
Adaptive Task Vectors for Large Language Models

Joonseong Kang∗ Soojeong Lee Sumin Park Subeen Park
Taero Kim Jihee Kim Ryunyi Lee Kyungwoo Song†

Yonsei University

Abstract

In-Context Learning (ICL) enables Large Language Models (LLMs) to perform
tasks without parameter updates by conditioning on a few demonstrations provided
in the prompt. Despite its success, ICL suffers from several limitations, including
sensitivity to demonstration order, context length constraints, and limited control
over internal reasoning mechanisms. To address these challenges, task vector-based
approaches compress task information into a single vector. However, these methods
typically construct task vectors from fixed sets of demonstrations and reuse them
across input queries, without conditioning on the specific input. This limitation
reduces their ability to probe or guide the model’s internal computation, making
adaptation to diverse or misaligned queries difficult and degrading generalization
on unseen tasks. To overcome this limitation, we propose Adaptive Task Vectors
(ATV), a simple and effective framework that dynamically generates task vectors
conditioned on each input query. ATV employs a small language model to generate
task vectors, which are then transformed to match the target LLM’s architecture
and applied to guide its output generation. In contrast to ICL and previous vector-
based approaches, which rely on fixed demonstration sets and their corresponding
vectors, ATV dynamically generates task vectors tailored to each specific input
query and task. As a result, ATV serves as an effective tool for probing and guiding
the internal mechanisms of LLMs, enabling strong performance and enhanced
insight, even for unseen tasks. Furthermore, we provide a theoretical analysis
indicating that ATV is expressively equivalent to LoRA under equal rank budgets
and more expressive than Prefix-Tuning, thereby offering formal support for its
representational advantage.

1 Introduction

Large Language Models (LLMs) have made remarkable strides in natural language processing,
demonstrating impressive performance across various tasks. As LLMs become more powerful,
understanding and controlling their internal mechanisms is increasingly important. In-Context
Learning (ICL) [1] has become a pivotal method for enhancing LLM performance, enabling models
to perform specific tasks by including demonstration samples in prompts without requiring additional
training [2]. However, ICL faces several limitations: it operates solely at the input-output level
and lacks direct access to or control over the model’s internal computation or representations.
Performance varies depending on the order and selection of demonstration samples [3–5], the
maximum context length constraint of LLMs makes it difficult to handle tasks involving long-
context reasoning or diverse demonstration sets, and processing numerous demonstrations reduces
computational efficiency [6, 7].

To mitigate these issues, task vector-based approaches [8–12] have attracted growing interest for
improving the efficiency and robustness of ICL. Task vectors [8] are vector representations that

*doongsae@yonsei.ac.kr, †Corresponding author: kyungwoo.song@yonsei.ac.kr

Mechanistic Interpretability Workshop at NeurIPS 2025.

Figure 1: Comparison between task vector methods: a) Existing works use a fixed task vector for
all inputs, whereas b) our method generates a query-specific task vector, enabling adaptive behavior
for each input. This enables the LLM to adapt its behavior to individual inputs and overcome the
limitations of fixed-vector approaches.

compress task-specific information, typically obtained from the hidden state of the last token in the
prompt, or its processed variant. These vectors are integrated with the input query to modulate the
model’s output in a task-specific manner. Recent studies have utilized task vectors to effectively
mitigate the limitations of conventional ICL [13, 14]. By compressing information from multiple
demonstration samples into a single vector, these methods overcome context window constraints and
reduce performance variability due to demonstration ordering [2, 15–17]. As a result, they preserve
the effectiveness of ICL while improving computational efficiency and consistency [18].

However, existing task vector-based approaches exhibit a significant limitation. Most prior methods
construct task vectors from fixed sets of demonstrations and reuse the same vector across all input
queries, regardless of their individual characteristics [8, 13]. While some recent approaches retrieve
task vectors based on query similarity, the retrieved vectors are precomputed and remain fixed during
inference. As a result, these methods are not conditioned on the current input and may fail to adapt
effectively when the input is not well aligned with the underlying demonstrations. Indeed, ICL
and previous task vector-based methods, which select demonstration sets from such fixed pools,
consequently tend to exhibit limited performance on unseen tasks and provide only limited control
over the model’s internal mechanisms.

Motivated by these limitations, we propose Adaptive Task Vectors (ATV), a new framework for
dynamically generating task vectors conditioned on each input query. ATV enables more accurate
and input-sensitive model guidance by producing an optimal task vector for each input query. Our
framework employs a small language model to generate intermediate task representations, which
are then transformed to match the architecture of the target LLM and used to modulate its output.
Figure 1 illustrates the key difference between (a) existing fixed-vector methods [10–12], and (b)
ATV. While (a) applies the same vector to all input queries, (b) generates a query-specific vector for
each query, allowing the model to produce more appropriate responses aligned with the input query.

In this paper, we establish the effectiveness of the proposed framework through both theoretical
and empirical evaluation. Theoretically, we show that ATV attains the same expressive capacity
as Low-Rank Adaptation (LoRA) [19] under matched rank budget and is strictly more expressive
than Prefix-Tuning, offering theoretical support for its stronger expressive capacity. Empirically, we
evaluate ATV on in-domain performance, generalization to unseen tasks, and ablations on model
capacity and injection configuration. Across these settings, ATV demonstrates strong in-domain
accuracy, generalization, and interpretable insights into model capacity and injection behavior.

Our main contributions are as follows: (1) We propose Adaptive Task Vectors (ATV), a simple
and effective framework that generates task vectors conditioned on each input query, enabling LLMs
to adapt and steer their internal computation and representations in a task-aware manner. (2) We
provide a theoretical analysis showing that ATV is expressively equivalent to LoRA under equal
rank budgets and strictly more expressive than Prefix-Tuning, providing a formal justification for
its enhanced capacity to manipulate internal model states. (3) We empirically evaluate ATV on
both in-domain tasks and generalization to unseen tasks, demonstrating strong performance and
interpretable insights into how ATV affects internal model behavior. We further analyze how ATV’s
performance and behavior are influenced by key design factors through ablation studies varying
model capacity and injection configuration.

2

2 Related Work

In-Context Learning. In-context learning (ICL) allows LLMs to perform new tasks without
parameter updates by conditioning on a few input-output pairs in the prompt [1]. Since the rise of
GPT-3, ICL has shown strong performance across diverse tasks, especially with prompt engineering
and model scaling [20–22]. However, ICL remains highly sensitive to the selection and order of
demonstrations [15, 23], is limited by the model’s maximum context length [6], and incurs significant
computational costs during inference [7]. Adaptive or retrieval-based ICL methods address some
of these issues by dynamically selecting examples [24], but they still rely on prompt tokens and
are subject to context length constraints and explicit token-based representations. We instead use
a compact, learned vector to convey task information without explicit demonstrations, removing
prompt design and length limitations while preserving ICL’s adaptability and generalization.

Vector-Based Approaches for Model Steering. Recent work has explored replacing in-context
demonstrations with task vectors, dense representations that encode task information from a few-shot
prompt, typically extracted from the last token’s hidden state in a transformer [8]. Approaches
such as I2CL [11] compress demonstrations into a single context vector injected into the residual
stream, while ELICIT [12] retrieves task vectors from a capability-specific library. While these
methods improve efficiency by eliminating token-level demonstrations, their task vectors are fixed
or drawn from a static library and reused across inputs, limiting adaptability. To our knowledge, no
prior method generates task vectors conditioned on each input. Our framework, ATV, overcomes
this by dynamically generating input-conditioned task vectors, enabling fine-grained, adaptive task
representation while preserving the efficiency of vector-based approaches.

3 Methodology

3.1 Background and Preliminaries

Our work builds upon the standard Transformer architecture. In auto-regressive models, the hidden
state of the final token T at layer l, denoted hl

T , summarizes the input context and is used for
next-token prediction.

Task Vectors. Following prior work [12], we define a task vector as the hidden state of the last
token at each transformer layer, capturing task-relevant information in a compressed form. Given an
input x = [x1, x2, . . . , xT], the task vector at layer l is:

vltask = hl
T (task vector extracted from the last token at layer l) (1)

To steer the model output in a task-specific direction, we inject the task vector into the hidden state of
the last token at each transformer layer. Specifically, for each layer l, the modified hidden state is
computed as:

h̃l = hl + λvltask (2)
where hl denotes the hidden state of the last token at layer l, vltask ∈ Rdl is the corresponding task
vector slice, h̃l is the injected version, dl is the hidden dimensionality at layer l, and λ is a scaling
factor controlling the strength of the intervention. For simplicity, we omit the token index and refer
to the last token’s hidden state simply as hl. This formulation allows the task vector to modulate the
model’s behavior in a lightweight and interpretable manner. Previous methods rely on task vectors
extracted from fixed demonstrations, resulting in a static representation shared across inputs. We
introduce the Adaptive Task Vector (ATV), which is dynamically generated per input to modulate
the model’s behavior.

3.2 ATV: Adaptive Task Vectors for Large Language Models

Notation and Setup. Let x = [x1, x2, . . . , xT] be a tokenized input query sequence of length T ,
and let y denote the corresponding target output. We define two models: a small model Msmall with
hidden size ds, and a large language model Mlarge with L layers and hidden size dl per layer.

From the input x, Msmall produces a hidden representation vsmall ∈ Rds , extracted from the last token
of the last layer. This vector is then expanded via a parameterized function fθ : Rds → RL×dl to

3

Figure 2: Overview of the Adaptive Task Vector (ATV) framework. a) During training, the small
model and the expansion module are updated to minimize the loss from the steered output. b) During
inference, both modules are frozen and used to generate query-specific ATV vectors for steering the
frozen large model.

obtain our ATV vATV = fθ(vsmall), suitable for injection into the large model. Let vlATV ∈ Rdl denote
the portion corresponding to the l-th layer. The final output generated by Mlarge after ATV injection
is denoted ỹ. The ATV is scaled by a hyperparameter λ before being added to the hidden state.

