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Abstract

In this paper, we study the problem of unlabeled compressed sensing, where the corre-
spondence between the measurement values and the rows of the sensing matrix is lost, the
number of measurements is less than the dimension of the regression vector, and the regres-
sion vector is sparse in the identity basis. Additionally, motivated by practical situations, we
assume that we accurately know a small number of correspondences between the rows of the
measurement matrix and the measurement vector. We propose a tractable estimator, based
on a modified form of the Lasso, to estimate the regression vector, and we derive theoretical
error bounds for the estimate. This is unlike previous approaches to unlabeled compressed
sensing, which either do not produce theoretical bounds or which produce bounds for in-
tractable estimators. We show that our algorithm outperforms a hard thresholding pursuit
(Htp) approach and an ℓ1-norm estimator used to solve a similar problem across diverse
regimes. We also propose a modified Htp based estimator which has superior properties to
the baseline Htp estimator. Lastly, we show an application of unlabeled compressed sensing
in image registration, demonstrating the utility of a few known point correspondences.

1 Introduction

Estimation of an unknown vector β∗ ∈ Rp from its (possibly noisy) linear measurements Aβ∗ ∈ RN , where
A ∈ RN×p is the measurement matrix, is a well-studied problem that naturally arises in numerous fields.
However, in some scenarios, the correspondences between the rows of the measurement matrix and the
measurements get partially or entirely lost due to errors made during the measurement process. Specifically,
the permuted and noisy measurements are given as

y = P Aβ∗ + w, (1)

where w ∈ RN is the measurement noise vector and P ∈ RN×N denotes an unknown permutation ma-
trix. Hence, the problem reduces to that of estimating the unknown regression vector from an unknown
permutation of its measurements. This problem, known as unlabeled sensing, appears in applications such
as simultaneous localization and mapping in robotics (Thrun & Leonard, 2008), record linkage (Lahiri &
Larsen, 2005), image or point cloud registration (Pan & Zhang, 2005; Li et al., 2021), security and privacy
(Narayanan & Shmatikov, 2008), and simultaneous pose and correspondence determination in computer
vision (Marques et al., 2009).
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Unlabeled sensing is well studied theoretically in the over-determined regime where N > p and typically,
under the assumption that the entries of A are drawn i.i.d. from an arbitrary continuous probability
distribution. Within these settings and without measurement noise, Unnikrishnan et al. (2018) and Han
et al. (2018) state that every β∗ ∈ Rp can be uniquely recovered with probability one from its measurements
P Aβ∗ if N ≥ 2p. Under some more assumptions on β∗, the condition N ≥ 2p can be relaxed to N ≥ p + 1
(Tsakiris & Peng, 2019). The over-determined unlabeled sensing problem is challenging in the presence of
noise. In Pananjady et al. (2018); Hsu et al. (2017), the authors have derived lower bounds on the signal-to-
noise ratio (SNR) for approximate recovery of β∗. Algorithms to solve the problem for different values of p
are suggested in Peng & Tsakiris (2020); Tsakiris & Peng (2019); Candes & Tao (2005); Slawski & Ben-David
(2019). Sresth et al. (2024) extends the approach in Slawski & Ben-David (2019) by assuming that some
correspondences between the rows of the measurement matrix and measurement vector are known.

An under-determined unlabeled sensing problem, where N < p, can be solved with some additional priors
on β∗. To the best of our knowledge, Peng et al. (2021) is the only work in the context of unlabeled
compressive sensing. In Peng et al. (2021), the authors assumed that β∗ is k-sparse (i.e., it has at most k
non-zero elements) and showed that N ≥ 2k measurements are sufficient for unique recovery in the absence of
noise. Interestingly, the result is analogous to that proved for the over-determined unlabeled sensing problem
from Unnikrishnan et al. (2018). On the algorithmic side, a hard-thresholding pursuit-based approach is
proposed for unlabeled compressive sensing in Peng et al. (2021). However, no theoretical error bounds
on the performance of their algorithm are established in Peng et al. (2021), and moreover, their algorithm
involves a computationally expensive ℓ1-norm optimization step to determine the unknown vector β∗. Also,
Peng et al. (2021) employs a subgradient method in their algorithm where the function value may not always
decrease across the iterations of the algorithm, as mentioned in their paper.

Possible Prior Information: In several unlabeled sensing applications, such as image alignment, record-
linkage, etc., we encounter sparse permutation scenarios, that is, the correspondence between the measure-
ments in y and the rows of A is incorrect for only a small fraction of measurements. Equivalently, we have
that ∥P Aβ∗ − Aβ∗∥0 ≪ N . Moreover, in many applications, some of the correspondences between the
rows of A and the rows of y are known a priori. For example, in the image alignment problem, many point
correspondences in the two images being matched are obtained via feature point matching methods such as
Lowe (2004), with permutations often occurring due to factors such as image self-similarity (i.e., similarity
of patches in distant image regions). However, a domain expert can manually mark a few corresponding
point pairs in the fixed and moving images, thus yielding some measurements with correspondences known
in advance.

Nguyen & Tran (2012) propose a robust form of least absolute shrinkage and selection operator (Lasso),
which can estimate the sparse regression vector from its grossly corrupted linear measurements. Treating the
permuted measurements as gross corruptions, robust Lasso can be employed to solve unlabeled compressed
sensing problems. However, as motivated previously, if there is a prior knowledge of some correspondences
between the rows of A and the rows of y, robust Lasso is not able to make use of it. A natural question
is how the prior knowledge of some correspondences would improve the estimation of β∗. Such questions
are answered in an over-determined setup in Sresth et al. (2024). However, these questions are still open to
under-determined, unlabeled sensing problems.

1.1 Our Contribution

Our paper presents the following contributions:

1. We propose two algorithms to solve the unlabeled compressed sensing problem which can make use
of known correspondences is available:

(i) Augmented Robust Lasso (Ar-Lasso), a modification of the standard least absolute shrinkage
and selection operator (Lasso).

(ii) Augmented Hard Thresholding Pursuit (A-Htp) which involves a gradient-descent step and
computationally cheaper ℓ2-norm optimization step, rather than subgradient-method and ℓ1-
norm optimization as required in the earlier approach proposed in Peng et al. (2021).
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Symbol Meaning
N total number of measurements
m number of labeled measurements

n := N − m number of potentially unlabeled measurements
p signal dimension

y ∈ RN vector of compressive measurements
β∗ ∈ Rp unknown sparse signal vector

A ∈ RN×p sensing matrix
e∗ ∈ Rn unknown sparse permutation corruption vector

k ℓ0 norm of β∗

s ℓ0 norm of e∗

y1 ∈ Rm sub-vector of measurements with known correspondences
y2 ∈ Rn sub-vector of measurements with potentially unknown correspondences
w ∈ RN measurement noise vector

Table 1: Glossary of symbols used in this paper.

