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Abstract

In-Context Learning (ICL) enables Large Language Models (LLMs) to perform1

tasks without parameter updates by conditioning on a few demonstrations provided2

in the prompt. Despite its success, ICL suffers from several limitations, including3

sensitivity to demonstration order, context length constraints, and limited control4

over internal reasoning mechanisms. To address these challenges, task vector-based5

approaches compress task information into a single vector. However, these methods6

typically construct task vectors from fixed sets of demonstrations and reuse them7

across input queries, without conditioning on the specific input. This limitation8

reduces their ability to probe or guide the model’s internal computation, making9

adaptation to diverse or misaligned queries difficult and degrading generalization10

on unseen tasks. To overcome this limitation, we propose Adaptive Task Vectors11

(ATV), a simple and effective framework that dynamically generates task vectors12

conditioned on each input query. ATV employs a small language model to generate13

task vectors, which are then transformed to match the target LLM’s architecture14

and applied to guide its output generation. In contrast to ICL and previous vector-15

based approaches, which rely on fixed demonstration sets and their corresponding16

vectors, ATV dynamically generates task vectors tailored to each specific input17

query and task. As a result, ATV serves as an effective tool for probing and guiding18

the internal mechanisms of LLMs, enabling strong performance and enhanced19

insight, even for unseen tasks. Furthermore, we provide a theoretical analysis20

indicating that ATV is expressively equivalent to LoRA under equal rank budgets21

and more expressive than Prefix-Tuning, thereby offering formal support for its22

representational advantage.23

1 Introduction24

Large Language Models (LLMs) have made remarkable strides in natural language processing,25

demonstrating impressive performance across various tasks. As LLMs become more powerful,26

understanding and controlling their internal mechanisms is increasingly important. In-Context27

Learning (ICL) [1] has become a pivotal method for enhancing LLM performance, enabling models28

to perform specific tasks by including demonstration samples in prompts without requiring additional29

training [2].30

However, ICL faces several limitations: it operates solely at the input-output level and lacks direct31

access to or control over the model’s internal computation or representations. Performance varies32

depending on the order and selection of demonstration samples [3–5], the maximum context length33

constraint of LLMs makes it difficult to handle tasks involving long-context reasoning or diverse34

demonstration sets, and processing many demonstrations reduces computational efficiency [6, 7].35

To mitigate these issues, task vector-based approaches [8–12] have attracted growing interest for36

improving the efficiency and robustness of ICL. Task vectors [8] are vector representations that37

compress task-specific information, typically obtained from the hidden state of the last token in38
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Figure 1: Comparison between task vector methods: a) Prior work uses a fixed task vector for all
inputs, whereas b) our method generates a query-specific task vector, enabling adaptive behavior for
each input.

the prompt. These vectors are integrated with the input query to modulate the model’s output in39

a task-specific manner. By compressing information from multiple demonstrations into a single40

vector, these methods overcome context window constraints and reduce performance variability due41

to demonstration ordering [2, 13–15]. Thus, they preserve the effectiveness of ICL while improving42

computational efficiency and consistency [16]. However, since these task vectors are static, they43

provide only limited control over the model’s internal mechanisms.44

Most prior task vector methods construct vectors from fixed demonstration sets and reuse the same45

vector for all queries, regardless of their individual characteristics [8, 17]. Some recent approaches46

retrieve precomputed vectors based on query similarity, but these are not conditioned on the current47

input and offer only limited ability to steer or manipulate internal representations, which may hinder48

adaptation for misaligned or unseen tasks.49

Motivated by these limitations, we present Adaptive Task Vectors (ATV), a framework for dy-50

namically generating task vectors conditioned on each input query. By producing a query-specific51

vector, ATV enables more accurate and input-sensitive model guidance. Our method uses a small52

language model to generate intermediate task representations, which are then transformed to match53

the target LLM architecture and used to modulate its output. This allows ATV to probe and steer54

the internal mechanisms of LLMs for each input. Figure 1 contrasts (a) conventional fixed-vector55

methods [10–12], which apply the same vector to all queries, with (b) our adaptive approach that56

tailors a vector to each query for more appropriate responses.57

In this paper, we establish the effectiveness of ATV through theoretical and empirical evaluation.58

Theoretically, we prove that ATV is expressively equivalent to LoRA under matched rank budgets and59

strictly more expressive than Prefix-Tuning, providing a formal basis for its enhanced representational60

capacity. Empirically, we evaluate ATV on in-domain performance, generalization to unseen tasks,61

and ablations on model capacity and injection configuration. Across these settings, ATV demonstrates62

strong in-domain accuracy, generalization, and interpretable insights into model capacity and injection63

behavior.64

Our main contributions are as follows: (1) We propose Adaptive Task Vectors (ATV), a simple65

and effective framework that generates task vectors conditioned on each input query, enabling LLMs66

to adapt and steer their internal computation and representations in a task-aware manner. (2) We67

provide a theoretical analysis showing that ATV is expressively equivalent to LoRA under equal68

rank budgets and strictly more expressive than Prefix-Tuning, providing a formal justification for69

its enhanced capacity to manipulate internal model states. (3) We empirically evaluate ATV on70

both in-domain tasks and generalization to unseen tasks, demonstrating strong performance and71

interpretable insights into how ATV affects internal model behavior.72

2 Related Work73

In-Context Learning. In-context learning (ICL) allows LLMs to perform new tasks without param-74

eter updates by conditioning on a few input-output examples in the prompt [1]. While ICL, especially75

since GPT-3, has shown strong performance across diverse tasks through prompt engineering and76

model scaling [18–20], it faces key limitations: sensitivity to the selection and order of demonstra-77
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tions [13, 21], constraints from the maximum context length [6], and high computational cost at78

inference [7].79

Adaptive or retrieval-based ICL methods improve robustness by dynamically selecting examples [22],80

but they remain reliant on prompt tokens, inheriting context length and explicit demonstration require-81

ments. We instead propose conveying task information through a compact, learned vector, which82

removes prompt design and length constraints while preserving ICL’s adaptability and generalization.83

Vector-Based Approaches for Model Steering. Recent work has explored replacing in-context84

demonstrations with task vectors, which are dense representations encoding task information from a85

few-shot prompt, typically obtained from the last token’s hidden state in a transformer [8]. Methods86

such as I2CL [11] and ELICIT [12] use either compressed context vectors or retrieved task vectors87

from a static library to improve efficiency. However, these vectors are fixed for each task and are88

not conditioned on individual inputs, which limits their adaptability. To our knowledge, no previous89

approach generates task vectors dynamically for each input. Our framework, ATV, addresses this90

gap by producing input-conditioned task vectors per query, preserving the efficiency of vector-based91

methods while enabling the adaptability needed for input-level variation.92

3 Methodology93

3.1 Background and Preliminaries94

Transformer Architecture. The Transformer is a neural architecture based on self-attention and95

forms the foundation of modern large-scale language models [23]. Each layer consists of a feed-96

forward network and a self-attention mechanism, which allows tokens to attend to others in the97

sequence. The self-attention operation is defined as:98

Attn(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

where Q, K, and V denote the query, key, and value matrices, respectively, and dk is the dimension-99

ality of the key vectors.100

Let hl−1
t be the hidden state of token t at layer l−1. A standard Transformer layer updates it as:101

h̃l
t = LayerNorm

(
hl−1
t + Attn(Qt,K, V )

)
(2)

hl
t = LayerNorm

(
h̃l
t + MLP(h̃l

t)
)

(3)

where Qt = WQh
l−1
t and K,V are projections of the previous layer’s hidden states. In auto-102

regressive models, the hidden state of the last token hl
T summarizes the input context and is used for103

next-token prediction.104

Task Vectors. Following prior work [12], we define a task vector as the hidden state of the last105

token at each transformer layer, capturing task-relevant information in a compressed form. Given an106

input x = [x1, x2, . . . , xT ], the task vector at layer l is:107

vltask = hl
T (task vector extracted from the last token at layer l) (4)

To steer the model output in a task-specific direction, we inject the task vector into the hidden state of108

the last token at each transformer layer. Specifically, for each layer l, the modified hidden state is109

computed as:110

h̃l = hl + λvltask (5)
where hl denotes the hidden state of the last token at layer l, vltask ∈ Rdl is the corresponding task111

vector slice, h̃l is the injected version, dl is the hidden dimensionality at layer l, and λ is a scaling112

factor controlling the strength of the intervention. For simplicity, we omit the token index and refer113

to the last token’s hidden state simply as hl. This formulation allows the task vector to modulate the114

model’s behavior in a lightweight and interpretable manner.115

Previous methods rely on task vectors extracted from fixed demonstrations, resulting in a static116

representation shared across inputs. We introduce the Adaptive Task Vector (ATV), which is117

dynamically generated per input to modulate the model’s behavior.118
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Figure 2: Overview of the Adaptive Task Vector (ATV) framework. Top: During training, the small
model and expansion module are updated to minimize the loss from the steered output. Bottom:
During inference, both modules are frozen and used to generate query-specific ATV vectors for
steering the frozen large model.

