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Abstract

In this paper, we study the problem of unlabelled compressed sensing, where the corre-
spondence between the measurement values and the rows of the sensing matrix is lost, the
number of measurements is less than the dimension of the regression vector, and the regres-
sion vector is sparse in the identity basis. Additionally, motivated by practical situations, we
assume that we accurately know a small number of correspondences between the rows of the
measurement matrix and the measurement vector. We propose a tractable estimator, based
on a modified form of the Lasso, to estimate the regression vector, and we derive theoretical
error bounds for the estimate. This is unlike previous approaches to unlabelled compressed
sensing, which either do not produce theoretical bounds or which produce bounds for in-
tractable estimators. We show that our algorithm outperforms a hard thresholding pursuit
(Htp) approach and an ℓ1-norm estimator used to solve a similar problem across diverse
regimes. We also propose a modified Htp based estimator which has superior properties to
the baseline Htp estimator. Lastly, we show an application of unlabelled compressed sensing
in image registration, demonstrating the utility of a few known point correspondences.

1 Introduction

Estimation of an unknown vector β∗ ∈ Rp from its (possibly noisy) linear measurements Aβ∗ ∈ RN , where
A ∈ RN×p is the measurement matrix, is a well-studied problem that naturally arises in numerous fields.
However, in some scenarios, the correspondences between the rows of the measurement matrix and the
measurements get partially or entirely lost due to errors made during the measurement process. Specifically,
the permuted and noisy measurements are given as

y = P Aβ∗ + w, (1)

where w ∈ RN is the measurement noise vector and P ∈ RN×N denotes an unknown permutation ma-
trix. Hence, the problem reduces to that of estimating the unknown regression vector from an unknown
permutation of its measurements. This problem, known as unlabelled sensing, appears in applications such
as simultaneous localization and mapping in robotics Thrun & Leonard (2008), record linkage Lahiri &
Larsen (2005), image or point cloud registration Pan & Zhang (2005); Li et al. (2021), security and pri-
vacy Narayanan & Shmatikov (2008), and simultaneous pose and correspondence determination in computer
vision Marques et al. (2009).

Unlabelled sensing is well studied theoretically in the over-determined regime where N > p and typically,
under the assumption that the entries of A are drawn i.i.d. from an arbitrary continuous probability
distribution. Within these settings and without measurement noise, Unnikrishnan et al. Unnikrishnan et al.
(2018) and Han et al. Han et al. (2018) state that every β∗ ∈ Rp can be uniquely recovered with probability
one from its measurements P Aβ∗ if N ≥ 2p. Under some more assumptions on β∗, the condition N ≥ 2p
can be relaxed to N ≥ p + 1 Tsakiris & Peng (2019). The over-determined unlabelled sensing problem is
challenging in the presence of noise. In Pananjady et al. (2018); Hsu et al. (2017), authors have derived
lower bounds on the signal-to-noise ratio (SNR) for approximate recovery of β∗. Algorithms to solve the
problem for different values of p are suggested in Peng & Tsakiris (2020); Tsakiris & Peng (2019); Candes
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& Tao (2005); Slawski & Ben-David (2019). Sresth et al. (2024) extends the approach in Slawski & Ben-
David (2019) by assuming that some correspondences between the rows of the measurement matrix and
measurement vector are known.

An under-determined unlabelled sensing problem, where N < p, can be solved with some additional priors
on β∗. To the best of our knowledge, Peng et al. (2021) is the only work in the context of unlabelled
compressive sensing. In Peng et al. (2021), the authors assumed that β∗ is k-sparse (i.e., it has at most k
non-zero elements) and showed that N ≥ 2k measurements are sufficient for unique recovery in the absence of
noise. Interestingly, the result is analogous to that proved for the over-determined unlabelled sensing problem
from Unnikrishnan et al. (2018). On the algorithmic side, a hard-thresholding pursuit-based approach is
proposed for unlabelled compressive sensing in Peng et al. (2021). However, no theoretical error bounds
on the performance of their algorithm are established in Peng et al. (2021), and moreover, their algorithm
involves a computationally expensive ℓ1-norm optimization step to determine the unknown vector β∗. Also,
Peng et al. (2021) employs a subgradient method in their algorithm where the function value may not always
decrease across the iterations of the algorithm, as mentioned in their paper.

Possible Prior Information: In several unlabelled sensing applications, such as image alignment, record-
linkage, etc., we encounter sparse permutation scenarios, that is, the correspondence between the measure-
ments in y and the rows of A is incorrect for only a small fraction of measurements. Equivalently, we
have that ∥P Aβ∗ − Aβ∗∥0 ≪ N . Moreover, in many applications, some of the correspondences between
the rows of A and the rows of y are known a priori. For example, in the image alignment problem, many
point correspondences in the two images being matched are obtained via feature point matching methods
Lowe (2004), with permutations often occurring due to factors such as image self-similarity (i.e., similarity
of patches in distant image regions). However, a domain expert can manually mark a few corresponding
point pairs in the fixed and moving images, thus yielding some measurements with correspondences known
in advance.