Ar-Lasso is suitable for both compressible and perfectly sparse regression vectors, unlike the earlier
approach in Peng et al. (2021), which works only for perfectly sparse regression vectors. However,
A-Htp can work only in the case of perfectly sparse regression vectors. Note that Ar-Lasso and
A-Htp algorithms are applicable even when there are no correspondences known. Moreover, apart
from the unlabeled sensing problem, our algorithms are applicable in any regression problem where
some measurements are grossly corrupted, and the measurements can be separated into two disjoint
sets: (i) measurements without any gross corruption and (ii) measurements with possible gross
corruption.

2. For both Ar-Lasso and A-Htp algorithms, we derive theoretical upper bounds on the estimation
error of the unknown vector in terms of the number of measurements N , number of permutations s,
dimension of the unknown vector p, sparsity of the unknown vector k, number of known correspon-
dences m, the number of measurements n := N − m with potentially unknown correspondences,
and measurement noise variance σ2. Specifically, for Ar-Lasso, we characterize the notion of a
generalized, extended, restricted eigenvalue condition (Gerec), which enables us to prove perfor-
mance guarantees for the algorithm. Gerec is a generalization of the extended, restricted eigenvalue
condition studied in Nguyen & Tran (2012), to a scenario where some of the correspondences are
(possibly) known in advance. We show that the family of Gaussian measurement matrices obeys
Gerec with a high probability. We compare our error bounds to those obtained in Nguyen & Tran
(2012) and demonstrate that the information of known correspondences allows us to tolerate a larger
number of permutations and also results in a lower estimation error.

3. Further, we demonstrate a geometric convergence result for A-Htp under the condition that the
sensing matrix obeys some form of restricted isometry property. A-Htp involves joint-estimation
of x∗, which is a row concatenation of β∗ and the permutation corruption vector, through an

augmented matrix
[

A
0m×(N−m)

I(N−m)×(N−m)

]
. In order to exploit the distribution of non-zero entries

in x∗, we introduce a notion of structured-sparsity restricted isometry property. Following this, we
demonstrate that N ≥ C(k log (p/3k) + s log (n/3s)) (where C > 0 is a constant) is a sufficient
condition for an accurate recovery via A-Htp, which is a more relaxed requirement than N ≥
C((k + s) log p+n

3(k+s) ) which is what one obtains from a naive analysis without exploiting the specific
sparsity structure of x∗.

4. Next, we compare our algorithms to the ℓ1-norm hard-thresholding pursuit approach from Peng et al.
(2021) and to another ℓ1-norm-based estimator motivated from Candes & Tao (2005), across diverse
regimes. We demonstrate that our algorithms outperform them across all the regimes examined.
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5. Lastly, we demonstrate the impact of utilizing known correspondences in an image registration task.
For this task, the problem of unlabeled compressed sensing with sparse permutations and a set of
priors is especially relevant in the following manner: (i) In many image registration tasks, a domain
expert can mark out a few point correspondences accurately. This provides prior information for
the regression problem. (ii) In image registration, the underlying motion vector fields are sparse
or compressible in universal dictionaries such as the discrete Fourier transform or discrete cosine
transform (James et al., 2019). If salient feature point tracking is used for obtaining point corre-
spondences, then the motion vectors at only a small set of points (in the image domain) are observed.
This is therefore a compressed sensing or sparse recovery problem. (iii) A fraction of the computed
point correspondence pairs suffer from permutation effects due to factors like self-similarity. This
is therefore an unlabeled sensing problem where the permutation set is sparse. For more details on
this, please refer to Section 1 and Figure 1 of the supplemental material.

6. Summarily, techniques presented in this paper are simple, but this is the first piece of work to present
a theoretical analysis of unlabeled compressed sensing (a topic with very limited literature) for any
tractable estimator. The key contributions in the proof techniques used include: (1) the proposition
of generalized, extended, restricted eigenvalue condition (Gerec) and its use within the Ar-Lasso
bounds; (2) concept of structured-sparsity, restricted isometric property (Ss-Rip) and the use of
the specific form of structured sparsity in the (p + n)-dimensional vector x∗ :=

[
β∗T e∗T

]T being
recovered – namely that the sub-vector corresponding to β∗ ∈ Rp contains k non-zero elements, and
the sub-vector corresponding to e∗ ∈ Rn contains s non-zero elements. The use of such a structure
to obtain a requirement on the minimum number of measurements for an accurate recovery of x∗

via A-htp is novel, and is not found in classic papers on model based compressive sensing such as
Baraniuk et al. (2010).

2 Problem Formulation and Notations

Consider a set of linear measurements as in equation 1 with N < p and the following assumptions:

(C1) w ∼ N (0, σ2IN ) and Ai ∼ N (0, Σ) where Ai ∈ Rp is the i-th row of the measurement matrix A,
and IN stands for the N × N identity matrix. We denote the smallest eigenvalue of Σ by Cmin(Σ),
the largest eigenvalue of Σ by Cmax(Σ) and the largest entry on the diagonal of Σ by ξ(Σ).

(C2) The regression vector β∗ is k-sparse where k need not be known in advance. We denote the support
of non-zero entries of β∗ by the set T .

(C3) Any m out of N measurements have accurate correspondences where m < p. Without loss of
generality, we assume that the correspondences of the top m measurements are accurate, that is,
yi = Aiβ∗ + wi for i = 1, 2, . . . , m.

(C4) In the remaining n := N − m < p measurements, at most s ≪ n measurements have incorrect
correspondences. However, we do not know the value of s and which s measurements have incorrect
correspondences.

With assumptions (C1)-(C4), we decompose y in equation 1 as

y1 = A1β∗ + w1 and y2 = P2A2β∗ + w2, (2)

where y1 ∈ Rm denotes the sub-vector of measurements with known correspondences, y2 ∈ Rn is the sub-
vector of remaining measurements (with m + n = N) and P2 ∈ Rn×n is an unknown permutation matrix.
We denote y :=

[
yT

1 yT
2

]T
, A :=

[
AT

1 AT
2

]T and w :=
[
wT

1 wT
2

]T . For further analysis, define the
permutation corruption vector as

z∗ =
√

ne∗ := (P2A2β∗ − A2β∗) ∈ Rn. (3)
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The assumption (C4) implies that e∗ is s-sparse. We denote the support of non-zero entries of e∗ by the set
S. Using equation 3, we can write equation 2 as

y2 = A2β∗ +
√

ne∗ + w2. (4)

The goal is to estimate β∗ under assumptions (C1)-(C4). To this end, we provide the formulations for
Ar-Lasso and A-Htp algorithms in the next sections.

