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Abstract

Large language models (LLMs) often show a001
preference for certain choice options when re-002
sponding to multiple-choice questions. This be-003
havior, called selection bias, makes a model’s004
answers less accurate and helpful. Previous005
solutions to this problem have used debiasing006
methods to adjust the model’s inputs or outputs.007
Our work, in contrast, looks inside the model008
to understand and remove the sources of selec-009
tion bias. We present two solutions: Bias Node010
Pruning (BNP), which removes parts of the011
model that cause selection bias, and Auxiliary012
Option Injection (AOI), which adds an extra013
answer choice to reduce bias. We also intro-014
duce a new measure of selection bias, Choice015
Kullback-Leibler Divergence (CKLD), which016
addresses the insensitivity of other metrics to017
imbalance in choice labels. Tests with three018
LLMs show that our methods work well with019
diverse questions and datasets.020

1 Introduction021

Large language models (LLMs) excel at many natu-022

ral language processing tasks, from machine trans-023

lation to data annotation. Although LLMs are most024

often used for text generation, some important tasks025

require them to answer multiple-choice questions026

(MCQs). For example, when LLMs help annotate027

data, they must select the best option from several028

choices. However, when answering MCQs, LLMs029

can show systematic biases. They tend to prefer030

answers in certain positions or with specific labels,031

regardless of the correct answer (for example, the032

last answer or the one labeled “A”) (Zheng et al.,033

2024; Wei et al., 2024; Pezeshkpour and Hruschka,034

2024). This bias leads to inaccurate responses and035

unreliable annotations.036

Previous research has addressed this problem037

by modifying the input format (Li et al., 2023b;038

Robinson et al., 2023) or adjusting the output prob-039

abilities (Zheng et al., 2024; Reif and Schwartz,040

Figure 1: BNP and AOI reduce selection bias for white-
box and black-box models. The CKLD metric is a
standardized measure of selection bias.

2024; Wei et al., 2024). These approaches do not 041

examine or address how bias emerges within the 042

model itself. 043

We investigate which parts of the model cause 044

selection bias and how to remove them. By analyz- 045

ing the connections between intermediate embed- 046

dings and model parameters, we identify specific 047

parameters that contribute to bias. Our first solu- 048

tion, Bias Node Pruning (BNP), removes these 049

parameters – just 0.002% of the model’s total pa- 050

rameters, reducing bias while improving accuracy 051

on question-answering tasks. Our second solu- 052

tion, Auxiliary Option Injection (AOI), adds an 053

“I don’t know” option: this simple approach works 054

even with black-box models where we cannot ac- 055

cess the internal parameters. 056

Measuring selection bias presents its own chal- 057

lenges. Metrics such as Standard Deviation of Re- 058

calls (RStd) (Zheng et al., 2024) and Relative Stan- 059

dard Deviation (RSD) (Reif and Schwartz, 2024) 060

look at how model performance varies across dif- 061

ferent orderings of answer choices. We introduce a 062

new metric, Choice Kullback-Leibler Divergence 063

(CKLD), which measures bias by comparing the 064
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Figure 2: Comparison of the original and voting accu-
racy with different LLMs via zero-shot querying. Note,
Claude3-Sonnet is evaluated under the black-box set-
ting (§ 4.3)

distribution of model answers to the true distribu-065

tion of correct answers. Figure 1 shows how our066

solutions fit into the overall approach.067

Experiments on standard benchmark datasets068

show that our methods reduce bias and improve069

accuracy across different LLMs. Our approaches070

can be combined with existing methods like Chain-071

of-Thought prompting and In-Context Learning.072

This paper makes four contributions:073

• We propose Bias Node Pruning (BNP), a debi-074

asing method that removes parameters from the075

final linear layer that contribute to selection bias.076

• We introduce Auxiliary Option Injection (AOI),077

a simple prompting tactic for MCQ answering.078

Along with BNP, our debiasing methods improve079

accuracy by up to 24.9%.080

• We introduce Choice Kullback-Leibler Diver-081

gence (CKLD), which introduces a new distri-082

butional perspective in measuring the level of083

selection bias.084

• We underscore the broad applicability of our ap-085

proach to various baselines and also demonstrate086

that our AOI method can debias black-box large087

language models.088

Terminology. We use the following terms: sam-089

ples are (question, answer) pairs; choices are the090

possible answers; choice options are the content of091

each answer; and choice symbols are the labels (A,092

B, C, etc.) assigned to each option.093

2 Selection Bias in LLMs094

This section clarifies the definition of selection095

bias (§ 2.1) and discusses when and where the se-096

lection bias occurs (§ 2.2).097

2.1 Selection Bias Problem 098

Selection bias occurs when a model systematically 099

favors certain answers based on their position or 100

label rather than their content (Zheng et al., 2024). 101

For example, if the model consistently responds 102

with the same choice symbol regardless of how 103

the choices are permuted, it is exhibiting a signif- 104

icant degree of selection bias. Conversely, if the 105

correct choice option is selected regardless of its 106

position, the model has no selection bias for the 107

given question. 108

Empirical demonstration. We tested four LLMs 109

to show how selection bias affects their perfor- 110

mance. Figure 2 compares the performance of each 111

model in two scenarios using the ARC-challenge 112

dataset (Clark et al., 2018). The light bars show 113

how often each model picks the right answer when 114

seeing the questions once. The dark bars show the 115

accuracy when the answers are the majority vote 116

across all possible orderings of the choices. An 117

unbiased model would pick the correct answer re- 118

gardless of how we order the choices. In contrast, 119

a biased model picks different answers when we 120

shuffle the choices, leading to a gap between its 121

original accuracy and voting accuracy. All four 122

models show improved performance with voting, 123

which demonstrates that selection bias is common 124

across LLMs. 125

2.2 Pilot study: Capturing Selection Bias 126

While § 2.1 shows that selection bias exists in 127

LLMs, it does not explain how this bias arises. We 128

present two analyses that reveal where selection 129

bias appears in the model and how to measure it. 130

Incorrect samples exhibit more selection bias. 131

Figure 3(a) shows how often each answer choice is 132

selected in the ARC-Challenge data set (Clark et al., 133

2018) by Llama-3-8B-Instruct (Meta, 2024) and 134

Bloomz-7b1 (Muennighoff et al., 2023). Without 135

bias, each choice should be selected around 25% 136

of the time (see Table 5 in Appendix A.1). How- 137

ever, Llama-3 prefers option ‘D’ while Bloomz 138

prefers ‘A’. This imbalance in preference is more 139

pronounced in the questions in which the models 140

give incorrect answers. This highlights the im- 141

portance of analyzing cases with incorrect model 142

outputs. 143

Bias is prominently observed in final layers. To 144

locate where bias emerges in the model, we com- 145

pare embeddings from correct and incorrect an- 146
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Figure 3: (a) Choice frequency tends to have a sharper distribution when the model’s response is incorrect. (b) In
Llama-3, selection bias is predominantly observed to be in the final output layer of the decoder. Other model figures
are in Appendix D.

swers. For each question, we create different ver-147

sions by shuffling the order of the answer choices.148

By comparing embeddings across these choice-149

shuffled questions, we can extract the effect of150

selection bias from question content.151

We extract embeddings from different parts of152

the model as zℓ,t = fℓ(xA)t, where zℓ,t is the153

embedding in layer ℓ and the token position t, fℓ154

represents the model up to layer ℓ, and xA is the155

input question with answers A. For brevity of nota-156

tion, let z ∈ Rd be the embedding from an arbitrary157

layer and token location.158

For each question x, we represent bias as the159

difference between embeddings from correct and160

incorrect answers:161

bx =
1

n−

n−∑
i=1

z
(i)
− − 1

n+

n+∑
i=1

z
(i)
+ (1)162

where z− and z+ are embeddings from incorrect163

and correct answers, with counts n− and n+, re-164

spectively. To balance the number of correct and in-165

correct samples, we use vector sets {z−, z+} only166

when 1 ≤ n+/n− ≤ 2. Then, we average these167

bias vectors across 32 questions to get an overall168

bias measure:169

b =
1

|X |
∑
x∈X

bx (2)170

Refer to Figure 4(a) for visual aid.171

We use the L2 norm of the average bias vec-172

tor retrieved from different layers and tokens as173

a proxy for the magnitude of selection bias. Fig-174

ure 3(b) shows the norm value of each location as175

a heatmap, where the x-axis lists the layer indices,176

and the y-axis shows the last 50 token embeddings177

of the inputs. The bias is strongest in the final178

layers, suggesting that we should focus on the inter-179

action between these layers and the model’s output180

layer.181

3 Methods 182

Motivated by our findings that selection bias is (1) 183

more common in incorrect samples and (2) cap- 184

tured in the final decoder layers, we introduce two 185

methods for debiasing model predictions: Bias 186

Node Pruning (BNP) and Auxiliary Option In- 187

jection (AOI). 188

3.1 Bias Node Pruning (BNP) 189

Our analysis in § 2.2 shows that selection bias is 190

strongest in the model’s final layer, particularly in 191

the output projection matrix W ∈ Rd×|V|, which 192

maps model embeddings to vocabulary predictions 193

(where V is the vocabulary set). Our BNP approach 194

identifies and removes specific parameters in W 195

that contribute to selection bias. 196

To understand which parameters to remove, we 197

model a biased LLM F as: 198

F(xA) ≈ (D(xA) + b) ·W (3) 199

where D represents an unbiased version of the 200

model and b is the bias vector from (2). The term 201

b ·W shows how bias affects the model’s outputs. 202

To reduce bias, we should remove the parameters 203

in W that interact most strongly with b. 204

We identify these parameters by computing: 205

K = Top-k
i∈[1,d]