Overview of the ATV Framework. Our goal is to steer an LLM without modifying its weights
by injecting input-conditioned information directly into its hidden states. We introduce ATV, a
lightweight control framework that operates externally to a frozen large model.

ATV consists of two lightweight modules: (1) ATV generation. A small language model produces
a compact vector representation from the input query, (2) ATV expansion. An expansion module
transforms this vector into a set of layer-wise steering information injected into the large model.

We implement the expansion module as a single linear projection from Rds to RL·dl , followed by
reshaping into RL×dl for compatibility with the target model. The generator and expansion modules
are trained jointly, while the LLM remains frozen.

By injecting the ATV into the internal layers of the large model, the ATV enables flexible and
targeted control over the model’s behavior. This allows the large model to better align with desired
task objectives, such as answering questions accurately or performing structured reasoning, without
modifying its parameters or relying on prompt engineering.

We summarize this process in Figure 2. During the training phase (a), the small model and the
expansion module are optimized to produce effective ATVs that steer the large model toward the
desired output. During the inference phase (b), both modules are frozen and used to dynamically
generate ATVs for new input queries.

The core idea behind ATV is to adapt the behavior of an LLM to a specific task without modifying its
parameters. Instead of prompt-based conditioning, we steer the model by injecting query-specific
information directly into its internal hidden state in the form of an ATV.

To generate the ATV, we first encode the input query using a small language model Msmall, such
as a GPT-2 variant [25]. The model processes the full tokenized sequence and produces hidden
representations at each layer. From the last token of the last layer, we extract a compact vector vsmall
that summarizes the semantics of the input query.

This vector is then expanded by fθ into the ATV vATV, where each slice vlATV is designed to modulate
computations at the corresponding layer of the large model.

The ATV is injected into the frozen large model by modifying the hidden state of the last token
during the forward pass. Specifically, for each layer l, the original hidden state hl of the last token is
modified as:

h̃l = hl + λvlATV (3)
where λ is a scalar hyperparameter that scales the ATV’s influence. This additive injection provides
lightweight yet effective steering of the model’s output behavior.

To enable effective learning, we jointly train Msmall and fθ using a supervised loss. Let y denote the
target output for input query x, and let ỹ be the output of the large model after ATV injection. The

4

objective is to minimize the cross-entropy loss:
min
ϕ,θ

E(x,y)∼D [LCE (ỹ, y)] , where ỹ = Mlarge(x; vATV) (4)

where D denotes the supervised training dataset, and ϕ, θ are the parameters of the small model
and the expansion module, respectively. Notably, the large model Mlarge remains frozen throughout
training.

After training, both Msmall and fθ are frozen. During inference, given a new input query, the system
generates a query-specific ATV and injects it into the large model to guide its behavior. This enables
ATV to adapt frozen LLMs to diverse downstream tasks in a modular and parameter-efficient manner.

3.3 Theoretical Analysis

We now theoretically analyze the proposed ATV framework to better understand its effect on the
behavior of the LLM by comparing it to two prominent parameter-efficient tuning methods: LoRA and
Prefix-Tuning. LoRA injects trainable low-rank matrices into pretrained weights and has demonstrated
strong performance in language model fine-tuning [19]. Prefix-Tuning prepends trainable continuous
vectors to the input sequence, conditioning the model through modified attention mechanisms without
altering the pretrained weights [26].

Specifically, we focus on addressing the following two questions: (1) How does ATV compare to
LoRA in expressivity under the same rank budget, and when might ATV offer additional advantages?
(2) Does ATV offer a more expressive attention mechanism compared to Prefix-Tuning?

To analyze our first question regarding comparative expressivity, we begin by defining the scope of
our analysis. Our claim concerns the next-token prediction distribution, F (x) = softmax(WLMhL

T),
where hL

T ∈ RdL denotes the final hidden state of the last token T at the top layer L, and WLM is the
output projection matrix of the language model.

Since autoregressive language modeling objectives and evaluations are entirely determined by F (x),
restricting the analysis to F (x) suffices for assessing expressive power. Under this scope, and
assuming identical insertion placements and the same per-layer rank budget r, we show that ATV is
never weaker than LoRA under the same rank budget, and then specify in which respects ATV can be
stronger.
Theorem 1 (Static ATV-LoRA Equivalence). Let hℓ ∈ Rdℓ be the last-token hidden state at layer ℓ,
and let h̃ℓ, ĥℓ denote the updated hidden state produced by ATV and LoRA, respectively. For a rank
budget r, static ATV with fixed v, and LoRA induce the same set of attainable next-token distributions:

FATV-static(r) = FLoRA(r).

That is, for any ATV update h̃ℓ, there exists a LoRA configuration yielding ĥℓ = h̃ℓ, and vice versa.
The full proof is provided in Appendix A.1.

Dynamic advantage of ATV. Theorem 1 ensures that ATV inherits LoRA’s expressiveness under
the same rank budget. Beyond this static equivalence, ATV offers an additional advantage: when
v = v(x) depends on the input x, the induced update operator ∆Wℓ(v(x)) changes dynamically
across queries, whereas LoRA’s update remains fixed. Consequently, under equal rank and placements,
the LoRA function class is strictly contained in the dynamic ATV class. This query-conditioned
adaptability enables ATV to adjust updates on a per-instance basis, a capability absent in LoRA,
which may enhance adaptability in dynamic or multi-task environments.

Secondly, under the relaxed linear attention approximation, we argue in Theorem 2 that any represen-
tation obtainable by Prefix-Tuning is also realizable by ATV, while the converse does not hold. To
examine the source of expressivity differences under the approximation proposed by prior work [27],
we begin by formulating the standard attention as Attn(xWq, CWk, CWv), where x ∈ RT×dl is
the query, C ∈ Rm×dl is the length-m context, and Wq,Wk,Wv are projection matrices. Prefix-
tuning modifies the key and value by concatenating p trainable prefix vectors Pk, Pv ∈ Rp×dl ,
yielding an augmented attention [28]: Attnprefix = Attn(xWq, [Pk;CWk], [Pv;CWv]), ATV, in
contrast, injects a trained vector vlATV additively to both the query and context: AttnATV =
Attn

(
(x+ eT · (vlATV)

⊤)Wq, (C + em · (vlATV)
⊤)Wk, (C + em · (vlATV)

⊤)Wv

)
, where em is a vec-

tor [0, ...0, 1] ∈ Rm×1.

5

Theorem 2 (ATV is more expressive than Prefix-Tuning). Let AttnATV and Attnprefix denote the
attention outputs from ATV and Prefix-Tuning, respectively. Then, the representational space F of
AttnATV includes that of Attnprefix:

F(Attnprefix) ⊆ F(AttnATV) (5)

Comparison of AttnATV and Attnprefix. Under the approximation, AttnATV ≈ Attnprefix +∆cross,
where ∆cross encapsulates the six cross-terms that capture the additional interactions between the
query and context, modulated by the vector vlATV. The full proof is provided in Appendix A.2.

4 Experiments

To evaluate ATV, we design experiments examining both in-domain and generalization performance,
followed by ablation studies on injection strategies. We also compare ATV with parameter-efficient
tuning methods to validate our theoretical analysis and visualize task vector distributions to understand
their representational properties. We closely follow ELICIT’s [12] experimental design, using
identical datasets and evaluation protocols. We evaluate on Llama-3-8B [29] and Mistral-7B [30],
with I2CL [11] as an additional baseline and a separate comparison to LoRA [19] for theoretical
validation. Our code is available at https://github.com/MLAI-Yonsei/ATV.

4.1 Experiment Setup

Models and Baselines. Our primary models are Llama-3-8B and Mistral-7B. We compare ATV
against (i) zero-shot, (ii) 16-shot in-context learning (ICL), (iii) 16-shot BM25 retrieval-based
ICL [31], (iv) ELICIT [12], and (v) I2CL [11]. ICL and BM25 use demonstrations either randomly
sampled or retrieved from the task’s training set.

Datasets. We evaluate ATV on a diverse collection of 20 tasks spanning five categories: Natural
Language Understanding, Reasoning, Knowledge, Mathematics, and Safety. These tasks test various
NLP capabilities, from reasoning to numerical problem solving. In addition to in-domain tasks, we
evaluate ATV on a separate set of unseen tasks to assess its generalization ability.

Evaluation. We adopt the same evaluation strategy as ELICIT to reflect realistic inference scenarios,
where test-time query formats differ from those seen during training. Each test query is presented
in two additional template variations not used in task vector generation. Task-specific instructions
are prepended for all methods to ensure fair comparison. Detailed baseline descriptions and full
experimental details, including datasets, templates, and hyperparameters, are provided in Appendix B.

4.2 In-Domain Performance Evaluation

We evaluate ATV on 20 in-domain tasks across five categories, with results summarized in Table 1.
ATV consistently achieves the highest average accuracy across all baselines while maintaining strong
token efficiency by avoiding additional prompt tokens. ATV performs particularly well on NLU
and Reasoning tasks across both Llama-3 and Mistral, highlighting the benefit of query-specific
task vectors in handling semantic and logical variation. These categories often require a nuanced
understanding of input structure and are sensitive to prompt formulation, limiting the adaptability
of fixed vector approaches. Interestingly, BM25 achieves the best result in the Math category. We
attribute this to the pattern-based nature of many math problems, where retrieved demonstrations
closely resembling the test query provide a direct advantage. In contrast, ATV’s focus on semantic-
level task modeling may limit its effectiveness in tasks that demand precise procedural alignment.

To further assess generality, we evaluated ATV across model scales, from smaller (Pythia-2.8B [32])
to larger (Llama-2-13B [33]) architectures. Results in Appendix C show consistent improvements,
highlighting ATV’s robustness across architectures beyond the primary experiments. Overall, these
results highlight the strength of adaptive task representations in language understanding, while
suggesting that surface-level tasks may be better handled by retrieval-based approaches.