3.2 ATV: Adaptive Task Vectors for Large Language Models119

Notation and Setup. Let x = [x1, x2, . . . , xT ] be a tokenized input query sequence of length T ,120

and let y denote the corresponding target output. We define two models: a small model Msmall with121

hidden size ds, and a large language model Mlarge with L layers and hidden size dl per layer.122

From the input x, Msmall produces a hidden representation vsmall ∈ Rds , extracted from the last token123

of the last layer. This vector is then expanded via a parameterized function fθ : Rds → RL×dl to124

obtain our ATV vATV = fθ(vsmall), suitable for injection into the large model. Let vlATV ∈ Rdl denote125

the portion corresponding to the l-th layer. The final output generated by Mlarge after ATV injection126

is denoted ỹ. The ATV is scaled by a hyperparameter λ before being added to the hidden state.127

Overview of the ATV Framework. Our goal is to steer an LLM without modifying its weights by128

injecting input-conditioned signals directly into its hidden states. We introduce ATV, a lightweight129

control framework that operates externally to a frozen large model.130

ATV consists of two lightweight modules:131

(1) ATV generation. A small language model produces a compact vector representation from the132

input query, (2) ATV expansion. An expansion module transforms this vector into a set of layer-wise133

steering signals injected into the large model.134

We implement the expansion module as a single linear projection from Rds to RL·dl , followed by135

reshaping into RL×dl for compatibility with the target model. The generator and expansion modules136

are trained jointly, while the LLM remains frozen.137

By injecting the ATV into the internal layers of the large model, the ATV enables flexible and138

targeted control over the model’s behavior. This allows the large model to better align with desired139

task objectives, such as answering questions accurately or performing structured reasoning, without140

modifying its parameters or relying on prompt engineering.141

We summarize this process in Figure 2. During training (top), the small model and the expansion142

module are optimized to produce effective ATVs that steer the large model toward the desired output.143

During inference (bottom), both modules are frozen and used to dynamically generate ATVs for new144

input queries. The core idea behind ATV is to adapt the behavior of an LLM to a specific task without145

modifying its parameters. Instead of prompt-based conditioning, we steer the model by injecting146

query-specific information directly into its internal hidden states in the form of an ATV.147

To generate the ATV, we first encode the input query using a small language model Msmall, such148

as a GPT-2 variant [24]. The model processes the full tokenized sequence and produces hidden149

representations at each layer. From the last token of the last layer, we extract a compact vector vsmall150

that summarizes the semantics of the input query.151

This vector is then expanded by fθ into the ATV vATV, where each slice vlATV is designed to modulate152

computations at the corresponding layer of the large model.153
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The ATV is injected into the frozen large model by modifying the hidden states of the last token154

during the forward pass. Specifically, for each layer l, the original hidden state hl of the last token is155

modified as:156

h̃l = hl + λvlATV (6)

where λ is a scalar hyperparameter that scales the ATV’s influence. This additive injection provides157

lightweight yet effective steering of the model’s output behavior.158

To enable effective learning, we jointly train Msmall and fθ using a supervised loss. Let y denote the159

target output for input query x, and let ỹ be the output of the large model after ATV injection. The160

objective is to minimize the cross-entropy loss:161

min
ϕ,θ

E(x,y)∼D [LCE (ỹ, y)] , where ỹ = Mlarge(x; vATV) (7)

where D denotes the training dataset, and ϕ, θ are the parameters of the small model and the expansion162

module, respectively. Notably, the large model Mlarge remains frozen throughout training.163

After training, both Msmall and fθ are frozen. During inference, given a new input query, the system164

generates a query-specific ATV and injects it into the large model to guide its behavior. This enables165

ATV to adapt frozen LLMs to diverse downstream tasks in a modular and parameter-efficient manner.166

3.3 Theoretical Analysis167

We now theoretically analyze the proposed ATV framework to better understand its effect on the168

behavior of the LLM by comparing it to two prominent parameter-efficient tuning methods: LoRA169

and Prefix-Tuning. LoRA (Low-Rank Adaptation) injects trainable low-rank matrices into pretrained170

weights and has demonstrated strong performance in language model fine-tuning [25]. Prefix-Tuning171

prepends trainable continuous vectors to the input sequence, conditioning the model through modified172

attention mechanisms without altering the pretrained weights [26].173

Specifically, we focus on addressing the following two questions: (1) How does ATV compare to174

LoRA in expressivity under the same rank budget, and when might ATV offer additional advantages?175

(2) Does ATV offer a more expressive attention mechanism compared to Prefix-Tuning?176

We first show that ATV is never weaker than LoRA when both methods operate under the same rank177

budget, and then clarify in which respects ATV can be stronger.178

Theorem 1. (ATV-LoRA equivalence under equal rank) Let hℓ ∈ Rdℓ be the last-token hidden state179

at layer ℓ, and let h̃ℓ, ĥℓ be the outputs of ATV and LoRA. For ds ≪ dℓ and a LoRA rank r = ds,180

ATV and LoRA are expressively equivalent: for any ATV update h̃ℓ, there exists a LoRA configuration181

yielding ĥℓ = h̃ℓ, and vice versa (see Appendix A.1 for the full proof).182

Situations in which ATV exceeds LoRA The equivalence theorem 1 ensures that ATV inherits183

LoRA’s expressiveness. Beyond this, there are several aspects in which ATV can exceed LoRA.184

First, if the auxiliary bottleneck is widened (ds > r), ATV can represent update directions that185

LoRA cannot capture within its fixed rank-r subspace, thereby increasing its expressive power and186

enhancing its flexibility to adapt across diverse tasks and input distributions. Second, even with187

ds = r, ATV enables effective direction injection as it induces input-dependent perturbations. In the188

ATV-to-LoRA construction, the matrix that plays the role of LoRA’s down-projection matrix Wdown,189

a factor that remains static during inference, is given by M := x+⊤(λvsmall), which, unlike LoRA,190

varies with the current activation x. Here, λ is a scalar hyperparmeter of ATV and x+⊤ denotes191

the Moore-Penrose pseudoinverse of x⊤ (see Step 3 of the proof in Appendix A.1.3). This query192

dependence allows ATV to adapt its update on a per-instance basis, an ability LoRA lacks, which193

may improve adaptability in dynamic or multi-task environments.194

Secondly, under the relaxed linear attention approximation, we argue in Theorem 2 that any repre-195

sentation obtainable by prefix-tuning is also realizable by ATV, while the converse does not hold. To196

examine the source of expressivity differences under the approximation proposed by prior work [27],197

we begin by formulating the standard attention as Attn(xWq, CWk, CWv), where x ∈ RT×dl is198

the query, C ∈ Rm×dl is the length-m context, and Wq,Wk,Wv are projection matrices. Prefix-199

tuning modifies the key and value by concatenating p trainable prefix vectors Pk, Pv ∈ Rp×dl ,200

yielding an augmented attention [28]:Attnprefix = Attn(xWq, [Pk;CWk], [Pv;CWv]), ATV, in201
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contrast, injects a trained vector vlATV additively to both the query and context: AttnATV =202

Attn
(
(x+ eT · (vlATV )

⊤)Wq, (C + em · (vlATV )
⊤)Wk, (C + em · (vlATV )

⊤)Wv

)
, where emis a203

vector [0, ...0, 1] ∈ Rm×1.204

Theorem 2. (ATV is more expressive than Prefix-Tuning) Let AttnATV and Attnprefix denote the205

attention outputs from ATV and prefix-tuning, respectively. Then, the representational space F of206

AttnATV includes that of Attnprefix:207

F(Attnprefix) ⊆ F(AttnATV) (8)

Comparison of AttnATV and Attnprefix Under the approximation, AttnATV ≈ Attnprefix + ∆cross,208

where ∆cross encapsulates the six cross-terms that capture the additional interactions between the209

query and context, modulated by the vector vlATV (see Appendix A.2 for the full proof).210

4 Experiments211

To evaluate ATV, we design experiments examining both in-domain and generalization performance,212

followed by ablation studies on injection strategies. We also compare ATV with parameter-efficient213

tuning methods to validate our theoretical analysis and visualize task vector distributions to understand214

their representational properties. We closely follow ELICIT’s [12] experimental design, using215

identical datasets and evaluation protocols. We evaluate on LLaMA3-8B [29] and Mistral-7B [30],216

with I2CL [11] as an additional baseline and a separate comparison to LoRA [25] for theoretical217

validation. Our code is available at https://anonymous.4open.science/r/ATV-8B5A.218

4.1 Experiment Setup219

Models and Baselines. Our primary models are LLaMA3-8B and Mistral-7B. We compare ATV220

against (i) zero-shot, (ii) 16-shot in-context learning (ICL), (iii) 16-shot BM25 retrieval-based221

ICL [31], (iv) ELICIT [12], and (v) I2CL [11]. ICL and BM25 baselines use 16 demonstrations,222

either randomly sampled or retrieved from the task’s training set.223

Datasets. We evaluate ATV on a diverse collection of 20 tasks spanning five categories: Knowledge,224

Reasoning, Mathematics, Safety, and Natural Language Understanding. These tasks test various NLP225

capabilities from reasoning to numerical problem solving. In addition to in-domain tasks, we evaluate226

ATV on a separate set of unseen tasks to assess its generalization ability.227

Evaluation. We adopt the same evaluation strategy as ELICIT to reflect realistic inference scenarios,228

where test-time query formats differ from those seen during training. Each test query is presented in229

two additional template variations not used in task vector generation. Task-specific instructions are230

prepended for all methods to ensure fair comparison. Full implementation and experimental details,231

including dataset names, template formats, and hyperparameters, are available in Appendix B.232

For the ATV generator Msmall, we use GPT-2 (137M). As detailed in Appendix C, our additional233

analysis indicate that this configuration is sufficient for our purposes, with larger or differently trained234

generators yielding comparable results.235

4.2 In-Domain Performance Evaluation236

We evaluate ATV on 20 in-domain tasks across five categories, with results summarized in Table 1.237

ATV consistently achieves the highest average accuracy across all baselines while maintaining strong238

token efficiency by avoiding additional prompt tokens. ATV performs particularly well on NLU239

and Reasoning tasks across both LLaMA3 and Mistral, highlighting the benefit of query-specific240

task vectors in handling semantic and logical variation. These categories often require nuanced241

understanding of input structure and are sensitive to prompt formulation, limiting the adaptability242

of fixed vector approaches. Interestingly, BM25 achieves the best result in the Math category. We243

attribute this to the pattern-based nature of many math problems, where retrieved demonstrations244

closely resembling the test query provide a direct advantage. In contrast, ATV’s focus on semantic-245

level task modeling may limit its effectiveness in tasks that demand precise procedural alignment.246

To further examine the generality of our findings, we conducted additional experiments using Llama-247

2-13B and Pythia-2.8B [32] as backbone models, both of which showed consistent improvements with248
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Table 1: In-domain performance comparison across five categories under LLaMA3 and Mistral.
ATV achieves the highest average accuracy on both models using the same number of tokens as
ELICIT and I2CL, while outperforming all baselines across most domains and maintaining superior
token efficiency over prompt-based methods. All results except I2CL and ATV are from ELICIT [12].