( |V|∑
j=1

bi ×Wij

)
(4) 206

where |V| is the vocabulary size of the output. 207

This equation finds the k rows in W that have 208

the strongest interaction with the bias vector. We 209

set these rows (i.e. nodes) to zero to create a pruned 210

weight matrix W̃ . 211

BNP is simple to implement: we compute the 212

bias vector once, identify and remove the prob- 213

lematic parameters, then use the pruned matrix W̃ 214
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Figure 4: Bias Node Pruning with Auxiliary Option Injection. (a) The bias vector bx is computed for each
sample using its choice-permuted embeddings (Eq. (1)). The bias vectors are averaged across a small subset of
training data to retrieve the average bias vector, b (Eq. (2)). Then, b is used to select nodes to prune in W , where⊗

refers to the operation in Eq. (4). (b) The pruned W̃ is used to retrieve answers for the test questions, along with
our Auxiliary Option Injection technique that injects the “I don’t know" option in the inputs (§ 3.2). Our debiasing
approaches may correct potentially erroneous responses retrieved with W and without AOI, as in (c).

for all future predictions. The complexity analysis215

appears in Appendix B.216

3.2 Auxiliary Option Injection (AOI)217

Because selection bias is more likely when mod-218

els give incorrect answers (§ 2.2), we hypothe-219

sized that giving models a way to indicate that they220

are unsure could reduce selection bias. Our AOI221

approach adds an “I don’t know” (IDK) answer222

choice.223

The method works in two steps. First, we add224

the IDK option to the set of possible answers:225

A := A ∪ {oaux} (5)226

Then, we select as the answer the choice with the227

highest probability, excluding IDK:228

â = argmax
a∈A\oaux

P (ŷ = a |xA) (6)229

where A is the set of answer choices and xA is the230

sample. Implementation details for computing an-231

swer probabilities appear in § 4 and Appendix A.2.232

We analyze how AOI affects model behavior in233

§ 5.1.234

4 Experiments235

This section evaluates the BNP and AOI ap-236

proaches. We first discuss evaluation metrics237

and propose Choice Kullback-Leibler Diver- 238

gence (CKLD) in § 4.1. We provide our main 239

experimental results in § 4.2 and demonstrate debi- 240

asing results on black-box models in § 4.3. 241

Experimental details. We evaluate our method 242

on Llama-3-8B-Instruct (Meta, 2024), Mistral-7B- 243

Instruct-v0.2 (Jiang et al., 2023), and Bloomz- 244

7b1 (Muennighoff et al., 2023). For benchmark 245

datasets, we use three multiple-choice question an- 246

swering data test sets, ARC-Challenge (Clark et al., 247

2018), MMLU-Redux (Gema et al., 2024), and 248

CommonsenseQA (Talmor et al., 2019). To retrieve 249

the average bias vectors (Eq. (2)), a separate set of 250

out-of-bag samples is used. Further dataset details 251

are provided in Appendix A.1, and implementation 252

details are provided in Appendix A.2. 253

4.1 Evaluation Metrics 254

Researchers measure selection bias in different 255

ways. Some use brute-force methods that test every 256

possible ordering of the answer choices, including 257

Proportion of Plurality Agreement (Robinson et al., 258

2023), Permutation Sensitivity (Liusie et al., 2024), 259

and Fluctuation Rate (Wei et al., 2024). Others 260

measure how models perform consistently across 261

different answer choices, using metrics like the 262

Standard Deviation of Recalls (RStd; Zheng et al. 263

(2024)) and Relative Standard Deviation (RSD; 264
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Table 1: Bias Node Pruning (BNP) and Auxiliary Option Injection (AOI) are tested on three datasets with Llama-3,
Bloomz, and Mistral. The best performances are in bold.

ARC-Challenge MMLU-Redux CSQA
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 52.3 54.1 0.562 0.494 41.8 46.7 1.021 0.589 65.4 66.2 0.261 0.095
Llama-3 + BNP 56.7 57.0 0.434 0.302 43.1 47.2 0.965 0.501 66.6 66.8 0.218 0.074
Llama-3 + AOI 60.7 61.0 0.364 0.231 47.3 49.9 0.807 0.321 67.4 67.8 0.211 0.065
Llama-3 + BNP + AOI 65.3 65.1 0.262 0.124 48.3 50.5 0.531 0.288 68.1 68.2 0.174 0.049

Bloomz 43.9 44.2 0.461 0.283 28.0 32.8 1.003 0.661 58.5 57.2 0.215 0.136
Bloomz + BNP 46.8 47.0 0.352 0.191 31.0 33.0 0.537 0.326 61.4 60.9 0.178 0.083
Bloomz + AOI 48.9 48.5 0.590 0.147 29.5 32.7 0.808 0.456 64.2 63.6 0.134 0.060
Bloomz + BNP + AOI 48.8 48.9 0.208 0.088 32.0 33.3 0.672 0.205 64.9 64.9 0.159 0.052

Mistral 67.4 67.6 0.156 0.040 46.4 47.6 0.366 0.186 63.6 63.9 0.184 0.042
Mistral + BNP 67.2 67.3 0.157 0.040 46.4 47.6 0.366 0.186 63.7 64.0 0.180 0.041
Mistral + AOI 69.8 69.9 0.108 0.019 48.6 49.3 0.308 0.139 66.8 66.8 0.101 0.016
Mistral + BNP + AOI 69.5 69.5 0.108 0.019 48.6 49.3 0.309 0.140 66.8 66.8 0.099 0.016

Table 2: Comparison with Baselines. Ours (BNP + AOI) is compared and applied to baseline methods. Best
performances are in bold, and values denoted with * are Ours with only BNP. Note that Bloomz + DoLa performed
poorly and was meaningless to compare with baselines.

ARC-Challenge MMLU-Redux CSQA
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 52.3 54.1 0.562 0.494 41.8 46.7 1.021 0.589 65.4 66.2 0.261 0.095
Llama-3 + Ours 65.3 65.1 0.262 0.124 48.3 50.5 0.531 0.288 68.1 68.2 0.174 0.049
Llama-3 + CoT 66.2 66.3 0.178 0.050 50.2 51.0 0.641 0.124 65.3 65.7 0.161 0.025
Llama-3 + CoT + Ours 69.2 69.5 0.156 0.024 50.4 51.1 0.281 0.095 65.9 66.0 0.123 0.012
Llama-3 + ICL 62.2 61.7 0.292 0.169 42.6 46.4 0.735 0.486 69.0 69.0 0.116 0.026
Llama-3 + ICL + Ours 70.0 70.0 0.167 0.054 46.9 49.2 0.526 0.280 69.5 69.3 0.124 0.037
Llama-3 + DoLa 51.1 52.8 0.578 0.524 41.5 46.3 1.033 0.581 65.1 65.6 0.244 0.087
Llama-3 + DoLa + Ours 64.1 63.7 0.271 0.139 47.6 49.8 0.545 0.292 66.7 66.7 0.178 0.052

Bloomz 43.9 44.2 0.461 0.283 28.0 32.8 1.003 0.661 58.5 57.2 0.215 0.136
Bloomz + Ours 48.8 48.9 0.208 0.088 32.0 33.3 0.672 0.205 64.9 64.9 0.159 0.052
Bloomz + CoT 47.5 47.2 0.169 0.070 30.7 32.2 0.445 0.162 62.7 62.6 0.093 0.020
Bloomz + CoT + Ours 50.2 50.1 0.058 0.013 34.3 34.7 0.215 0.019 62.8* 62.8* 0.104* 0.020*
Bloomz + ICL 39.9 42.2 0.534 0.298 30.4 32.0 0.566 0.272 50.3 52.1 0.434 0.239
Bloomz + ICL + Ours 42.8* 45.2* 0.433* 0.249* 30.7* 31.1* 0.310* 0.135* 55.5 57.3 0.365 0.167

Mistral 67.4 67.6 0.156 0.040 46.4 47.6 0.366 0.186 63.6 63.9 0.184 0.042
Mistral + Ours 69.5 69.5 0.108 0.019 48.6 49.3 0.309 0.140 66.8 66.8 0.099 0.016
Mistral + CoT 66.6 66.5 0.510 0.021 50.3 50.5 0.551 0.063 63.2 63.4 0.476 0.025
Mistral + CoT + Ours 66.9 66.8 0.071 0.014 50.6 50.7 0.527 0.032 64.5 64.5 0.127 0.021
Mistral + ICL 65.7 66.0 0.183 0.054 43.1 44.5 0.410 0.253 61.7 61.7 0.167 0.046
Mistral + ICL + Ours 65.7 65.7 0.127 0.032 44.6 45.8 0.382 0.203 63.4 63.5 0.118 0.026
Mistral + DoLa 67.4 67.5 0.155 0.040 46.4 47.6 0.363 0.184 63.6 63.9 0.184 0.042
Mistral + DoLa + Ours 69.4 69.4 0.106 0.019 48.7 49.4 0.305 0.135 66.8 66.9 0.098 0.015