3 Augmented Robust LASSO

With the introduction of e∗, the objective of estimating β∗ from y under assumptions (C1)-(C4) is posed as
a convex optimization problem. Specifically, we propose to minimize an augmented, robust, least-absolute
shrinkage and selection operator (Ar-Lasso)-based objective function, given by:

L(β, e) := 1
2m

∥y1 − A1β∥2
2 + 1

2n
∥y2 − A2β −

√
ne∥2

2 + λβ∥β∥1 + λe∥e∥1. (5)

Here, the first two terms are data-fit terms, and ∥β∥1, ∥e∥1 are the sparsity-promoting terms in the regression
vector and corruption vector, respectively weighted by regularization parameters λβ > 0 and λe > 0. Next,
we formulate the optimization problem as

(β̃, ẽ) := arg min
β∈Rp,e∈Rn

L(β, e). (6)

The question remains, under what conditions Ar-Lasso is able to estimate β∗ with a low error? In the next
subsection, we discuss the generalized, extended, restricted eigenvalue condition based on which we present
theoretical guarantees for Ar-Lasso to answer such questions.

3.1 Theoretical Guarantees for AR-LASSO

First, define the following set:

C := {(h, f) ∈ (Rp × Rn) such that ∥hT C ∥1 + λ∥fSC ∥1 ≤ 3∥hT ∥1 + 3λ∥fS∥1}, (7)

where λ = λe

λβ
. It can be shown that the error term (β̃ − β∗, ẽ − e∗) belongs to the set C (see the proof of

Theorem 1 in the supplemental material, especially the part from equations (S3) to (S13)). The set C is a
natural restriction on the error vectors h := β̃ − β∗ and f := ẽ − e∗ that emerges from the optimization
problem in equation 6. Hence expectedly, the theoretical guarantees for Ar-Lasso rely on the following
two key properties of sensing matrix A over the restricted set C:

(1) Generalized, extended, restricted eigenvalue condition (Gerec): We say that the mea-
surement matrix A obeys the generalized, extended, restricted eigenvalue condition on the restricted set C
if there exists ke > 0 such that the following holds:

ke(∥h∥2
2 + ∥f∥2

2) ≤ 1
N

∥Ah∥2
2 + n

N
∥f∥2

2, ∀ (h, f) ∈ C. (8)

The Gerec is essentially stating that the sum of the squared magnitudes of the vectors Ah and f is
lower-bounded by a constant factor times ∥h∥2

2 + ∥f∥2
2 for any (h, f) ∈ C. Recall that n ≤ N . The

above condition is a generalization of the extended, restricted eigenvalue condition studied in Nguyen &
Tran (2012), to the scenario where some of the correspondences are known, that is when n ≤ N . To
give more context, we use the above condition with (h, f) := (β̃ − β∗, ẽ − e∗) for theoretical analysis
of Ar-Lasso. Essentially, f plays the role of error in estimation of the permutation corruption vector
z∗ := P2A2β∗ − A2β∗. Note the difference between Gerec and the extended, restricted eigenvalue
condition in Nguyen & Tran (2012). In Nguyen & Tran (2012), the authors assume that each of the N
measurements can undergo gross corruption and the aim is to lower-bound the term ( 1

N ∥Ah∥2
2 + ∥f∥2

2)
where A ∈ RN×p, h ∈ Rp and f ∈ RN (see comment 3(a) after Lemma 1 in Nguyen & Tran (2012)). On
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the other hand, we have assumed knowledge of m correspondences, and hence, we are only concerned with
permutation errors in the remaining n = N − m measurements. Due to this, we have f ∈ Rn as opposed to
f ∈ RN as in Nguyen & Tran (2012). Alternatively, our f can be thought of as an N -dimensional vector
whose top m entries are zero. When none of the correspondences are known, that is, when m = 0, n = N ,
the generalized, extended, restricted eigenvalue condition reduces to the extended, restricted eigenvalue
condition defined in Nguyen & Tran (2012).

(2) Mutual incoherence condition (Mic) (Nguyen & Tran, 2012): We require that there exists
km > 0 such that

1√
n

|⟨A2h, f⟩| ≤ km(∥h∥2 + ∥f∥2)2 ∀ (h, f) ∈ C. (9)

We refer to km > 0 as the mutual incoherence constant. The mutual incoherence condition allows decoupling
the two error terms ∥β̃ − β∗∥2 and ∥ẽ − e∗∥2 given that we use (h, f) := (β̃ − β∗, ẽ − e∗) for theoretical
analysis of Ar-Lasso. Also, the mutual coherence condition states that the column vectors of A are
sufficiently dissimilar compared to columns of the identity matrix. This ensures that there is clear separation
between the signal vectors β∗ and e∗ during compressive recovery.
Next, the question arises: Under what conditions does a measurement matrix obey Gerec and Mic? It
can be shown that the family of Gaussian sensing matrices satisfies Gerec with suitable assumptions on
(N, m, s, k). To this end, we state the following lemma (proof in supplemental material):

Lemma 1 (Generalized, extended, restricted eigenvalue condition). Consider the Gaussian sens-
ing matrix A ∈ RN×p whose rows are i.i.d. N (0, Σ). We have the set C := {(h, f) ∈ (Rp ×
Rn) such that ∥hT C ∥1 + λ∥fSC ∥1 ≤ 3∥hT ∥1 + 3λ∥fS∥1} with |T | = k and |S| = s as defined earlier.
Select λ = ρ

√
n
N

log n
ξ(Σ) log p , where ρ ∈ (0, 1) is a constant. If s ≤ c1

N
ρ2 log n and N ≥ c2

ξ(Σ)
Cmin(Σ) k log p, then

the following inequality holds with probability at least 1 − c3 exp (−c4N): min
(

Cmin(Σ)
128 , n

8N

)
(∥h∥2

2 + ∥f∥2
2) ≤

1
N ∥Ah∥2

2 + n
N ∥f∥2

2 ∀ (h, f) ∈ C, where c1, c2, c3, c4 are positive constants.

