps taken586

to make their results reproducible or verifiable.587

• Depending on the contribution, reproducibility can be accomplished in various ways.588

For example, if the contribution is a novel architecture, describing the architecture fully589

might suffice, or if the contribution is a specific model and empirical evaluation, it may590

be necessary to either make it possible for others to replicate the model with the same591

dataset, or provide access to the model. In general. releasing code and data is often592

one good way to accomplish this, but reproducibility can also be provided via detailed593

instructions for how to replicate the results, access to a hosted model (e.g., in the case594

of a large language model), releasing of a model checkpoint, or other means that are595

appropriate to the research performed.596

• While NeurIPS does not require releasing code, the conference does require all submis-597

sions to provide some reasonable avenue for reproducibility, which may depend on the598

nature of the contribution. For example599

(a) If the contribution is primarily a new algorithm, the paper should make it clear how600

to reproduce that algorithm.601

(b) If the contribution is primarily a new model architecture, the paper should describe602

the architecture clearly and fully.603

(c) If the contribution is a new model (e.g., a large language model), then there should604

either be a way to access this model for reproducing the results or a way to reproduce605

the model (e.g., with an open-source dataset or instructions for how to construct606

the dataset).607

(d) We recognize that reproducibility may be tricky in some cases, in which case608

authors are welcome to describe the particular way they provide for reproducibility.609

In the case of closed-source models, it may be that access to the model is limited in610

some way (e.g., to registered users), but it should be possible for other researchers611

to have some path to reproducing or verifying the results.612

5. Open access to data and code613

Question: Does the paper provide open access to the data and code, with sufficient instruc-614

tions to faithfully reproduce the main experimental results, as described in supplemental615

material?616

Answer: [Yes]617

Justification: Will release code upon the acceptance of the paper.618

Guidelines:619

• The answer NA means that paper does not include experiments requiring code.620

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/621

public/guides/CodeSubmissionPolicy) for more details.622

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• While we encourage the release of code and data, we understand that this might not be623

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not624

including code, unless this is central to the contribution (e.g., for a new open-source625

benchmark).626

• The instructions should contain the exact command and environment needed to run to627

reproduce the results. See the NeurIPS code and data submission guidelines (https:628

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.629

• The authors should provide instructions on data access and preparation, including how630

to access the raw data, preprocessed data, intermediate data, and generated data, etc.631

• The authors should provide scripts to reproduce all experimental results for the new632

proposed method and baselines. If only a subset of experiments are reproducible, they633

should state which ones are omitted from the script and why.634

• At submission time, to preserve anonymity, the authors should release anonymized635

versions (if applicable).636

• Providing as much information as possible in supplemental material (appended to the637

paper) is recommended, but including URLs to data and code is permitted.638

6. Experimental setting/details639

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-640

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the641

results?642

Answer: [Yes]643

Justification: Details in the appendix.644

Guidelines:645

• The answer NA means that the paper does not include experiments.646

• The experimental setting should be presented in the core of the paper to a level of detail647

that is necessary to appreciate the results and make sense of them.648

• The full details can be provided either with the code, in appendix, or as supplemental649

material.650

7. Experiment statistical significance651

Question: Does the paper report error bars suitably and correctly defined or other appropriate652

information about the statistical significance of the experiments?653

Answer: [NA]654

Justification: Not applicable.655

Guidelines: Results on different seeds in Figure 17.656

• The answer NA means that the paper does not include experiments.657

• The authors should answer "Yes" if the results are accompanied by error bars, confi-658

dence intervals, or statistical significance tests, at least for the experiments that support659

the main claims of the paper.660

• The factors of variability that the error bars are capturing should be clearly stated (for661

example, train/test split, initialization, random drawing of some parameter, or overall662

run with given experimental conditions).663

• The method for calculating the error bars should be explained (closed form formula,664

call to a library function, bootstrap, etc.)665

• The assumptions made should be given (e.g., Normally distributed errors).666

• It should be clear whether the error bar is the standard deviation or the standard error667

of the mean.668

• It is OK to report 1-sigma error bars, but one should state it. The authors should669

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis670

of Normality of errors is not verified.671

• For asymmetric distributions, the authors should be careful not to show in tables or672

figures symmetric error bars that would yield results that are out of range (e.g. negative673

error rates).674

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• If error bars are reported in tables or plots, The authors should explain in the text how675

they were calculated and reference the corresponding figures or tables in the text.676

8. Experiments compute resources677

Question: For each experiment, does the paper provide sufficient information on the com-678

puter resources (type of compute workers, memory, time of execution) needed to reproduce679

the experiments?680

Answer: [Yes]681

Justification: On a single laptop with 3.3GHz CPU and 36G memory, no GPU.682

Guidelines:683

• The answer NA means that the paper does not include experiments.684

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,685

or cloud provider, including relevant memory and storage.686

• The paper should provide the amount of compute required for each of the individual687

experimental runs as well as estimate the total compute.688

• The paper should disclose whether the full research project required more compute689

than the experiments reported in the paper (e.g., preliminary or failed experiments that690

didn’t make it into the paper).691

9. Code of ethics692

Question: Does the research conducted in the paper conform, in every respect, with the693