Nguyen & Tran (2012) propose a robust form of least absolute shrinkage and selection operator (Lasso),
which can estimate the sparse regression vector from its grossly corrupted linear measurements. Treating the
permuted measurements as gross corruptions, robust Lasso can be employed to solve unlabelled compressed
sensing problems. However, as motivated previously, if there is a prior knowledge of some correspondences
between the rows of A and the rows of y, robust Lasso is not able to make use of it. A natural question
is how the prior knowledge of some correspondences would improve the estimation of β∗. Such questions
are answered in an over-determined setup in Sresth et al. (2024). However, these questions are still open to
under-determined, unlabeled sensing problems.

1.1 Our Contribution

Our paper presents the following contributions:

1. We propose two algorithms to solve the unlabelled compressed sensing problem which can make use
of known correspondences is available:
(i) Augmented Robust Lasso (Ar-Lasso), a modification of the standard least absolute shrinkage

and selection operator (Lasso).
(ii) Augmented Hard Thresholding Pursuit (A-Htp) which involves a gradient-descent step and

computationally cheaper ℓ2-norm optimization step, rather than subgradient-method and ℓ1-
norm optimization as required in the earlier approach proposed in Peng et al. (2021).

Ar-Lasso is suitable for both compressible and perfectly sparse regression vectors, unlike the earlier
approach in Peng et al. (2021), which works only for perfectly sparse regression vectors. However,
A-Htp can work only in the case of perfectly sparse regression vectors. Note that Ar-Lasso and
A-Htp algorithms are applicable even when there are no correspondences known. Moreover, apart
from the unlabelled sensing problem, our algorithms are applicable in any regression problem where
some measurements are grossly corrupted, and the measurements can be separated into two disjoint
sets: (i) measurements without any gross corruption and (ii) measurements with possible gross
corruption.
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2. For both Ar-Lasso and A-Htp algorithms, we derive theoretical upper bounds on the estimation
error of the unknown vector in terms of the number of measurements N , number of permutations
s, dimension of the unknown vector p, sparsity of the unknown vector k, number of known cor-
respondences m and measurement noise variance σ2. Specifically, for Ar-Lasso, we characterize
the notion of a generalized, extended, restricted eigenvalue condition (Gerec), which enables us
to prove performance guarantees for the algorithm. Gerec is a generalisation of the extended,
restricted eigenvalue condition studied in Nguyen & Tran (2012), to a scenario where some of the
correspondences are (possibly) known in advance. We show that the family of Gaussian measurement
matrices obeys Gerec with a high probability. We compare our error bounds to those obtained in
Nguyen & Tran (2012) and demonstrate that the information of known correspondences allows us
to tolerate a larger number of permutations and also results in a lower estimation error.

3. Further, we demonstrate a geometric convergence result for A-Htp under the condition that the
sensing matrix obeys some form of restricted isometry property. A-Htp involves joint-estimation
of x∗, which is a row concatenation of β∗ and the permutation corruption vector, through an

augmented matrix
[

A
0m×(N−m)

I(N−m)×(N−m)

]
. In order to exploit the distribution of non-zero entries

in x∗, we introduce a notion of structured-sparsity restricted isometry property. Following this, we
demonstrate that N ≥ C(k log (p/3k)+s log (n/3s)) is a sufficient condition for an accurate recovery
via A-Htp, which is a more relaxed requirement than N ≥ C((k + s) log p+n

3(k+s) ) which is what one
obtains from a naive analysis without exploiting the specific sparsity structure of x∗.

4. Next, we compare our algorithms to the ℓ1-norm hard-thresholding pursuit approach from Peng et al.
(2021) and to another ℓ1-norm-based estimator motivated from Candes & Tao (2005), across diverse
regimes. We demonstrate that our algorithms outperform them across all the regimes examined.

5. Lastly, we demonstrate the impact of utilizing known correspondences in an image registration task.
For this task, the problem of unlabeled compressed sensing with sparse permutations and a set of
priors is especially relevant in the following manner: (i) In many image registration tasks, a domain
expert can mark out a few point correspondences accurately. This provides prior information for
the regression problem. (ii) In image registration, the underlying motion vector fields are sparse
or compressible in universal dictionaries such as the discrete Fourier transform or discrete cosine
transform James et al. (2019). If salient feature point tracking is used for obtaining point correspon-
dences, then the motion vectors at only a small set of points (in the image domain) are observed.
This is therefore a compressed sensing or sparse recovery problem. (iii) A fraction of the computed
point correspondence pairs suffer from permutation effects due to factors like self-similarity. This
is therefore an unlabeled sensing problem where the permutation set is sparse. For more details on
this, please refer to Section 1 and Figure 1 of the supplemental material.