Model # Tokens NLU Reasoning Knowledge Math Safety Avg.

Llama3

Zero-shot 108.3 ± 1.4 32.2 ± 1.2 31.6 ± 0.2 42.5 ± 1.2 14.0 ± 1.1 35.5 ± 1.2 31.1 ± 1.0
16-shot 1883.8 ± 0.9 60.6 ± 0.9 56.0 ± 0.4 70.6 ± 1.0 26.7 ± 2.0 62.1 ± 0.3 55.2 ± 0.9
BM25 2260.9 ± 21.7 56.8 ± 1.4 56.6 ± 0.3 69.4 ± 0.2 29.0 ± 1.1 55.5 ± 1.0 53.4 ± 0.8

ELICIT 108.3 ± 1.4 41.6 ± 0.4 46.7 ± 0.1 60.6 ± 1.4 19.1 ± 1.4 49.9 ± 2.1 43.5 ± 0.8
I2CL 108.3 ± 1.4 52.4 ± 4.6 48.4 ± 0.9 52.2 ± 3.1 17.9 ± 2.2 45.6 ± 2.4 43.3 ± 0.7
ATV 108.3 ± 1.4 61.0 ± 5.0 76.1 ± 1.3 73.0 ± 1.6 25.8 ± 2.0 74.8 ± 0.4 62.1 ± 1.5

Mistral

Zero-shot 123.5 ± 1.7 29.6 ± 1.2 26.9 ± 0.4 45.5 ± 1.3 2.8 ± 0.1 36.1 ± 0.3 28.2 ± 0.5
16-shot 2161.3 ± 0.9 55.3 ± 0.5 52.1 ± 0.5 70.8 ± 0.4 23.7 ± 1.7 63.1 ± 0.6 53.0 ± 0.1
BM25 2655.2 ± 27.3 55.2 ± 0.3 66.0 ± 0.5 70.2 ± 1.9 24.1 ± 0.4 62.1 ± 0.5 55.5 ± 0.4

ELICIT 123.5 ± 1.7 41.9 ± 1.0 48.3 ± 0.3 59.4 ± 0.9 20.3 ± 0.9 48.7 ± 1.8 43.7 ± 0.6
I2CL 123.5 ± 1.7 48.6 ± 0.9 47.3 ± 1.5 59.6 ± 0.8 17.6 ± 1.9 49.4 ± 1.0 44.5 ± 0.6
ATV 123.5 ± 1.7 60.8 ± 2.8 69.1 ± 1.6 71.4 ± 4.5 20.8 ± 2.4 69.4 ± 1.9 58.3 ± 1.3

Table 2: Performance on unseen tasks not included in the ATV training set, evaluated under
LLaMA3 and Mistral. ATV achieves the highest average accuracy across all methods while using
significantly fewer tokens than prompt-based and fixed vector approaches, demonstrating strong
generalization. All results except I2CL and ATV are from ELICIT [12].

Model # Tokens GLUE COLA BBQ Religion Deepmind MMLU-Psychology BBH-five-objects Avg.

Llama3

Zero-shot 103.6 ± 47.7 72.0 ± 0.7 38.6 ± 1.1 17.5 ± 2.6 54.2 ± 0.3 17.1 ± 0.0 39.9 ± 0.8
BM25 2502.8 ± 26.0 55.4 ± 1.0 64.6 ± 1.3 30.7 ± 1.7 83.0 ± 0.1 48.3 ± 0.0 56.4 ± 0.4

ELICIT 103.6 ± 47.7 63.4 ± 0.9 45.0 ± 0.7 23.7 ± 3.4 70.0 ± 0.6 25.7 ± 0.0 45.6 ± 0.4
I2CL 103.6 ± 47.7 26.1 ± 0.6 39.4 ± 3.1 23.5 ± 3.7 75.0 ± 1.0 27.3 ± 2.5 38.3 ± 2.2
ATV 103.6 ± 47.7 77.6 ± 2.7 80.8 ± 2.6 26.4 ± 2.7 80.6 ± 2.3 51.7 ± 3.1 63.4 ± 2.5

Mistral

Zero-shot 115.4 ± 51.0 43.3 ± 1.1 35.4 ± 3.3 9.0 ± 0.4 57.9 ± 0.7 7.4 ± 0.0 30.6 ± 1.0
BM25 2804.6 ± 27.6 44.4 ± 2.2 70.7 ± 0.7 26.6 ± 3.9 78.7 ± 1.1 25.7 ± 0.0 49.2 ± 0.3

ELICIT 115.4 ± 51.0 41.7 ± 0.8 42.1 ± 2.5 25.1 ± 1.2 65.6 ± 0.6 15.6 ± 0.0 38.0 ± 0.6
I2CL 115.4 ± 51.0 53.3 ± 1.3 48.4 ± 6.5 22.0 ± 2.6 72.6 ± 0.2 22.9 ± 4.5 43.9 ± 3.0
ATV 115.4 ± 51.0 79.8 ± 7.1 81.7 ± 2.2 24.6 ± 5.3 70.7 ± 1.0 40.3 ± 3.6 59.4 ± 2.6

ATV. Results for these settings are provided in Appendix D. Overall, these results demonstrate the249

strength of adaptive task representations in most language understanding scenarios, while suggesting250

that tasks relying on surface-level similarity may benefit more from retrieval-based approaches.251

While ATV’s initial performance on Math tasks is lower than retrieval-based baselines, further252

analysis shows that this is not an inherent limitation. To investigate, we compared ATV and LoRA253

when trained on all tasks versus only on Math datasets. The results demonstrate that ATV’s accuracy254

improves substantially with targeted training, whereas LoRA does not exhibit similar gains. These255

findings indicate that ATV is fully capable of handling complex procedural domains when training is256

appropriately allocated. Additional details are provided in Appendix E.257

Beyond task accuracy, we also evaluated two key aspects of output reliability: adherence to specified258

formats and response consistency across paraphrased prompts. As detailed in Appendix F, ATV259

demonstrates format adherence and consistency scores that are comparable to or exceed ICL-based260

baselines. These findings indicate that ATV’s performance improvements are achieved without261

compromising structural reliability or coherence.262

4.3 Generalization to Unseen Tasks263

To assess generalization, we evaluate ATV on a set of unseen tasks held out from training, covering264

domains such as linguistic acceptability, bias detection, and scientific reasoning.265

As shown in Table 2, ATV achieves the highest average accuracy on both LLaMA3 and Mistral, likely266

due to its query-conditioned task vectors that allow adaptation to novel tasks even without explicit267

demonstrations. This demonstrates the strength of ATV in generalizing beyond in-domain tasks while268

maintaining strong token efficiency.269

We also evaluated ATV on adversarial generalization using the HANS dataset [33], which is specifi-270

cally designed to expose heuristic-driven failures in NLI models. While other existing approaches271

collapse in this setting, ATV maintains strong accuracy, highlighting its robustness to highly dissimilar272

and adversarial tasks. A detailed analysis and results are provided in Appendix G.273
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4.4 Layer-wise Analysis of Injection Strategies274

We conduct a layer-wise analysis to examine how injection depth influences performance for both ATV275

and ELICIT, revealing distinct patterns in how the two methods interact with different transformer276

layers. While ELICIT requires identifying a single best injection layer per task, we perform a uniform277

layer-wise evaluation for both methods by injecting into the bottom, middle, or top third of the model.278

Table 3: Layer-wise performance comparison between ATV and ELICIT on LLaMA3. While
ATV shows strong performance when injected into bottom layers, ELICIT performs best when
applied only to top layers. This contrast highlights the different functional dependencies of the two
methods. Reported differences are measured with respect to the full-layer injection setting.

Injected Layer Avg. acc (ATV) Diff. (ATV) Avg. acc (ELICIT) Diff. (ELICIT)

Llama3

All Layers 62.1 ± 1.5 - 30.9 ± 0.8 -
Bottom 1

3
60.5 ± 0.7 -1.6 23.5 ± 0.9 -17.7

Middle 1
3

43.2 ± 1.0 -18.9 17.8 ± 0.2 -18.5
Top 1

3
32.6 ± 0.4 -29.5 32.8 ± 0.3 +0.6

Figure 3: Layer-wise analysis of vector injec-
tion magnitudes. Left: ATV concentrates vec-
tor strength in lower layers, while Right: ELICIT
shows a monotonic increase toward top layers.
These patterns align with each method’s layer-
specific performance impact.