While ATV’s initial performance on Math tasks is lower than retrieval-based baselines, Appendix D
shows that this is not an inherent limitation. To investigate, we compared ATV and LoRA when
trained on all tasks versus only on the Math datasets. The results demonstrate that ATV’s accuracy
improves substantially with targeted training, whereas LoRA does not exhibit similar gains under the

6

https://github.com/MLAI-Yonsei/ATV

Table 1: In-domain performance comparison across five categories under Llama-3 and Mistral.
ATV achieves the highest average accuracy on both models using the same number of tokens as
ELICIT and I2CL, while outperforming all baselines across most domains and maintaining superior
token efficiency over prompt-based methods. All baseline results, except for I2CL and ATV, are
reported from ELICIT. Error bars indicate the standard deviation across three random seeds.

Model # Tokens NLU Reasoning Knowledge Math Safety Avg.

Llama-3

Zero-shot 108.3 ± 1.4 32.2 ± 1.2 31.6 ± 0.2 42.5 ± 1.2 14.0 ± 1.0 35.5 ± 1.2 31.2 ± 0.7
16-shot 1883.8 ± 0.9 60.6 ± 1.0 56.0 ± 0.4 70.6 ± 1.0 26.7 ± 2.0 62.1 ± 0.4 55.2 ± 0.4
BM25 2350.7 ± 24.9 56.1 ± 1.5 68.8 ± 0.2 69.5 ± 0.9 28.0 ± 2.3 56.7 ± 2.0 55.8 ± 0.7

ELICIT 108.3 ± 1.4 41.6 ± 0.4 46.7 ± 0.1 60.6 ± 1.4 19.1 ± 1.4 49.9 ± 2.1 43.5 ± 0.8
I2CL 108.3 ± 1.4 52.4 ± 4.6 48.4 ± 0.9 52.2 ± 3.1 17.9 ± 2.2 45.6 ± 2.4 43.3 ± 0.7
ATV 108.3 ± 1.4 61.0 ± 5.0 76.1 ± 1.3 73.0 ± 1.6 25.8 ± 2.0 74.8 ± 0.4 62.1 ± 1.5

Mistral

Zero-shot 123.5 ± 1.7 29.6 ± 1.2 26.9 ± 0.4 45.5 ± 1.3 2.8 ± 0.1 36.1 ± 0.3 28.2 ± 0.5
16-shot 2161.3 ± 0.9 55.3 ± 0.5 52.1 ± 0.5 70.8 ± 0.4 23.7 ± 1.7 63.1 ± 0.6 53.0 ± 0.1
BM25 2655.2 ± 27.3 55.2 ± 0.3 66.0 ± 0.5 70.2 ± 1.9 24.1 ± 0.4 62.1 ± 0.5 55.5 ± 0.4

ELICIT 123.5 ± 1.7 41.9 ± 1.0 48.3 ± 0.3 59.4 ± 0.9 20.3 ± 0.9 48.7 ± 1.8 43.7 ± 0.6
I2CL 123.5 ± 1.7 48.6 ± 0.9 47.3 ± 1.5 59.6 ± 0.8 17.6 ± 1.9 49.4 ± 1.0 44.5 ± 0.6
ATV 123.5 ± 1.7 60.8 ± 2.8 69.1 ± 1.6 71.4 ± 4.5 20.8 ± 2.4 69.4 ± 1.9 58.3 ± 1.3

Table 2: Performance on unseen tasks not included in the ATV training set, evaluated under
Llama-3 and Mistral. ATV achieves the highest average accuracy across all methods while using
significantly fewer tokens than prompt-based and fixed vector approaches, demonstrating strong
generalization. All results except I2CL and ATV are from ELICIT.

Model # Tokens GLUE COLA BBQ Religion Deepmind MMLU-Psychology BBH-five-objects Avg.

Llama-3

Zero-shot 103.6 ± 47.7 72.0 ± 0.7 38.6 ± 1.1 17.5 ± 2.6 54.2 ± 0.3 17.1 ± 0.0 39.9 ± 0.8
BM25 2502.8 ± 26.0 55.4 ± 1.0 64.6 ± 1.3 30.7 ± 1.7 83.0 ± 0.1 48.3 ± 0.0 56.4 ± 0.4

ELICIT 103.6 ± 47.7 63.4 ± 0.9 45.0 ± 0.7 23.7 ± 3.4 70.0 ± 0.6 25.7 ± 0.0 45.6 ± 0.4
I2CL 103.6 ± 47.7 26.1 ± 0.6 39.4 ± 3.1 23.5 ± 3.7 75.0 ± 1.0 27.3 ± 2.5 38.3 ± 2.2
ATV 103.6 ± 47.7 77.6 ± 2.7 80.8 ± 2.6 26.4 ± 2.7 80.6 ± 2.3 51.7 ± 3.1 63.4 ± 2.5

Mistral

Zero-shot 115.4 ± 51.0 43.3 ± 1.1 35.4 ± 3.3 9.0 ± 0.4 57.9 ± 0.7 7.4 ± 0.0 30.6 ± 1.0
BM25 2804.6 ± 27.6 44.4 ± 2.2 70.7 ± 0.7 26.6 ± 3.9 78.7 ± 1.1 25.7 ± 0.0 49.2 ± 0.3

ELICIT 115.4 ± 51.0 41.7 ± 0.8 42.1 ± 2.5 25.1 ± 1.2 65.6 ± 0.6 15.6 ± 0.0 38.0 ± 0.6
I2CL 115.4 ± 51.0 53.3 ± 1.3 48.4 ± 6.5 22.0 ± 2.6 72.6 ± 0.2 22.9 ± 4.5 43.9 ± 3.0
ATV 115.4 ± 51.0 79.8 ± 7.1 81.7 ± 2.2 24.6 ± 5.3 70.7 ± 1.0 40.3 ± 3.6 59.4 ± 2.6

same conditions. These findings indicate that ATV is fully capable of handling complex procedural
domains when training is appropriately allocated.

Beyond task accuracy, we evaluated output reliability in terms of format adherence and response
consistency across prompt variations. As detailed in Appendix E, ATV achieves strong format
adherence and higher consistency than ICL-based baselines, highlighting its practical reliability.
These results indicate that ATV improves performance without compromising structural robustness.

4.3 Generalization to Unseen Tasks

Table 3: Performance on the adversarial
HANS dataset. While retrieval-based and
static-vector baselines fail catastrophically,
ATV maintains robust performance, demon-
strating its superior generalization.

Method HANS Accuracy

Zero-shot 8.3 ± 0.5
BM25 0.4 ± 0.1

ELICIT 0.4 ± 0.1
I2CL 0.3 ± 0.1
ATV 59.6 ± 2.8

To assess generalization, we evaluate ATV on unseen
tasks held out from training, including linguistic ac-
ceptability, bias detection, and scientific reasoning.
As shown in Table 2, ATV achieves the highest aver-
age accuracy on both Llama-3 and Mistral, likely due
to its query-conditioned task vectors that enable adap-
tation to novel tasks without explicit demonstrations.
These results highlight ATV’s strength in generaliz-
ing beyond in-domain tasks while maintaining strong
token efficiency.

We also evaluate ATV on adversarial generalization
using the HANS dataset [34], designed to reveal
heuristic-driven failures in NLI models. While prior
methods collapse in this setting, ATV retains strong accuracy, demonstrating robustness to highly
dissimilar and adversarial tasks as shown in Table 3. This performance gap stems from the limitations
of static-vector and retrieval-based methods, which rely on pre-computed task representations that
are misaligned with the adversarial structure of HANS. In contrast, ATV dynamically generates
task vectors conditioned on the input, enabling effective adaptation even in the absence of relevant

7

in-domain supervision. Appendix F attributes this gap to the limitations of static methods, whereas
ATV adapts through dynamic generation.

4.4 Ablation Study: Effect of Small Model Capacity

We study how the capacity of the small language model used to generate task vectors affects ATV’s
performance. All main experiments in this paper use GPT-2 (137M) as the default generator. To
assess the effect of generator capacity, we experiment with multiple GPT-2 variants while keeping
the target model (Llama-3) fixed, and evaluate on the in-domain benchmark. As shown in Table 4,
larger models such as GPT-2-XL yield slightly better performance, but the gains over GPT-2 are
marginal. This suggests that even lightweight generators suffice for producing effective task vectors,
highlighting the parameter efficiency and practicality of ATV.

Table 4: Effect of small model capacity on ATV performance. We evaluate four GPT-2 variants as
the small model for generating task vectors, with the Llama-3 target model fixed. While GPT-2-XL
achieves the highest average accuracy, the smallest model (GPT-2, 137M) performs comparably,
indicating that lightweight models are sufficient for effective task vector generation and supporting
the parameter efficiency of ATV.

Model # Parameters NLU Reasoning Knowledge Math Safety Avg.

GPT-2 137M 61.0 ± 5.0 76.1 ± 1.3 73.0 ± 1.6 25.8 ± 2.0 74.8 ± 0.4 62.1 ± 1.5
GPT-2-Medium 380M 61.2 ± 3.9 75.9 ± 1.4 72.0 ± 2.5 24.6 ± 1.8 68.1 ± 4.1 60.4 ± 1.3

GPT-2-Large 812M 62.1 ± 1.4 74.2 ± 0.6 72.4 ± 2.1 25.4 ± 1.9 72.7 ± 2.8 61.4 ± 0.5
GPT-2-XL 1.61B 63.8 ± 4.2 76.5 ± 1.6 73.9 ± 2.2 23.7 ± 0.8 73.1 ± 4.2 62.2 ± 0.6

4.5 Layer-wise Analysis of Injection Strategies

We conduct a layer-wise analysis to examine how injection depth influences performance for both ATV
and ELICIT, revealing distinct patterns in how the two methods interact with different transformer
layers. While ELICIT requires identifying a single best injection layer per task, we perform a uniform
layer-wise evaluation for both methods by injecting into the bottom, middle, or top third of the model.

Table 5: Layer-wise performance comparison between ELICIT and ATV on Llama-3. While
ELICIT performs best when applied only to top layers, ATV shows strong performance when injected
into bottom layers. This contrast highlights the different functional dependencies of the two methods.
Reported differences are measured with respect to the full-layer injection setting.