2 Problem Formulation and Notations

Consider a set of linear measurements as in Eq. 1 with N < p and the following assumptions:

(C1) w ∼ N (0, σ2IN ) and Ai ∼ N (0, Σ) where Ai ∈ Rp is the i-th row of the measurement matrix A,
and IN stands for the N × N identity matrix. We denote the smallest eigenvalue of Σ by Cmin(Σ),
the largest eigenvalue of Σ by Cmax(Σ) and the largest entry on the diagonal of Σ by ξ(Σ).

(C2) The regression vector β∗ is k-sparse where k need not be known in advance. We denote the support
of non-zero entries of β∗ by the set T .

(C3) Any m out of N measurements have accurate correspondences where m < p. Without loss of
generality, we assume that the correspondences of the top m measurements are accurate, that is,
yi = Aiβ∗ + wi for i = 1, 2, . . . , m.

(C4) In the remaining n = N − m < p measurements, at most s ≪ n measurements have incorrect
correspondences. However, we do not know the value of s and which s measurements have incorrect
correspondences.
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With assumptions (C1)-(C4), we decompose y in Eq. 1 as

y1 = A1β∗ + w1 and y2 = P2A2β∗ + w2, (2)

where y1 ∈ Rm denotes the sub-vector of measurements with known correspondences, y2 ∈ Rn is the sub-
vector of remaining measurements (with m + n = N) and P2 ∈ Rn×n is an unknown permutation matrix.
We denote y :=

[
yT

1 yT
2

]T
, A :=

[
AT

1 AT
2

]T and w :=
[
wT

1 wT
2

]T . For further analysis, define the
permutation corruption vector as

z∗ =
√

ne∗ := (P2A2β∗ − A2β∗) ∈ Rn. (3)

The assumption (C4) implies that e∗ is s-sparse. We denote the support of non-zero entries of e∗ by the
set S. Using Eq. 3, we can write Eq. 2 as y2 = A2β∗ +

√
ne∗ + w2. The goal is to estimate β∗ under

assumptions (C1)-(C4). To this end, we provide the formulations for Ar-Lasso and A-Htp algorithms in
the next sections.

3 Augmented Robust Lasso

With the introduction of e∗, the objective of estimating β∗ from y under assumptions (C1)-(C4) is posed as
a convex optimization problem. Specifically, we propose to minimize an augmented, robust, least-absolute
shrinkage and selection operator (Ar-Lasso)-based objective function, given by:

L(β, e) := 1
2m

∥y1 − A1β∥2
2 + 1

2n
∥y2 − A2β −

√
ne∥2

2 + λβ∥β∥1 + λe∥e∥1. (4)

Here, the first two terms are data-fit terms, and ∥β∥1, ∥e∥1 are the sparsity-promoting terms in the regression
vector and corruption vector, respectively. Next, we formulate the optimization problem as

(β̃, ẽ) := arg min
β∈Rp,e∈Rn

L(β, e). (5)

The question remains, under what conditions Ar-Lasso is able to estimate β∗ with a low error? In the next
subsection, we discuss the generalized, extended, restricted eigenvalue condition based on which we present
theoretical guarantees for Ar-Lasso to answer such questions.

3.1 Theoretical Guarantees for Ar-Lasso

First, define set C := {(h, f) ∈ (Rp ×Rn) such that ∥hT C ∥1 +λ∥fSC ∥1 ≤ 3∥hT ∥1 +3λ∥fS∥1} where λ = λe

λβ
.

It can be shown that the error term (β̃ − β∗, ẽ − e∗) belongs to the set C (see the supplemental material)
and hence expectedly, the theoretical guarantees for Ar-Lasso rely on the following two key properties of
sensing matrix A over the restricted set C:

(1) Generalised, extended, restricted eigenvalue condition (Gerec): We say that the mea-
surement matrix A obeys the generalized, extended, restricted, eigenvalue condition on the restricted
set C if there exists ke > 0 such that ke(∥h∥2

2 + ∥f∥2
2) ≤ 1

N ∥Ah∥2
2 + n

N ∥f∥2
2 ∀ (h, f) ∈ C. Recall that

n ≤ N . The above condition is a generalisation of the extended, restricted eigenvalue condition studied
in Nguyen & Tran (2012), to the scenario where some of the correspondences are known, that is when
n ≤ N . To give more context, we use the above condition with (h, f) := (β̃ − β∗, ẽ − e∗) for theoretical
analysis of Ar-Lasso. Essentially, f plays the role of error in estimation of the permutation corruption
vector z∗ := P2A2β∗ − A2β∗. Note the difference between Gerec and the extended, restricted eigenvalue
condition in Nguyen & Tran (2012). In Nguyen & Tran (2012), the authors assume that each of the N
measurements can undergo gross corruption and the aim is to lower-bound the term ( 1