Croce et al. (2021)). Because brute-force meth-265

ods are computationally expensive, we focus on266

performance-based metrics. We primarily use RSD,267

which measures how much a model’s accuracy268

varies across answer choices:269

Definition 1. (Relative Standard Deviation) is the270

class-wise accuracy standard deviation normalized271

by the overall accuracy:272

RSD =

√
1
k

∑k
i=1(si − s̄)2

s̄
, (7)273

where k is the number of choices, si is the accu-274

racy of the ith class, and s̄ is the mean accuracy275

averaged across classes (Croce et al., 2021; Reif 276

and Schwartz, 2024). 277

We also introduce a new metric, Choice 278

Kullback-Leibler Divergence (CKLD): 279

Definition 2. (Choice Kullback-Leibler Diver- 280

gence) is the KL divergence between the ratio of 281

each predicted choice and the ratio of each ground 282

truth choice label: 283

CKLD =

k∑
i=1

pi log
pi
qi
, (8) 284

where k is the number of choices, pi is the ratio of 285

ground truth label choices, and qi is the ratio of 286
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Table 3: Applying AOI to black-box settings. For Llama-3, Bloomz, and Mistral, we assume that we do not have
access to the parameters nor the probability outputs, identical to black-box models.

ARC-Challenge MMLU-Redux CSQA
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 65.7 65.8 0.086 0.007 51.9 52.2 0.184 0.034 69.9 69.8 0.051 0.003
Llama-3 + AOI 66.9 66.9 0.076 0.007 52.6 53.0 0.177 0.033 71.3 71.2 0.030 0.003

Bloomz 41.9 42.6 0.703 0.208 27.6 31.0 1.102 0.523 55.9 55.3 0.252 0.142
Bloomz + AOI 44.7 45.0 0.305 0.155 29.4 31.8 0.972 0.413 59.2 58.2 0.180 0.105

Mistral 55.2 55.2 0.140 0.036 47.4 47.6 0.216 0.069 54.6 54.8 0.155 0.031
Mistral + AOI 59.0 59.0 0.117 0.020 48.5 48.8 0.217 0.069 62.8 62.8 0.082 0.013

Claude-3-Haiku 65.3 65.0 0.095 0.024 52.1 52.0 0.057 0.008 36.4 37.3 0.587 0.331
Claude-3-Haiku + AOI 71.4 71.5 0.087 0.004 51.7 51.7 0.052 0.004 47.0 47.9 0.302 0.023

Claude-3-Sonnet 86.9 86.9 0.034 0.001 60.6 60.7 0.133 0.024 71.0 70.8 0.072 0.015
Claude-3-Sonnet + AOI 87.6 87.6 0.027 0.001 60.3 60.4 0.111 0.019 73.1 72.7 0.057 0.022

each predicted choice label.287

CKLD captures a key aspect of selection bias288

that other metrics miss: whether the model chooses289

each answer option at the right rate. By measur-290

ing the KL divergence between the predicted and291

ground-truth choices, we can evaluate any signif-292

icant deviation from the original distribution, pre-293

sumably caused by selection bias. That is, the294

metric reaches its minimum value only when the295

model’s answer distribution matches the true dis-296

tribution of correct answers, without favoring any297

particular choices (proof in Appendix C).298

In our evaluation, we use both RSD and CKLD299

to measure selection bias, along with standard accu-300

racy and F1 scores to measure overall performance.301

For a complete discussion of our evaluation ap-302

proach, see Appendix A.4 and Appendix A.5.303

4.2 Experimental Results304

BNP + AOI consistently improves base model305

performance by reducing selection bias. Ta-306

ble 1 shows how our methods affect three different307

LLMs across multiple datasets. Both BNP and AOI308

help in two ways: they increase accuracy and F1309

scores while reducing selection bias (measured by310

RSD and CKLD). The improvement can be dra-311

matic - for example, using both methods increases312

Llama-3’s accuracy on the ARC-Challenge dataset313

from 52.3% to 65.3%, a 24.9% improvement.314

Our method can be applied with other debiasing315

and decoding methods. For further insight, we316

compare our methods with other debiasing and de-317

coding approaches: Chain-of-Thought (CoT; (Wei318

et al., 2022)), In-Context Learning (ICL; (Brown319

et al., 2020)), and Decoding by Contrasting Lay-320

ers (DoLa; (Chuang et al., 2023)). For CoT, we321

follow the implementation of OpenAI Evals (Ope-322

nAI) by first prompting with “Let’s think step by 323

step", and then using the generated explanation 324

to regenerate the final prediction. In the case of 325

ICL, we take one question from the training set 326

to retrieve N ! choice-permuted questions, where 327

N is the number of choices. Then, we randomly 328

select three questions from the choice-permuted 329

pool and create demonstrative examples from them, 330

where the LLM agent always answers the choice- 331

permuted questions correctly. 332

Combining our methods with these existing 333

approaches improves both answer accuracy and 334

bias reduction (Table 2). For some combinations, 335

marked with ’*’, we found that only BNP (with- 336

out AOI) worked well. Full implementation details 337

appear in Appendix A.3. 338

4.3 Black-box Settings 339

Many of the best language models are “black-box" 340

– we can use them but cannot access their internal 341

parameters. For these models, we cannot use BNP 342

to reduce selection bias, but we can still use AOI. 343

We tested AOI with both open-source models 344

(Llama-3, Bloomz, and Mistral) and closed-source 345

models (Claude-3 Haiku and Sonnet (Anthropic, 346

2023)). Since we cannot access model probabilities 347

in black-box settings, we instead (1) generate text 348

responses with the same input prompt; (2) compute 349

the Jaccard similarity between each choice option 350

and the output text; (3) select the choice with the 351

highest similarity score, instead of the probability- 352

based answer selection method used in our main 353

experiments. 354

AOI generally improves model performance (ac- 355

curacy and F1 scores) while reducing selection bias 356

(RSD and CKLD), even in black-box settings (Ta- 357

ble 3). 358
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Figure 5: (a) BNP improves the base performances (dashed lines) regardless of the number of nodes pruned. The
number of nodes to prune can be adjusted to achieve better performance. More figures are in Appendix D. (b) Each
metric improvement (%) from its base Llama-3 performance when using the average bias vector from different
sources is shown in heatmaps.

5 Analyses359

This section provides in-depth analyses on the360

mechanism and efficacy of Bias Node Pruning361

and Auxiliary Option Injection (§ 5.1), and demon-362

strates the overall distributional effect in § 5.2.363

5.1 Ablation Studies364

BNP is not sensitive to the number of nodes365

pruned. Figure 5(a) shows how performance366

changes as we vary the number of nodes removed.367

Whether we remove 8 nodes or 128 nodes, BNP368

consistently improves over baseline performance369

(dashed lines). While the method is robust to this370

choice, fine-tuning the number of nodes can help371

optimize performance for specific tasks. See Ap-372

pendix D.3 for detailed results across all settings.373

The average bias vector generalizes across374

datasets. The bias vector (Eq. (2)) captures how375

selection bias appears in the model’s internal rep-376

resentations. If this vector truly captures selection377

bias, it should work across different datasets. We378

tested this by computing the bias vector on one379

dataset and using it to reduce bias in another.380

Figure 5(b) shows a heatmap of these cross-381

dataset results. Interestingly, we found no ad-382

vantage to using a bias vector from the same383

dataset (which would appear as a diagonal pattern384

in the heatmap). In fact, sometimes using a bias385

vector from a different dataset works better. For ex-386

ample, using the bias vector from ARC-Challenge387

reduces CKLD on the CSQA dataset by 36% – bet-388

ter than the 22% reduction we get using CSQA’s389

own bias vector.390

The choice of extra option affects performance.391

While our main experiments used “I don’t know”392

as an extra answer choice, we also tested two al-393

ternatives: “None of the above” and “I know the394

answer.” Table 4 shows these results, where “None”395

Table 4: AOI with different option contents on the
MMLU-Redux dataset.

Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 41.8 46.7 1.021 0.589
Llama-3 + “None” 42.4 42.7 0.833 0.487
Llama-3 + “Know” 45.6 46.5 0.790 0.366
Llama-3 + Ours 48.3 50.5 0.531 0.288

Bloomz 28.0 32.8 1.003 0.661
Bloomz + “None” 26.5 25.9 0.730 0.518
Bloomz + “Know” 28.0 26.1 0.618 0.314
Bloomz + Ours 32.0 33.3 0.672 0.205

Mistral 46.4 47.6 0.366 0.186
Mistral + “None” 48.0 47.8 0.596 0.159
Mistral + “Know” 9.7 3.9 0.762 1.888
Mistral + Ours 48.6 49.3 0.309 0.140

refers to “None of the above” and “Know” refers 396

to “I know the answer”. 397

The extra option generally helps Llama-3 and 398

Bloomz models - it improves their accuracy and 399

reduces bias compared to the baseline. However, “I 400

don’t know” works best in most cases. The results 401

differ for the Mistral model: using “I know the an- 402

swer” actually hurts the performance and increases 403

bias. See Appendix D.5 for complete results across 404

all datasets and additional experiments. 405

5.2 Impact on Distribution 406

In Figure 6, we show how the distribution of the se- 407

lected answer choices changes when we introduce 408

BNP and AOI. In all three datasets, the distribution 409

becomes more uniform when BNP and/or AOI are 410

applied, indicating lower levels of selection bias. 411

See Appendix D.6 for further qualitative results. 412

6 Related Works 413

Selection Bias. LLMs’ tendency to favor choices 414

in a certain order or with a specific symbol has 415

been discussed in many previous works. Some 416

of the works investigated the skewed pattern of 417

7



Figure 6: Effect of our methods on choice distributions. Our methods reduce the level of selection bias, and the
choice distributions become flatter. Dashed lines are the uniform ratios (gold standard).

responses for MCQs (Zheng et al., 2024; Wei418

et al., 2024; Pezeshkpour and Hruschka, 2024),419

emphasizing that selection bias is a critical prob-420

lem. Many works have approached this problem421

by calibrating the output probabilities (Wang et al.,422

2023; Zheng et al., 2024; Reif and Schwartz, 2024;423

Wei et al., 2024; Pezeshkpour and Hruschka, 2024;424

Wang et al., 2024; Balepur et al., 2024; Li and Gao,425

2024; Gupta et al., 2024), while others change the426

way queries are input (Li et al., 2023b; Robinson427

et al., 2023). Additional approaches include debi-428

asing the LLM through distillation (Liusie et al.,429

2024) and training the model to enforce its multiple430

choice symbol binding property (Xue et al., 2024).431

While researchers often use methods to make432

deep learning models more efficient by remov-433

ing some of their internal connections (Srinivas434

and Babu, 2015; Han et al., 2016; Zhu and Gupta,435

2017; Molchanov et al., 2019, 2022), or to help436

models forget certain information (Liu et al., 2024;437

Pochinkov and Schoots, 2024), parameter pruning438

has rarely been discussed for debiasing. Our BNP439

offers a new way to approach this problem.440

Insights from Surveys on Humans. Recent441

work has noted connections between surveys, an-442

notation tasks, and how models answer multiple-443

choice questions (Tjuatja et al., 2023; Eckman444

et al., 2024; Chen et al., 2024). In surveys, in-445

cluding an “I don’t know” option can improve the446

quality of the data collected (Schuman and Presser,447

1996). These findings motivated our AOI approach.448

Further insights from survey science could im-449

prove our understanding of how LLMs work (Eck-450

man et al., 2024). For example, when answering451

questions in surveys, humans show a preference for452

certain choices: the first in written surveys (web,453

paper, and pencil) and the last in aural surveys454

(telephone, face-to-face) (Lavrakas, 2008). Similar 455

order effects occur in voting (Miller and Krosnick, 456

1998), suggesting they are widespread in human- 457

generated data. The psychology literature suggests 458

these order effects are due to humans’ desire to 459

reduce the cognitive burden of choosing (Kros- 460

nick, 1991). Because models are trained on human- 461

generated data, they may pick up on these biases 462

and reproduce them. 463

7 Conclusion 464

When LLMs answer multiple-choice questions, se- 465

lection bias is a critical problem. Previous re- 466

search has predominantly focused on modifying 467

the LLM’s input and/or output. In contrast, we 468

uncover the internal source of the bias by scru- 469

tinizing the embedding-level discrepancies intro- 470

duced by this bias. Building on these insights, 471

we propose Bias Node Pruning (BNP) and Aux- 472

iliary Option Injection (AOI). Additionally, we in- 473

troduced a new distribution-based metric, Choice 474

Kullback-Leibler Divergence (CKLD), which is de- 475

signed to be sensitive to the imbalance of choice 476

symbols. Our approach improved MCQ answer- 477

ing performance by reducing the level of selection 478

bias across widely used MCQ datasets using both 479

open-source (white box) and closed-source (black- 480

box) models. BNP and AOI work alongside other 481

debiasing/decoding methods to improve the base 482

performance of Llama-3 by up to 33.8% on the 483

ARC-Challenge dataset. We also conducted in- 484

depth analyses to better understand the effect of 485

each component, along with case studies, to pro- 486

vide qualitative insight. Overall, our method pro- 487

vides a novel intuition in scrutinizing the internal 488

source of selection bias, and also provides a new 489

approach in debiasing LLMs. 490
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Limitation491

The limitation of this work (and also most works492

on mitigating selection bias) is that the root cause493

of selection bias is still not clear. While there have494

been various hypotheses on the reason behind this495

phenomenon, most focused on its impacts without496

considering what triggers such ungrounded prefer-497

ences. Future research will need to unravel the core498

of selection bias by answering questions like, What499

data points cause selection bias? or What makes500

the difference in choice preferences between het-501

erogeneous model families? These questions will502

be critical in understanding LLMs in general, as503

they are closely related to how the models choose504

the next tokens to output.505

Ethics Statement506

This work proposes a method to mitigate the prob-507

lem of selection bias. By implementing our pro-508

posed method, we strive to enhance the fairness509

and accuracy of data analysis, thereby contributing510

to more accurate and valid results. This approach511

aligns with ethical research practices, reinforcing512

the ethical commitment to conducting unbiased re-513

search. By mitigating selection bias, we aim to514

contribute to the advancement of knowledge that is515

both scientifically sound and ethically responsible.516

We acknowledge that while our method focuses517

on reducing selection bias, it is essential to remain518

vigilant about other potential biases and ethical519

considerations throughout the research process.520

AI Assistant Usage521

AI assistant tools were utilized to improve clarity,522

coherence, and readability while maintaining the523

integrity of the original content.524
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A Further Experimental Details763

A.1 Datasets764

We experiment on three datasets: ARC-Challenge (Clark et al., 2018), MMLU-Redux (Gema et al., 2024),765

and CommonsenseQA (Talmor et al., 2019). We also provide the ground-truth choice ratios in the test766

dataset in Table 5.767

ARC-Challenge is a dataset from the AI2 Reasoning Challenge containing grade-school level multiple-768

choice science questions. Among the ‘Challenge’ and the ‘Easy’ sets, we use the former set with 1.17K769

test and 1.12K training questions. The training questions are used to extract the average bias vectors.770

MMLU-Redux is a dataset derived from the original Massive Multitask Language Understand-771

ing (MMLU) (Hendrycks et al., 2021) dataset, which comprises multiple-choice questions from 57772

different branches of knowledge. (Gema et al., 2024) discovered that this original version contains773

numerous errors and curated the dataset to have 3,000 manually re-annotated questions across 30 subjects774

in the original MMLU dataset. In the case of MMLU-Redux, no training set is available. So we utilize the775

validation set from the original MMLU dataset to pre-compute the average bias vectors.776

CommonsenseQA is a dataset of multiple-choice questions that require commonsense knowledge to777

respond. The dataset questions are extracted using the knowledge graph, ConceptNet (Speer et al., 2017),778

which consists of 9.74K training and 1.22K validation questions. We use the training set to retrieve the779

average bias vectors and evaluate on the validation set.780
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Table 5: Ground-truth Label ratios of each dataset.

Datasets A ratio B ratio C ratio D ratio E ratio

ARC-Challenge 22.4% 25.7% 25.9% 24.1% -
MMLU-Redux 22.3% 24..6% 25.4% 27.7% -
CSQA 19.6% 20.9% 19.7% 20.6% 19.2%

A.2 Implementation Details 781

Here, we detail how we retrieve model predictions and list hyperparameters used for each model-dataset 782

experiment. 783

How are predictions retrieved? As discussed in the main paper, we use the token output probability 784

distribution to select a token ID for prediction. For instance, if z ∈ R|V| is the output logit vector of the 785

first output token, we use z[‘A’] + z[‘_A’] to retrieve the logit value for choice ‘A’, and do the same for 786

other choices as well. Note that ’_A’ is a token that represents "A" with a space in front of it, whereas 787

’A’ is a one-character token. Since these two represent the same choice, we aggregate their logits, z, for 788

accurate evaluation. Then, we take the softmax over all the choice logits to retrieve the final probability 789

distribution over the choices. 790

System prompt. We use the same system prompt across all experiments: “You are an AI assistant that 791

answers multiple choice questions. Please respond with capitalized alphabet(s) that correspond to the 792

correct answer". For Chain-of-Thought reasoning baseline experiments, we use a slightly different version 793

of “You are an AI assistant that answers multiple choice questions. Please think step by step and respond 794

with capitalized alphabet(s) that correspond to the correct answer” to encourage the model to output a 795

step-by-step reasoning process. 796

Hyperparameters. The number of nodes pruned is the main hyperparameter of our experiments. As 797

disclosed in the main paper, we pruned 32 nodes in all experiments with Llama-3 and Mistral, and pruned 798

128 nodes in experiments with Bloomz. We did a simple hyperparameter search among {16, 32, 64, 128} 799

nodes. Results can be found in Figure 5(a) and Figure 9. Another noteworthy hyperparameter is the choice 800

delimiter, which refers to the type of token used to separate choices. In our preliminary experiments, we 801

found that different choice delimiters such as space (‘ ’), line break tokens (‘\n’), multiple lines (‘\n\n\n’), 802

or special tags (‘<c>’) have varying impact on performance. As there were no consistent results, however, 803

we chose to use the basic space delimiter in all our experiments, e.g. ‘What is 1 + 1? (A) 2 (B) 3 804

(C) 4’. Although we do not discuss this in-depth as it is beyond the scope of our work, we believe that 805

analyzing the effect of different choice delimiters in multiple choice question answering would introduce 806

an interesting viewpoint. 807

A.3 Baselines 808

In this section, we provide further details on how the debiasing baselines in Table 2 are designed. 809

Chain-of-Thought (CoT) first generates the model response that includes explanations by prompting 810

with “Let’s think step by step" as follows. 811

System Prompt: You are an AI assistant that answers multiple choice questions. Please think step
by step and respond with capitalized alphabet(s) that correspond to the correct answer.