We make the following observations: (i) We reiterate that the knowledge of m correspondences requires us
to only consider f ∈ Rn as opposed to considering f ∈ RN . As a result, the sensing matrix A obeys Gerec
with a larger tolerance on s, that is, s ≤ c1

N
ρ2 log n = c1

N
ρ2 log (N−m) . As m increases, a larger number of

permutations can be tolerated. (ii) In the absence of known correspondences, that is, when n = N , the
requirement on s becomes s ≤ c1

N
ρ2 log N which is consistent with that obtained in Lemma 1 of Nguyen &

Tran (2012). (iii) The choice of λ follows from Theorem 1 in the next section.

Moreover, Nguyen & Tran (2012) prove that the family of Gaussian sensing matrices also satisfies the mutual
incoherence condition, again with some suitable assumptions on (n, s, k). For the sake of completeness, we
state the following lemma:

Lemma 2 (Mutual incoherence condition (Nguyen & Tran, 2012)). Consider the Gaussian sens-
ing matrix A2 ∈ Rn×p whose rows are i.i.d. N (0, Σ). We have the set C = {(h, f) ∈ (Rp ×
Rn) such that ∥hT C ∥1 + λ∥fSC ∥1 ≤ 3∥hT ∥1 + 3λ∥fS∥1} with |T | = k and |S| = s as defined earlier. Select

λ = ρ
√

n
N

log n
ξ(Σ) log p , where ρ ∈ (0, 1) is a constant. Assume that s ≤ min

(
N
n

ξ(Σ)
Cmin(Σ)

k log p
ρ2 log n , c5

Cmin(Σ)
Cmax(Σ) n

)
and n ≥ c6ξ(Σ) Cmax(Σ)

C2
min(Σ) k log p for some sufficiently small positive constant c5 and sufficiently large con-

stant c6, then the following inequality holds with probability greater than 1 − exp (−c7n): 1√
n

|⟨A2h, f⟩| ≤
km(∥h∥2+∥f∥2)2 ∀ (h, f) ∈ C, where c7, km are positive constants. We refer to km as the mutual incoherence
constant.

We pick the above lemma from Nguyen & Tran (2012) with a slight change in the expression for λ to suit
our problem. Note that the expression for λ naturally follows from the theoretical analysis of Ar-Lasso (see
Theorem 1). Consequently, to obey the mutual incoherence condition, the requirement on s gets relaxed,
that is, s ≤ N

n
ξ(Σ)

Cmin(Σ)
k log p

ρ2 log n = N
N−m

ξ(Σ)
Cmin(Σ)

k log p
ρ2 log n . As m increases, more permutations can be tolerated.
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For a consistency check, setting m = 0 gives us the same upper limit on s as obtained in Lemma 2 in Nguyen
& Tran (2012).

Now, since we have established that the family of Gaussian sensing matrices obey Gerec and Mic with
a high probability, we move on to state the theoretical guarantees for Ar-Lasso. Given the optimization
problem equation 6, we present an upper bound on the estimation error ∥β̃−β∗∥2 +∥ẽ−e∗∥2 in the following
theorem:
Theorem 1. Consider the optimization problem in equation 6 and the observation model in equation 1
under the assumptions (C1)-(C4). Select λβ = 2

ρ
∥AT w∥∞

N and λe = 2
√

n
N ∥w2∥∞. Assume that s ≤

min
(

c1
N

ρ2 log n , N
n

ξ(Σ)
Cmin(Σ)

k log p
ρ2 log n , c5

Cmin(Σ)
Cmax(Σ) n

)
and that N ≥ c2

ξ(Σ)
Cmin(Σ) k log p, n ≥ c6ξ(Σ) Cmax(Σ)

C2
min(Σ) k log p,

so that A2 satisfies Mic with sufficiently small mutual incoherence constant km such that km <

min
(

N
n

Cmin(Σ)
512 , 1

32

)
, and A satisfies Gerec with constant ke > 0. Then there exists positive constant

kl > 0 such that the following inequality holds with probability greater than 1 − 2/p − 2/n:

∥β̃ − β∗∥2 + ∥ẽ − e∗∥2 ≤ 6σk−2
l max

(
1
ρ

√
ξ(Σ)k log p

N
,

√
n

N

s log n

N

)
. (10)

A few insights on the theorem are in order:

1. In the noiseless scenario (σ = 0), the error term turns out to be zero. And hence, exact recovery
of (β∗, e∗) is possible with a high probability. In the case of noisy measurements, note that the
estimation error scales linearly with the measurement noise standard deviation σ.

2. For fixed p, m and n, the error term scales as max(
√

k,
√

s), i.e. sparser β∗ and e∗ yield more
accurate reconstructions.

3. As pointed out earlier, the m known correspondences allow A to obey Gerec and Mic with a
higher tolerance on s. These are sufficient conditions for error bounds for Ar-Lasso in Theorem 1
to hold. Moreover, note that the term

√
n
N

s log n
N in equation 10 decreases as more correspondences

are known. The higher the value of m is for a fixed n or a fixed N , the lower is the estimation error.

4. ρ is a positive constant that controls the sparsity level in the regression vector and sparse error
vector. If there are a large number of permutations expected, then a larger value of ρ should be
used for specifying λβ and vice-versa.

5. The choice of λ in Lemma 1 and Lemma 2 follows from the expressions for λβ and λe in Theorem
1. From the Gaussian concentration results, we know that ∥AT w∥∞ ≤ 2σ

√
ξ(Σ)N log p with

probability at least 1 − 2/p and ∥w2∥∞ ≤ 2σ
√

log n with probability at least 1 − 2/n. Plugging the
expressions in λ = λβ/λe gives us λ = ρ

√
n
N

log n
ξ(Σ) log p . On the other hand, Nguyen & Tran (2012)

selects λ = ρ
√

log N
ξ(Σ) log p which is same when we put m = 0 in our expression for λ.

6. When no correspondences are known in advance, that is, m = 0 and n = N , we get the same error
bound as obtained in Corollary 1 in Nguyen & Tran (2012).

7. Our approach casts unlabeled sensing with sparse permutations in a structured sparsity framework.
This theorem presents performance bounds for it. The particular form of structured sparsity consid-
ered here is different from forms such as tree-structured and block-structured sparsity as analyzed
in previous works like Baraniuk et al. (2010).