N ∥Ah∥2
2 + ∥f∥2

2)
where A ∈ RN×p, h ∈ Rp and f ∈ RN (see comment 3(a) after Lemma 1 in Nguyen & Tran (2012)). On
the other hand, we have assumed knowledge of m correspondences, and hence, we are only concerned with
permutation errors in the remaining n = N − m measurements. Due to this, we have f ∈ Rn as opposed to
f ∈ RN as in Nguyen & Tran (2012). Alternatively, our f can be thought of as an N -dimensional vector
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whose top m entries are zero. When none of the correspondences are known, that is, when m = 0, n = N ,
the generalized, extended, restricted eigenvalue condition reduces to the extended, restricted eigenvalue
condition defined in Nguyen & Tran (2012).

(2) Mutual incoherence condition (Mic) Nguyen & Tran (2012): We require that there exists
km > 0 such that: 1√

n
|⟨A2h, f⟩| ≤ km(∥h∥2 + ∥f∥2)2 ∀ (h, f) ∈ C. We refer to km > 0 as the mutual

incoherence constant. The mutual incoherence condition allows decoupling the two error terms ∥β̃ − β∗∥2
and ∥ẽ − e∗∥2 given that we use (h, f) := (β̃ − β∗, ẽ − e∗) for theoretical analysis of Ar-Lasso.
Next, the question arises: Under what conditions does a measurement matrix obey Gerec and Mic? It
can be shown that the family of Gaussian sensing matrices satisfies Gerec with suitable assumptions on
(N, m, s, k). To this end, we state the following lemma (proof in supplemental material):

Lemma 1 (Generalised, extended, restricted eigenvalue condition). Consider the Gaussian sens-
ing matrix A ∈ RN×p whose rows are i.i.d. N (0, Σ). We have the set C := {(h, f) ∈ (Rp ×
Rn) such that ∥hT C ∥1 + λ∥fSC ∥1 ≤ 3∥hT ∥1 + 3λ∥fS∥1} with |T | = k and |S| = s as defined earlier.
Select λ = ρ

√
n
N

log n
ξ(Σ) log p , where ρ ∈ (0, 1) is a constant. If s ≤ c1

N
ρ2 log n and N ≥ c2

ξ(Σ)
Cmin(Σ) k log p, then

the following inequality holds with probability at least 1 − c3 exp (−c4N): min
(

Cmin(Σ)
128 , n

8N

)
(∥h∥2

2 + ∥f∥2
2) ≤

1
N ∥Ah∥2

2 + n
N ∥f∥2

2 ∀ (h, f) ∈ C, where c1, c2, c3, c4 are positive constants.

We make the following observations: (i) We reiterate that the knowledge of m correspondences requires us
to only consider f ∈ Rn as opposed to considering f ∈ RN . As a result, the sensing matrix A obeys Gerec
with a larger tolerance on s, that is, s ≤ c1

N
ρ2 log n = c1

N
ρ2 log (N−m) . As m increases, a larger number of

permutations can be tolerated. (ii) In the absence of known correspondences, that is, when n = N , the
requirement on s becomes s ≤ c1

N
ρ2 log N which is consistent with that obtained in Lemma 1 of Nguyen &

Tran (2012). (iii) The choice of λ follows from Theorem 1 in the next section.

Moreover, Nguyen & Tran (2012) prove that the family of Gaussian sensing matrices also satisfies the mutual
incoherence condition, again with some suitable assumptions on (n, s, k). For the sake of completeness, we
state the following lemma:

Lemma 2 (Mutual incoherence condition Nguyen & Tran (2012)). Consider the Gaussian sens-
ing matrix A2 ∈ Rn×p whose rows are i.i.d. N (0, Σ). We have the set C = {(h, f) ∈ (Rp ×
Rn) such that ∥hT C ∥1 + λ∥fSC ∥1 ≤ 3∥hT ∥1 + 3λ∥fS∥1} with |T | = k and |S| = s as defined earlier. Select

λ = ρ
√

n
N

log n
ξ(Σ) log p , where ρ ∈ (0, 1) is a constant. Assume that s ≤ min

(
N
n

ξ(Σ)
Cmin(Σ)

k log p
ρ2 log n , c5

Cmin(Σ)
Cmax(Σ) n

)
and n ≥ c6ξ(Σ) Cmax(Σ)

C2
min(Σ) k log p for some sufficiently small positive constant c5 and sufficiently large con-

stant c6, then the following inequality holds with probability greater than 1 − exp (−c7n): 1√
n

|⟨A2h, f⟩| ≤
km(∥h∥2+∥f∥2)2 ∀ (h, f) ∈ C, where c7, km are positive constants. We refer to km as the mutual incoherence
constant.