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?694

Answer: [Yes]695

Justification:696

Guidelines:697

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.698

• If the authors answer No, they should explain the special circumstances that require a699

deviation from the Code of Ethics.700

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-701

eration due to laws or regulations in their jurisdiction).702

10. Broader impacts703

Question: Does the paper discuss both potential positive societal impacts and negative704

societal impacts of the work performed?705

Answer: [Yes]706

Justification: At the end of paper.707

Guidelines:708

• The answer NA means that there is no societal impact of the work performed.709

• If the authors answer NA or No, they should explain why their work has no societal710

impact or why the paper does not address societal impact.711

• Examples of negative societal impacts include potential malicious or unintended uses712

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations713

(e.g., deployment of technologies that could make decisions that unfairly impact specific714

groups), privacy considerations, and security considerations.715

• The conference expects that many papers will be foundational research and not tied716

to particular applications, let alone deployments. However, if there is a direct path to717

any negative applications, the authors should point it out. For example, it is legitimate718

to point out that an improvement in the quality of generative models could be used to719

generate deepfakes for disinformation. On the other hand, it is not needed to point out720

that a generic algorithm for optimizing neural networks could enable people to train721

models that generate Deepfakes faster.722

• The authors should consider possible harms that could arise when the technology is723

being used as intended and functioning correctly, harms that could arise when the724

technology is being used as intended but gives incorrect results, and harms following725

from (intentional or unintentional) misuse of the technology.726

16

https://neurips.cc/public/EthicsGuidelines


• If there are negative societal impacts, the authors could also discuss possible mitigation727

strategies (e.g., gated release of models, providing defenses in addition to attacks,728

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from729

feedback over time, improving the efficiency and accessibility of ML).730

11. Safeguards731

Question: Does the paper describe safeguards that have been put in place for responsible732

release of data or models that have a high risk for misuse (e.g., pretrained language models,733

image generators, or scraped datasets)?734

Answer: [NA]735

Justification:736

Guidelines:737

• The answer NA means that the paper poses no such risks.738

• Released models that have a high risk for misuse or dual-use should be released with739

necessary safeguards to allow for controlled use of the model, for example by requiring740

that users adhere to usage guidelines or restrictions to access the model or implementing741

safety filters.742

• Datasets that have been scraped from the Internet could pose safety risks. The authors743

should describe how they avoided releasing unsafe images.744

• We recognize that providing effective safeguards is challenging, and many papers do745

not require this, but we encourage authors to take this into account and make a best746

faith effort.747

12. Licenses for existing assets748

Question: Are the creators or original owners of assets (e.g., code, data, models), used in749

the paper, properly credited and are the license and terms of use explicitly mentioned and750

properly respected?751

Answer: [Yes]752

Justification:753

Guidelines:754

• The answer NA means that the paper does not use existing assets.755

• The authors should cite the original paper that produced the code package or dataset.756

• The authors should state which version of the asset is used and, if possible, include a757

URL.758

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.759

• For scraped data from a particular source (e.g., website), the copyright and terms of760

service of that source should be provided.761

• If assets are released, the license, copyright information, and terms of use in the762

package should be provided. For popular datasets, paperswithcode.com/datasets763

has curated licenses for some datasets. Their licensing guide can help determine the764

license of a dataset.765

• For existing datasets that are re-packaged, both the original license and the license of766

the derived asset (if it has changed) should be provided.767

• If this information is not available online, the authors are encouraged to reach out to768

the asset’s creators.769

13. New assets770

Question: Are new assets introduced in the paper well documented and is the documentation771

provided alongside the assets?772

Answer: [Yes]773

Justification:774

Guidelines:775

• The answer NA means that the paper does not release new assets.776

17

paperswithcode.com/datasets


• Researchers should communicate the details of the dataset/code/model as part of their777

submissions via structured templates. This includes details about training, license,778

limitations, etc.779

• The paper should discuss whether and how consent was obtained from people whose780

asset is used.781

• At submission time, remember to anonymize your assets (if applicable). You can either782

create an anonymized URL or include an anonymized zip file.783

14. Crowdsourcing and research with human subjects784

Question: For crowdsourcing experiments and research with human subjects, does the paper785

include the full text of instructions given to participants and screenshots, if applicable, as786

well as details about compensation (if any)?787

Answer: [NA]788

Justification:789

Guidelines:790

• The answer NA means that the paper does not involve crowdsourcing nor research with791

human subjects.792

• Including this information in the supplemental material is fine, but if the main contribu-793

tion of the paper involves human subjects, then as much detail as possible should be794

included in the main paper.795

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,796

or other labor should be paid at least the minimum wage in the country of the data797

collector.798

15. Institutional review board (IRB) approvals or equivalent for research with human799

subjects800

Question: Does the paper describe potential risks incurred by study participants, whether801

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)802

approvals (or an equivalent approval/review based on the requirements of your country or803

institution) were obtained?804

Answer: [NA]805

Justification:806

Guidelines:807

• The answer NA means that the paper does not involve crowdsourcing nor research with808

human subjects.809

• Depending on the country in which research is conducted, IRB approval (or equivalent)810

may be required for any human subjects research. If you obtained IRB approval, you811

should clearly state this in the paper.812

• We recognize that the procedures for this may vary significantly between institutions813

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the814

guidelines for their institution.815

• For initial submissions, do not include any information that would break anonymity (if816

applicable), such as the institution conducting the review.817

16. Declaration of LLM usage818

Question: Does the paper describe the usage of LLMs if it is an important, original, or819

non-standard component of the core methods in this research? Note that if the LLM is used820

only for writing, editing, or formatting purposes and does not impact the core methodology,821

scientific rigorousness, or originality of the research, declaration is not required.822