We divide the transformer into bottom, mid-279

dle, and top thirds, and evaluate each method280

by restricting injection to a single region. As281

shown in Table 3, ATV retains strong perfor-282

mance when injected into the bottom layers, ex-283

hibiting only marginal degradation relative to284

the full-layer setting. For ELICIT, the best per-285

formance is observed when injecting into the top286

layers, slightly surpassing its full-layer setting.287

This divergence suggests that ATV benefits from288

modulating lower-level representations, while289

ELICIT relies more on upper-layer reasoning.290

Figure 3 visualizes the ℓ2 norm of the injected291

vectors across layers. ATV peaks in the bot-292

tom layers with balanced magnitudes, whereas293

ELICIT shows a steep increase in vector strength toward the top, with much larger magnitudes.294

This behavioral difference aligns with the performance trends in Table 1: ATV achieves consistently295

strong results across all five task categories, not just in NLU. The effectiveness of early-layer296

modulation is consistent with prior studies on transformer specialization [34–36], which show that297

lower layers primarily encode lexical and syntactic features, while upper layers are responsible for298

semantic reasoning and task-specific abstraction.299

4.5 Efficiency and Fair Comparison with LoRA300

To ensure a fair comparison with LoRA and to address concerns regarding computational cost,301

we evaluate both training- and inference-time efficiency. We additionally introduce ATV-Light, a302

parameter-efficient variant configured to match LoRA’s ∼20M trainable parameters by applying303

LoRA to the generator and introducing a bottleneck in the projection module.304

Table 4: Training efficiency comparison. We compare
the number of trainable parameters, peak GPU memory us-
age, and training time per epoch for LoRA, ATV-Light, and
the full ATV. ATV-Light achieves a substantial reduction in
training time compared to LoRA while consuming nearly
identical memory.

Method Params Memory Training Time

LoRA ∼20M 23.44 GiB 21m 32s
ATV-Light ∼20M 23.77 GiB 16m 43s

ATV ∼200M 25.47 GiB 16m 29s

Training Efficiency. We compared305

trainable parameters, peak GPU mem-306

ory usage, and training time per epoch.307

As summarized in Table 4, ATV-Light308

and LoRA consume nearly identical309

memory, while ATV incurs only a310

modest increase. Both ATV and ATV-311

Light achieve substantially shorter312

training times than LoRA, since up-313

dates are confined to smaller modules314

rather than requiring backpropagation315

through the entire large model. These316

results confirm that ATV maintains317

training efficiency even when matched to LoRA’s parameter budget.318
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Table 5: Inference efficiency and accuracy comparison.
We measure inference latency per sample, peak memory us-
age, and performance on ID and OOD tasks. ATV and ATV-
Light achieve state-of-the-art accuracy with only a minor
increase in latency compared to LoRA, and are substantially
faster than retrieval-based methods like ELICIT.

Method Latency Memory ID Acc. OOD Acc.

ELICIT 0.077s 15.52 GiB 43.5 ± 0.8 45.6 ± 0.4
I2CL 0.037s 14.96 GiB 43.3 ± 0.7 38.3 ± 2.2
LoRA 0.030s 15.45 GiB 56.0 ± 1.4 52.0 ± 3.2

ATV-Light 0.055s 15.51 GiB 60.6 ± 1.5 60.9 ± 0.9
ATV 0.047s 15.81 GiB 62.1 ± 1.5 63.4 ± 2.5

Inference Efficiency. We evaluated319

accuracy, inference latency, and peak320

GPU memory usage, as shown in321

Table 5. ATV achieves the high-322

est accuracy on both in-domain and323

out-of-domain tasks, with ATV-Light324

also surpassing LoRA. Regarding ef-325

ficiency, ATV and ATV-Light ex-326

hibit memory usage comparable to327

LoRA and I2CL and are significantly328

faster than ELICIT, which incurs over-329

head from per-query retrieval. While330

ATV and ATV-Light show slightly in-331

creased latency compared to LoRA332

and I2CL, the difference is minor rela-333

tive to their accuracy gains. These results demonstrate that ATV delivers state-of-the-art performance334

with minimal inference overhead.335

Overall, our results show that ATV offers superior performance while maintaining efficiency in both336

training and inference, making it a strong alternative to LoRA and retrieval-based methods.337

4.6 Visualizing Task Vector Distributions338

We use t-SNE to visualize query-specific task vectors and assess how ATV captures input variation.339

Figure 4: t-SNE visualization of task vector distributions for two BBH tasks. Each dot represents
a query-specific task vector generated by ATV, while crosses denote the fixed task vectors used by
ELICIT. We observe that vectors from similar queries tend to be grouped together, indicating that
ATV adapts its representations based on the input, while ELICIT draws from a fixed demonstration
pool and captures less query-level variation as a result.

Figure 4 shows the projected vectors for two BBH tasks alongside their ELICIT counterparts. We340

observe that, in ATV, vectors from similar queries tend to appear closer together in the embedding341

space, suggesting that the method captures input-specific variation within and across tasks. In contrast,342

ELICIT assigns a single static vector per task, which fails to reflect such internal diversity.343

5 Conclusion344

We introduced Adaptive Task Vectors (ATV), a framework that dynamically generates query-specific345

vectors to causally intervene in LLMs’ computational processes without parameter changes. Our346

theoretical analysis shows that ATV is expressively equivalent to LoRA while offering better adapt-347

ability. Empirically, ATV outperforms prior approaches across 20 datasets while maintaining token348

efficiency and demonstrating strong generalization to unseen tasks, confirming its effectiveness for349

precise and context-sensitive causal steering of model behavior.350

Limitation and Impact statement Although ATV performs well overall, its effectiveness varies by351

task, and ATV can sometimes underperform compared to retrieval-based approaches. Additionally,352

because ATV depends on the input data, unintended behaviors may occur if the dataset is poorly353

curated. Careful dataset understanding is therefore essential when applying this method.354
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A Proofs for Theoretical Results481

A.1 Proof of Theorem 1482

A.1.1 Preliminaries483

Consider a single transformer layer ℓ with hidden state dimension dℓ. Let hℓ ∈ Rdℓ denote the484

hidden state of the last token at that layer.485

ATV (Adaptive Task Vector) update ATV injects an additive low-rank vector486

h̃ℓ = hℓ + λ vsmallAℓ,

where487

• hℓ ∈ Rdℓ : last-token hidden state in layer ℓ.488

• vsmall ∈ Rds with ds ≪ dℓ: query-specific vector from the Msmall.489

• Aℓ ∈ Rds×dℓ : the ℓ-th ds × dℓ block of the linear expansion fθ(vsmall) = vATV ∈ RL×dℓ ;490

thus, vsmallAℓ is the ℓ-th row of vATV.491

• λ ∈ R: global scaling constant.492

LoRA (low-rank adaptation) update LoRA applies a rank-r additive update to the projection. Its493

effect on the hidden state is:494

ĥℓ = hℓ + s x⊤WdownWup,

where495

• x⊤ ∈ R1×dℓ : the current-token activation entering the augmented projection; for a query /496

value projection, this equals (hℓ)⊤.497

• Wdown ∈ Rdℓ×r and Wup ∈ Rr×dℓ : LoRA projection matrices.498

• s ∈ R: global scaling constant.499

Assumption (A1) — matched rank budgets We henceforth set the LoRA bottleneck rank equal to500

the ATV bottleneck size:501

r = ds.

A.1.2 Theorem502

Theorem (ATV–LoRA equivalence under equal rank) Under Assumption A1:503

1. ATV ⇒ LoRA (simulation).504

For every pair (hℓ, vsmall) there exist static LoRA factors (Wdown,Wup) and a scale s, all505

independent of the runtime query, such that506

h̃ℓ = ĥℓ for all inputs.

2. LoRA ⇒ ATV (simulation).507

Conversely, any LoRA update with rank r = ds can be expressed in ATV form by an508

appropriate choice of (λ, vsmall, Aℓ).509

Hence, when the rank budgets are matched, ATV and LoRA realize the same class of low-rank510

additive perturbations to the frozen model; they are expressively equivalent.511

A.1.3 Proof512

Throughout the proof we fix the layer index ℓ and omit it from superscripts whenever no ambiguity513

arises.514

13



Step 1 Factorize the ATV increment The additive term introduced by ATV is515

∆hATV = λ vsmallAℓ = (λvsmall)︸ ︷︷ ︸
1×ds

Aℓ︸︷︷︸
ds×dℓ

.

This is an outer product of a 1× ds row vector and a ds × dℓ matrix, so its matrix rank satisfies516

rank(∆hATV) ≤ ds.

Hence, ATV always adds a vector lying in a rank-ds subspace of Rdℓ .517

Step 2 Factorize the LoRA increment LoRA’s contribution can be written in vector form as518

∆hLoRA = s x⊤WdownWup = (s x⊤Wdown)︸ ︷︷ ︸
1×r

Wup︸︷︷︸
r×dℓ

,

which is likewise an outer product—now of shapes 1× r and r × dℓ. Consequently,519

rank(∆hLoRA) ≤ r.

Under Assumption A1 (r = ds), the rank upper bounds obtained in Steps 1 and 2 are identical,520

establishing that the two increments live in subspaces of equal maximal rank.521

Step 3 Rewrite ATV as a LoRA update (ATV ⇒ LoRA) Let522

Wup := Aℓ and Wdown := M ∈ Rdℓ×ds .