We pick the above lemma from Nguyen & Tran (2012) with a slight change in the expression for λ to suit
our problem. Note that the expression for λ naturally follows from the theoretical analysis of Ar-Lasso (see
Theorem 1). Consequently, to obey the mutual incoherence condition, the requirement on s gets relaxed,
that is, s ≤ N

n
ξ(Σ)

Cmin(Σ)
k log p

ρ2 log n = N
N−m

ξ(Σ)
Cmin(Σ)

k log p
ρ2 log n . As m increases, more permutations can be tolerated.

For a consistency check, setting m = 0 gives us the same upper limit on s as obtained in Lemma 2 in Nguyen
& Tran (2012).

Now, since we have established that the family of Gaussian sensing matrices obey Gerec and Mic with
a high probability, we move on to state the theoretical guarantees for Ar-Lasso. Given the optimization
problem Eq. 5, we present an upper bound on the estimation error ∥β̃ − β∗∥2 + ∥ẽ − e∗∥2 in the following
theorem:
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Theorem 1. Consider the optimization problem Eq. 5 and the observation model Eq. 1 under the
assumptions (C1)-(C4). Select λβ = 2

ρ
∥AT w∥∞

N and λe = 2
√

n
N ∥w2∥∞. Assume that s ≤

min
(

c1
N

ρ2 log n , N
n

ξ(Σ)
Cmin(Σ)

k log p
ρ2 log n , c5

Cmin(Σ)
Cmax(Σ) n

)
and that N ≥ c2

ξ(Σ)
Cmin(Σ) k log p, n ≥ c6ξ(Σ) Cmax(Σ)

C2
min(Σ) k log p,

so that A2 satisfies Mic with sufficiently small mutual incoherence constant km such that km <

min
(

N
n

Cmin(Σ)
512 , 1

32

)
, and A satisfies Gerec with constant ke > 0. Then there exists positive constant

kl > 0 such that the following inequality holds with probability greater than 1 − 2/p − 2/n:

∥β̃ − β∗∥2 + ∥ẽ − e∗∥2 ≤ 6σk−2
l max

(
1
ρ

√
ξ(Σ)k log p

N
,

√
n

N

s log n

N

)
. (6)

A few insights on the theorem are in order:

1. In the noiseless scenario (σ = 0), the error term turns out to be zero. And hence, exact recovery
of (β∗, e∗) is possible with a high probability. In the case of noisy measurements, note that the
estimation error scales linearly with the measurement noise standard deviation σ.

2. For fixed p, m and n, the error term scales as max(
√

k,
√

s), i.e. sparser β∗ and e∗ yield more
accurate reconstructions.

3. As pointed out earlier, the m known correspondences allow A to obey Gerec and Mic with a higher
tolerance on s. These are sufficient conditions for error bounds for Ar-Lasso in Theorem 1 to hold.
Moreover, note that the term

√
n
N

s log n
N in Eq. 6 decreases as more correspondences are known. The

higher the value of m is for a fixed n or a fixed N , the lower is the estimation error.

4. ρ is a positive constant that controls the sparsity level in the regression vector and sparse error
vector. If there are a large number of permutations expected, then a larger value of ρ should be
used for specifying λβ and vice-versa.

5. The choice of λ in Lemma 1 and Lemma 2 follows from the expressions for λβ and λe in Theorem
1. From the Gaussian concentration results, we know that ∥AT w∥∞ ≤ 2σ

√
ξ(Σ)N log p with

probability at least 1 − 2/p and ∥w2∥∞ ≤ 2σ
√

log n with probability at least 1 − 2/n. Plugging the
expressions in λ = λβ/λe gives us λ = ρ

√
n
N

log n
ξ(Σ) log p . On the other hand, Nguyen & Tran (2012)

selects λ = ρ
√

log N
ξ(Σ) log p which is same when we put m = 0 in our expression for λ.

6. When no correspondences are known in advance, that is, m = 0 and n = N , we get the same error
bound as obtained in Corollary 1 in Nguyen & Tran (2012).

7. Our approach casts unlabeled sensing with sparse permutations in a structured sparsity framework.
This theorem presents performance bounds for it. The particular form of structured sparsity consid-
ered here is different from forms such as tree-structured and block-structured sparsity as analyzed
in previous works like Baraniuk et al. (2010).