Answer: [NA]823

Justification: Use BERT models only.824

Guidelines:825

• The answer NA means that the core method development in this research does not826

involve LLMs as any important, original, or non-standard components.827

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)828

for what should or should not be described.829

18

https://neurips.cc/Conferences/2025/LLM


A Representations in Transformer-based and Convolution Neural Network830

We consider multiple candidate Y ’s to form the search space for target Y 0. In the context of MLP831

neural networks for example, where σ(.) denotes the non-linearity and W s are the parameter matrices,832

we have Y ∗ = Wn(σ(Wn−1 . . . σ(W1X))) for the whole network. We can extract many Y ’s from833

intermediate functions of the model, for instance Y1 = W1X , Y2 = σ(W1X), and so on. These Y ’s834

are often called representations, activations, or sometimes even “outputs” from each layer.835

For attention modules in transformer neural networks [47], we can similarly extract Y ’s from attention836

key, query, and value functions as well as MLP functions. More specifically, a deep transformer837

architecture of depth l is formed by sequentially stacking l transformer blocks. Each transformer838

block takes the representations of a sequence Xin ∈ RT×d, where Xin = Emb(X) with embedding839

layer Emb and input X , T is the number of tokens and d is the embedding dimension, and outputs840

Xout, where:841

Xout = αFFX̂ + βFFMLP(Norm(X̂))

where, MLP(Xm) = σ(XmW 1)W 2

X̂ = αSAXin + βSAMHA(Norm(Xin)),

MHA(X) = [Attn1(X), . . . ,AttnH(X))]W P ,

Attn(X) = A(X)XW V ,

A(X) = softmax
(

1√
dk

XWQWK⊤
X⊤ +M

)
,

(2)

with scalar weights αFF, βFF , αSA, and βSA usually set to 1 by default. Here FF stands for feedforward842

network, SA stands for self-attention, MHA is Multi-Head Attention, and Norm is a normalization843

layer. MLP usually has a single hidden layer with dimension d and ReLU activation. The MHA sub-844

block shares information among tokens by using self-attention with WQ, WK and W V indicating845

query, key and value matrices. We list the exact locations of representations considered in the846

transformer models in Table 2.847

Table 2: Representations Y in the attention-based model considered in experiments as per equation 2.
Omitting Y in most names for readability.

(Across Blocks)
Name Resid-Prel Y l, at each block
Value = Xl

in = Xl
out

(Within Each Block l)
Name Attn-Outl Resid-Midl Pre Post MLP-outl Resid-Postl

Value =MHA(X)l = X̂ = X̂W 1 =MLP(X̂) = MLP(X̂) = Xout

(Within Each Attention Head h)
Name kh qh Attn-Preh Attnh vh zh
Value = XWK = XWQ = qhk

T
h = A(X) = XW V =Attn(X)

We also consider convolution neural networks for computer vision datasets. Specifically, we use848

a relatively lightweight ResNet9 [16, 39]. The exact locations of the candidate representations849

considered are listed in Table 3.850

B Modular Sum Experiment Details851

We use the same architecture and protocols in training, as previous modular papers [34, 53], based852

on their available Github repos. Specifically, we use transformer width d = 128, and each attention853

head has 32 dimensions. As a result, MLP has 512 hidden neurons. ReLU is used as the activation854

throughout the models,855

Data Among all data points (592 = 3481 of them), we randomly select 80% as training samples856

and 20% as validation samples.857

19



Table 3: All representations Y considered in ResNet 9 in experiments.
(Module 0)
Name 0.Conv2d 0.BatchNorm 0.ReLU
Details in-channel = 3, out =64, kernel size = (3,3) Batch Normalization activation

(Module 1)
Name 1.Conv2d 1.BatchNorm 1.ReLU
Details in-channel = 64, out =128, kernel size = (5,5) Batch Normalization activation

(Module 2 & 3: Residual Block )
Name 2.Conv2d 2.BatchNorm 2.ReLU
Name 3.Conv2d 3.BatchNorm 3.ReLU
Details in-channel = 128, out =128, kernel size = (3,3) Batch Normalization activation

(Module 4)
Name 4.Conv2d 4.BatchNorm 4.ReLU 4. MaxPool
Details in-channel = 128, out =256, kernel size = (3,3) Batch Normalization activation Kernel (2,2)

(Module 5 & 6: Residual Block )
Name 5.Conv2d 5.BatchNorm 5.ReLU
Name 6.Conv2d 6.BatchNorm 6.ReLU
Details in-channel = 256, out =256, kernel size = (3,3) Batch Normalization

(Module 7)
Name 7.Conv2d 7.BatchNorm 7.ReLU 7. MaxPool
Details in-channel = 256, out =128, kernel size = (3,3) Batch Normalization activation Adaptive

(Module 8)
Name 8.Linear (classification)
Details in-feature = 128, out =10

Hyperparameters We used AdamW optimizer [29] with learning rate γ = 0.001 and weight decay858

factor β = 2. We use the shuffled data as one batch in every epoch. We train models from scratch859

and train for 26,000 epoches.860

Search Space For the fmod3 dataset, we consider all layers in the network, including all representa-861

tions within transformer blocks. As shown in Table 2, each attention head has 6 intermediate layers,862

for a total of 24. Each block has an additional 7 layers (1 input layer, Resid-Pre, and 6 intermediate863

layers). Hence, for three blocks each with four attention heads, we have a total of 93 representations864

to evaluate, as each block has 31 = 24 + 7 representations.865

Training procedure We train 3 different neural networks with transformer blocks to predict c given866