8. If m is large enough so that the matrix A2 obeys the restricted eigenvalue condition, then we may
not even require the permuted measurements, i.e. we can consider N = m. In such a case, the
problem just reduces to a simple Lasso and the error bound would be as follows:

∥β̃ − β∗∥2 ≤ O(σ
√

k log p/m). (11)
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Algorithm 1 Augmented Hard-Thresholding Pursuit
Input: Measurement vector y, augmented matrix H, sparsity level k and number of permutations s (both
k and s can be estimated via cross-validation – see Sec. 5 under ‘Choice of parameters’)
Parameter: Learning rate µ
Output: Estimate of β∗

1: x(0) = 0, t = 0.
2: while not converged do
3: l(t+1) = x(t) − µHT (Hx(t) − y)
4: S(t+1) = {indices of k largest entries of l(t+1)(1 : p)} ∪ {indices of s largest entries of l(t+1)(p + 1 :

p + n)}
5: x(t+1) = arg min

x∈Rp+n s.t.
support(x)⊆S(t+1)

∥Hx − y∥2

6: t = t + 1
7: end while
8: return x(t)(1 : p)

Sensing matrices randomly generated by Rademacher or Gaussian distributions would need to con-
tain at least O(k log p) rows in order to recover k-sparse vectors in Rp successfully. Then the error
bounds in Theorem 1 will reduce to the Lasso bounds in equation 11 since N = m. However
such a large m will generally not be available in applications. If m is smaller than O(k log p), then
successful recovery will not be achievable, and hence using the sparsely permuted measurements will
be inevitable.

4 Augmented Hard-Thresholding Pursuit

Note that under assumptions (C1)-(C4), y can be re-written as

y = Hx∗ + w, where H :=
[
A1 0m×n

A2 In×n

]

is the augmented matrix and x∗ :=
[
β∗T z∗T

]T . Recalling the notation y :=
[
yT

1 yT
2

]T and w :=[
wT

1 wT
2

]T , the problem of estimation of x∗ can be posed as

arg min
x=[ βT zT ]T

β∈Rp,z∈Rn

∥y − Hx∥2 s.t. ∥β∥0 ≤ k, ∥z∥0 ≤ s. (12)

We solve equation 12 using a modified form of the hard thresholding pursuit approach Foucart (2011) to
suit the specific sparsity structure of our problem. The complete procedure is presented in Alg. 1. We refer
to this approach as Augmented Hard Thresholding Pursuit or A-Htp, as it involves sparse recovery of an
unknown vector (that is x∗ here) using the augmented matrix H. In Alg. 1, we note the following: (i)
Line 3 is a standard gradient descent step where µ is the specified learning rate; (ii) Line 4 determines the
support of β by selecting the indices corresponding to the k largest absolute-value entries in x(1 : p), and the
support of e by selecting the indices corresponding to the s largest absolute-value entries in x(p + 1 : p + n).
The two support sets are combined to obtain the support set of x; (iii) Line 5 is the debiasing step, and
it re-estimates x over the support obtained in the previous step. This step involves computing the Moore-
Penrose pseudo inverse of a submatrix of H containing all and only those columns appearing at indices in
S(t+1). This step is computationally less expensive than the ℓ1-norm optimization step required in Peng et al.
(2021). Moreover, Peng et al. (2021) employs the subgradient method in their algorithm where the function
value may even increase, whereas our A-htp is a gradient-descent-based method. In the next subsection,
we provide a theoretical convergence analysis for A-Htp.
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4.1 Convergence Analysis for A-HTP

In the compressed sensing framework, a condition for an accurate recovery of the unknown vector is typically
based on the restricted isometry property (RIP) of the measurement matrix (Candes & Tao, 2005). A-Htp
is inherently a compressed sensing algorithm. In this subsection, we state a theoretical guarantee on the
recovery of x∗ via A-Htp using some form of the restricted isometry constant (RIC) of the augmented
measurement matrix H. First, we recall the definition of RIC of a matrix. A matrix A ∈ RN×p is said to
satisfy the RIP of order t if there exists a constant δt ∈ (0, 1) such that

(1 − δt)∥y∥2
2 ≤ ∥Ay∥2

2 ≤ (1 + δt)∥y∥2
2 (13)

holds for every t-sparse y ∈ Rp. The smallest constant δt for which this holds is called the order-t RIC of the
matrix A. In other words, the application of A on any t-sparse vector approximately preserves the vector’s
norm.

Interestingly, in our problem, there is some structure in the distribution of non-zero entries in x∗, that is,
∥x∗(1 : p)∥0 ≤ k and ∥x∗(p + 1 : p + n)∥0 ≤ s. To exploit this structured sparsity, we characterize a notion
of structured-sparsity, restricted isometric property (SS-RIP) in the following definition.
Definition 1. We say that the matrix H obeys the structured-sparsity, restricted isometric property (SS-
RIP) of order [(p, k), (n, s)] if there exists a restricted isometry constant δ := δSS

[(p,k),(n,s)] ∈ (0, 1) such that

(1 − δ)∥g∥2
2 ≤ ∥Ag∥2

2 ≤ (1 + δ)∥g∥2
2 (14)

holds for every g ∈ Rp+n with ∥g(1 : p)∥0 ≤ k and ∥g(p + 1 : p + n)∥0 ≤ s.

With this, we state a geometric convergence result on A-Htp:
Theorem 2. Consider the Gaussian sensing matrix A whose entries are i.i.d. N (0, 1/N). Suppose that
δSS

[(p,3k),(n,3s)] of the augmented measurement matrix H satisfies δSS
[(p,3k),(n,3s)] ≤ 1√

3 . Then the sequence x(t)

defined by A-Htp satisfies the following inequality ∀ t ≥ 0:

∥x(t) − x∗∥2 ≤ γt∥x(0) − x∗∥2 + τ
1 − γt

1 − γ
∥w∥2, (15)

where τ :=

√
2
(
1 − δSS

[(p,2k),(n,2s)]
)

+
√

1 + δSS
[(p,k),(n,s)]

1 − δSS
[(p,2k),(n,2s)]

, γ :=

√√√√ 2δSS
[(p,3k),(n,3s)]

2

1 − δSS
[(p,2k),(n,2s)]

2 < 1 and w denotes the

measurement noise vector from equation 1.

The proof of the above theorem follows along the lines of the work in Foucart (2011, Theorem 3.8). The
following lemma (proved in the supplemental material) outlines under what scenarios the augmented matrix
H satisfies the criterion δSS

[(p,3k),(n,3s)] ≤ 1√
3 .

Lemma 3. Consider the Gaussian sensing matrices A1 ∈ Rm×p and A2 ∈ Rn×p with i.i.d. N (0, 1/N)

entries. There exist positive constants c8, c9 such that the augmented matrix H :=
[
A1 0m×n

A2 In×n

]
satisfies the

structured-sparsity restricted isometry property (SS-RIP) of order [(p, k), (n, s)] provided that k log (p/k) +
s log (n/s) ≤ c8N , with probability at least 1 − 3 exp (−c9N). The constants c8, c9 depend on the RIC δ.
Equivalently, we have the following result for all x ∈ Rp+n with ∥x(1 : p)∥0 ≤ k and ∥x(p + 1 : p + n)∥0 ≤ s:

P
(

(1 − δ)∥x∥2
2 ≤ ∥Hx∥2

2 ≤ (1 + δ)∥x∥2
2

)
≥ 1 − 3 exp (−c9N). (16)

Remarks on Theorem 2 and Lemma 3:

1. As expected, the error bound (specifically, the second term) in Theorem 2 increases with the noise
standard deviation. As γ < 1, the first term of the bound decreases with the number of iterations,
i.e. t.