4 Augmented Hard-Thresholding Pursuit

Note that under assumptions (C1)-(C4), y can be re-written as

y = Hx∗ + w, where H :=
[
A1 0m×n

A2 In×n

]
is the augmented matrix and x∗ :=

[
β∗T z∗T

]T . Recalling the notation y :=
[
yT

1 yT
2

]T and w :=[
wT

1 wT
2

]T , the problem of estimation of x∗ can be posed as

arg min
x=[ βT zT ]T

β∈Rp,z∈Rn

∥y − Hx∥2 s.t. ∥β∥0 ≤ k, ∥z∥0 ≤ s. (7)
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Algorithm 1 Augmented Hard-Thresholding Pursuit
Input: Measurement vector y, augmented matrix H, sparsity level k and number of permutations s (both
k and s can be estimated via cross-validation – see Sec. 5 under ‘Choice of parameters’)
Parameter: Learning rate µ
Output: Estimate of β∗

1: x(0) = 0, t = 0.
2: while not converged do
3: l(t+1) = x(t) − µHT (Hx(t) − y)
4: S(t+1) = {indices of k largest entries of l(t+1)(1 : p)} ∪ {indices of s largest entries of l(t+1)(p + 1 :

p + n)}
5: x(t+1) = arg min

x∈Rp+n s.t.
support(x)⊆S(t+1)

∥Hx − y∥2

6: t = t + 1
7: end while
8: return x(t)(1 : p)

We solve Eq. 7 using a modified form of the hard thresholding pursuit approach Foucart (2011) to suit the
specific sparsity structure of our problem. The complete procedure is presented in Alg. 1. We refer to this
approach as Augmented Hard Thresholding Pursuit or A-Htp, as it involves sparse recovery of an unknown
vector (that is x∗ here) using the augmented matrix H. In Alg. 1, we note that (i) Step 2 is a standard
gradient descent step where µ is the specified learning rate; (ii) Step 3 determines the support of β by
selecting the indices corresponding to the k largest absolute-value entries in x(1 : p), and the support of e by
selecting the indices corresponding to the s largest absolute-value entries in x(p+1 : p+n). The two support
sets are combined to obtain the support set of x; (iii) Step 5 is the debiasing step, and it re-estimates x over
the support obtained in the previous step. This step involves computing the Moore-Penrose pseudo inverse of
some column-submatrix of H, which is computationally cheaper than the ℓ1-norm optimization step required
in Peng et al. (2021). Moreover, Peng et al. (2021) employs the subgradient method in their algorithm where
the function value may even increase, whereas our A-htp is a gradient-descent-based method. In the next
subsection, we provide a theoretical convergence analysis for A-Htp.

4.1 Convergence Analysis for A-Htp

In the compressed sensing framework, a condition for an accurate recovery of the unknown vector is typically
based on the restricted isometry property (RIP) of the measurement matrix Candes & Tao (2005). A-Htp
is inherently a compressed sensing algorithm. In this subsection, we state a theoretical guarantee on the
recovery of x∗ via A-Htp using some form of the restricted isometry constant (RIC) of the augmented
measurement matrix H. First, we recall the definition of RIC of a matrix. A matrix A ∈ RN×p is said to
satisfy the RIP of order t if there exists a constant δt ∈ (0, 1) such that

(1 − δt)∥y∥2
2 ≤ ∥Ay∥2

2 ≤ (1 + δt)∥y∥2
2, (8)

holds for every t-sparse y ∈ Rp. The smallest constant δt for which this holds is called the order-t RIC of the
matrix A. In other words, the application of A on any t-sparse vector approximately preserves the vector’s
norm.

Interestingly, in our problem, there is some structure in the distribution of non-zero entries in x∗, that is,
∥x∗(1 : p)∥0 ≤ k and ∥x∗(p + 1 : p + n)∥0 ≤ s. To exploit this structured sparsity, we characterize a notion
of structured-sparsity, restricted isometric property (SS-RIP) in the following definition.
Definition 1. We say that the matrix H obeys the structured-sparsity, restricted isometric property (SS-
RIP) of order [(p, k), (n, s)] if there exists a restricted isometry constant δ := δSS

[(p,k),(n,s)] ∈ (0, 1) such that

(1 − δ)∥g∥2
2 ≤ ∥Ag∥2

2 ≤ (1 + δ)∥g∥2
2, (9)

holds for every (k + s)-sparse g ∈ Rp+n with ∥g(1 : p)∥0 ≤ k and ∥g(p + 1 : p + n)∥0 ≤ s.
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With this, we state a geometric convergence result on A-Htp:
Theorem 2. Consider the Gaussian sensing matrix A whose entries are i.i.d. N (0, 1/N). Suppose that
δSS

[(p,3k),(n,3s)] of the augmented measurement matrix H satisfies δSS
[(p,3k),(n,3s)] ≤ 1√

3 . Then the sequence x(t)

defined by A-Htp satisfies the following inequality ∀ t ≥ 0:

∥x(t) − x∗∥2 ≤ γn∥x(0) − x∗∥2 + τ
1 − γn

1 − γ
∥w∥2, (10)

where τ :=

√
2
(
1 − δSS

[(p,2k),(n,2s)]
)

+
√

1 + δSS
[(p,k),(n,s)]

1 − δSS
[(p,2k),(n,2s)]

and γ :=

√√√√ 2δSS
[(p,3k),(n,3s)]

2

1 − δSS
[(p,2k),(n,2s)]

2 < 1.