(a, b). These networks contain input embeddings for a and b, each of size d, i.e., [Ea,Eb] ∈ R2d,867

and predict a categorical output c via an unembedding/decoding layer. All parameters in the network868

are learned. For the first simpler fmod dataset, we train a neural network consisting of a one-block869

ReLU transformer [47], following the same protocol and hyperparameter choices as previous works870

[34, 53]. We call this Model 0. For the more complex fmod3 dataset, we train two neural networks871

consisting of three-block ReLU transformers, with 3 transformer blocks corresponding to the three872

levels of modular sum functions, and 4 attention heads within each block. The first network, which873

we call Model E, employs an end-to-end training procedure to directly learn output c given input874

(a, b). For the second network, which we call Model L, we use the same architecture as Model E but875

with a layer-wise training approach instead of end-to-end training. Specifically, we use the following876

3-step procedure:877

1) We train the first transformer block of Model L to predict (c1, b) using an additional linear layer on878

top, given inputs (a, b). 2) Once block 1 is fully trained, we discard the linear layer, freeze everything879

before the linear layer, and use its representations of (c1, b) to train the second block to predict (c2, b),880

again incorporating an additional layer on top. 3) Finally, we repeat the above step by freezing the881

first and second block and training the last block to predict c, using representations of (c2, b).882

In all these models, we are able to achieve 100% prediction accuracy on a separate validation dataset.883

To evaluate the capability of handling different dimensions, we directly measure GW distance between884

the 93 intermediate representation Y (see appendix B for search space details) and c’s. To speed885

up computation of GW distance, we randomly sub-sample 1000 data from a total of 3600 samples,886

reducing time from 2 min to 5 seconds for each computation.887

20



C Probes on Modular Sum Dataset: When Target is Known888

When the target is a value from a known function, we can directly compare outputs between889

representations from each layer and the known function output. Representations from each layer can890

be directly compared with the target via a probe. We first consider Model E and then Model L.891

Linear Probe Popular linear probes can be used to assess the similarity between a target and892

any layer’s representation. We perform linear regression of each target (c1, c2, c) on each of the 93893

representations Y , and report the residual error as the scoring distance function between Y and c’s.894

Table 4: Linear and Nonlinear Probe Results, for fmod3 dataset.
Model L Linear Probe for Perfect Match? Top Similar Layers Dmin =

c1 ✓ Resid-Post1 and 21 others 0
c2 ✓ Resid-Post2 and 21 others 0
c ✓ Resid-Post3 and Post2 0

Model E Linear Probe for Perfect Match? Top Similar Layers Dmin =
c1 × Post2 0.522
c2 × Post1 0.93
c ✓ Resid-Post3 and 5 others 0

Model E Nonlinear Probe for Perfect Match? Top Similar Layers Dmin =
c1 ✓ Resid-Post1 and 15 others 0
c2 ✓ Resid-Post1 and 4 others 0
c ✓ Resid-Post3 and 9 others 0

Results Since we perform layer-wise training with Model L, we know the true locations of c1 and895

c2, which sit at X1
out and X2

out with names Resid-Post1 and Resid-Post2, respectively. As shown in896

the top part of Table 4, a linear regression probe can predict targets perfectly with these two layers.897

In fact, there are 21 other layers which also show perfect accuracy. For c1, these consist of Post0 and898

MLP-out0 from the same block and some layers from the next block, including linear operations899

with all k’s, q’s, v’s. The final prediction c can be linearly predicted as expected, due to the model’s900

perfect prediction accuracy.901

Naturally we would like to confirm if the same happens with Model E: if we use the same linear902

probe, does each block in Model E learn the corresponding c at the output of the transformer block?903

As shown in the mid part of Table 4, we are not able to find any layer that produces a representation904

that is linearly predictive of c1 and c2, with the lowest prediction errors at 52% and 93%, respectively.905

Moreover, the most similar layers to c1 and c2 are in the 2nd block and 1st block respectively, instead906

of the expected 1st and 2nd blocks. This seems to suggest that Model E does not actually learn any907

function of c1 and c2.908

Non-linear Probe As discussed previously, to deal with the potentially large search space of909

functions of the target, a more powerful probe (such as a nonlinear MLP function) may have to be910

used so that it can detect more complex similarities to c. Therefore, we train a two-layer MLP1 to911

predict c’s. As shown at the bottom of Table 4, these two-layer MLPs have more predictive power and912

can perfectly predict the targets, while still showing differences among various layers indicating that913

the matched layers do capture the intended target functions while other layers do not. Many layers914

in the 3rd block, for example, have only 1% accuracy relative to c1. This indicates that non-linear915

probes can be used to find subgroups of layers in neural networks. Unlike existing work that primarily916

focuses on linear probes, we show that non-linear probes, still with limited capacity, are useful.917

One issue with using predictive probes to compute the distance measure D is that the target function918

has to be known. In practice, however, we may not know any intermediate targets, as suggested in the919

end-to-end training of Model E. While we still can try different target functions and use non-linear920

probes, the infinite number of possible targets makes such an approach inefficient. This calls for a921

different strategy to differentiate sub-components in a network through representation similarity.922

1We use the neural network classifier from the scikit-learn package, with default parameters.