9
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2. From Lemma 3, we require that N ≥ C(k log (p/3k) + s log (n/3s)) for H to obey SS-RIP of order
[(p, 3k), (n, 3s)]. And hence, from Theorem 2, it follows that N ≥ C(k log (p/3k) + s log (n/3s)) is
sufficient for an accurate recovery of x∗ via A-Htp.

3. Since n = N −m, the requirement N ≥ C(k log (p/3k)+s log (n/3s)) relaxes as more correspondences
are known.

4. In the scenario n = 0, that is, when all the correspondences are known, the problem simplifies to the
standard compressed sensing problem. Consequently, we require N ≥ C(k log (p/3k)) measurements
for an accurate recovery of β∗, which is consistent with the well-known requirement for compressed
sensing via HTP.

Comparison with the standard RIP condition. Note that if we do not exploit the specific sparsity
structure in x∗, a condition on an accurate recovery of x∗ via A-Htp is that the matrix H should satisfy RIP
of order 3(k + s) Foucart (2011), which requires N ≥ C(k + s) log (p + n)/(3(k + s)). On the other hand, by
exploiting the sparsity structure in x∗, we demonstrate that N ≥ C(k log (p/3k) + s log (n/3s)) is sufficient
for an accurate recovery of x∗ via our A-Htp algorithm. This is less than C(k + s) log [(p + n)/(3(k + s))].

5 Numerical Experiments

In order to assess the impact made by knowledge of known correspondences, we compare Ar-Lasso from
equation 6 and A-Htp from Alg. 1 to the following estimators, none of which use the prior information of
known correspondences.:

(i) The robust Lasso (R-Lasso) estimator given by arg min
β∈Rp,e∈Rn

1
2N ∥y −Aβ −

√
ne∥2

2 +λβ∥β∥1 +λe∥e∥1,

which is effectively Ar-Lasso with m = 0 and N = n.

(ii) The ℓ1-norm hard thresholding pursuit approach in Peng et al. (2021) that minimizes ∥y − Aβ∥1
w.r.t. β ∈ Rp such that ∥β∥0 ≤ k. We refer to this approach as ℓ1-Htp.

(iii) The ℓ1 − ℓ1 estimator motivated from Candes & Tao (2005); Candes et al. (2005) that is posed as
arg min

β∈Rp

∥y − Aβ∥1 + λβ∥β∥1.

(iv) The sparse Bayesian learning approach (Sbl) approach Wipf & Rao (2004), which is an expectation-
maximization (EM) based Bayesian method for compressed sensing. This algorithm has been shown
to outperform several other non-learning based compressed sensing algorithms in Marques et al.
(2018), and hence we use it in this paper to estimate both β∗ and e∗. Note that this approach has
not been used in the literature in the context of unlabeled sensing, to our best knowledge. In this
method, given knowledge of Gaussian noise in y, we model the following probabilities, taking into
account the definition of H and x∗ from Sec. 4:

p(y|x∗) =
exp

(
−∥y − Hx∗∥2

2/(2σ2)
)

σN (2π)N/2 , (17)

∀j ∈ [n + p], p(x∗
j |αj) =

exp
(
−(x∗

j )2/(2αj)
)√

2παj

(18)

where the latter is a Gaussian prior on the elements of x∗ with unknown variances {αj}n+p
j=1 that

are inferred on the fly from y, H. The details of the EM algorithm to jointly infer the signal vectors
and their unknown element-wise variances, via maximizing the posterior probability p(x∗|y), can
be found in Wipf & Rao (2004).

We refer to our algorithm A-Htp henceforth as ℓ2-Htp to distinguish it from ℓ1-Htp. We use CVXPY
(Diamond & Boyd, 2016) to solve all the optimization problems, except for Sbl which is implemented via
EM. Also, note that by definition of the concept of permutation, we have a zero-sum constraint (referred to

10
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as ZSC henceforth) on e given by
∑n

i=1 ei = 0. It is worth investigating whether this information helps to
improve the estimate of β∗. To this end, we incorporate this additional hard constraint in the Ar-Lasso
and R-Lasso estimators, yielding two additional variants.

Data generation: In all the experiments, the entries of A and the non-zero values of β∗ are sampled from
N (0, 1). P2 is generated by randomly sampling from the family of s-sparse permutation matrices. The
entries of w are independently sampled from N (0, σ2) where σ := fr× the mean absolute value of the entries
of the noiseless measurement vector P Aβ∗ with fraction fr ∈ (0, 1).

Choice of parameters: The regularization parameters λβ and λe in Ar-Lasso, R-Lasso, Lasso and
ℓ1 − ℓ1 algorithms are chosen through cross-validation on a held-out set of measurements. The unknown
vectors β∗, e∗ are reconstructed using (say) 95% of the available measurements (in a set R) using different
values of (λβ , λe) from a set Λ. Let the signal reconstruction using regularization parameters (l1, l2) ∈ Λ be
called β̃l1,l2 , ẽl1,l2 . For each such estimate, the validation error V E(l1, l2) is computed over the remaining
5% of the measurements forming a set V. Here V E(l1, l2) :=

∑
i∈V(yi − Aiβ̃l1,l2)2. Note that the set V

contains only those measurements with known correspondences. The parameters l1, l2 which yield the least
validation error are then selected. After this, the vectors (β∗, e∗) are re-estimated using all measurements
using the selected (l1, l2) as regularization parameters. This technique is very effective because the validation
error acts as a data-driven proxy for the immeasurable mean-squared error (MSE) as shown via confidence
intervals in Zhang et al. (2014); Chetverikov et al. (2021). Note that our cross-validation approach does not
require any prior ‘training phase’ on a class of similar signals to determine the optimal hyperparameters.
Moreover Fig. 1(f) demonstrates that the RRMSE values remain stable over a decent range of values of
(λβ , λe) as compared to those chosen by cross-validation.