We choose M so that the following linear constraint holds for the last token:523

x⊤M = λ v ∈ R1×ds . (9)

Existence of a solution. The row vector x⊤ has dℓ free coordinates, whereas the right-hand side524

specifies only ds values with ds ≪ dℓ; consequently, the under-determined system (1) always admits525

a solution provided x⊤ ̸= 0. A canonical choice is526

M := x+⊤(λv),

where x+⊤ denotes the Moore–Penrose pseudoinverse of x⊤ and satisfies x⊤x+⊤ = 1.527

Resulting LoRA increment. With these matrices,528

∆hLoRA = s x⊤WdownWup = s (x⊤M)Aℓ = s (λv)Aℓ.

Selecting the scale s = 1 yields529

∆hLoRA = λvAℓ = ∆hATV,

and hence the LoRA-modified hidden state satisfies h̃ℓ = ĥℓ.530

This completes the direction “ATV implies LoRA” under the rank-matching assumption r = ds.531

Step 4 Rewrite LoRA as an ATV update (LoRA ⇒ ATV) Take fixed LoRA factors Wdown ∈532

Rdℓ×r, Wup ∈ Rr×dℓ with r = ds.533

For the last token we observe the row vector534

x⊤Wdown ∈ R1×ds .

Row-vector SVD. Compute a thin singular-value decomposition535

x⊤Wdown = uΣv⊤,

where536

• u ∈ R1×ds is orthonormal,537

• Σ ∈ Rds×ds is diagonal (rank ≤ 1),538
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• v⊤ ∈ Rds×ds is orthonormal.539

Define ATV parameters540

λ := ∥uΣ∥2, v :=
uΣ

∥uΣ∥2
∈ Rds , Aℓ := v⊤Wup ∈ Rds×dℓ .

The vector v has unit norm by construction, and Aℓ keeps the required shape.541

ATV increment equals LoRA increment542

λvAℓ = (∥uΣ∥2)
uΣ

∥uΣ∥2
v⊤Wup = (uΣ) v⊤Wup = x⊤WdownWup = ∆hLoRA.

Hence h̃ℓ = ĥℓ; the LoRA update is reproduced exactly by ATV.543

Conclusion of the proof Both ATV and LoRA ultimately realize the same operation class544

h 7−→ h+ (rank ≤ r) outer product,
and, under the matched rank budget r = ds, have identical functional capacity on a frozen backbone.545

This completes the proof of the theorem.546

A.1.4 Discussion of Assumptions547

• Matched rank budgets (r = ds).548

The constructive proof fixes the LoRA rank to equal the ATV bottleneck size so that both549

methods have the same number of degrees of freedom.550

If ds < r, LoRA has r − ds surplus channels; turning those channels off yields an exact551

simulation of ATV, so LoRA is (weakly) more expressive.552

If ds > r, ATV can move in directions that LoRA cannot represent. Projecting the ATV553

increment onto a rank-r subspace gives the closest LoRA-matchable update, so equivalence554

holds only “up to rank-r projection.”555

• Non-zero input row vector x⊤.556

The linear system x⊤M = λv in Step 3 requires x⊤ ̸= 0 to admit a solution via the557

Moore–Penrose pseudoinverse.558

In a transformer, x⊤ is simply the hidden state of the token entering the query/value559

projection and is never identically zero after normal training; therefore the assumption is560

benign in practice.561

A.1.5 Operational Differences Between ATV and LoRA562

Table 6: Implementation-level differences between ATV and LoRA.

Aspect ATV LoRA
Insertion point Adds a vector λvAℓ after the hidden

state is computed
Adds a low-rank matrix WdownWup in-
side the projection weight

Learned parame-
ters

Auxiliary small model Msmall + expan-
sion blocks Aℓ of the linear expansion
fθ()

Two fixed factor matrices Wdown,Wup

Thus, even under equal rank budgets, the two methods differ operationally: ATV perturbs activations563

directly in the hidden state space, whereas LoRA perturbs projection weights via a static low-rank564

matrix. Nevertheless, as shown in the theorem, these implementation choices realize the same class565

of rank-r additive perturbations on a frozen backbone, yielding identical expressive power when566

r = ds.567

A.2 Proof of Theorem 2568

A.2.1 Preliminaries569

Linear approximation: Attn(Q,K, V ) ≈ QK⊤V [27]570
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Attention ouptputs from Prefix-Tuning
Attnprefix = Attn(xWq, [Pk;CWk], [Pv;CWv])

• x = [x1, x2, ..., xT ] ∈ RT×dl571

• C ∈ Rm×dl :572

context sequence of length m with dl dimension(l-th layer’s dimension)573

• Pk, Pv ∈ Rp×dl : p tunable prefix vectors to the keys and values574

Attention ouptputs from Prefix-Tuning
AttnATV = Attn((x+ eT · (vlATV )

⊤)Wq, (C + em · (vlATV )
⊤)Wk, (C + em · (vlATV )

⊤)Wv)

• vlATV ∈ Rdl575

• em = [0, ..., 0, 1] ∈ Rm×1576

• (em · (vlATV )
⊤)Wk = P ′

k577

A.2.2 Theorem578

Theorem (ATV is more expressive than Prefix-Tuning) The representational space F of AttnATV579

includes that of Attnprefix:580

F(Attnprefix) ⊆ F(AttnATV)

A.2.3 Process of Derivation581

Linear approximation of Prefix-Tuning
Attnprefix = Attn(xWq, concat(Pk, CWk), concat(Pv, CWv))

= softmax(xWq([Pk;CWk])
⊤)[Pv;CWv]

≈ xWq(Pk;CWk])
⊤([Pv;CWv])(∵ Attn(Q,K, V ) ≈ QK⊤V )

= xWq(Pk)
⊤Pv + xWq(CWk)

⊤CWv

Linear approximation of ATV
AttnATV =Attn

(
(x+ eT · (vlATV )

⊤)Wq, (C + em · (vlATV )
⊤)Wk, (C + em · (vlATV )

⊤)Wv

)
≈

[
xWq(CWk)

⊤ + xWq(em · (vlATV )
⊤)⊤

+ eT · (vlATV )
⊤Wq(CWk)

⊤ + eT · (vlATV )
⊤Wq(em · (vlATV )

⊤Wk)
⊤
]

·
(
CWv + em · (vlATV )

⊤Wv

)
Let (em · (vlATV )

⊤)Wk = P ′
k, (em · (vlATV )

⊤)Wv = P ′
v , (eT · (vlATV )

⊤)Wq = P ′
q582

⇒ AttnATV ≈ xWq(CWk)
⊤CWv + xWq(P

′
k)

⊤P ′
v(Similar to AttnPrefix) (T1 + T2)

+ xWq(P
′
k)

⊤CWv (T3)

+ xWq(CWk)
⊤P ′

v (T4)

+ P ′
q(CWk)

⊤CWv (T5)

+ P ′
q(P

′
k)

⊤CWv (T6)

+ P ′
q(CWk)

⊤P ′
v (T7)

+ P ′
qP

′
k
⊤
P ′
v (T8)

A.2.4 Analysis of Each Term in AttnATV583

For each term we report (i) the intuition behind the interaction, and (ii) how it extends or subsumes the584

behavior attainable with classic Prefix-Tuning (PT), treating the ATV-generated vectors P ′
k, P

′
v, P

′
q as585

soft-prefix counterparts to PT’s fixed prefixes (see Table 7).586
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Table 7: Qualitative roles of ATV attention terms and their relation to Prefix-Tuning (PT).

Term Qualitative role Relation to Prefix-Tuning (PT) / Added expressivity

T1 Base attention of the frozen model Representable in PT (identical). No additional expres-
sivity; both methods preserve this term unchanged.

T2 Prefix keys & values only. Query
attends only to prefix key/value

Representable in PT (exact match). This is the sole extra
path PT can realize; ATV contains it and can therefore
emulate PT exactly.

T3 Prefix key → content values. A
soft prefix key reshapes the attention
weights, but the actual information
still comes from the content values.

Not representable in PT. PT would need a separate
learned key for every content token, whereas ATV
achieves the same effect with a single soft key—thus
widening the attention design space.

T4 Content keys → prefix value. Nor-
mal keys set the weights, but an ex-
tra value generated by the adapter is
injected at the output stage.

Not representable in PT. PT lacks a mechanism to inject
new information exclusively at the value stage for existing
keys; ATV can graft auxiliary content into any token’s
output.

T5 Prefix query. The query itself is
shifted in a new direction while still
using ordinary keys and values.

Not representable in PT. Because PT keeps Wq frozen,
it cannot alter queries. ATV adds a query-side degree of
freedom, enabling new attention directions.

T6 Prefix query + key. Both sides of
the similarity come from the same
learnable vector, but the output is
still built from content values.

Not representable in PT. ATV can simultaneously steer
queries and keys while still reading content values, provid-
ing a finer redistribution of attention mass that PT cannot
mimic.

T7 Prefix query + value. Ordinary
keys choose the weights; the re-
turned information comes from a
prefix-generated value.

Not representable in PT. PT can supply prefix values
but cannot adapt the query; ATV adds this missing query
modulation, enhancing expressivity.

T8 Full prefix triad. Query, key, and
value are all produced by the same
low-rank adapter, yielding a fully
synthetic attention path.

Not representable in PT. PT has no mechanism for a
fully synthetic attention channel without real tokens; ATV
introduces an entirely new path, further enlarging the rep-
resentational space.