21



D Baseline Comparison Results on Modular Sum923

To gain a deeper understanding of the operations within each transformer block, we visualize pairwise924

GW distances among layers for Model 0 for dataset fmod in Figure 3c. In this case, we have a total925

of 31 representations since only one transformer block is used. We notice the first major difference926

occurs between layers 13 and 16, which are 4 Attn-Pre (computing key and value product). The927

second difference occurs between layers 17 and 20, which are the first 3 Attn (computing A(X)).928

This suggests that major computation seems to be done by the attention mechanism. Note that929

distances are not monotonically increasing across layers, which is expected as the representation930

spaces can change significantly given the heterogeneity of the operations such as those performed by931

residual connections and attention within a transformer block.932

We have also tested a few baselines that can handle different space dimensions, shown in Figure 8.933

RSA and CKA reveal different levels of lay grouping within attention layers and across transformer934

blocks. AGW demonstrates the highest sensitivity to attention computations, while RSM finds the935

last few layers within each transformer block.936

Figure 8: Pairwise (layer) distances on Modular Sum dataset, with layer-wise trained models. Different figures
from left to right, top to bottom: RSA, RSM, CKA, MSID, AGW, and the proposed GW distance.

E Real NLP Experiment Details937

We analyze a BERT-base-uncased [8] model based on our optimal matching in-938

spired mechanistic interpretability approach. We fine tune it on two well known939

datasets in NLP; i) Yelp reviews (https://www.kaggle.com/code/suzanaiacob/940

sentiment-analysis-of-the-yelp-reviews-data) and ii) Stanford Sentiment Treebank-v2941

(SST2), which is part of the GLUE NLP benchmark [49]. Both of these are sentiment analysis tasks,942

where the goal is to predict if a piece of text has positive or negative sentiment. The Yelp dataset943

has hundreds of thousands of reviews, while the SST2 dataset has tens of thousands of sentences.944

The training details are as follows: i) Hardware: 1 A100 Nvidia GPU and 1 intel CPU, ii) Max.945

Sequence Length : 256, iii) Epochs: 1, iv) Batch Size: 16 and v) Learning Rate: 2e−5 with no weight946

decay. The accuracy on Yelp was 97.87%, while that on SST2 was 92.4%. Without fine tuning947

the pre-trained BERT models accuracy on Yelp and SST2 was 49.29% and 50.34% respectively948

indicative of random chance performance.949

We also fine tuned a series of sparse models on these datasets. The method we used to sparsify was a950

state-of-the-art dynamic sparse training approach NeuroPrune [9], which leads to high performing951

structured sparse models. Using this approach and the same training settings as above we created952

BERT models with 25%, 70% and 95% sparsity which had accuracies of 96.31%, 97.53% and953

96.22% respectively for the Yelp dataset and accuracies of 90.25%, 88.5% and 84.4% respectively954

for the SST2 dataset. We then used the resultant models for our analysis.955

22

https://www.kaggle.com/code/suzanaiacob/sentiment-analysis-of-the-yelp-reviews-data
https://www.kaggle.com/code/suzanaiacob/sentiment-analysis-of-the-yelp-reviews-data
https://www.kaggle.com/code/suzanaiacob/sentiment-analysis-of-the-yelp-reviews-data


F GW Justification and Alignment956

Distance Distributions. As an illustrative example, we plot the histogram on pairwise distances for a957

batch of samples across all transformer blocks in BERT models from the YELP review dataset in958

Figure 2. The results in Figure 2 show the distributions on pairwise distances begin to differ from959

block 9, consistent with GW distance observed in Figure 4, suggesting that significant transformations960

occur and can be effectively captured by GW.961

Neighborhood Change. Complementary to the distribution of pairwise distances, the changing962

representations of samples could also alter their relative neighborhoods across transformer blocks.963

We plot a tSNE projection [46] of representations from a batch of samples on YELP, and visualize it964

in Figure 2b and Figure 9e. The Jaccard similarity, measuring the overlap between top-5-neighbors965

of 3 selected samples across different transformer blocks, ranges from 0.0 to 0.43, with average966

values of {0.27, 0.26, 0.26}. The full details are shown in Table 5, as discussed below. Hence, the967

sample neighborhood changes across blocks, which can be indicative of functional changes that are968

not captured by comparing distributions alone. However, GW can account for such changes as well.969

We plot a tSNE projection [46] down to 2 dimensions, on a batch of 16 samples (color indicative of970

sample) on YELP, and visualize it in Figure 9e. As one can see, the sample neighborhood changes971

across layers, which can be indicative of functional changes but something that is not captured by972

comparing distributions. However, GW can also account for such changes.973

(a) Pretrained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 90% Sparse

Figure 9: tSNE projection on intermediate representations on Yelp, across BERT models with different sparsity
levels. Different Rows: Results from all 12 transformer blocks, from top to bottom. Different columns: first
column is the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%,
70% and 95% sparsity).