The proof of the above theorem follows along the lines of the work in Foucart (2011). The following lemma
(proved in the supplemental material) outlines under what scenarios the augmented matrix H satisfies the
criterion δSS

[(p,3k),(n,3s)] ≤ 1√
3 .

Lemma 3. Consider the Gaussian sensing matrices A1 ∈ Rm×p and A2 ∈ Rn×p with i.i.d. N (0, 1/N)

entries. There exist positive constants c8, c9 such that the augmented matrix H :=
[
A1 0m×n

A2 In×n

]
satisfies the

structured-sparsity restricted isometry property (SS-RIP) of order [(p, k), (n, s)] provided that k log (p/k) +
s log (n/s) ≤ c8N , with probability at least 1 − 3 exp (−c9N). The constants c8, c9 depend on the RIC δ.
Equivalently, we have the following result:

P
(

(1−δ)∥x∥2
2 ≤ ∥Hx∥2

2 ≤ (1+δ)∥x∥2
2 for all x with ∥x(1 : p)∥0 ≤ k and ∥x(p+1 : p+n)∥0 ≤ s

)
≥ 1−3 exp (−c9N).

(11)

We offer the following remarks:

1. From Lemma 3, we require that N ≥ C(k log (p/3k) + s log (n/3s)) for H to obey SS-RIP of order
[(p, 3k), (n, 3s)]. And hence, from Theorem 2, it follows that N ≥ C(k log (p/3k) + s log (n/3s)) is
sufficient for an accurate recovery of x∗ via A-Htp.

2. Since n = N −m, the requirement N ≥ C(k log (p/3k)+s log (n/3s)) relaxes as more correspondences
are known.

3. In the scenario n = 0, that is, when all the correspondences are known, the problem simplifies to the
standard compressed sensing problem. Consequently, we require N ≥ C(k log (p/3k)) measurements
for an accurate recovery of β∗, which is consistent with the well-known requirement for compressed
sensing via HTP.

Comparison with the standard RIP condition. Note that if we do not exploit the specific sparsity
structure in x∗, a condition on an accurate recovery of x∗ via A-HTP is that the matrix H should satisfy
RIP of order 3(k+s) Foucart (2011), which requires N ≥ C(k+s) log (p + n)/(3(k + s)). On the other hand,
by exploiting the sparsity structure in x∗, we demonstrate that N ≥ C(k log (p/3k)+s log (n/3s)) is sufficient
for an accurate recovery of x∗ via our A-Htp algorithm. This is less than C(k + s) log (p + n)/(3(k + s)).

5 Numerical Experiments

In order to assess the impact made by knowledge of known correspondences, we compare Ar-Lasso from
Eq. 5 and A-Htp from Alg. 1 to the following estimators, none of which use the prior information of known
correspondences.:

(i) The robust Lasso (R-Lasso) estimator given by arg min
β∈Rp

1
2N ∥y − Aβ −

√
ne∥2

2 + λβ∥β∥1 + λe∥e∥1,

which is effectively Ar-Lasso with m = 0.
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Figure 1: A comparison of the algorithms for unlabelled compressive sensing problem: The error plots as a
function of (a) the number of measurements N , (b) the noise level in terms of fr, and (c) the permutation
level, show that using known correspondences as in ℓ2-Htp and Ar-Lasso, results in a lower reconstruction
error.

(ii) The ℓ1-norm hard thresholding pursuit approach in Peng et al. (2021) that minimizes ∥y − Aβ∥1
w.r.t. β ∈ Rp such that ∥β∥0 ≤ k. We refer to this approach as ℓ1-Htp.

(iii) The ℓ1 − ℓ1 estimator motivated from Candes & Tao (2005); Candes et al. (2005) that is posed as
arg min

β∈Rp

∥y − Aβ∥1 + λβ∥β∥1.

We refer to our algorithm A-Htp henceforth as ℓ2-Htp to distinguish it from ℓ1-Htp. We use CVXPY
Diamond & Boyd (2016) to solve all the optimization problems. Also, note that by definition of the concept
of permutation, we have a zero-sum constraint (referred to as ZSC henceforth) on e given by

∑n
i=1 ei = 0. It is

worth investigating whether this information helps to improve the estimate of β∗. To this end, we incorporate
this additional hard constraint in the Ar-Lasso and R-Lasso estimators, yielding two additional variants.

Data generation: In all the experiments, the entries of A and the non-zero values of β∗ are sampled from
N (0, 1). P2 is generated by randomly sampling from the family of s-sparse permutation matrices. The
entries of w are independently sampled from N (0, σ2) where σ := fr× the mean absolute value of the entries
of the noiseless measurement vector P Aβ∗ with fraction fr ∈ (0, 1).