Key points of the theorem587

• Containment: PT spans only the subspace generated by T1 + T2. ATV keeps those terms588

and introduces T3 − T8, hence589

F(Attnprefix) ⊆ F(AttnATV)

• Query-side freedom (T5, T6, T7, T8): Because PT never changes Wq, any behavior that590

requires altering the query vector is strictly outside its representational span. ATV realizes591

this through the additive query P ′
q .592

• Mixed interactions (T3, T4): Unlike PT, ATV can blend a single soft prefix key or value593

with the untouched content tokens. To even approximate T3, PT would have to add one594

custom prefix key for every content token, which is an impractical workaround, and T4595

cannot be reproduced by PT at all.596

• Full prefix channel (T8): A complete synthetic path lets ATV add task-specific information597

even when the original context is irrelevant, while still using no extra tokens at runtime.598

Taken together, the additional six terms explain why ATV is more expressive: it augments the599

attention operator along every axis (query, key, and value) without introducing heavy retraining or600

large prefix matrices, yet it can still emulate PT as a special case.601
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B Detailed Experiments Setting602

Our experimental setup follows ELICIT [12], using the same datasets and evaluation protocols. Below603

we provide detailed specifications.604

B.1 Dataset List605

All experiments are conducted on the same 20 in-domain tasks and 5 unseen tasks as used in ELICIT.606

Tasks are categorized as follows:607

• Knowledge: CommonsenseQA [37], OpenBookQA [38], HellaSwag [39], BoolQ [40]608

• Reasoning: Four subsets from Big-Bench Hard (BBH) [41] (BBH Boolean Expressions,609

BBH Date Understanding, BBH Reasoning about Colored Objects, BBH Temporal Se-610

quences), ARC-Challenge [42]611

• Mathematics: MathQA [43], MMLU Pro-MATH [44]612

• Safety: Crows-Pairs [45], BBQ-Age [46], Ethics-Commonsense, Ethics-Justice [47]613

• Natural Language Understanding (NLU): GLUE (SST-2, QNLI, MNLI) [48], Super-614

GLUE (WIC, RTE) [49]615

• Unseen: GLUE COLA, BBQ-Religion, Deepmind [50], MMLU High School Psychology,616

BBH Logical Deduction Five objects617

B.2 Implementation Details and Baseline Configurations618

Common Setup. All experiments are conducted on NVIDIA A100 80GB GPUs. We use the same619

training data splits and evaluation protocols across all methods for fair comparison. Each experiment620

is repeated 3 times with different random seeds (42, 100, 10) to compute statistical significance. For621

training, we sample 90 examples per task from the official training split of each in-domain task622

(excluding unseen tasks), and use the same sampled data across all baselines.623

ATV. We train the small model Msmall (GPT-2, 137M parameters) and the expansion module fθ624

jointly with the following hyperparameters. A constant learning rate of 5e-4 is used without warmup625

or learning rate scheduling, along with weight decay of 1e-5. The model is optimized for 15 epochs626

using the Adam optimizer.627

We inject a task vector vATV ∈ RL×dl into the last token’s hidden state at each layer as h̃l =628

hl + λvlATV.629

We use a scaling factor of λ = 0.001 throughout all experiments. In our implementation, the hidden630

size of the small model is ds = 768 (GPT-2), and the large models (LLaMA3-8B and Mistral-7B)631

use dl = 4096 with L = 32 transformer layers.632

ELICIT. We follow the official implementation and configuration of ELICIT. Task vectors are633

retrieved from a precomputed capability library, each paired with its optimal injection layer. At634

inference time, the selected vector is additively injected into the frozen LLM at the designated layer.635

All training and evaluation use the official codebase and default settings.636

Each task vector is constructed from 10 exemplars per task, each with a 16-shot prompt. While the637

total number of unique samples may vary due to overlap, our analysis confirms a minimum of 91638

unique samples per task. To ensure fair comparison, we use 90 training samples per task for all other639

baselines.640

I2CL. We adopt the official I2CL implementation [11], modifying only the number of training641

epochs to 15 for consistency with other baselines. To ensure fair comparison, we deviate from the642

original setting, which calibrates context vectors and injection coefficients separately for each dataset643

using task identity. Instead, we train a shared set of coefficients across all datasets while keeping644

dataset-specific context vectors.645

For evaluation on unseen tasks, we use a retrieval strategy that selects the most similar context vector646

among those obtained from in-domain datasets, based on cosine similarity between the input query647

and training prompts.648
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LoRA. We adopt the LoRA configuration described in the I2CL paper, which applies low-rank649

adaptation to the query and value projection matrices in all attention layers. The setup uses rank650

r = 8, scaling factor α = 32, and a dropout rate of 0.05. All other settings, including the optimizer,651

follow the official implementation. However, as the original learning rate of 1e−3 resulted in poor652

performance in our setting, we adjust it to 4e−4.653

B.3 Task-Specific Prompt List654

We follow the prompt template settings from ELICIT, which adopts task-specific templates manually655

crafted based on guidelines from lm-harness [51] and the chain-of-thought-hub1. For each656

task, we use the same three distinct question templates as provided in ELICIT. The full set of question657

templates used for each task is listed in Table 8.658

The answer-side format is consistent across all tasks and composed of the following structure:659

• A line break (\n) after the question template,660

• A list of options in the form: Options: (A) ..., (B) ..., (C) ..., ...,661

• One of the following three answer prefixes:662

– A:663

– Answer:664

– The answer is665

By combining the 3 question templates with the 3 answer prefixes, we construct 9 distinct prompt666

variants per task. Following the ELICIT setup, only the A: answer prefix is used during training,667

while all 3 answer formats are used during evaluation to assess generalization to unseen answer styles.668

This setting is consistently applied across all baseline methods.669

Table 8: Question-side templates used for each task. Each task uses three distinct prompt formats
as provided in the original ELICIT setting.

Task (Dataset) Template

CommonsenseQA
• The following are multiple choice questions (with answers) about

commonsense knowledge reasoning. Finish your answer with ’X’
where X is the correct letter choice.\n\nQuestion: {input}

• Below are multiple-choice questions about commonsense reasoning.
Answer with ’X’, X being the correct option.\n\nQuestion: {input}

• Respond to these multiple-choice questions on commonsense
knowledge. Conclude with ’X’, where X is the right letter
choice.\n\nQuestion: {input}

OpenBookQA
• The following are multiple choice questions (with answers) about

multi-step reasoning. Finish your answer with ’X’ where X is the
correct letter choice.\n\nQuestion: {input}

• The following are multiple-choice questions testing multi-step
reasoning. Answer with ’X’, X being the correct
option.\n\nQuestion: {input}

• Answer these multiple-choice questions involving multi-step logical
thinking. Conclude with ’X’, where X is the right letter
choice.\n\nQuestion: {input}

Continued on next page

1https://github.com/FranxYao/chain-of-thought-hub
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Table 8 – continued from previous page

Task (Dataset) Template

HellaSwag
• The following are multiple choice questions (with answers) about

commonsense NLI. Finish your answer with ’X’ where X is the
correct letter choice.\n\nQuestion: {input}

• The following are multiple-choice questions about commonsense
natural language inference. Answer with ’X’, X being the correct
option.\n\nQuestion: {input}

• Answer these multiple-choice questions on commonsense language
understanding. Conclude with ’X’, where X is the right letter
choice.\n\nQuestion: {input}

BoolQ
• {input} \nAnswer True or False.
• {input} \nRespond with True or False.
• {input} \nIs this statement correct? Answer True or False.

BBH Date
Understanding

• Infer the date from context. Finish your answer with ’X’ where X is
the correct letter choice.\n\nQuestion: {input}

• Determine the date based on contextual clues. End your response
with ’X’, where X represents the correct option.\n\nQuestion:
{input}

• Use the given context to deduce the date. Conclude your answer
with ’X’, X being the right letter choice.\n\nQuestion: {input}

BBH Boolean
Expressions

• Evaluate the result of a random Boolean expression.\n\nQuestion:
{input}

• Calculate the outcome of a given Boolean expression.\n\nQuestion:
{input}

• Determine the result of the provided Boolean logic
statement.\n\nQuestion: {input}

BBH Temporal
Sequences

• Answer questions about which times certain events could have
occurred. Finish your answer with ’X’ where X is the correct letter
choice.\n\nQ: {input}

• Determine possible occurrence times for specific events. Answer
with ’X’, X being the correct option.\n\nQ: {input}

• Identify when certain events could have happened. Conclude with
’X’, where X is the right letter choice.\n\nQ: {input}

BBH Reasoning
about Colored
Objects

• Answer extremely simple questions about the colors of objects on a
surface. Finish your answer with ’X’ where X is the correct letter
choice.\n\nQ: {input}

• Respond to basic questions about object colors on a surface.
Answer with ’X’, X being the correct option.\n\nQ: {input}

• Address simple queries regarding the colors of items on a surface.
Conclude with ’X’, where X is the right letter choice.\n\nQ: {input}

Continued on next page
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Table 8 – continued from previous page

Task (Dataset) Template

ARC Challenge
• The following are multiple choice questions (with answers) about

science. Finish your answer with ’X’ where X is the correct letter
choice.\n\nQuestion: {input}

• Below are multiple-choice science questions. Answer with ’X’, X
being the correct option.\n\nQuestion: {input}

• Respond to these multiple-choice questions on scientific topics.
Conclude with ’X’, where X is the right letter choice.\n\nQuestion:
{input}

MathQA
• The following are multiple choice questions (with answers) about

math word problem. Finish your answer with ’X’ where X is the
correct letter choice. \n\nQuestion: {input}

• Below are multiple-choice questions about math word problems.
Answer with ’X’, X being the correct option. \n\nQuestion: {input}

• Solve these multiple-choice math word problems. Conclude with
’X’, where X is the right letter choice. \n\nQuestion: {input}

MMLU Pro-MATH
• The following are multiple choice questions (with answers) about

math. Finish your answer with ’X’ where X is the correct letter
choice. \n\nQuestion: {input}

• Below are multiple-choice math questions. Conclude your response
with ’X’, X being the correct option. \n\nQuestion: {input}

• Answer these math multiple-choice questions. Answer with ’X’,
where X is the right letter choice. \n\nQuestion: {input}

Crows-Pairs
• {input} \nQuestion: Which sentence is more stereotypical? Answer

A or B.
• {input} \nQuestion: Which sentence contains more stereotypical

content? Answer A or B.
• {input} \nQuestion: Identify the sentence with stronger

stereotypical elements. Respond with A or B.