We also show Jaccard similarity measure on top-5-neighbors, per Euclidean distances on tSNE974

projection, of each of 3 samples across different transformer blocks. Jaccard similarity is a measure975

of two sets, computed as their intersection divided by their union. Results are shown in Table 5. This976

further shows the sample neighborhood changes across layers, and representation similarity measures977

should account for such changes.978

To show the exact transportation plan from GW distances, we choose plot one batch of data with size979

16, and show the transportation plan over 5 random layer pairs in Figure 10. As one can see, the980

transportation plan does not conform to identity-mapping. Both Wasserstein and Euclidean distance981

will likely have trouble handle in this case. We also note that the transportation plan shown Figure 10982

23



Table 5: Jaccard Similarity on top-5-neighbors of Selected Samples across all transformer blocks.
Sample 1 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Block 0 v.s. 0.25 0.25 0.25 0.11 0.43 0.11 0.25 0.25 0.11 0.11 0.25 0.25 0.27

Sample 2 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Block 0 v.s. 0.11 043 0.11 0.11 0.11 0.0 0.11 0.25 0.25 0.43 0.25 0.25 0.26

Sample 3 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Block 0 v.s. 0.0 0.11 0.43 0.25 0.25 0.25 0.11 0.66 0.11 0.11 0.11 0.0 0.26

is a permutation of the original data, rather than a distributed transportation plan. This behavior is983

consistent with existing Wasserstein optimal transport plan under certain conditions [40].984

(a) (b) (c) (d) (e)

Figure 10: Pairwise GW transportation plan on Yelp, across BERT models. 5 of randomly chosen layer pairs
are shown.

To complement Figure 2 on other fine-tuned BERT models on YELP, we also plot all the histograms985

of pairwise distances between two samples in a batch, across all layers for each of 5 models in986

Figure 11. Pre-trained models are publicly available models training on other datasets. Row b) to e)987

are the fine-tuned models on YELP, with different sparsity levels. As one can see, pretrained models988

do not have much differentiations across layers in the histograms, with maximal KL-divergence of989

0.11 between histogram in consecutive layers. Fine tuned models, on the other hard, show larger990

KL-divergence values, in particular in later layers. For example, Layers 9 in the Dense BERT model991

contains KL distance of 1.58 from its previous layer. The results show that significant transformations992

in pairwise distances occur across layers and such distances would be captured by GW distances, as993

show in Figure 4 and Figure 13.994

G Fine-tuning with Different Layers995

Since the GW distance indicates significant changes occurs only at later layers in YELPS, we996

investigate performance of fine-tuning only partial layers from pretrained models, by freezing early997

layers during training and training only later layers alongside a classification layer (denoted as C)998

at the end. In Table 6, we can see that there is no significant performance differences between999

fine-tuning layer 8 to 12 and fine-tuning layer 9 to 12 (0.04% drop). On the other hand, the accuracy1000

drops 6 times more by freezing layer 1 to 9, with 0.25%. Freezing layer 1 to 10 results 0.49% drop,1001

and finally fine-tuning only 12 results 3.59% drop. These findings validate that the later layers are1002

crucial for significant functional changes.1003

Table 6: Accuracy of fine-tuning partial layers in various BERT models. C denotes the classification
layer on top of BERT models.

Fine-tune All 8∼12 + C 9∼12 + C 10∼12 + C 11∼12 + C Only 12 + C
Accuracy (%) 97.87 97.47 97.43 97.19 96.7 93.11

H Baseline Methods and Implementation Details1004

Besides the standard Euclidean, mutual information (MI) and cosine distances, we compare a few1005

other baselines, as discussed below.1006

Wasserstein Distance [12]: We use the POT, python optimal transport library pythonot [13], with1007

the algorithm proposed in [1].1008

24

pythonot


(a) Pretrained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 11: Histogram on pairwise distances on Yelp, across BERT models with different sparsity levels. a)
is the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity levels: (b)densely
fine-tuned, c) 25%, d) 70% and e) 95% sparsity.

Representational similarity metric (RSM) [22]: RSM compares two different spaces by using the1009

L2 norms on differences in inter-instances distances. This can be seen as approximation to GW1010

using the fixed and identity transportation plan (i.e., the samples map to itself). We use exist-1011

ing implementation at: https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/1012

measures/rsm_norm_difference.py.1013

Representational Similarity Analysis (RSA) [22]: RSA is similar to RSM but use correlation instead1014

of L2-norm to compute the final distance. Implementation at: https://github.com/mklabunde/1015

llm_repsim/blob/main/llmcomp/measures/rsa.py1016

Canonical Correlation analysis (CCA) [33]: CCA compute distances based on variances and covari-1017

ances. Implementation at: https://github.com/google/svcca/blob/master/cca_core.py1018

Centered Kernel Alignment (CKA) [23]: CKA is based on normalized Hilbert-Schmidt Indepen-1019

dence Criterion (HSIC). Implementation at: https://github.com/mklabunde/llm_repsim/1020

blob/main/llmcomp/measures/cka.py1021

Multi-Scale Intrinsic Distance (MSID) [45]: MSID compute the intrinsic and multiple distance, and1022

can be considered as a lower bound of the GW distance. Implementation at: https://github.com/1023

xgfs/imd/blob/master/msid/msid.py. We have explored different hyperparameter settings1024

with different neighbors k (5 or all batch data available) and number of iterations for SLQ, but results1025

are all similar to the default parameter setting.1026

Augmented GW (AGW) [6]: AGW considers feature alignment in addition to sample alignment. Its1027

overall objective can be seen as a penalized GW distance. Implementation at: https://github.1028

com/pinardemetci/AGW-AISTATS24/tree/main.1029

For all methods, we use default parameter settings to obtain results in the paper. Note that RSM,1030