Injected Layer Avg. acc (ELICIT) Diff. (ELICIT) Avg. acc (ATV) Diff. (ATV)

All Layers 30.9 ± 0.8 - 62.1 ± 1.5 -
Bottom 1

3
23.5 ± 0.9 -7.4 60.5 ± 0.7 -1.6

Middle 1
3

17.8 ± 0.2 -13.1 43.2 ± 1.0 -18.9
Top 1

3
32.8 ± 0.3 +1.9 32.6 ± 0.4 -29.5

Figure 3: Layer-wise analysis of vector injec-
tion magnitudes. Left: ELICIT shows a mono-
tonic increase toward the top layers, while Right:
ATV concentrates vector strength in the lower lay-
ers. These patterns align with each method’s layer-
specific performance impact.

We divide the transformer into bottom, mid-
dle, and top thirds, and evaluate each method
by restricting injection to a single region. As
shown in Table 5, ATV retains strong perfor-
mance when injected into the bottom layers, ex-
hibiting only marginal degradation relative to
the full-layer setting. For ELICIT, the best per-
formance is observed when injecting into the top
layers, slightly surpassing its full-layer setting.
This divergence suggests that ATV benefits from
modulating lower-level representations, while
ELICIT relies more on upper-layer reasoning.

Figure 3 visualizes the ℓ2 norm of the injected
vectors across layers. ATV peaks in the bot-
tom layers with balanced magnitudes, whereas
ELICIT shows a steep increase in vector strength toward the top, with much larger magnitudes.

8

This behavioral difference aligns with the performance trends in Table 1: ATV achieves consistently
strong results across all five task categories, not just in NLU. The effectiveness of early-layer
modulation is consistent with prior studies on transformer specialization [35–37], which show that
lower layers primarily encode lexical and syntactic features, while upper layers are responsible
for semantic reasoning and task-specific abstraction. Furthermore, ELICIT’s all-layer performance
significantly underperforms its optimal single-layer injection (as in Table 1), whereas ATV achieves
its best performance without requiring layer selection.

4.6 Efficiency Comparison with Baselines

Figure 4: Efficiency of ATV compared to existing methods.
ATV achieves inference time comparable to that of parameter-
efficient methods, such as LoRA, while substantially outperform-
ing all baselines in both in-domain and out-of-domain accuracy.

We evaluate model efficiency by
jointly measuring inference la-
tency and predictive accuracy
across ELICIT, I2CL, LoRA, and
ATV. As summarized in Fig-
ure 4, ATV achieves inference
time comparable to parameter-
efficient tuning methods such as
LoRA, while remaining substan-
tially faster than retrieval-based
approaches like ELICIT. Impor-
tantly, ATV achieves markedly
higher accuracy on both in-
domain and unseen tasks.

These findings demonstrate that
ATV delivers the best overall per-
formance, combining practical
inference efficiency with substan-
tially higher predictive accuracy
than all other baselines.

4.7 Visualizing Task Vector Distributions

Figure 5: t-SNE visualization of task vector distributions for
two BBH tasks. Each dot represents a query-specific task vector
generated by ATV, while crosses denote the fixed task vectors
used by ELICIT. We observe that vectors from similar queries
tend to be grouped together, indicating that ATV adapts its repre-
sentations based on the input, while ELICIT draws from a fixed
demonstration pool and captures less query-level variation.

We use t-SNE to visualize query-
specific task vectors and assess
how ATV captures input varia-
tion. Figure 5 shows the pro-
jected vectors for two BBH tasks
alongside their ELICIT counter-
parts. We observe that, in ATV,
vectors from similar queries tend
to appear closer together in
the embedding space, suggest-
ing that the method captures
input-specific variation within
and across tasks.

In contrast, ELICIT relies on a
single static vector per task, dis-
regarding query-level diversity
and thereby limiting its capacity
to adapt across inputs. By ex-
plicitly capturing such variation,
ATV constructs richer task representations that directly enhance generalization across diverse tasks.

5 Conclusion

In this work, we introduced Adaptive Task Vectors (ATV), a novel framework for steering large
language models via query-conditioned task representations. By dynamically generating task vectors

9

for each input, ATV addresses the fundamental limitations of both in-context learning and prior
vector-based approaches, enabling more flexible and effective adaptation without modifying model
parameters. Our theoretical analysis establishes the expressive power of ATV, demonstrating its
equivalence to LoRA under matched rank budgets and its superiority over Prefix-Tuning. Empirical
results further validate the advantages of ATV, highlighting its strong generalization to unseen tasks
and its efficiency in both training and inference. Taken together, these findings suggest that ATV
provides a principled and practical solution for task adaptation in large language models, offering a
new direction for parameter-efficient model control.

Acknowledgments and Disclosure of Funding

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government (MSIT) (RS-2024-00457216).

References
[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,

A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[2] Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu, T. Liu et al., “A survey on in-context
learning,” arXiv preprint arXiv:2301.00234, 2022.

[3] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What makes good in-context examples for
gpt-3?” arXiv preprint arXiv:2101.06804, 2021.

[4] K. Peng, L. Ding, Y. Yuan, X. Liu, M. Zhang, Y. Ouyang, and D. Tao, “Revisiting demonstration selection
strategies in in-context learning,” arXiv preprint arXiv:2401.12087, 2024.

[5] X. Wang, W. Zhu, and W. Y. Wang, “Large language models are implicitly topic models: Explaining and
finding good demonstrations for in-context learning,” arXiv preprint arXiv:2301.11916, vol. 1, p. 15, 2023.

[6] T. Li, G. Zhang, Q. D. Do, X. Yue, and W. Chen, “Long-context llms struggle with long in-context learning,”
arXiv preprint arXiv:2404.02060, 2024.

[7] Y. Kuratov, A. Bulatov, P. Anokhin, I. Rodkin, D. Sorokin, A. Sorokin, and M. Burtsev, “Babilong: Testing
the limits of llms with long context reasoning-in-a-haystack,” Advances in Neural Information Processing
Systems, vol. 37, pp. 106 519–106 554, 2024.

[8] R. Hendel, M. Geva, and A. Globerson, “In-context learning creates task vectors,” in Findings of the
Association for Computational Linguistics: EMNLP 2023, H. Bouamor, J. Pino, and K. Bali, Eds., Dec.
2023, pp. 9318–9333.

[9] G. Ilharco, M. T. Ribeiro, M. Wortsman, L. Schmidt, H. Hajishirzi, and A. Farhadi, “Editing models with
task arithmetic,” in The Eleventh International Conference on Learning Representations, 2023.

[10] S. Liu, H. Ye, L. Xing, and J. Zou, “In-context vectors: making in context learning more effective and
controllable through latent space steering,” in Proceedings of the 41st International Conference on Machine
Learning, 2024, pp. 32 287–32 307.

[11] Z. Li, Z. Xu, L. Han, Y. Gao, S. Wen, D. Liu, H. Wang, and D. N. Metaxas, “Implicit in-context learning,”
in The Thirteenth International Conference on Learning Representations, 2025.

[12] F. Wang, J. Yan, Y. Zhang, and T. Lin, “ELICIT: LLM augmentation via external in-context capability,” in
The Thirteenth International Conference on Learning Representations, 2025.

[13] L. Yang, Z. Lin, K. Lee, D. Papailiopoulos, and R. Nowak, “Task vectors in in-context learning: Emergence,
formation, and benefit,” arXiv preprint arXiv:2501.09240, 2025.

[14] B. Huang, C. Mitra, L. Karlinsky, A. Arbelle, T. Darrell, and R. Herzig, “Multimodal task vectors enable
many-shot multimodal in-context learning,” Advances in Neural Information Processing Systems, vol. 37,
pp. 22 124–22 153, 2024.

[15] Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh, “Calibrate before use: Improving few-shot per-
formance of language models,” in International conference on machine learning. PMLR, 2021, pp.
12 697–12 706.

10

[16] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp, “Fantastically ordered prompts and where to find
them: Overcoming few-shot prompt order sensitivity,” arXiv preprint arXiv:2104.08786, 2021.

[17] K. Zhang, A. Lv, Y. Chen, H. Ha, T. Xu, and R. Yan, “Batch-icl: Effective, efficient, and order-agnostic
in-context learning,” arXiv preprint arXiv:2401.06469, 2024.

[18] H. Li, Y. Zhang, S. Zhang, M. Wang, S. Liu, and P.-Y. Chen, “When is task vector provably effective for
model editing? a generalization analysis of nonlinear transformers,” arXiv preprint arXiv:2504.10957,
2025.

[19] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen et al., “Lora: Low-rank
adaptation of large language models.” ICLR, vol. 1, no. 2, p. 3, 2022.

[20] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought
prompting elicits reasoning in large language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[21] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models are zero-shot reasoners,”
Advances in neural information processing systems, vol. 35, pp. 22 199–22 213, 2022.

[22] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet, Q. Le
et al., “Least-to-most prompting enables complex reasoning in large language models,” arXiv preprint
arXiv:2205.10625, 2022.

[23] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer, “Rethinking the
role of demonstrations: What makes in-context learning work?” in Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, 2022, pp. 11 048–11 064.

[24] O. Rubin, J. Herzig, and J. Berant, “Learning to retrieve prompts for in-context learning,” in Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2022, pp. 2655–2671.

[25] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised
multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[26] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,” arXiv preprint
arXiv:2101.00190, 2021.

[27] D. Dai, Y. Sun, L. Dong, Y. Hao, S. Ma, Z. Sui, and F. Wei, “Why can gpt learn in-context? language
models implicitly perform gradient descent as meta-optimizers,” arXiv preprint arXiv:2212.10559, 2022.

[28] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig, “Towards a unified view of parameter-efficient
transfer learning,” in International Conference on Learning Representations, 2022.

[29] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Vaughan et al., “The llama 3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.

[30] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7b,” 2023. [Online]. Available: https://arxiv.org/abs/2310.06825

[31] S. Robertson, H. Zaragoza et al., “The probabilistic relevance framework: Bm25 and beyond,” Foundations
and Trends® in Information Retrieval, vol. 3, no. 4, pp. 333–389, 2009.