User: { question }.
Assistant: Let’s think step by step.

Using the explanation that is generated with the prompt, we query the LLM once more with 812

System Prompt: You are an AI assistant that answers multiple choice questions. Please think step 813
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by step and respond with capitalized alphabet(s) that correspond to the correct answer.
User: { question }.
Assistant: Let’s think step by step. { explanation }. So the correct answer is814

and identically use the first token output probability distribution to retrieve the predictions. Note that815

the actual prompt format depends on the model and the template above is a generic form.816

In-Context Learning (ICL) takes one question out-of-bag sample and retrieve N ! choice-permuted817

questions, where N is the number of choices. Then, three of the choice-permuted questions among the818

N ! pool are randomly chosen to be used for the ICL demonstrative examples. Concretely, we design the819

prompt as follows.820

System Prompt: You are an AI assistant that answers multiple choice questions. Please respond
with capitalized alphabet(s) that correspond to the correct answer.

# Example 1
User: What leads to experimental errors? (A) Bias (B) Peer Review (C) Repeated Trials

Assistant : (A)
# Example 2
User: What leads to experimental errors? (A) Repeated Trials (B) Peer Review (C) Bias

Assistant : (C)
# Example 3
User: What leads to experimental errors? (A) Peer Review (B) Bias (C) Repeated Trials

Assistant : (B)
User: { question }.
Assistant:

Again, the prompt template is generic, and the actual input format depends on the model type.821

Decoding by Contrasting Layers (DoLa) is a language model decoding method proposed by (Chuang822

et al., 2023). Following their implementation, we measure the Jensen-Shannon Divergence between the823

final (or mature) output probability distribution and intermediate (or premature) outputs to select the layer824

with the highest divergence. Then, we use the selected layer output to divide the final output. Since this is825

similar to calibration, we expected DoLa to have debiasing effects. However, the results in Table 2 show826

that DoLa alone does not reduce the level of selection bias.827

A.4 Metrics828

In this section, we provide a full list of selection bias metrics, including RStd, RSD, our CKLD, and other829

existing metrics that were not discussed in the main paper. We taxonomize the metrics into three groups:830

brute-force evaluation, performance-based evaluation, and distribution-based evaluation.831

A.4.1 Brute-force Evaluation832

Brute-force evaluation metrics utilize all possible choice permutations to retrieve the metric value. Since833

we need to infer the output for each of the choice-permuted questions, the computation increases by a factor834

of N !, where N is the number of choices in the question. Here, we list two brute-force evaluation metrics,835

Proportion of Plurality Agreement (PPA) and Permutation Sensitivity (PS), and one semi-brute-force836

metric that additionally computes only the reverse-order permutation, Fluctuation Rate (FR).837

Definition 1. (Proportion of Plurality Agreement) is the proportion of the plurality choice among all838

possible choice orderings of a multiple-choice question:839

PPA =
1

|X |
∑
X

max
n

(
N !∑
j=1

yj = on

)
N !

, (9)840

where X is the set of test samples, N is the number of choices in each question, n is the index of the841

choices, yj is the choice content of the j-th choice-permuted sample prediction, and on is the n-th choice842

content. (Robinson et al., 2023)843
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Definition 2. (Permutation Sensitivity) is the expected divergence in output probability distributions of 844

the choice-permuted questions: 845

PS = Eσi,j

[
d(P (· | q,Aσi);P (· | q,Aσj )

]
, (10) 846

where σi is an arbitrary permutation of choices, Aσi is the answer choice with the choice permutation, q 847

is the input question, d(· ; ·) is the divergence function (e.g., KL-divergence), and P (· | ·) is the output 848

probability distribution function. (Liusie et al., 2024) 849

Definition 3. (Fluctuation Rate) is the rate of inconsistent model responses to the original input question 850

and the question with choices presented in reversed order: 851

FR =
1

M

M∑
i=1

1(
→
yi ̸=

←
yi), (11) 852

where M is the number of test questions, 1 is the indicator function,
→
y is the model prediction to the 853

original question, and
←
y is the prediction to the question with reversed choice order. (Wei et al., 2024) 854

A.4.2 Performance-based Evaluation 855

Performance-based evaluation tries to capture the consistency of model performance when measuring 856

selection bias. The two metrics discussed in the paper, RStd and RSD, fall under this category. 857

Definition 4. (Standard Deviation of Recalls) is the standard deviation of the class-wise recall: 858

RStd =

√√√√1

k

k∑
i=1

(ri − r̄)2, (12) 859

where k is the number of choices, ri is the recall of the i-th class, and r̄ is the arithmetic mean of ri values. 860

(Zheng et al., 2024) 861

Definition 5. (Relative Standard Deviation) is the class-wise accuracy standard deviation normalized 862

by the overall accuracy: 863

RSD =

√
1
k

∑k
i=1(si − s̄)2

s̄
, (13) 864

where k is the number of choices, si is the accuracy of the i-th class, and s̄ is the mean accuracy 865

averaged across classes. Please note that our recalls are calculated at label level since this is multi-class 866

questions. (Croce et al., 2021; Reif and Schwartz, 2024) 867

A.4.3 Distribution-based Evaluation 868

Existing performance-based evaluation metrics are insensitive to an imbalance of choice labels, and 869

manually adjusting the label distribution does not guarantee fair evaluation and may severely influence 870

performance. Thus, we propose a new distribution-based evaluation metric, Choice Kullback-Leibler 871

Divergence (CKLD), to complement the evaluation of the selection bias. 872

Definition 6. (Choice Kullback-Leibler Divergence) is the KL divergence between the ratio of each 873

predicted choice and the ratio of each ground truth choice label: 874

CKLD =
k∑

i=1

pi log
pi
qi
, (14) 875

where k is the number of choices, pi is the ratio of ground truth label choices, and qi is the ratio of each 876

predicted choice label. 877
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Figure 7: Empirical analyses of selection bias metrics. The metrics are tested on a 4-way classification task
using synthetic data with varying levels of label ratios (outer x axis) and selection rates (inner x axis). We
randomly generate 3000 samples and run 100 times to retrieve the mean and standard deviation of the metrics. The
corresponding ‘A’ Ratios are denoted with dashed lines.

A.5 Exploratory Analysis of Metrics878

We empirically show how performance-based metrics, RStd and RSD, behave across different data879

characteristics. We constructed synthetic 4-way MCQ datasets by varying the choice selection ratio under880

different ground-truth ratios. For instance, in the third column of Figure 7, labeled “‘A’ Label Ratio =881

0.55", answer choice ‘A’ is the correct choice in 55% of the samples and the rest are labeled ‘B’, ‘C’, or882

‘D’ 15% of the time, respectively. To simulate realistic predictions, we have the model render correct883

predictions half of the time, and predict with respect to the choice selection ratio (i.e., ‘A’ selection rate)884

for the other half. For example, if ‘A’ Selection Rate is 0.4, each choice will be sampled with respect to885

P (A) = 0.4 and P (B) = P (C) = P (D) = 0.2 half of the time, and will predict the correct answer for886

the other half. With this setup, the selection bias metrics should be lowest at the ‘A’ Label Ratio, shown887

with a vertical dashed line in Figure 7.888

In contrast, the minimum points of RStd and RSD are not in the expected locations (Figure 7).889

Both metrics are insensitive to the ground-truth ratios. (RSD is lowest when the ‘A’ Selection Rate is890
1

# Choices = 1
4 regardless of the ‘A’ Label Ratio.) These results highlight the inability of RStd and RSD to891

measure selection bias in datasets with skewed distributions of the correct label.892

B Complexity of Bias Node Pruning893

Bias Node Pruning is a two-step process that includes the (1) average bias vector computation, and (2)894

node pruning. The first phase utilizes M out-of-bag samples with N choices. This step requires computing895

the outputs of N ! choice-permuted questions, translating to a complexity of O(N ! ·M ). Once we retrieve896

the average bias vector, we use it to compute the top-k nodes that activate selection bias ((4)). This is also897

a one-time process whose node-pruned parameters are applied throughout all test-time inference tasks.898

The complexity of inference itself is identical to the original model without Bias Node Pruning, which is899

proportional to the number of test samples evaluated.900

C Proof of CKLD’s label ratio sensitivity901

We want to prove that CKLD is minimized when the prediction has no bias towards a certain choice, and902

matches the ratio of ground-truth labels. From the CKLD definition ((14)) of903

CKLD =

k∑
i=1

pi log
pi
qi
, (15)904
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let qi = piri, where ri is the selection bias multiplier applied to the ground-truth choice ratio for each 905

i = 1, . . . , k. As we want to find out when CKLD is minimized, we formulate the objective as follows: 906

minimize
k∑

i=1

pi log
pi
qi

s.t. qi = piri and
k∑

i=1

piri = 1.