RSA, CCA, MSID, and AGW, along with our proposed approach can handle different dimensions of1031

inputs.1032

Gromo-Wasserstein Distance [12]: We use the POT, python optimal transport library pythonot [13].1033

We use the solver based on the conditional gradient [44].1034

25

https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/rsm_norm_difference.py
https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/rsm_norm_difference.py
https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/rsm_norm_difference.py
https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/rsa.py
https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/rsa.py
https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/rsa.py
https://github.com/google/svcca/blob/master/cca_core.py
https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/cka.py
https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/cka.py
https://github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/cka.py
https://github.com/xgfs/imd/blob/master/msid/msid.py
https://github.com/xgfs/imd/blob/master/msid/msid.py
https://github.com/xgfs/imd/blob/master/msid/msid.py
https://github.com/pinardemetci/AGW-AISTATS24/tree/main
https://github.com/pinardemetci/AGW-AISTATS24/tree/main
https://github.com/pinardemetci/AGW-AISTATS24/tree/main
pythonot


I More Results on YELP1035

Due to the page limit, here we include baseline results on Yelp Datasets in Figure 12 and Figure 13.1036

Setup We now apply GW distance to real natural language processing tasks. We experiment on1037

benchmark sentiment analysis datasets, Yelp reviews and Stanford Sentiment Treebank-v2 (SST2)1038

from the GLUE NLP benchmark [49], with the goal to predict of the text has positive or negative1039

sentiment, and analyze how different layers from fine-tuning BERT(-base) [8] models perform on1040

these datasets. We use the pretrained BERT to generate 4 fine-tuned models, corresponding to a1041

dense model and 3 sparse models with sparsity levels of 25%, 70% and 95% using a state-of-the-art1042

structured pruning algorithm [9]. Sparsity are used to force models to condense information into the1043

limited remaining weights, enabling us to examine potential links between this constraint and their1044

structural similarity. Training details are in Appendix E. Due to the size of BERT models, we limit1045

our analysis to comparing the final representations from each of the 12 transformer blocks, rather1046

than examining all intermediate representations.1047

Results In Figure 4a, we see that the pre-trained BERT does not have major differences among1048

blocks, which is not surprising given its accuracy on YELP is only 49.3% (roughly equivalent to1049

random guessing). In Figures 4b to 4e, we see an interesting pattern emerge, revealing two-to-three1050

major block structures in the (sparse) fine-tuned BERT models identified by our approach. The first1051

major differences occur at block 9 and then the last three blocks (10, 11, 12) seem to form a distinct1052

block. This seems to indicate that most of the function/task fitting occurs at these later blocks.1053

We compare the proposed GW distance with Euclidean, Cosine, and Wasserstein distance as baselines1054

in Figure 12, on the same YELP dataset and with the same settings. Euclidean distance between1055

two layers’ outputs, shown in the first row of Figure 12, can be seen as the GW distance with a1056

fixed identity-mapping transportation plan for each sample. This validates the low-valued diagonal1057

elements. Off-diagonal elements show greater variation, and it is less obvious there are two distinct1058

sub-groups within layers. The similar pattern is also observed with Cosine and Wasserstein distances,1059

with similar strong diagonal pattern but more pronounced block structures than Euclidean distance.1060

we also include 6 other baseline similarity measure in Figure 13. Overall, CKA produces also similar1061

block structures to the proposed GW distance, though with greater variability within block structures.1062

In contrast, other baselines fail to reveal such clear block structures.1063

J Cross Model Comparison1064

We can also use GW distance to compare layers from different BERT models. Shown in Figure 14,1065

pretrained and densely fine-tuned BERT models exhibit different similarity measures when compared1066

to fine-tuned BERT models with different levels of sparsity.1067

K SST2 Datasets1068

Besides YELP Datasets, we also tested the GW distance on SST2 dataset. Results on SST2 dataset1069

are shown in Figure 15 again confirm there exist two-three different groups in terms of functional1070

similarity. The first major difference is seen at layers 10 and 11, while layer 12 forms its own block.1071

When sparsifying these models, lesser differences are observed in general as also seen on the YELP1072

dataset. Other baselines provide less clarity on the division of sub-components.1073

More baselines are included in Figure 16, as they do not all fit into the one page. Overall, RSA and1074

CKA identify block structures but with larger 2nd block.1075

L Model Pruning/Compressing1076

Another another potential application beside freezing-and-fine-tuning specific transformer blocks, we1077

study the problem of model compress or pruning with the discovered layer groupings.1078

For each of desired block sizes, we take the original pre-trained BERT and only use the first1079

n = {12, 8, 4, 2, 1, 0} transformer blocks while discarding the rest. Note that n = 12 means we use1080

all the transformer blocks, resulting the same BERT model. n = 0, on the other hand, means that we1081

only use a (linear) classifier layer (after embedding layer) to predict the class label. The results are1082

26



(a) Pre-trained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 12: Pairwise (layer) distances on Yelp, across different BERT models. Different Rows: Euclidean,
Cosine, mutual information (MI), Wasserstein, and the proposed GW distance, from top to bottom. Different
columns: first column is the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity
(dense, 25%, 70% and 95% sparsity). As can be seen GW clearly demarcates the (functional) sub-network
blocks.

shown in Table 7. As a reminder, GW distance suggest the last 4 blocks in YELP (see Figure 4) and1083

the last 2 blocks in SST (see Figure 15) are mostly different, which is marked by star (∗) in the table.1084

It shows that by using a limited number of layers, we can achieve similar performance with the full1085

12 block model, with 0.01% and 0.54% differences in YELP and SST, respectively. Using one fewer1086

transformer block can risk much worse reduction of performance, with 0.10% and 8.60% differences1087

(about 10 times worse performance reduction).1088

Table 7: Accuracy of pruning BERT with a smaller number of blocks on YELP and SST. N denotes
the number of transformer blocks in the new BERT models.