[32] S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan, S. Purohit,
U. S. Prashanth, E. Raff et al., “Pythia: A suite for analyzing large language models across training and
scaling,” in International Conference on Machine Learning. PMLR, 2023, pp. 2397–2430.

[33] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288,
2023.

[34] R. T. McCoy, E. Pavlick, and T. Linzen, “Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, A. Korhonen, D. Traum, and L. Màrquez, Eds. Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 3428–3448. [Online]. Available:
https://aclanthology.org/P19-1334/

11

https://arxiv.org/abs/2310.06825
https://aclanthology.org/P19-1334/

[35] A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in bertology: What we know about how bert works,”
Transactions of the association for computational linguistics, vol. 8, pp. 842–866, 2021.

[36] I. Tenney, D. Das, and E. Pavlick, “Bert rediscovers the classical nlp pipeline,” arXiv preprint
arXiv:1905.05950, 2019.

[37] N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly
et al., “A mathematical framework for transformer circuits,” Transformer Circuits Thread, vol. 1, no. 1,
p. 12, 2021.

[38] A. Talmor, J. Herzig, N. Lourie, and J. Berant, “Commonsenseqa: A question answering challenge targeting
commonsense knowledge,” arXiv preprint arXiv:1811.00937, 2018.

[39] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal, “Can a suit of armor conduct electricity? a new dataset
for open book question answering,” arXiv preprint arXiv:1809.02789, 2018.

[40] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, “Hellaswag: Can a machine really finish your
sentence?” arXiv preprint arXiv:1905.07830, 2019.

[41] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova, “Boolq: Exploring the
surprising difficulty of natural yes/no questions,” arXiv preprint arXiv:1905.10044, 2019.

[42] M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le, E. H. Chi,
D. Zhou et al., “Challenging big-bench tasks and whether chain-of-thought can solve them,” arXiv preprint
arXiv:2210.09261, 2022.

[43] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord, “Think you have
solved question answering? try arc, the ai2 reasoning challenge,” arXiv preprint arXiv:1803.05457, 2018.

[44] A. Amini, S. Gabriel, P. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi, “Mathqa: Towards inter-
pretable math word problem solving with operation-based formalisms,” arXiv preprint arXiv:1905.13319,
2019.

[45] Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang et al., “Mmlu-
pro: A more robust and challenging multi-task language understanding benchmark,” in The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

[46] N. Nangia, C. Vania, R. Bhalerao, and S. R. Bowman, “Crows-pairs: A challenge dataset for measuring
social biases in masked language models,” arXiv preprint arXiv:2010.00133, 2020.

[47] A. Parrish, A. Chen, N. Nangia, V. Padmakumar, J. Phang, J. Thompson, P. M. Htut, and S. R. Bowman,
“Bbq: A hand-built bias benchmark for question answering,” arXiv preprint arXiv:2110.08193, 2021.

[48] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture models,” arXiv preprint
arXiv:1609.07843, 2016.

[49] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Glue: A multi-task benchmark and
analysis platform for natural language understanding,” arXiv preprint arXiv:1804.07461, 2018.

[50] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman, “Super-
glue: A stickier benchmark for general-purpose language understanding systems,” Advances in neural
information processing systems, vol. 32, 2019.

[51] D. Saxton, E. Grefenstette, F. Hill, and P. Kohli, “Analysing mathematical reasoning abilities of neural
models,” arXiv preprint arXiv:1904.01557, 2019.

[52] L. Sutawika, L. Gao, H. Schoelkopf, S. Biderman, J. Tow, B. Abbasi, ben fattori, C. Lovering,
farzanehnakhaee70, J. Phang, A. Thite, Fazz, Aflah, N. Muennighoff, T. Wang, sdtblck, nopperl, gakada,
tttyuntian, researcher2, Chris, J. Etxaniz, Z. Kasner, Khalid, J. Hsu, AndyZwei, P. S. Ammanamanchi,
D. Groeneveld, E. Smith, and E. Tang, “Eleutherai/lm-evaluation-harness: Major refactor,” Dec. 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.10256836

12

https://doi.org/10.5281/zenodo.10256836

A Proofs for Theoretical Results

A.1 Proof of Theorem 1

A.1.1 Preliminaries

Notation and scope. We analyze a transformer with L layers. For an input sequence x =
(x1, . . . , xT) let hℓ

t ∈ Rdℓ be the hidden state of token t after layer ℓ (ℓ = 0 denotes embeddings;
1 ≤ ℓ ≤ L). The model’s output is the next-token distribution

F (x) = softmax
(
WLM hL

T

)
,

where WLM ∈ R|V|×dL is the frozen LM head. Equality of full sequence maps is not required; only
hL
T matters for F (x).

Placements and rank budget. Let S ⊆ {1, . . . , L} be the set of layers at which we insert updates
(identical for both methods). Fix a rank budget r∈N.

Static ATV (rank-r affine envelope). For each ℓ∈S we choose linear expansion maps Aℓ, Bℓ, βℓ :
Rds→Rdℓ×r,Rdℓ×r,Rdℓ , respectively. With a fixed small-model vector v ∈Rds at inference we
write

h̃ℓ = hℓ + Bℓ(v)Aℓ(v)
⊤︸ ︷︷ ︸

∆Wℓ(v), rank≤r

hℓ + βℓ(v), ℓ ∈ S,

and h̃ℓ=hℓ otherwise.

LoRA (matched placements). At the same layers, we fix matrices W↓,ℓ∈Rdℓ×r, W↑,ℓ∈Rr×dℓ ,
and an (optional) bias bℓ∈Rdℓ and set

ĥℓ = hℓ + W↓,ℓW↑,ℓ h
ℓ + bℓ, ℓ ∈ S,

with ĥℓ=hℓ otherwise.

Throughout this proof v, Aℓ, Bℓ, βℓ, W↓,ℓ, W↑,ℓ, and bℓ are frozen ("static" setting).

A.1.2 Theorem

Static ATV-LoRA Equivalence. With matched placements S and rank r, the function classes of
next-token maps coincide:

FATV-static(r) = FLoRA(r).

A.1.3 Proof

Step 1 LoRA ⇒ ATV (simulation). Fix the (inference-time) vector v ∈ Rds . Choose a unit
direction u ∈ Rds satisfying u⊤v = 1. For every ℓ ∈ S define the linear expansion maps

Aℓ(v) := (u⊤v) W⊤
↑,ℓ, Bℓ(v) := (u⊤v) W↓,ℓ, βℓ(v) := (u⊤v) bℓ.

Each map is linear because it is the product of a scalar u⊤v (linear in v) and a constant matrix or
vector. Evaluating them at the fixed v recovers the LoRA constants:

Aℓ(v) = W⊤
↑,ℓ, Bℓ(v) = W↓,ℓ, βℓ(v) = bℓ.

Hence
∆Wℓ(v)h

ℓ + βℓ(v) = W↓,ℓW↑,ℓ h
ℓ + bℓ,

so h̃ℓ = ĥℓ for every ℓ ∈ S. A forward induction from ℓ = 1 to L then gives hL
T equality, yielding

FATV(x) = FLoRA(x).

Step 2 ATV ⇒ LoRA (simulation). Conversely, using the same fixed vector v as in the static
ATV, set for each ℓ ∈ S,

W↓,ℓ := Bℓ(v), W↑,ℓ := Aℓ(v)
⊤, bℓ := βℓ(v).

Because Aℓ, Bℓ, βℓ were linear, W↓,ℓ, W↑,ℓ, and bℓ are constants, and the rank of W↓,ℓW↑,ℓ does not
exceed r. For these choices, the LoRA increment equals the ATV increment layer by layer, so the
same induction as above gives FLoRA(x) = FATV(x).

13

Conclusion. Steps 1 and 2 establish the bidirectional simulation under equal rank and placements;
hence, the two function classes are identical.

A.1.4 Remarks and Extensions

• Dynamic ATV is strictly stronger. If v = v(x) depends on the input, the operators
∆Wℓ(v(x)) vary with x, whereas LoRA’s W↓,ℓW↑,ℓ is fixed. Therefore FLoRA(r) ⊊
FATV-dynamic(r).

• Bias-only implementation (r=0). The empirical ATV used in Sections 4–5 sets ∆Wℓ≡0;
the argument above applies with r = 0 and shows that bias-only ATV is already as expressive
as rank-0 LoRA, while query-conditioned biases can go strictly beyond.

• Scope. The proof purposefully limits itself to equality of hL
T (and hence F (x)). No claim is

made about intermediate token states or the full sequence map.

A.2 Proof of Theorem 2

A.2.1 Preliminaries

Linear approximation. Attn(Q,K, V) ≈ QK⊤V [27]

Attention outputs from Prefix-Tuning.

Attnprefix = Attn(xWq, [Pk;CWk], [Pv;CWv])

• x = [x1, x2, ..., xT] ∈ RT×dl

• C ∈ Rm×dl :
context sequence of length m with dl dimension (l-th layer’s dimension)

• Pk, Pv ∈ Rp×dl : p tunable prefix vectors to the keys and values

Attention outputs from ATV.

AttnATV = Attn((x+ eT · (vlATV)
⊤)Wq, (C + em · (vlATV)

⊤)Wk, (C + em · (vlATV)
⊤)Wv)

• vlATV ∈ Rdl

• em = [0, ..., 0, 1] ∈ Rm×1

• (em · (vlATV)
⊤)Wk = P ′

k

A.2.2 Theorem

ATV is more expressive than Prefix-Tuning. The representational space F of AttnATV includes
that of Attnprefix:

F(Attnprefix) ⊆ F(AttnATV)

A.2.3 Proof

Linear approximation of Prefix-Tuning.

Attnprefix = Attn(xWq, concat(Pk, CWk), concat(Pv, CWv))

= softmax(xWq([Pk;CWk])
⊤)[Pv;CWv]

≈ xWq(Pk;CWk])
⊤([Pv;CWv])(∵ Attn(Q,K, V) ≈ QK⊤V)

= xWq(Pk)
⊤Pv + xWq(CWk)

⊤CWv

14

Linear approximation of ATV.