(16) 907

By rewriting this as a Lagrangian function L, 908

L(r1, . . . , rk, λ) =
k∑

i=1

pi log
pi
piri

+ λ(
k∑

i=1

piri − 1)

= −
k∑

i=1

pi log ri + λ(
k∑

i=1

piri − 1),

(17) 909

where λ is the Lagrangian multiplier, we take the partial derivative of each variable as: 910

∂L
∂ri

= −pi
ri

+ λpi = 0 (18) 911

912

∂L
∂λ

=
k∑

i=1

piri − 1 = 0. (19) 913

Then, from (18), 914

ri =
1

λ
, (20) 915

and by substituting this to (19), we get 916

0 =
k∑

i=1

pi
λ

− 1

=
1

λ
− 1.

(21) 917

Therefore, the objective is minimized when λ = 1, which translates to ri = 1 (∵ (20)). This is equivalent 918

to saying that CKLD is minimized when qi = piri = pi, i.e., when the prediction ratio matches the actual 919

label ratio and there is no selection bias towards a certain choice. □ 920

C.1 Why does an LLM need to match the ground truth ratio? 921

Consider a scenario in which an LLM exhibits a bias toward selecting option ‘A’. In cases where the 922

LLM is uncertain about the correct answer and resorts to random selection, it is more likely to choose 923

‘A’, resulting in a skewed overall choice distribution that diverges from the ground truth distribution. 924

In contrast, an unbiased LLM would select options uniformly under uncertainty, producing a choice 925

distribution that more closely aligns with the original ground truth distribution. Therefore, the extent 926

to which an LLM’s predictions match the ground truth distribution can serve as a proxy for measuring 927

Selection Bias. 928

D More Experiments and Analyses 929

Here, we provide further experiments and analysis results that were not included in the main manuscript. 930

In Appendix D.2, we demonstrate an extended experiment result on another dataset. In Appendix D.3, an 931

extended list of figures of Figure 5 (a) is provided. 932
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Table 6: Further experiments are done on the HellaSwag dataset.

Acc F1 RSD CKLD

ARC-Challenge

Llama-3 53.2 (1.3) 55.4 (1.3) 0.640 (0.142) 0.485 (0.049)
Llama-3 + BNP 57.4 (1.0) 58.0 (1.1) 0.533 (0.145) 0.304 (0.029)
Llama-3 + AOI 62.7 (1.0) 63.0 (1.1) 0.417 (0.133) 0.201 (0.023)
Llama-3 + BNP + AOI 66.8 (1.0) 66.6 (0.9) 0.340 (0.140) 0.121 (0.010)

MMLU-Redux

Llama-3 39.8 (1.6) 44.4 (1.8) 0.982 (0.097) 0.673 (0.063)
Llama-3 + BNP 40.8 (1.7) 44.8 (1.8) 0.936 (0.100) 0.595 (0.065)
Llama-3 + AOI 44.5 (1.8) 47.0 (2.0) 0.657 (0.097) 0.384 (0.042)
Llama-3 + BNP + AOI 45.4 (1.6) 47.5 (1.8) 0.564 (0.018) 0.346 (0.041)

CommonsenseQA

Llama-3 63.3 (1.1) 64.2 (0.9) 0.282 (0.026) 0.106 (0.018)
Llama-3 + BNP 64.9 (1.1) 65.2 (1.1) 0.222 (0.012) 0.073 (0.007)
Llama-3 + AOI 65.9 (0.9) 66.3 (0.8) 0.220 (0.020) 0.069 (0.010)
Llama-3 + BNP + AOI 67.2 (0.6) 67.2 (0.6) 0.175 (0.011) 0.052 (0.004)

Figure 8: More figures on different models other than Llama-3. Left is the bias vector magnitude heatmap from
Mistral-7B-Instruct, and right is from Bloomz-7b1.

D.1 Significance Test933

In Table 6, we present the results of a significance test conducted on Llama-3 by performing 8 experiments,934

each with randomly permuted choices. The mean values for each dataset are reported, with standard935

deviations shown in parentheses. All values are statistically significant compared to the Llama-3 baseline,936

with t-test p-values below 0.001.937

D.2 Further experiments on HellaSwag dataset938

Beyond the three datasets tested in our main paper in Table 1, we disclose results on another widely used939

benchmark dataset, HellaSwag (Zellers et al., 2019). HellaSwag is a commonsense natural language940

inference (NLI) dataset that contains 4-way MCQ samples that ask the model to select the option that941

best ends the given sentence. The experimental results are in Table 7. Bloomz is not included in the table942

because the model failed to reasonably respond to most of the questions.943

D.3 Extended List of Figures944

Here, we provide a comprehensive table of figures on the sensitivity test on the number of nodes pruned945

(§ 5.1, Figure 5(a)). In Figure 9, the effect of the number of pruned nodes is shown across the three946

models and datasets, as its value is varied from 16 to 128. We also provide the heatmap of the average947

bias vector magnitude in Figure 8. Similar to what has been shown in Figure 3 (b), selection bias appears948

to be prominent in the latter part of the decoder layers.949
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Table 7: Further experiments are done on the HellaSwag dataset.

HellaSwag
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 35.9 42.3 0.988 1.416
Llama-3 + BNP 38.6 43.6 0.861 0.998
Llama-3 + AOI 47.6 51.2 0.599 0.611
Llama-3 + BNP + AOI 50.8 52.9 0.487 0.363

Mistral 46.7 48.7 0.558 0.341
Mistral + BNP 46.5 48.6 0.563 0.345
Mistral + AOI 51.7 53.0 0.414 0.206
Mistral + BNP + AOI 51.6 52.9 0.415 0.207

Table 8: Performance metrics (F1 and Accuracy) for different numbers of pruned nodes.

# Pruned Nodes F1 Acc
0 32.7 22.0
8 32.7 22.7
16 31.7 20.2
32 31.3 20.6

Table 9: ROUGE-L and ROUGE-1 scores for different numbers of pruned nodes.

# Pruned Nodes ROUGE-L ROUGE-1
0 13.8 20.4
8 13.8 20.2

16 11.8 17.1
32 11.5 16.6

D.4 Will Bias Node Pruning Affect Text Generation Performance? 950

Parameter pruning is an extensively researched topic and is a well-established practice in the context of 951

large language models (Ma et al., 2023; Dong et al.). Considering that our Bias Node Pruning prunes 952

only a very small fraction of the model parameters, the effect of parameter pruning will be minimal. For 953

example, in the case of Llama-3, which has 8 billion parameters, we prune just 32 nodes—approximately 954

Figure 9: Full list of plots on the number of nodes pruned.
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Table 10: Different AOI setups. The content, location, and number of auxiliary options are varied to see its effect
with ARC-Challenge (top table), MMLU-Redux (middle table), and CSQA (bottom table).

Llama-3-8B-Inst. Bloomz-7b1 Mistral-7B-Inst.
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Model 52.3 54.1 0.562 0.494 43.9 44.2 0.461 0.283 67.4 67.6 0.156 0.040
Model + Ours 65.3 65.1 0.262 0.124 48.8 48.9 0.208 0.088 69.5 69.5 0.108 0.019

Arbitrary AOI 63.4 61.2 0.572 0.179 50.1 50.2 0.548 0.077 11.4 3.9 1.008 2.075

2-Choices AOI 70.2 69.9 0.175 0.067 46.3 47.6 0.381 0.198 69.0 69.0 0.131 0.031
3-Choices AOI 71.9 71.7 0.130 0.039 45.1 46.6 0.418 0.243 68.3 68.3 0.140 0.038
4-Choices AOI 72.4 72.3 0.130 0.036 43.9 45.6 0.438 0.266 68.4 68.4 0.138 0.036

First Choice AOI 67.9 67.6 0.222 0.106 44.2 45.3 0.455 0.232 68.1 68.1 0.109 0.025

Llama-3-8B-Inst. Bloomz-7b1 Mistral-7B-Inst.
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Base Model 41.8 46.7 1.021 0.589 28.0 32.8 1.003 0.661 46.4 47.6 0.366 0.186
Base Model + Ours 48.3 50.5 0.531 0.288 32.0 33.3 0.672 0.205 48.6 49.3 0.309 0.140