Choice of parameters: The regularization parameters λβ and λe in Ar-Lasso, Lasso and ℓ1 − ℓ1 al-
gorithms are chosen through cross-validation on a held-out set of 5 measurements. Also note that ℓ1-Htp
and ℓ2-Htp require the knowledge of (k, s), which are typically unknown in practice but can be chosen via
cross-validation. In our experiments, we observe that cross-validation overestimates (k, s) by a factor of 2.
Hence, we directly set (k, s) to twice of their true value in the ℓ1-Htp and ℓ2-Htp algorithms. We select the
learning rate in ℓ1-Htp and ℓ2-Htp through cross-validation. The number of iterations in ℓ1-Htp is set to
200, and that in ℓ2-Htp is set to 100. We always observed convergence within these iteration counts.

Evaluation metric: The evaluation metric used for all simulations is the relative reconstruction error
(RRMSE) ∥β̃−β∗∥2

∥β∗∥2
, where β̃ is an estimate of β∗. We report the RRMSE averaged over 50 randomly chosen

instances of P2, with each permutation instance averaged over 50 random instances of measurement noise
w.

Results: In Fig. 1(a), we have plotted the RRMSE as a function of the number of measurements N for
p = 240, k = 14, m = 32, s = 16, and 2% noise (i.e. fr = 0.02). We note that the approaches Ar-Lasso and
ℓ2-Htp, which utilize the information of known correspondences, result in lower errors. ℓ2-Htp results in
the least errors, followed by Ar-Lasso. ℓ1 − ℓ1 clearly produces much higher errors. Incorporation of ZSC
in Ar-Lasso and R-Lasso only marginally improves the estimate of β∗. As N increases, ℓ1-Htp starts
performing better than Ar-Lasso, indicating diminishing utility of known correspondences at a sufficiently
large N .
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Figure 2: Distribution of the RRMSE values obtained using ℓ1-Htp and ℓ2-Htp for different instances of
permutation matrix and measurement noise. Utilizing the prior known correspondences results in a much
lower standard deviation of the errors.
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Figure 3: Scatter plots of RRMSE and permutation error magnitude ∥e∗∥1 for N = 100 (left) and N = 120
(right) measurements. For N = 100, note the strong correlation of the estimation error with ∥e∗∥1 when
known correspondences are not utilized as in R-Lasso.

In Fig. 2, histograms of the RRMSE values are displayed for ℓ1-Htp and ℓ2-Htp. Note that the estimation
error depends on the specific (randomly chosen) instance of P2. We observe that ℓ1-Htp results in large
errors many times. Moreover, we note that by using known correspondences in ℓ2-Htp, the variance of
the RRMSE distribution significantly decreases for a given N . This is particularly prominent given fewer
measurements, as seen in the case of N ∈ {80, 90}.

In Fig. 3, we display the scatter plot of the errors obtained on the randomly chosen permutation matrices
averaged over 50 random noise instances as a function of ∥e∗∥1 for Ar-Lasso and R-Lasso. Observe that
for N = 100, the term ∥y1 − A1β∥2

2 in Ar-Lasso ensures that the errors do not depend much on the
permutation error magnitude ∥e∗∥1. On the other hand, without the information of known correspondences
in R-Lasso, the scatter plot shows a clear positive correlation with ∥e∗∥1. This correlation, however, dies
down as we get more measurements, as seen in the case N = 120.

Next, in Fig. 1(b), we compare the algorithms for different noise levels (i.e., different values of fr) for p = 240,
N = 110, k = 14, m = 32, and s = 16. We observe that for the Lasso-based approaches and ℓ2-Htp, the
estimation error scales linearly with σ as we expect from the upper bounds in Theorem 1 and Theorem 2.

Lastly, in Fig. 1(c), we show errors for different permutation levels for p = 240, N = 90, k = 14, m = 32
and 2% measurement noise. Recall that the error upper bound for Ar-Lasso scales as

√
s. We note that

the algorithms that utilize known correspondences are more robust in terms of the number of permutations
in the measurements.
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Average compute time values, and a practical application of our algorithms for unlabelled compressive sensing
with known correspondences to image registration is presented in the supplemental material.

6 Conclusion

We studied the problem of unlabelled compressive sensing with the assumption that the regression vector
is sparse and given additional knowledge of a few correspondences. We proposed a tractable Lasso-based
estimator and derived theoretical performance bounds for our algorithm. We also presented another estimator
based on a modified form of Hard Thresholding Pursuit, with theoretical analysis. We verified the theoretical
findings through numerical experiments. We compared our algorithm with a hard thresholding approach
and an ℓ1 norm formulation and demonstrated that our algorithm outperforms them. Additionally, we
illustrated that having information about a small number of accurate correspondences reduces the sensitivity
of estimation error on the severity of permutation corruption. Lastly, we demonstrated a practical application
of our framework in image registration.
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A Appendix

Please refer to supplemental material for additional experiments and the proofs of lemmas and theorems.
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