BBQ-Age
• The following are multiple choice questions (with answers) about

social bias on age. Finish your answer with ’X’ where X is the
correct letter choice.\n\nQuestion: {input}

• The following are multiple-choice questions about age-related
social bias. Answer with ’X’, X being the correct
option.\n\nQuestion: {input}

• Answer these multiple-choice questions on social bias regarding
age. Conclude with ’X’, where X is the right letter
choice.\n\nQuestion: {input}

Ethics-
Commonsense

• {input} \nQuestion: Is this wrong? Answer Yes or No.
• {input} \nQuestion: Is this ethically incorrect? Respond with Yes or

No.
• {input} \nQuestion: Does this violate ethical norms? Answer Yes or

No.

Continued on next page
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Table 8 – continued from previous page

Task (Dataset) Template

Ethics-Justice
• {input} \nQuestion: Would most people believe this reasonable or

unreasonable to say? Answer Yes or No.
• {input} \nQuestion: Would the majority consider this statement

reasonable or unreasonable? Answer Yes or No.
• {input} \nQuestion: Is this statement generally perceived as

reasonable or unreasonable? Respond with Yes or No.

GLUE (SST-2)
• {input} \nQuestion: Is this sentence positive or negative? Answer

positive or negative.
• {input} \nQuestion: Does this sentence convey a positive or

negative sentiment? Answer positive or negative.
• {input} \nQuestion: Is the tone of this sentence positive or negative?

Respond with positive or negative.

GLUE (QNLI)
• {input} \nQuestion: Does this response answer the question?

Answer Yes or No.
• {input} \nQuestion: Is the response answer to the question? Answer

Yes or No.
• {input} \nQuestion: Does the given response address the question?

Respond with Yes or No.

GLUE (MNLI)
• {input} True, False or Neither?
• {input} Answer selecting from: True, False, or Neither?
• {input} Choose one as answer: True, False, or Neither?

SuperGLUE (WIC)
• {input} \nQuestion: Is the word used in the same way in the two

sentences above? Answer Yes or No.
• {input} \nQuestion: Is the word used similarly in both sentences

above? Respond with Yes or No.
• {input} \nQuestion: Does the word have the same meaning in the

two given sentences? Answer Yes or No.

SuperGLUE (RTE)
• {input} \nQuestion: Is the hypothesis correct based on the premise?

Answer True or False.
• {input} \nQuestion: Based on the premise, is the hypothesis

accurate? Respond with True or False.
• {input} \nQuestion: Does the premise support the hypothesis?

Answer True or False.

GLUE (COLA)
• {input} \nQuestion: Does this sentence make sense? Answer Yes or

No.
• {input} \nQuestion: Is this sentence logically coherent? Respond

with Yes or No.
• {input} \nQuestion: Evaluate if this sentence is meaningful. Reply

with Yes or No.

Continued on next page
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Table 8 – continued from previous page

Task (Dataset) Template

BBQ-Religion
• The following are multiple choice questions (with answers) about

social bias on religion. Finish your answer with ’X’ where X is the
correct letter choice.\n\nQuestion: {input}

• Here are multiple-choice questions addressing social biases related
to religion. Conclude your answer with ’X’, X being the correct
letter option.\n\nQuestion: {input}

• These questions explore social biases in the context of religion. End
your response with ’X’, where X represents the right letter
choice.\n\nQuestion: {input}

Deepmind
• The following are multiple choice questions (with answers) about

algebraic word problems. Finish your answer with ’X’ where X is
the correct letter choice.\n\nQuestion: {input}

• Below are multiple-choice questions testing algebraic word problem
solving skills. Conclude your answer with ’X’, X being the correct
option letter.\n\nQuestion: {input}

• These questions assess your ability to solve algebraic word
problems. End your response with ’X’, where X is the letter of the
right choice.\n\nQuestion: {input}

MMLU High School
Psychology

• The following are multiple choice questions (with answers) about
high school psychology. Finish your answer with ’X’ where X is the
correct letter choice.\n\nQuestion: {input}

• Below are multiple-choice questions testing high school level
psychology knowledge. Conclude your response with ’X’, X
representing the correct option.\n\nQuestion: {input}

• These questions assess understanding of high school psychology
concepts. End your answer with ’X’, where X is the letter of the
correct choice.\n\nQuestion: {input}

BBH Logical
Deduction Five
Objects

• A logical deduction task which requires deducing the order of a
sequence of objects. Finish your answer with ’X’ where X is the
correct letter choice.\n\nQuestion: {input}

• This challenge involves logically determining the sequence of a set
of objects. Conclude your response with ’X’, where X is the
appropriate letter option.\n\nQuestion: {input}

• In this logical reasoning exercise, deduce the correct order of a
series of objects. End your answer with ’X’, X being the right letter
choice.\n\nQuestion: {input}
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C Ablation Study: Effect of Small Model Capacity670

C.1 Influence of Generator Scale671

We study how the capacity of the small language model used to generate task vectors affects ATV’s672

performance. All main experiments in this paper use GPT-2 (137M) as the default generator. To673

assess the effect of generator capacity, we experiment with multiple GPT-2 variants while keeping674

the target model (LLaMA3) fixed, and evaluate on the in-domain benchmark. As shown in Table 9,675

larger models such as GPT-2-XL yield slightly better performance, but the gains over GPT-2 are676

marginal. This suggests that even lightweight generators suffice for producing effective task vectors,677

highlighting the parameter efficiency and practicality of ATV.678

Table 9: Effect of small model capacity on ATV performance. We evaluate four GPT-2 variants as
the small model for generating task vectors, with the LLaMA3 target model fixed. While GPT-2-XL
achieves the highest average accuracy, the smallest model (GPT-2, 137M) performs comparably,
indicating that lightweight models are sufficient for effective task vector generation and supporting
the parameter efficiency of ATV.

Model # Parameters NLU Reasoning Knowledge Math Safety Avg.

Llama3

GPT-2 137M 61.0 ± 5.0 76.1 ± 1.3 73.0 ± 1.6 25.8 ± 2.0 74.8 ± 0.4 62.1 ± 1.5
GPT-2-Medium 380M 61.2 ± 3.9 75.9 ± 1.4 72.0 ± 2.5 24.6 ± 1.8 68.1 ± 4.1 60.4 ± 1.3

GPT-2-Large 812M 62.1 ± 1.4 74.2 ± 0.6 72.4 ± 2.1 25.4 ± 1.9 72.7 ± 2.8 61.4 ± 0.5
GPT-2-XL 1.61B 63.8 ± 4.2 76.5 ± 1.6 73.9 ± 2.2 23.7 ± 0.8 73.1 ± 4.2 62.2 ± 0.6

We also evaluated the effect of using a substantially larger generator by replacing GPT-2 with Llama-679

3.2-3B. Despite the increase in scale and capacity, the average performance remained comparable680

as reported in Table 10. This demonstrates that a relatively small generator is sufficient to produce681

highly effective task vectors within our framework, highlighting the efficiency and adaptability of the682

ATV architecture.683

Table 10: Effect of generator model scale on ATV performance. We compare a lightweight
generator (GPT-2, 137M) with a significantly larger model (Llama-3.2-3B). The results show no
significant performance gains from using a much larger generator, providing strong evidence that a
compact model is sufficient for the ATV framework and highlighting its parameter efficiency.

Model # Parameters NLU Reasoning Knowledge Math Safety Avg.

Llama3 GPT-2 137M 61.0 ± 5.0 76.1 ± 1.3 73.0 ± 1.6 25.8 ± 2.0 74.8 ± 0.4 62.1 ± 1.5
Llama-3.2 3B 62.9 ± 4.1 73.4 ± 0.6 71.6 ± 1.4 25.6 ± 1.9 74.6 ± 0.7 61.6 ± 1.2

C.2 Influence of Generator Pretraining684

To examine the effect of pretraining, we substituted the pretrained GPT-2 generator with a randomly685

initialized transformer of identical architecture and trained it from scratch.686

Table 11: Impact of generator pretraining on ATV performance. We compare the default
pretrained GPT-2 generator with a randomly initialized transformer of the same architecture trained
from scratch. The results show that the non-pretrained generator performs comparably on average,
even surpassing the pretrained model on NLU and Reasoning tasks, but lags in knowledge-intensive
domains.

Generator NLU Reasoning Knowledge Math Safety Avg.