Arbitrary AOI 45.6 46.5 0.790 0.366 28.0 26.1 0.618 0.314 9.7 3.9 0.762 1.888

2-Choices AOI 49.4 50.9 0.442 0.201 30.5 32.7 0.774 0.332 47.7 48.4 0.327 0.157
3-Choices AOI 50.6 51.8 0.387 0.151 30.4 33.4 0.838 0.435 47.5 48.0 0.317 0.159
4-Choices AOI 51.7 52.8 0.352 0.117 30.0 33.4 0.633 0.479 47.1 47.7 0.328 0.169

First Choice AOI 46.1 47.6 0.515 0.295 31.8 35.4 0.647 0.338 44.7 45.0 0.291 0.160

Llama-3-8B-Inst. Bloomz-7b1 Mistral-7B-Inst.
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Base Model 65.4 66.2 0.261 0.095 58.5 57.2 0.215 0.136 63.6 63.9 0.184 0.042
Base Model + Ours 68.1 68.2 0.174 0.049 64.9 64.9 0.159 0.052 66.8 66.8 0.099 0.016

Arbitrary AOI 67.9 68.0 0.486 0.049 67.6 67.5 0.144 0.043 5.1 0.9 0.851 2.854

2-Choices AOI 68.1 68.2 0.149 0.031 59.5 59.8 0.261 0.129 65.6 65.6 0.134 0.034
3-Choices AOI 70.0 70.3 0.150 0.028 59.4 59.9 0.273 0.132 65.3 65.2 0.123 0.033
4-Choices AOI 70.4 70.5 0.137 0.023 58.7 59.4 0.282 0.130 64.8 64.7 0.137 0.038

First Choice AOI 69.5 69.4 0.142 0.037 48.5 52.7 0.602 0.713 66.2 66.3 0.118 0.018

0.05% of the total model size.955

Furthermore, we evaluated Llama-3’s performance on two general NLP tasks—Sentiment Analysis and956

Text Summarization—by pruning 8, 16, and 32 nodes. For Sentiment Analysis, we used the "Multi-class957

Sentiment Analysis Dataset" 1, and for Text Summarization, we used the "CNN/DailyMail Dataset" 2. The958

results are presented in Table 8 and Table 9. We observed a slight decline in performance as more nodes959

were pruned; however, the degradation was not severe enough to significantly affect general linguistic960

performance. Furthermore, Given that our method is specifically designed for multiple-choice question961

(MCQ) tasks, we believe that a minor decrease in performance on general NLP tasks is not a significant962

concern.963

D.5 Different AOI Setup964

In this section, in addition to all three dataset ablation studies on the content of auxiliary options in § 5.1,965

we provide further ablation study results on the number and location of the auxiliary options.966

More auxiliary options have mixed effects on performance. We find that controlling the number of967

auxiliary options has a notable impact on performance. That is, we tried adding multiple auxiliary options,968

all with the same “I don’t know" content. In most cases in Table 10, adding more auxiliary options did not969

help improve performance (see n-Choices AOI). Interestingly, however, both the question-answering and970

debiasing performance of Llama-3 significantly improved when using more options. This seems to be a971

1https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset/tree/main
2https://huggingface.co/datasets/abisee/cnn_dailymail
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peculiar property of Llama-3 that we can enhance its performance by simply adding multiple auxiliary 972

options. 973

Location of the auxiliary option does not decide performance. The location of the auxiliary option is 974

another factor to consider. In our main experiments, we have appended the “I don’t know" option to the 975

end of the choice list. In comparison, we try placing it in the first choice option (i.e., with choice symbol 976

‘A’), corresponding to ‘First Choice AOI’ in Table 4. In general, there were mixed results, indicating that 977

the location of the auxiliary option is not a decisive factor in determining performance. 978

D.6 Qualitative Results 979

In this section, we provide qualitative insights into our approach. 980

Qualitative examples. In addition to disclosing the distributional effect, we provide below qualitative 981

question-response examples of Llama-3 and Bloomz in the ARC-Challenge dataset. As in Figure 3(a), 982

Llama-3 often showed a preference for choice ‘D’, regardless of the order of the choices. Our method 983

successfully corrects such errors. Bloomz, on the other hand, showed a preference for choice ‘A’. Again, 984

our methods corrected the model’s response. 985

Original Question: Which of the following organs in fish has the same function as the human lung?
(A) kidney (B) heart (C) skin (D) gill

⇒ Llama-3 Response: (D) Ground-truth: (D)

Permuted Question : Which of the following organs in fish has the same function as the human
lung? (A) kidney (B) heart (C) gill (D) skin

⇒ Llama-3 Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Cells take in food for energy. The part of the cell that aids in the digestion of
the food is the lysosome. What is the main role of lysosomes in the process of food digestion? (A)
breaking down wastes (B) building proteins (C) controlling the activities of the cell (D) converting
energy from one form into another

⇒ Bloomz Response: (A) Ground-truth: (A)

Permuted Question : Cells take in food for energy. The part of the cell that aids in the digestion
of the food is the lysosome. What is the main role of lysosomes in the process of food digestion? (A)
building proteins (B) breaking down wastes (C) controlling the activities of the cell (D) converting
energy from one form into another

⇒ Bloomz Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

E More Qualitative Examples 986

Here, we provide more qualitative examples to show how model response changes when our methods are 987

applied. The examples are retrieved using the Llama-3-8B-Instruct model on the ARC-Challenge dataset. 988

As observed in Figure 3(a), the original Llama-3 response is skewed towards ‘D’. The provided examples 989

align with the result, and such ungrounded preference is debiased via our BNP+AOI. 990

Original Question: An astronomer observes that a planet rotates faster after a meteorite impact. 991
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Which is the most likely effect of this increase in rotation? (A) Planetary density will decrease. (B)
Planetary years will become longer. (C) Planetary gravity will become stronger. (D) Planetary days
will become shorter.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : An astronomer observes that a planet rotates faster after a meteorite impact.
Which is the most likely effect of this increase in rotation? (A) Planetary density will decrease. (B)
Planetary years will become longer. (C) Planetary days will become shorter. (D) Planetary gravity
will become stronger.

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)992

Original Question: Petrified palm trees are found in sedimentary rock near glaciers. The presence
of the petrified palm trees most likely provides evidence for which statement? (A) There was once
more water in the area. (B) The area was once grassland. (C) There are active faults in the area. (D)
The climate in the area was once tropical.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : Petrified palm trees are found in sedimentary rock near glaciers. The
presence of the petrified palm trees most likely provides evidence for which statement? (A) There
was once more water in the area. (B) The area was once grassland. (C) The climate in the area was
once tropical. (D) There are active faults in the area.

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: According to cell classification, prokaryotic cells are separated from eukaryotic
cells. Which feature is often used to distinguish prokaryotic cells from eukaryotic cells? (A) plasma
membranes (B) size differences (C) life processes (D) energy molecules

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : According to cell classification, prokaryotic cells are separated from eukary-
otic cells. Which feature is often used to distinguish prokaryotic cells from eukaryotic cells? (A) life
processes (B) size differences (C) plasma membranes (D) energy molecules

⇒ Base Model Response: (D) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: The morning temperature in a city is 41°F. If a sunny, mild day is forecast, which
temperature is most likely for 2:00 p.m.? (A) 32° F (B) 78° F (C) 98° F (D) 41° F

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : The morning temperature in a city is 41°F. If a sunny, mild day is forecast,
which temperature is most likely for 2:00 p.m.? (A) 32° F (B) 41° F (C) 78° F (D) 98° F

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: All natural resources on Earth are either renewable or nonrenewable. Whether a993
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resource is renewable or nonrenewable depends on how fast or slow the resource is replaced. If the
resource is used faster than it is replaced, then the resource will, in time, disappear. Which activity
shows the use of a nonrenewable natural resource? (A) A group of people swims in a river. (B) A
person bakes a cake with electricity produced by a hydroelectric power plant. (C) A farmer grows
vegetables to sell at a local market. (D) A construction crew builds an iron bridge.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : All natural resources on Earth are either renewable or nonrenewable.
Whether a resource is renewable or nonrenewable depends on how fast or slow the resource is
replaced. If the resource is used faster than it is replaced, then the resource will, in time, disappear.
Which activity shows the use of a nonrenewable natural resource? (A) A group of people swims in a
river. (B) A construction crew builds an iron bridge. (C) A farmer grows vegetables to sell at a local
market. (D) A person bakes a cake with electricity produced by a hydroelectric power plant.