AttnATV =Attn
(
(x+ eT · (vlATV)

⊤)Wq, (C + em · (vlATV)
⊤)Wk, (C + em · (vlATV)

⊤)Wv

)
≈

[
xWq(CWk)

⊤ + xWq(em · (vlATV)
⊤)⊤

+ eT · (vlATV)
⊤Wq(CWk)

⊤ + eT · (vlATV)
⊤Wq(em · (vlATV)

⊤Wk)
⊤
]

·
(
CWv + em · (vlATV)

⊤Wv

)
Let (em · (vlATV)

⊤)Wk = P ′
k, (em · (vlATV)

⊤)Wv = P ′
v , (eT · (vlATV)

⊤)Wq = P ′
q

⇒ AttnATV ≈ xWq(CWk)
⊤CWv + xWq(P

′
k)

⊤P ′
v(Similar to AttnPrefix) (T1 + T2)

+ xWq(P
′
k)

⊤CWv (T3)

+ xWq(CWk)
⊤P ′

v (T4)

+ P ′
q(CWk)

⊤CWv (T5)

+ P ′
q(P

′
k)

⊤CWv (T6)

+ P ′
q(CWk)

⊤P ′
v (T7)

+ P ′
qP

′
k
⊤
P ′
v (T8)

A.2.4 Analysis of Each Term in AttnATV

For each term, we report (i) the intuition behind the interaction, and (ii) how it extends or subsumes
the behavior attainable with classic Prefix-Tuning (PT), treating the ATV-generated vectors P ′

k, P
′
v, P

′
q

as soft-prefix counterparts to PT’s fixed prefixes (see Table 6).

Key points of the theorem.

• Containment. PT spans only the subspace generated by T1 + T2. ATV keeps those terms
and introduces T3 − T8, hence

F(Attnprefix) ⊆ F(AttnATV)

• Query-side freedom (T5, T6, T7, T8). Because PT never changes Wq, any behavior that
requires altering the query vector is strictly outside its representational span. ATV realizes
this through the additive query P ′

q .
• Mixed interactions (T3, T4). Unlike PT, ATV can blend a single soft prefix key or value

with the untouched content tokens. To even approximate T3, PT would have to add one
custom prefix key for every content token, which is an impractical workaround, and T4

cannot be reproduced by PT at all.
• Full prefix channel (T8). A complete synthetic path lets ATV add task-specific information

even when the original context is irrelevant, while still using no extra tokens at runtime.

Taken together, the additional six terms explain why ATV is more expressive: it augments the
attention operator along every axis (query, key, and value) without introducing heavy retraining or
large prefix matrices, yet it can still emulate PT as a special case.

15

Table 6: Qualitative roles of ATV attention terms and their relation to Prefix-Tuning (PT).

Term Qualitative role Relation to Prefix-Tuning (PT) / Added expressivity

T1 Base attention of the frozen model Representable in PT (identical). No additional expres-
sivity; both methods preserve this term unchanged.

T2 Prefix keys & values only. Query
attends only to prefix key/value

Representable in PT (exact match). This is the sole extra
path PT can realize; ATV contains it and can therefore
emulate PT exactly.

T3 Prefix key → content values. A
soft prefix key reshapes the attention
weights, but the actual information
still comes from the content values.

Not representable in PT. PT would need a separate
learned key for every content token, whereas ATV
achieves the same effect with a single soft key, thus widen-
ing the attention design space.

T4 Content keys → prefix value. Nor-
mal keys set the weights, but an ex-
tra value generated by the adapter is
injected at the output stage.

Not representable in PT. PT lacks a mechanism to inject
new information exclusively at the value stage for existing
keys; ATV can graft auxiliary content into any token’s
output.

T5 Prefix query. The query itself is
shifted in a new direction while still
using ordinary keys and values.

Not representable in PT. Because PT keeps Wq frozen,
it cannot alter queries. ATV adds a query-side degree of
freedom, enabling new attention directions.

T6 Prefix query + key. Both sides of
the similarity come from the same
learnable vector, but the output is
still built from content values.

Not representable in PT. ATV can simultaneously steer
queries and keys while still reading content values, provid-
ing a finer redistribution of attention mass that PT cannot
mimic.

T7 Prefix query + value. Ordinary
keys choose the weights; the re-
turned information comes from a
prefix-generated value.

Not representable in PT. PT can supply prefix values
but cannot adapt the query; ATV adds this missing query
modulation, enhancing expressivity.

T8 Full prefix triad. Query, key, and
value are all produced by the same
low-rank adapter, yielding a fully
synthetic attention path.

Not representable in PT. PT has no mechanism for a
fully synthetic attention channel without real tokens; ATV
introduces an entirely new path, further enlarging the rep-
resentational space.

16

B Detailed Experiments Setting

Our experimental setup follows ELICIT [12], using the same datasets and evaluation protocols.
Below, we provide detailed specifications.

B.1 Dataset List

All experiments are conducted on the same 20 in-domain tasks and 5 unseen tasks as used in ELICIT.
Tasks are categorized as follows:

• Knowledge: CommonsenseQA [38], OpenBookQA [39], HellaSwag [40], BoolQ [41]
• Reasoning: Four subsets from Big-Bench Hard (BBH) [42] (BBH Boolean Expressions,

BBH Date Understanding, BBH Reasoning about Colored Objects, BBH Temporal Se-
quences), ARC-Challenge [43]

• Mathematics: MathQA [44], MMLU Pro-MATH [45]
• Safety: Crows-Pairs [46], BBQ-Age [47], Ethics-Commonsense, Ethics-Justice [48]
• Natural Language Understanding (NLU): GLUE (SST-2, QNLI, MNLI) [49], Super-

GLUE (WIC, RTE) [50]
• Unseen: GLUE COLA, BBQ-Religion, Deepmind [51], MMLU High School Psychology,

BBH Logical Deduction Five objects

B.2 Detailed Description of Baselines

ELICIT. ELICIT [12] constructs a library of task-specific capability vectors by processing demon-
stration prompts and extracting hidden states from the final token. Each vector is paired with an
optimal injection layer determined through validation. During inference, ELICIT retrieves the
most appropriate vector from the precomputed library and injects it into the target LLM at the
predetermined layer. This eliminates demonstration tokens while preserving task guidance.

I2CL. I2CL [11] compresses demonstration information into a single context vector, which is
generated by averaging the activations of demonstration examples. This vector is then injected
into the transformer’s residual streams during inference. Separately, the method calibrates a set of
injection coefficients on the same demonstrations to modulate the vector’s influence, allowing it to
steer the model without explicit demonstration tokens in the input.

BM25 16-shot ICL. This baseline utilizes BM25 [31], a classical term-based retrieval method
grounded in TF-IDF scoring, to identify and retrieve 16 demonstrations from the training set that
exhibit high lexical similarity to the input query. The retrieved examples are concatenated into the
prompt and provided to the model as in-context demonstrations. As a prompt-based method, its
effectiveness is inherently tied to the model’s context window capacity. Furthermore, its reliance on
lexical matching means it is primarily designed to capture surface-level relevance rather than deeper
semantic nuances between the query and demonstrations.

Key Differences with ATV. The primary difference lies in how task information is adapted to each
query. I2CL uses a single, fixed context vector for all inputs within a given task. ELICIT selects the
most suitable vector for a query from a fixed library of vectors, while BM25 adapts demonstrations
but faces context length and ordering constraints. ATV uniquely generates a new, query-specific task
vector dynamically for every individual input, enabling more fine-grained adaptation.

B.3 Implementation Details and Baseline Configurations

Common Setup. All experiments are conducted on NVIDIA A100 80GB GPUs. We use the same
training data splits and evaluation protocols across all methods for fair comparison. Each experiment
is repeated 3 times with different random seeds (42, 100, 10) to compute statistical significance.
Throughout the paper, error bars represent the standard deviation calculated over these 3 runs. For
training, we sample 90 examples per task from the official training split of each in-domain task
(excluding unseen tasks), and use the same sampled data across all baselines.

17

ATV. We train the small model Msmall (GPT-2, 137M parameters) and the expansion module fθ
jointly with the following hyperparameters. A constant learning rate of 5e-4 is used without warmup
or learning rate scheduling, along with weight decay of 1e-5. The model is optimized for 15 epochs
using the Adam optimizer.

We inject a task vector vATV ∈ RL×dl into the last token’s hidden state at each layer as h̃l =
hl + λvlATV.

We use a scaling factor of λ = 0.001 throughout all experiments. In our implementation, the hidden
size of the small model is ds = 768 (GPT-2), and the large models (Llama-3-8B and Mistral-7B) use
dl = 4096 with L = 32 transformer layers.

ELICIT. We follow the official implementation and configuration of ELICIT. Task vectors are
retrieved from a precomputed capability library, each paired with its optimal injection layer. At
inference time, the selected vector is additively injected into the frozen LLM at the designated layer.
All training and evaluation use the official codebase and default settings.

Each task vector is constructed from 10 exemplars per task, each with a 16-shot prompt. While the
total number of unique samples may vary due to overlap, our analysis confirms a minimum of 91
unique samples per task. To ensure fair comparison, we use 90 training samples per task for all other
baselines.

I2CL. We adopt the official I2CL implementation [11], modifying only the number of training
epochs to 15 for consistency with other baselines. To ensure fair comparison, we deviate from the
original setting, which calibrates context vectors and injection coefficients separately for each dataset
using task identity. Instead, we train a shared set of coefficients across all datasets while keeping
dataset-specific context vectors.

For evaluation on unseen tasks, we use a retrieval strategy that selects the most similar context vector
among those obtained from in-domain datasets, based on cosine similarity between the input query
and training prompts.

LoRA. We adopt the LoRA configuration described in the I2CL paper, which applies low-rank
adaptation to the query and value projection matrices in all attention layers. The setup uses rank
r = 8, scaling factor α = 32, and a dropout rate of 0.05. All other settings, including the optimizer,
follow the official implementation. However, as the original learning rate of 1e−3 resulted in poor
performance in our setting, we adjusted it to 4e−4.