GPT-2 Pretrained 61.0 ± 5.0 76.1 ± 1.3 73.0 ± 1.6 25.8 ± 2.0 74.8 ± 0.4 62.1 ± 1.5
From scratch 62.7 ± 2.8 77.6 ± 0.9 71.1 ± 0.5 24.1 ± 1.7 74.6 ± 1.7 62.0 ± 0.5

As presented in Table 11, the non-pretrained generator achieves performance comparable to the687

pretrained version on average, and even exceeds it on NLU and Reasoning tasks. However, it688

underperforms in Knowledge and Math domains, where pretrained knowledge appears more influ-689

ential. These findings indicate that the capacity to generate effective task vectors can largely be690

learned without prior knowledge, though pretraining remains beneficial for tasks demanding factual691

or mathematical expertise.692
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D Analysis of Model Scalability693

To further validate the scalability of our approach, we conducted additional experiments on both694

smaller and larger language models. Specifically, we evaluated ATV using Pythia-2.8B and Llama-2-695

13B as backbone models. For Pythia-2.8B, we adopted results from the original ELICIT paper to696

ensure a fair and direct comparison on a widely used small-scale model.697

Table 12 summarizes the results. On Pythia-2.8B, ATV achieves consistently stronger or comparable698

performance across most categories and outperforms all baselines on average, demonstrating robust-699

ness even at smaller scales. For Llama-2-13B, ATV continues to show substantial gains over strong700

baselines, confirming that the benefits of our method persist at the 10B+ parameter scale. These701

results provide further evidence that the ATV framework is effective and robust across a broad range702

of model sizes.703

Table 12: Performance comparison on smaller (Pythia-2.8B) and larger (Llama-2-13B) models.
ATV demonstrates robust performance across different model scales. It achieves the highest average
accuracy on both models, outperforming strong baselines and confirming that its benefits persist from
smaller models to the 10B+ parameter scale.

Model NLU Reasoning Knowledge Math Safety Avg.

Pythia-2.8B

Zero-shot 43.0 ± 0.4 18.3 ± 0.3 22.0 ± 1.5 7.3 ± 0.1 32.5 ± 1.2 24.6 ± 0.4
16-shot 50.2 ± 0.5 19.6 ± 0.1 12.8 ± 0.9 9.2 ± 1.6 31.8 ± 0.9 24.7 ± 0.2
BM25 33.3 ± 2.2 25.8 ± 0.4 12.9 ± 0.5 11.0 ± 1.8 27.3 ± 2.1 22.1 ± 0.5

ELICIT 64.0 ± 1.6 23.6 ± 1.1 20.4 ± 1.4 14.5 ± 1.0 41.2 ± 2.5 32.7 ± 0.5
I2CL 53.8 ± 1.9 21.5 ± 3.9 28.6 ± 2.6 10.9 ± 0.7 41.4 ± 1.9 31.3 ± 2.2
ATV 49.3 ± 1.9 32.4 ± 1.6 32.1 ± 0.2 14.2 ± 0.5 47.4 ± 0.7 35.1 ± 0.5

Llama-2-13B

Zero-shot 23.7 ± 0.4 27.4 ± 0.3 18.7 ± 0.1 0.7 ± 0.1 28.1 ± 0.8 19.7 ± 0.1
16-shot 59.7 ± 0.8 43.8 ± 1.2 65.0 ± 1.1 18.0 ± 1.3 54.8 ± 0.1 48.3 ± 0.3
BM25 51.8 ± 1.2 46.1 ± 0.7 54.4 ± 1.2 17.4 ± 1.5 40.2 ± 1.3 42.0 ± 0.4

ELICIT 33.2 ± 0.3 40.7 ± 0.4 36.0 ± 1.1 12.7 ± 1.4 47.5 ± 1.5 34.0 ± 0.0
I2CL 51.6 ± 2.3 38.5 ± 2.6 51.6 ± 2.4 14.2 ± 0.6 48.6 ± 1.3 40.9 ± 0.7
ATV 64.0 ± 2.5 66.1 ± 2.2 67.1 ± 2.9 18.1 ± 5.0 73.0 ± 1.3 57.7 ± 0.7

E Analysis of Performance Gaps704

To investigate ATV’s relatively lower performance on Math tasks and to assess whether this reflects a705

limitation of the generator, we conducted an additional experiment focusing training specifically on706

Math datasets (MathQA and MMLU-Pro-Math). In this setting, we compared ATV and LoRA under707

two conditions: training on all tasks versus training exclusively on Math tasks.708

As summarized in Table 13, ATV shows a clear improvement in Math accuracy when trained only on709

Math data, whereas LoRA exhibits no such gain and in fact performs worse in the Math-only setting.710

These results demonstrate that ATV’s generator is capable of producing effective task vectors for711

complex procedural domains when given focused training. This suggests that its adaptivity is not712

constrained by model scale, but rather by the allocation of training data.713

Table 13: Effect of domain-specific training for Math category. We compare ATV’s performance
on Math tasks when trained on all tasks versus trained exclusively on Math datasets. Focused training
yields substantial improvements, indicating that ATV’s generator is not constrained by model scale
but rather benefits from appropriate training allocation.

Method Training Setup Math Accuracy

ATV All Tasks 25.8 ± 2.0
Math Only 28.9 ± 2.7

LoRA All Tasks 20.0 ± 1.1
Math Only 17.9 ± 1.9
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F Analysis of Output Reliability714

A model’s effectiveness in real-world applications depends not only on task accuracy but also on715

the reliability and consistency of its outputs. In this section, we evaluate two aspects of practical716

reliability: adherence to required output formats and consistency of responses to paraphrased prompts.717

F.1 Format Adherence718

Adhering to specified output formats is essential for many downstream tasks. We evaluated format719

adherence by measuring the percentage of outputs that matched the required structure on four datasets720

with diverse format requirements.721

As shown in Table 14, ATV achieves format adherence that is comparable to or exceeds ICL-based722

baselines. These results indicate that ATV improves accuracy without sacrificing the structural723

reliability of its outputs.724

Table 14: Quantitative analysis of format adherence. We measure the percentage of outputs that
correctly follow the specified format for each task. ATV demonstrates comparable or superior format
adherence to strong ICL-based baselines, confirming its versatility and reliability.

Dataset Zero-shot 16-shots BM25 ATV

Arc Challenge 69.11 97.44 98.00 100.00
CommonsenseQA 57.67 77.33 75.33 80.44
MMLU-Pro-Math 49.11 100.00 100.00 100.00

Ethics-commonsense 75.33 100.00 80.78 94.44

F.2 Output Consistency725

We further evaluated output consistency using the SCORE metric, which quantifies a model’s ability726

to provide stable answers across paraphrased prompts for the same question. We conducted this727

analysis on two datasets with distinct answer formats: one requiring binary (Yes/No) responses, and728

another involving categorical choices from a fixed set (A–J).729

As shown in Table 15, ATV consistently outperforms both zero-shot and ICL baselines on both730

types of datasets. This improvement suggests that data-adaptive task vector injection enhances the731

coherence and reliability of model outputs across varied input formulations.732

Table 15: Analysis of output consistency using the SCORE metric. We measure the model’s ability
to produce consistent answers to the same question phrased in different templates. ATV achieves
substantially higher consistency scores than both zero-shot and ICL baselines across datasets with
distinct answer formats.

Dataset Zero-shot 16-shots ATV

Ethics–commonsense 55.67 64.78 78.17
MMLU–Pro–Math 31.61 62.44 77.53
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G Adversarial Generalization on HANS733

To further examine ATV’s ability to generalize to adversarial and highly dissimilar tasks, we evaluated734

it on the HANS dataset. HANS is designed to test whether natural language inference models rely on735

superficial heuristics or perform robust reasoning, making it a challenging benchmark for approaches736

that rely on retrieving pre-computed task vectors or demonstrations.737

Table 16: Performance on the adversarial HANS dataset. While retrieval-based and static-
vector baselines fail catastrophically, ATV maintains robust performance, demonstrating its superior
generalization to adversarial inputs.

Method HANS Accuracy

Zero-shot 8.3 ± 0.5
BM25 0.4 ± 0.1

ELICIT 0.4 ± 0.1
I2CL 0.3 ± 0.1
ATV 59.6 ± 2.8

The results are summarized in Table 16. While ATV achieves strong performance, baseline methods738

collapse due to the following failure modes:739

• ELICIT / I2CL: These methods rely on retrieving a pre-computed vector from a fixed740

library of in-domain tasks. For an unseen, adversarial task like HANS, no relevant vector741

exists. Their retrieval mechanism defaults to finding the most syntactically similar but742

semantically incorrect vector. For instance, ELICIT retrieved a vector from GLUE-MNLI,743

and I2CL from MathQA. Injecting this mismatched guidance fundamentally misdirects the744

model, forcing it to follow instructions for the wrong task and leading to catastrophic failure.745

• BM25: This retrieval-based ICL method shows a similar flaw. It retrieves full demonstration746

examples from in-domain tasks. For HANS queries, it retrieved examples from other NLU747

tasks that do not share HANS’s adversarial structure, providing misleading context that748

disrupts the model’s reasoning.749

In contrast, ATV achieves robust performance by generating task vectors on the fly, rather than750

relying on a fixed pool of pre-computed vectors. This allows the model to construct a meaningful751

representation even for adversarial inputs, enabling correct reasoning where static methods collapse.752

These results underscore the robustness of ATV’s adaptive mechanism and its ability to handle tasks753

that break traditional retrieval-based or static task vector approaches.754
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