Also note that ℓ1-Htp and ℓ2-Htp require the knowledge of (k, s), which are typically unknown in practice
but can be chosen via cross-validation. In our experiments, we observe that cross-validation overestimates
(k, s) by a factor of 2. Hence, we directly set (k, s) to twice of their true value in the ℓ1-Htp and ℓ2-Htp
algorithms. We select the learning rate in ℓ1-Htp and ℓ2-Htp through cross-validation. The number of
iterations in ℓ1-Htp is set to 200, and that in ℓ2-Htp is set to 100. We always observed convergence within
these iteration counts.

Evaluation metric: The evaluation metric used for all simulations is the relative root mean squared error
(RRMSE) ∥β̃−β∗∥2

∥β∗∥2
, where β̃ is an estimate of β∗. We report the RRMSE averaged over 50 randomly chosen

instances of P2, with each permutation instance averaged over 50 random instances of measurement noise
w.

Results: In Fig. 1(a), we have plotted the RRMSE as a function of the number of measurements N for
p = 240, k = 14, m = 32, s = 16, and 2% noise (i.e. fr = 0.02). We note that the approaches Ar-Lasso and
ℓ2-Htp, which utilize the information of known correspondences, result in lower errors. ℓ2-Htp results in
the least errors, followed by Ar-Lasso. ℓ1 − ℓ1 clearly produces much higher errors. Incorporation of ZSC
in Ar-Lasso and R-Lasso only marginally improves the estimate of β∗. As N increases, ℓ1-Htp starts
performing better than Ar-Lasso, indicating diminishing utility of known correspondences at a sufficiently
large N .

In Fig. 2, histograms of the RRMSE values are displayed for ℓ1-Htp and ℓ2-Htp. Note that the estimation
error depends on the specific (randomly chosen) instance of P2. We observe that ℓ1-Htp results in large
errors many times. Moreover, we note that by using known correspondences in ℓ2-Htp, the variance of
the RRMSE distribution significantly decreases for a given N . This is particularly prominent given fewer
measurements, as seen in the case of N ∈ {80, 90}.

In Fig. 3, we display the scatter plot of the errors obtained on the randomly chosen permutation matrices
averaged over 50 random noise instances as a function of ∥e∗∥1 for Ar-Lasso and R-Lasso. Observe that
for N = 100, the term ∥y1 − A1β∥2

2 in Ar-Lasso ensures that the errors do not depend much on the
permutation error magnitude ∥e∗∥1. On the other hand, without the information of known correspondences
in R-Lasso, the scatter plot shows a clear positive correlation with ∥e∗∥1. This correlation, however, dies
down as we get more measurements, as seen in the case N = 120.
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Figure 1: A comparison of the algorithms for unlabeled compressive sensing problem: The error plots as
a function of (a) the number of measurements N for p = 240, k = 14, m = 32, s = 16, fr = 0.02; (b) the
number of measurements N in very high dimensions, i.e. p = 1200, k = 70, m = 60, s = 80, fr = 0.02 (the
errors with ℓ1 − ℓ1 are much higher than for other estimators, and are not shown here) (c) the noise level in
terms of fr for p = 240, N = 110, k = 14, m = 32, s = 16; (d) the permutation level for p = 240, N = 90, k =
14, m = 32, fr = 0.02; and (e) the sparsity level for p = 240, N = 110, m = 32, s = 16, fr = 0.02. These
plots show that using known correspondences as in ℓ2-Htp and Ar-Lasso, results in a lower reconstruction
error. In plots (b), (c) and (e), the errors for some pairs of algorithms nearly overlap: Ar-Lasso with and
without the ZSC, R-Lasso with and without the ZSC, L2-Htp and Sbl. Plot (f) shows that the RRMSE is
not significantly impacted by varying λe, λβ over a decent range of values as compared to the values chosen
by cross-validation (see dark regions of the sub-figure).
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Figure 2: Distribution of the relative root mean squared error (RRMSE) values obtained using ℓ1-HTP and
ℓ2-HTP for different instances of permutation matrix and measurement noise for N = 80 (left) and N = 90
(right) measurements. Utilizing the prior known correspondences (as done by ℓ2-HTP) results in a much
lower standard deviation of the errors.
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Figure 3: Scatter plots of RRMSE and permutation error magnitude ∥e∗∥1 for N = 100 (left) and N = 120
(right) measurements. For N = 100, note the strong correlation of the estimation error with ∥e∗∥1 when
known correspondences are not utilized as in R-Lasso.

In Fig. 1(b), we compare the algorithms for different N in higher dimensions, that is, for p = 1200, k = 70,
m = 60, s = 80, and 2% measurement noise (i.e. fr = 0.02).

Next, in Fig. 1(c), we compare the algorithms for different noise levels (i.e., different values of fr) for p = 240,
N = 110, k = 14, m = 32, and s = 16. We observe that for the Lasso-based approaches and ℓ2-Htp, the
estimation error scales linearly with σ as we expect from the upper bounds in Theorem 1 and Theorem 2.

In Fig. 1(d), we show errors for different permutation levels for p = 240, N = 90, k = 14, m = 32 and
2% measurement noise. Recall that the error upper bound for Ar-Lasso scales as

√
s. We note that the

algorithms that utilize known correspondences are more robust in terms of the number of permutations in
the measurements.

In Fig. 1(e), we show errors for different sparsity levels for p = 240, N = 110, m = 32, s = 16 and 2%
measurement noise. During data generation for this experiment, we maintain that 48 ≤ ∥e∗∥1 ≤ 52 for all
the 50 permutation instances, so that the results reflect the effect of changing sparsity level only. Note that
the reconstruction error greatly depends on the permutation error ∥e∗∥1.

Performance of SBL: The plots demonstrate that though Sbl has shown excellent empirical performance
in compressed sensing (Marques et al., 2018), it generally did not outperform Ar-Lasso or Ar-Htp for
the unlabeled compressed sensing problem. A possible reason for this could be the assumption of zero-mean
Gaussian priors on the elements of both β∗ and e∗, even though the elements of e∗ can attain significantly
large values.

Performance of the ℓ1 − ℓ1 estimator: In the results in Fig. 1, we notice that the ℓ1 − ℓ1 algorithm
performs significantly worse than other methods. This is because, it uses an ℓ1 data fidelity term which
assumes a Laplacian distribution on the noise in y. However the noise in y contains a Gaussian component
w and the component e∗ due to permutations. The ℓ1 fidelity term ignores the Gaussian distribution of w.
Moreover, e∗ does not necessarily follow the Laplacian distribution. The Ar-Lasso or R-Lasso estimators
use the Gaussian distribution of the noise w and instead apply an ℓ1 sparsity-promoting penalty on the
permutation error e∗. It is important to note that the error bounds for Lasso and Ar-Lasso do not require
that e∗ follows a Laplacian distribution.