B.4 Task-Specific Prompt List

We follow the prompt template settings from ELICIT, which adopts task-specific templates manually
crafted based on guidelines from lm-harness [52] and the chain-of-thought-hub1. For each
task, we use the same three distinct question templates as provided in ELICIT. The full set of question
templates used for each task is listed in Table 7.

The answer-side format is consistent across all tasks and composed of the following structure:

• A line break (\n) after the question template,

• A list of options in the form: Options: (A) ..., (B) ..., (C) ..., ...,

• One of the following three answer prefixes:

– A:
– Answer:
– The answer is

By combining the 3 question templates with the 3 answer prefixes, we construct 9 distinct prompt
variants per task. Following the ELICIT setup, only the A: answer prefix is used during training,
while all 3 answer formats are used during evaluation to assess generalization to unseen answer styles.
This setting is consistently applied across all baseline methods.

1https://github.com/FranxYao/chain-of-thought-hub

18

https://github.com/FranxYao/chain-of-thought-hub

Table 7: Question-side templates used for each task. Each task uses three distinct prompt formats
as provided in the original ELICIT setting.

Task (Dataset) Template

CommonsenseQA
• The following are multiple choice questions (with answers) about

commonsense knowledge reasoning. Finish your answer with ’X’ where X
is the correct letter choice.\n\nQuestion: {input}

• Below are multiple-choice questions about commonsense reasoning.
Answer with ’X’, X being the correct option.\n\nQuestion: {input}

• Respond to these multiple-choice questions on commonsense knowledge.
Conclude with ’X’, where X is the right letter choice.\n\nQuestion: {input}

OpenBookQA
• The following are multiple choice questions (with answers) about

multi-step reasoning. Finish your answer with ’X’ where X is the correct
letter choice.\n\nQuestion: {input}

• The following are multiple-choice questions testing multi-step reasoning.
Answer with ’X’, X being the correct option.\n\nQuestion: {input}

• Answer these multiple-choice questions involving multi-step logical
thinking. Conclude with ’X’, where X is the right letter
choice.\n\nQuestion: {input}

HellaSwag
• The following are multiple choice questions (with answers) about

commonsense NLI. Finish your answer with ’X’ where X is the correct
letter choice.\n\nQuestion: {input}

• The following are multiple-choice questions about commonsense natural
language inference. Answer with ’X’, X being the correct
option.\n\nQuestion: {input}

• Answer these multiple-choice questions on commonsense language
understanding. Conclude with ’X’, where X is the right letter
choice.\n\nQuestion: {input}

BoolQ
• {input} \nAnswer True or False.
• {input} \nRespond with True or False.
• {input} \nIs this statement correct? Answer True or False.

BBH Date
Understanding

• Infer the date from context. Finish your answer with ’X’ where X is the
correct letter choice.\n\nQuestion: {input}

• Determine the date based on contextual clues. End your response with ’X’,
where X represents the correct option.\n\nQuestion: {input}

• Use the given context to deduce the date. Conclude your answer with ’X’,
X being the right letter choice.\n\nQuestion: {input}

BBH Boolean
Expressions

• Evaluate the result of a random Boolean expression.\n\nQuestion: {input}
• Calculate the outcome of a given Boolean expression.\n\nQuestion: {input}
• Determine the result of the provided Boolean logic statement.\n\nQuestion:

{input}

BBH Temporal
Sequences

• Answer questions about which times certain events could have occurred.
Finish your answer with ’X’ where X is the correct letter choice.\n\nQ:
{input}

• Determine possible occurrence times for specific events. Answer with ’X’,
X being the correct option.\n\nQ: {input}

• Identify when certain events could have happened. Conclude with ’X’,
where X is the right letter choice.\n\nQ: {input}

Continued on next page

19

Table 7 – continued from previous page

Task (Dataset) Template

BBH Reasoning about
Colored Objects

• Answer extremely simple questions about the colors of objects on a surface.
Finish your answer with ’X’ where X is the correct letter choice.\n\nQ:
{input}

• Respond to basic questions about object colors on a surface. Answer with
’X’, X being the correct option.\n\nQ: {input}

• Address simple queries regarding the colors of items on a surface.
Conclude with ’X’, where X is the right letter choice.\n\nQ: {input}

ARC Challenge
• The following are multiple choice questions (with answers) about science.

Finish your answer with ’X’ where X is the correct letter
choice.\n\nQuestion: {input}

• Below are multiple-choice science questions. Answer with ’X’, X being the
correct option.\n\nQuestion: {input}

• Respond to these multiple-choice questions on scientific topics. Conclude
with ’X’, where X is the right letter choice.\n\nQuestion: {input}

MathQA
• The following are multiple choice questions (with answers) about math

word problem. Finish your answer with ’X’ where X is the correct letter
choice. \n\nQuestion: {input}

• Below are multiple-choice questions about math word problems. Answer
with ’X’, X being the correct option. \n\nQuestion: {input}

• Solve these multiple-choice math word problems. Conclude with ’X’,
where X is the right letter choice. \n\nQuestion: {input}

MMLU Pro-MATH
• The following are multiple choice questions (with answers) about math.

Finish your answer with ’X’ where X is the correct letter choice.
\n\nQuestion: {input}

• Below are multiple-choice math questions. Conclude your response with
’X’, X being the correct option. \n\nQuestion: {input}

• Answer these math multiple-choice questions. Answer with ’X’, where X is
the right letter choice. \n\nQuestion: {input}

Crows-Pairs
• {input} \nQuestion: Which sentence is more stereotypical? Answer A or B.
• {input} \nQuestion: Which sentence contains more stereotypical content?

Answer A or B.
• {input} \nQuestion: Identify the sentence with stronger stereotypical

elements. Respond with A or B.

BBQ-Age
• The following are multiple choice questions (with answers) about social

bias on age. Finish your answer with ’X’ where X is the correct letter
choice.\n\nQuestion: {input}

• The following are multiple-choice questions about age-related social bias.
Answer with ’X’, X being the correct option.\n\nQuestion: {input}

• Answer these multiple-choice questions on social bias regarding age.
Conclude with ’X’, where X is the right letter choice.\n\nQuestion: {input}

Ethics-Commonsense
• {input} \nQuestion: Is this wrong? Answer Yes or No.
• {input} \nQuestion: Is this ethically incorrect? Respond with Yes or No.
• {input} \nQuestion: Does this violate ethical norms? Answer Yes or No.

Continued on next page

20

Table 7 – continued from previous page

Task (Dataset) Template

Ethics-Justice
• {input} \nQuestion: Would most people believe this reasonable or

unreasonable to say? Answer Yes or No.
• {input} \nQuestion: Would the majority consider this statement reasonable

or unreasonable? Answer Yes or No.
• {input} \nQuestion: Is this statement generally perceived as reasonable or

unreasonable? Respond with Yes or No.

GLUE (SST-2)
• {input} \nQuestion: Is this sentence positive or negative? Answer positive

or negative.
• {input} \nQuestion: Does this sentence convey a positive or negative

sentiment? Answer positive or negative.
• {input} \nQuestion: Is the tone of this sentence positive or negative?

Respond with positive or negative.

GLUE (QNLI)
• {input} \nQuestion: Does this response answer the question? Answer Yes

or No.
• {input} \nQuestion: Is the response answer to the question? Answer Yes or

No.
• {input} \nQuestion: Does the given response address the question?

Respond with Yes or No.

GLUE (MNLI)
• {input} True, False or Neither?
• {input} Answer selecting from: True, False, or Neither?
• {input} Choose one as answer: True, False, or Neither?

SuperGLUE (WIC)
• {input} \nQuestion: Is the word used in the same way in the two sentences

above? Answer Yes or No.
• {input} \nQuestion: Is the word used similarly in both sentences above?

Respond with Yes or No.
• {input} \nQuestion: Does the word have the same meaning in the two given

sentences? Answer Yes or No.

SuperGLUE (RTE)
• {input} \nQuestion: Is the hypothesis correct based on the premise?

Answer True or False.
• {input} \nQuestion: Based on the premise, is the hypothesis accurate?

Respond with True or False.
• {input} \nQuestion: Does the premise support the hypothesis? Answer True

or False.

GLUE (COLA)
• {input} \nQuestion: Does this sentence make sense? Answer Yes or No.
• {input} \nQuestion: Is this sentence logically coherent? Respond with Yes

or No.
• {input} \nQuestion: Evaluate if this sentence is meaningful. Reply with Yes

or No.

Continued on next page

21

Table 7 – continued from previous page

Task (Dataset) Template

BBQ-Religion
• The following are multiple choice questions (with answers) about social

bias on religion. Finish your answer with ’X’ where X is the correct letter
choice.\n\nQuestion: {input}

• Here are multiple-choice questions addressing social biases related to
religion. Conclude your answer with ’X’, X being the correct letter
option.\n\nQuestion: {input}

• These questions explore social biases in the context of religion. End your
response with ’X’, where X represents the right letter choice.\n\nQuestion:
{input}

Deepmind
• The following are multiple choice questions (with answers) about algebraic

word problems. Finish your answer with ’X’ where X is the correct letter
choice.\n\nQuestion: {input}

• Below are multiple-choice questions testing algebraic word problem
solving skills. Conclude your answer with ’X’, X being the correct option
letter.\n\nQuestion: {input}

• These questions assess your ability to solve algebraic word problems. End
your response with ’X’, where X is the letter of the right
choice.\n\nQuestion: {input}

MMLU High School
Psychology

• The following are multiple choice questions (with answers) about high
school psychology. Finish your answer with ’X’ where X is the correct
letter choice.\n\nQuestion: {input}

• Below are multiple-choice questions testing high school level psychology
knowledge. Conclude your response with ’X’, X representing the correct
option.\n\nQuestion: {input}

• These questions assess understanding of high school psychology concepts.
End your answer with ’X’, where X is the letter of the correct
choice.\n\nQuestion: {input}

BBH Logical
Deduction Five Objects

• A logical deduction task which requires deducing the order of a sequence of
objects. Finish your answer with ’X’ where X is the correct letter
choice.\n\nQuestion: {input}

• This challenge involves logically determining the sequence of a set of
objects. Conclude your response with ’X’, where X is the appropriate letter
option.\n\nQuestion: {input}

• In this logical reasoning exercise, deduce the correct order of a series of
objects. End your answer with ’X’, X being the right letter
choice.\n\nQuestion: {input}

22

C Analysis of Model Scalability

To further validate the scalability of our approach, we conducted additional experiments on both
smaller and larger language models. Specifically, we evaluated ATV using Pythia-2.8B and Llama-2-
13B as backbone models. For Pythia-2.8B, we adopted results from the original ELICIT paper to
ensure a fair and direct comparison on a widely used small-scale model.