⇒ Base Model Response: (D) / BNP+AOI Response: (B) Ground-truth: (B) 994

Original Question: At which temperature does water freeze? (A) 32 degrees Celsius (B) 0 degrees
Celsius (C) 100 degrees Celsius (D) 212 degrees Celsius

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : At which temperature does water freeze? (A) 0 degrees Celsius (B) 32
degrees Celsius (C) 100 degrees Celsius (D) 212 degrees Celsius

⇒ Base Model Response: (B) / BNP+AOI Response: (A) Ground-truth: (A)

Original Question: Fossil bones and teeth of dinosaurs have been researched for the last century.
Recent discoveries of fossilized dinosaurs have also revealed details of soft tissues, such as skin.
Which is best for a scientist to do when reporting research on dinosaurs now? (A) exclude research
on teeth or bones (B) delete earlier reports that were missing the new findings (C) predict what the
next discovery will be (D) analyze new data as it becomes available

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : Fossil bones and teeth of dinosaurs have been researched for the last century.
Recent discoveries of fossilized dinosaurs have also revealed details of soft tissues, such as skin.
Which is best for a scientist to do when reporting research on dinosaurs now? (A) exclude research
on teeth or bones (B) predict what the next discovery will be (C) analyze new data as it becomes
available (D) delete earlier reports that were missing the new findings

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: What is the main function of photosynthetic cells within a plant? (A) to change
oxygen into carbon dioxide (B) to allow the passage of carbon dioxide into the plant (C) to convert
energy from sunlight into food energy (D) to break down sugar into usable chemicals

⇒ Base Model Response: (C) Ground-truth: (C)

Permuted Question : What is the main function of photosynthetic cells within a plant? (A) to
change oxygen into carbon dioxide (B) to break down sugar into usable chemicals (C) to convert
energy from sunlight into food energy (D) to allow the passage of carbon dioxide into the plant

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: What is the mass of a carbon atom that has 6 protons, 7 neutrons, and 6 electrons? 995
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(A) 7 (B) 19 (C) 6 (D) 13
⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : What is the mass of a carbon atom that has 6 protons, 7 neutrons, and 6
electrons? (A) 6 (B) 7 (C) 13 (D) 19

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)996

Original Question: Air has no color and cannot be seen, yet it takes up space. What could be done
to show that air takes up space? (A) observe clouds forming (B) blow up a beach ball or balloon (C)
measure the air temperature (D) weigh a glass before and after it is filled with water

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : Air has no color and cannot be seen, yet it takes up space. What could be
done to show that air takes up space? (A) observe clouds forming (B) measure the air temperature
(C) blow up a beach ball or balloon (D) weigh a glass before and after it is filled with water

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Which geologic process most likely caused the formation of the Mount St.
Helens Volcano? (A) diverging boundaries (B) converging boundaries (C) transform faults (D) rift
zone

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : Which geologic process most likely caused the formation of the Mount St.
Helens Volcano? (A) converging boundaries (B) diverging boundaries (C) transform faults (D) rift
zones

⇒ Base Model Response: (D) / BNP+AOI Response: (A) Ground-truth: (A)

We also provide results with Bloomz-7b1 on ARC-Challenge. Similar to the trend shown in Figure 3997

(a), the original response is biased towards ‘A’, which is corrected through our debiasing approach.998

Original Question: Devil facial tumor disease (DFTD) is a disease that is decimating the population
of Tasmanian devils. The disease passes from one animal to another through bites and is caused by
parasites. The parasites cause cancerous tumors that spread throughout an infected animal’s body
and kill it. What is the best description of DFTD? (A) a non-infectious, cell-cycle disease (B) a
non-infectious, chronic disease (C) an infectious, cell-cycle disease (D) an infectious, chronic disease
⇒ Base Model Response: (C) Ground-truth: (C)

Permuted Question : Devil facial tumor disease (DFTD) is a disease that is decimating the
population of Tasmanian devils. The disease passes from one animal to another through bites and
is caused by parasites. The parasites cause cancerous tumors that spread throughout an infected
animal’s body and kill it. What is the best description of DFTD? (A) a non-infectious, cell-cycle
disease (B) an infectious, cell-cycle disease (C) a non-infectious, chronic disease (D) an infectious,
chronic disease

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Which of these gases is the most abundant greenhouse gas in the lower atmo-
sphere of Earth? (A) carbon dioxide (B) methane (C) water vapor (D) ozone

⇒ Base Model Response: (C) Ground-truth: (C)

Permuted Question : Which of these gases is the most abundant greenhouse gas in the lower
atmosphere of Earth? (A) ozone (B) methane (C) water vapor (D) carbon dioxide

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)
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Original Question: It was once thought that living organisms could come from non-living matter. For
example, people believed that flies would develop from rotting meat. This idea was later disproved
primarily because of (A) the discovery of the atom. (B) continued experimentation. (C) better
surgical techniques. (D) the invention of the microscope.

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : It was once thought that living organisms could come from non-living
matter. For example, people believed that flies would develop from rotting meat. This idea was later
disproved primarily because of (A) the discovery of the atom. (B) better surgical techniques. (C)
continued experimentation. (D) the invention of the microscope

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: In the spring and early summer, bears often scratch their backs against trees to
remove winter fur. This is an example of an animal (A) responding to its environment (B) beginning
hibernation (C) completing its life cycle (D) preparing for migration

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question : In the spring and early summer, bears often scratch their backs against trees
to remove winter fur. This is an example of an animal (A) completing its life cycle (B) beginning
hibernation (C) responding to its environment (D) preparing for migration

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Which tool would be best to use to determine how long it takes a cup of water to
boil? (A) balance (B) hot plate (C) thermometer (D) stopwatch

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : Which tool would be best to use to determine how long it takes a cup of
water to boil? (A) balance (B) hot plate (C) stopwatch (D) thermometer

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: The salt in ocean water comes from all of the following except (A) melting
glacial ice. (B) volcanic emissions. (C) eroding land. (D) reactions on the sea floor.

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question : The salt in ocean water comes from all of the following except (A) eroding
land. (B) melting glacial ice. (C) volcanic emissions. (D) reactions on the sea floor.

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Which is most useful to a student who is separating aluminum screws from steel
screws? (A) a screen filter (B) a large funnel (C) a magnifying glass (D) a horseshoe magnet

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : Which is most useful to a student who is separating aluminum screws from
steel screws? (A) a large funnel (B) a screen filter (C) a horseshoe magnet (D) a magnifying glass

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Over a long period of time, running water in a river erodes the riverbed. This 999
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erosion causes the river to (A) move faster and cleaner. (B) become deeper and wider. (C) stop
flowing. (D) create waves

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : Over a long period of time, running water in a river erodes the riverbed.
This erosion causes the river to (A) stop flowing. (B) create waves. (C) move faster and cleaner. (D)
become deeper and wider.

⇒ Base Model Response: (A) / BNP+AOI Response: (D) Ground-truth: (D)1000

Original Question: A student examined diagrams of two different cells. One cell was prokaryotic,
and the other cell was eukaryotic. What should the student do to identify a major difference between
the diagrams? (A) check to see which diagram shows a nucleus (B) check to see which diagram
shows cytoplasm (C) compare the shapes of the two cells (D) compare the number of vacuoles in the
two cells

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question : A student examined diagrams of two different cells. One cell was prokaryotic,
and the other cell was eukaryotic. What should the student do to identify a major difference between
the diagrams? (A) compare the shapes of the two cells (B) check to see which diagram shows a
nucleus (C) check to see which diagram shows cytoplasm (D) compare the number of vacuoles in the
two cells

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Which structures are common to both plant and animal cells? (A) cell membrane,
nucleus, mitochondrion (B) vacuole, chloroplast, nucleus (C) nucleus, cell wall, cell membrane (D)
mitochondrion, vacuole, cell wall

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question : Which structures are common to both plant and animal cells? (A) vacuole,
chloroplast, nucleus (B) cell membrane, nucleus, mitochondrion (C) nucleus, cell wall, cell membrane
(D) mitochondrion, vacuole, cell wall

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Students use tweezers and magnifying glasses to examine a piece of mold on
bread. Which should they also use for safety in this investigation? (A) bright light (B) breathing
masks (C) dark glasses (D) hot plates

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : Students use tweezers and magnifying glasses to examine a piece of mold on
bread. Which should they also use for safety in this investigation? (A) bright light (B) dark glasses
(C) breathing masks (D) hot plates

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: In 1903 Mary Anderson invented the first windshield wiper. How did this
invention most likely help people? (A) It made cars easier for people to buy. (B) It kept people from
driving too fast. (C) It helped people use less gas. (D) It made cars safer to drive in bad weather.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : In 1903 Mary Anderson invented the first windshield wiper. How did this
invention most likely help people? (A) It helped people use less gas. (B) It kept people from driving
too fast. (C) It made cars easier for people to buy. (D) It made cars safer to drive in bad weather.

⇒ Base Model Response: (A) / BNP+AOI Response: (D) Ground-truth: (D)
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F Broader Impact and Future Work 1001

Broader Impact. This work reveals and mitigates a type of bias present in recent large language 1002

models (LLMs). Considering that LLMs have become an integral part of various applications from 1003

customer service to science, the presence of any type of bias can negatively impact the reliability of 1004

systems and degrade precision in model- or data-driven decision-making. By addressing bias, our research 1005

not only improves the accuracy and fairness of these models but also has the potential to enhance the 1006

trustworthiness of LLMs in general. In addition, this work serves as a foundation for ongoing efforts to 1007

scrutinize and enhance LLM automated systems, introducing a new perspective on analyzing performance. 1008

Future Application. One closely related application of selection bias debiasing is data annotation. 1009

Many works discussed ways to leverage LLMs for automated annotation (He et al., 2024; Eckman et al., 1010

2024), or devised human-machine collaborative frameworks (Li et al., 2023a). We expect our work to 1011

benefit such annotation systems by reducing the selection bias in answering MCQs. 1012
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