Number of Transformer Blocks 12 (all) 8 4 2 1 0 (only classifier)
YELP 97.87 97.87 97.86∗ 97.76 97.11 60.3
SST 92.40 90.25 90.25 91.86∗ 83.26 50.92

M GW Distance with Different Random Seeds1089

Neural networks initialized with different random seeds can converge to distinct representations1090

[27, 33, 23], even when their performance is comparable. To study the impact of initialization seeds1091

on the learned representations, we train the same BERT model on YELP datasets with different seeds,1092

with identical hyperparameters for a total of 27,000 iterations. As shown in Figure 17, while the1093

27



(a) Pre-trained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 13: Pairwise (layer) distances on Yelp, across different BERT models. Different Rows: RSA, RSM, CKA,
CCA, MSID, AGW, and the proposed GW distance, from top to bottom. Different columns: first column is the
pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and 95%
sparsity). As one can be seen, GW clearly demarcates the (functional) sub-network blocks.

learned representations vary across seeds, but the general block structures remain consistent when1094

analyzed using GW distances.1095

N Computer Vision Application: CIFAR-10 Datasets1096

In addition to the attention-based architectures, we also test our approach on ResNet9, a popular1097

convolutional neural network architecture[16, 39]. We compare a randomly initialized ResNet91098

and a trained model on CIFAR 10 image dataset CIFAR-10 [25], achieving 91.63% accuracy on1099

the test data. CIFAR-10 dataset consists of 60000 32x32 color images in 10 image classes, with1100

28



Figure 14: Pairwise distances on YELP dataset, of layers across two different BERT models. TOP: Densely
fine-tuned BERT model vs fine-tuned BERT models with different sparsity levels. Bottom: Pretrained BERT
model vs fine-tuned BERT models with different sparsity levels.

6000 images per class. There are 50000 training images and 10000 testing images. The classes1101

are completely mutually exclusive. ResNet is a convolutional neural network with many residual1102

connections. ResNet9 specifically contains 9 convolution layers, each followed by BatchNorm and1103

ReLU activation. The exact details of the ResNet 9 is listed in Table 3.1104

We show the pairwise distance of all layers in consideration using all methods, that can handle1105

difference dimensions of inputs, in Figure 18. The first column shows results from randomly1106

initialized pre-trained models, and the second columns shows results from the trained ResNet. Pre-1107

trained models generally do not show clear sub-network structures, while the trained models shows1108

differences across layers. RSA, RSM, and CKA show progressive changes over the network layers,1109

which is not too informative. AGW only shows the last a few layers contain significant changes, and1110

MSID distance does not contain clear patterns. In comparison, GW distance shows clear division of1111

4 groups.1112

29



(a) Pretrained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 15: Pairwise distances on SST dataset, across different BERT models. Different Rows: Euclidean,
Cosine, Wasserstein, and the proposed GW distances, from top to bottom. Different columns: first column is the
pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and 95%
sparsity).

30



(a) Pretrained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 16: More Pairwise distances on SST dataset, across different BERT models. Different Rows: RSA, RSM,
CCA, CKA, MSID, AGW, and the proposed GW distance, from top to bottom. Different columns: first column is
the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and
95% sparsity).

31



(a) Dense (b) 25% Sparse (c) 70% Sparse

Figure 17: Pairwise GW (layer) distances on Yelp, across BERT models trained with 3 different random seeds.
As one can be seen, the (functional) sub-network blocks stay rather consistent with different seeds even though
there is some variations among the models.

32



Figure 18: Pairwise (layer) distances on CIFAR-10, across different BERT models. Different Rows: RSA, RSM,
CKA, MSID, AGW, and the proposed GW distance, from top to bottom. Different columns: the first column is
the pre-trained ResNet9, and the 2nd column contains the fine tuned ResNet models.

33


	Introduction
	Background and Related Work
	Representation Similarity Within Neural Networks 
	 Gromov-Wasserstein Distance as a Similarity Measure
	Justification for GW Distance as a Functional Similarity Measure

	Empirical Study and Findings
	Validation: Synthetic Modular Sum Tasks
	Real Dataset: NLP Tasks
	Training Dynamics: Emergence of Layer Groups During Training
	ResNet and Computer Vision Dataset

	Discussion
	Representations in Transformer-based and Convolution Neural Network
	Modular Sum Experiment Details
	Probes on Modular Sum Dataset: When Target is Known
	Baseline Comparison Results on Modular Sum
	Real NLP Experiment Details
	GW Justification and Alignment 
	Fine-tuning with Different Layers
	Baseline Methods and Implementation Details
	More Results on YELP
	Cross Model Comparison
	SST2 Datasets
	Model Pruning/Compressing
	GW Distance with Different Random Seeds
	Computer Vision Application: CIFAR-10 Datasets