Table 8 summarizes the results. On Pythia-2.8B, ATV achieves consistently stronger or comparable
performance across most categories and outperforms all baselines on average, demonstrating robust-
ness even at smaller scales. For Llama-2-13B, ATV continues to show substantial gains over strong
baselines, confirming that the benefits of our method persist at the 10B+ parameter scale. These
results provide further evidence that the ATV framework is effective and robust across a broad range
of model sizes.

Table 8: Performance comparison on smaller (Pythia-2.8B) and larger (Llama-2-13B) models.
ATV demonstrates robust performance across different model scales. It achieves the highest average
accuracy on both models, outperforming strong baselines and confirming that its benefits persist from
smaller models to the 10B+ parameter scale.

Model NLU Reasoning Knowledge Math Safety Avg.

Pythia-2.8B

Zero-shot 43.0 ± 0.4 18.3 ± 0.3 22.0 ± 1.5 7.3 ± 0.1 32.5 ± 1.2 24.6 ± 0.4
16-shot 50.2 ± 0.5 19.6 ± 0.1 12.8 ± 0.9 9.2 ± 1.6 31.8 ± 0.9 24.7 ± 0.2
BM25 33.3 ± 2.2 25.8 ± 0.4 12.9 ± 0.5 11.0 ± 1.8 27.3 ± 2.1 22.1 ± 0.5

ELICIT 64.0 ± 1.6 23.6 ± 1.1 20.4 ± 1.4 14.5 ± 1.0 41.2 ± 2.5 32.7 ± 0.5
I2CL 53.8 ± 1.9 21.5 ± 3.9 28.6 ± 2.6 10.9 ± 0.7 41.4 ± 1.9 31.3 ± 2.2
ATV 49.3 ± 1.9 32.4 ± 1.6 32.1 ± 0.2 14.2 ± 0.5 47.4 ± 0.7 35.1 ± 0.5

Llama-2-13B

Zero-shot 23.7 ± 0.4 27.4 ± 0.3 18.7 ± 0.1 0.7 ± 0.1 28.1 ± 0.8 19.7 ± 0.1
16-shot 59.7 ± 0.8 43.8 ± 1.2 65.0 ± 1.1 18.0 ± 1.3 54.8 ± 0.1 48.3 ± 0.3
BM25 51.8 ± 1.2 46.1 ± 0.7 54.4 ± 1.2 17.4 ± 1.5 40.2 ± 1.3 42.0 ± 0.4

ELICIT 33.2 ± 0.3 40.7 ± 0.4 36.0 ± 1.1 12.7 ± 1.4 47.5 ± 1.5 34.0 ± 0.0
I2CL 51.6 ± 2.3 38.5 ± 2.6 51.6 ± 2.4 14.2 ± 0.6 48.6 ± 1.3 40.9 ± 0.7
ATV 64.0 ± 2.5 66.1 ± 2.2 67.1 ± 2.9 18.1 ± 5.0 73.0 ± 1.3 57.7 ± 0.7

D Analysis of Performance Gaps

To investigate ATV’s relatively lower performance on Math tasks and to assess whether this reflects a
limitation of the generator, we conducted an additional experiment focusing training specifically on
Math datasets (MathQA and MMLU-Pro-Math). In this setting, we compared ATV and LoRA under
two conditions: training on all tasks versus training exclusively on Math tasks.

As summarized in Table 9, ATV shows a clear improvement in Math accuracy when trained only on
Math data, whereas LoRA exhibits no such gain and in fact performs worse in the Math-only setting.
These results demonstrate that ATV’s generator is capable of producing effective task vectors for
complex procedural domains when given focused training. This suggests that its adaptivity is not
constrained by model scale, but rather by the allocation of training data.

Table 9: Effect of domain-specific training for Math category. We compare ATV’s performance on
Math tasks when trained on all tasks versus trained exclusively on Math datasets. Focused training
yields substantial improvements, indicating that ATV’s generator is not constrained by model scale
but rather benefits from appropriate training allocation.

Method Training Setup Math Accuracy

ATV All Tasks 25.8 ± 2.0
Math Only 28.9 ± 2.7

LoRA All Tasks 20.0 ± 1.1
Math Only 17.9 ± 1.9

23

E Analysis of Output Reliability

A model’s effectiveness in real-world applications depends not only on task accuracy but also on
the reliability and consistency of its outputs. In this section, we evaluate two aspects of practical
reliability: adherence to required output formats and consistency of responses to paraphrased prompts.

E.1 Format Adherence

Adhering to specified output formats is essential for many downstream tasks. We evaluated format
adherence by measuring the percentage of outputs that matched the required structure on four datasets
with diverse format requirements.

As shown in Table 10, ATV achieves format adherence that is comparable to or exceeds ICL-based
baselines. These results indicate that ATV improves accuracy without sacrificing the structural
reliability of its outputs.

Table 10: Quantitative analysis of format adherence. We measure the percentage of outputs that
correctly follow the specified format for each task. ATV demonstrates comparable or superior format
adherence to strong ICL-based baselines, confirming its versatility and reliability.

Dataset Zero-shot 16-shots BM25 ATV

Arc Challenge 69.11 97.44 98.00 100.00
CommonsenseQA 57.67 77.33 75.33 80.44
MMLU-Pro-Math 49.11 100.00 100.00 100.00

Ethics-commonsense 75.33 100.00 80.78 94.44

E.2 Output Consistency

We further evaluated output consistency using the SCORE metric, which quantifies a model’s ability
to provide stable answers across paraphrased prompts for the same question. We conducted this
analysis on two datasets with distinct answer formats: one requiring binary (Yes/No) responses, and
another involving categorical choices from a fixed set (A–J).

As shown in Table 11, ATV consistently outperforms both zero-shot and ICL baselines on both
types of datasets. This improvement suggests that data-adaptive task vector injection enhances the
coherence and reliability of model outputs across varied input formulations.

Table 11: Analysis of output consistency using the SCORE metric. We measure the model’s ability
to produce consistent answers to the same question phrased in different templates. ATV achieves
substantially higher consistency scores than both zero-shot and ICL baselines across datasets with
distinct answer formats.

Dataset Zero-shot 16-shots ATV

Ethics–commonsense 55.67 64.78 78.17
MMLU–Pro–Math 31.61 62.44 77.53

24

F Adversarial Generalization on HANS

To further examine ATV’s ability to generalize to adversarial and highly dissimilar tasks, we evaluated
it on the HANS dataset. HANS is designed to test whether natural language inference models rely on
superficial heuristics or perform robust reasoning, making it a challenging benchmark for approaches
that rely on retrieving pre-computed task vectors or demonstrations.

Table 12: Performance on the adversarial HANS dataset. While retrieval-based and static-
vector baselines fail catastrophically, ATV maintains robust performance, demonstrating its superior
generalization to adversarial inputs.

Method HANS Accuracy

Zero-shot 8.3 ± 0.5
BM25 0.4 ± 0.1

ELICIT 0.4 ± 0.1
I2CL 0.3 ± 0.1
ATV 59.6 ± 2.8

The results are summarized in Table 12. While ATV achieves strong performance, baseline methods
collapse due to the following failure modes:

• ELICIT / I2CL: These methods rely on retrieving a pre-computed vector from a fixed
library of in-domain tasks. For an unseen, adversarial task like HANS, no relevant vector
exists. Their retrieval mechanism defaults to finding the most syntactically similar but
semantically incorrect vector. For instance, ELICIT retrieved a vector from GLUE-MNLI,
and I2CL from MathQA. Injecting this mismatched guidance fundamentally misdirects the
model, forcing it to follow instructions for the wrong task and leading to catastrophic failure.

• BM25: This retrieval-based ICL method shows a similar flaw. It retrieves full demonstration
examples from in-domain tasks. For HANS queries, it retrieved examples from other NLU
tasks that do not share HANS’s adversarial structure, providing misleading context that
disrupts the model’s reasoning.

In contrast, ATV achieves robust performance by generating task vectors on the fly, rather than
relying on a fixed pool of pre-computed vectors. This allows the model to construct a meaningful
representation even for adversarial inputs, enabling correct reasoning where static methods collapse.
These results underscore the robustness of ATV’s adaptive mechanism and its ability to handle tasks
that break traditional retrieval-based or static task vector approaches.

25

	Introduction
	Related Work
	Methodology
	Background and Preliminaries
	ATV: Adaptive Task Vectors for Large Language Models
	Theoretical Analysis

	Experiments
	Experiment Setup
	In-Domain Performance Evaluation
	Generalization to Unseen Tasks
	Ablation Study: Effect of Small Model Capacity
	Layer-wise Analysis of Injection Strategies
	Efficiency Comparison with Baselines
	Visualizing Task Vector Distributions

	Conclusion
	Proofs for Theoretical Results
	Proof of Theorem 1
	Preliminaries
	Theorem
	Proof
	Remarks and Extensions

	Proof of Theorem 2
	Preliminaries
	Theorem
	Proof
	Analysis of Each Term in AttnATV

	Detailed Experiments Setting
	Dataset List
	Detailed Description of Baselines
	Implementation Details and Baseline Configurations
	Task-Specific Prompt List

	Analysis of Model Scalability
	Analysis of Performance Gaps
	Analysis of Output Reliability
	Format Adherence
	Output Consistency

	Adversarial Generalization on HANS