Use of only permutation-free measurements: Another natural baseline is a technique that uses only the
m permutation-free measurements for the sparse regression. This baseline is nothing but the regular Lasso
and typically requires m to be O(k log p). Having such a large number of permutation-free measurements

13



Published in Transactions on Machine Learning Research (MM/YYYY)

Figure 4: Row 1: Two refracted versions I (left) and R (right) generated synthetically by warping reference
image Z using a displacement vector field created using sparse random linear combination of 2D-DCT basis
vectors. Row 2: The reconstruction of R using R-Lasso, i.e. RR-Lasso (left) and the overlap between R
and RR-Lasso (right). Row 3: The reconstruction of R using Ar-Lasso, i.e. RAr-Lasso (left) and the overlap
between R and RAr-Lasso (right). Notice the significantly better overlap for Ar-Lasso than for R-Lasso.
For easier visualization, we highlight the regions of inaccurate overlap between R and RR-Lasso (row 2, right)
and the more accurate overlap between R and RAr-Lasso (row 3, right), using black boxes. The convention
followed for display of overlaps is described under ‘Visualization of Results’ in Sec. 5.1.

may however be unrealistic. Our experimental results show that the RRMSE values with such a baseline
can be more than 0.7 for small m, and hence are not included here.

Average compute time values of our algorithms for unlabeled compressive sensing with known correspon-
dences are presented in the supplemental material.

14



Published in Transactions on Machine Learning Research (MM/YYYY)

5.1 Application of Unlabeled Compressive Sensing in Image Registration

Consider a scene submerged under a wavy water surface when imaged using a camera in air. The images of
such a scene contains distinct non-rigid deformations when compared to an image Z of the same scene if the
scene were located in air. Consider two such refracted images denoted by I and R, corresponding to different
positions of the wavy water surface. It is known that the deformation vector field between images I and R
can be expressed as sparse linear combination of the 2D discrete cosine transform (DCT) basis vectors (see
James et al. (2019); Wulff & Black (2015)). Let both I and R be of size h1 × h2. Define u1 ∈ Rh1h2 and
u2 ∈ Rh1h2 to be the vectorized displacement fields from I to R in the horizontal and vertical directions
respectively. Let B ∈ Rh1h2×h1h2 denote the 2D DCT matrix. Then, we can represent the displacement
fields as follows:

u1 = Bθ1, u2 = Bθ2, (19)

where θ1, θ2 ∈ Rh1h2 are unknown sparse coefficient vectors. In a similar work, Sresth et al. (2024) assumes
that the displacement vector field is band-limited, that is, they assume that B consists of only some d ≪ h1h2
low-frequency 2D DCT basis column vectors. This assumption may not always hold and hence in our work,
the matrix B consists of all h1h2 2D DCT basis vectors, and accordingly, (θ1, θ2) are sparse vectors whose
support is not restricted to just the low-frequency 2D DCT coefficients.

Obtaining the displacement vector fields from observed images is a difficult problem. Conventional optical
flow algorithms do not leverage the property of bandlimitedness or sparsity of the unknown u1, u2 in the 2D
DCT basis. However, we can obtain the displacement vector information at a subset of pixels H in I using
salient feature point matching techniques such as SIFT (scale invariant feature transform) (Lowe, 2004),
Harris corner detectors Harris & Stephens (1988) or SURF (speeded up robust features) Bay et al. (2006).
Given corresponding point pairs {(pI,k, pR,k)}|H|

k=1 in images I and R, the displacement at the kth point can
be computed as (u1k, u2k) := pR,k − pI,k. Note that each pI,k and pR,k is a 2D vector. The topic of salient
feature point matching is well researched in the computer vision literature, and so such point pairs provide
useful information. Given this set H, we have u1,H = BHθ1, u2,H = BHθ2. Here, BH ∈ R|H|×d contains
the rows from B corresponding to only those pixel locations which belong to H, and u1,H, u2,H ∈ R|H|

are sub-vectors of u1, u2 respectively containing displacement values only from locations in H. The task
now is to estimate θ1, θ2 given H and u1,H, u2,H. It is clear that this is a compressive sensing problem.
However it is also an unlabeled compressive sensing problem, because it is well known that salient feature
point matching algorithms can produce a small number of erroneous point matches, especially if the images
contain self-similarity. That is, if the images contain structurally similar patches in different locations, then
some points from one region can be erroneously matched to those in other regions because the point matching
techniques leverage mostly local information. Hence, we can write the following:

u1,H = BHθ1 + δ1 + η1,H; u2,H = BHθ2 + δ2 + η2,H, (20)

where η1,H ∈ R|H|, η2,H ∈ R|H| represent small errors in the point coordinates modeled as zero-mean
Gaussian random variables with small variance, and δ1 ∈ R|H|, δ2 ∈ R|H| represent sparse vectors whose
non-zero elements represents the permutation errors. Furthermore, in motion estimation problems such as
the one under consideration, we can also use a small number of expert (accurate) point-pair annotations as
side information. Let us denote this set of accurate point-pair matches by S. Using notation similar to that
in equation 20, we have:

u1,S = BSθ1 + η1,S ; u2,S = BSθ2 + η2,S . (21)

Note that there are no terms for permutation errors in equation 21 as these are expert annotations.

Motion Estimator: Considering both equation 21 and equation 20, we have an Ar-Lasso based estimator
which minimizes the following cost functions with respect to (θ1, δ1) and (θ2, δ2) respectively:

J1(θ1, δ1) := ∥u1,H − BHθ1 − δ1∥2
2 + ∥u1,S − BSθ1∥2

2 + λ1∥θ1∥1 + λ2∥δ1∥1, (22)
J2(θ2, δ2) := ∥u2,H − BHθ2 − δ2∥2

2 + ∥u2,S − BSθ2∥2
2 + λ1∥θ2∥1 + λ2∥δ2∥1, (23)

where λ1 > 0, λ2 > 0 are regularization parameters. Given θ1 and θ2, the displacement vector fields can be
obtained using equation 19, and then applied to I in order to align it with R.
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Experiment: Consider two grayscale images I and R from row 1 of Fig. 4 respectively. The image I
was chosen arbitrarily as the reference image. Image R was generated synthetically by warping I using a
displacement vector field that was sparse in the 2D-DCT basis (for both X and Y components of the motion)
following the model in equation 19. To obtain θ1, θ2 and thus determine the motion from I to R, we obtain a
set H of n = 452 salient feature point-pairs in the images I and R by combining the outputs of SIFT (Lowe,
2004), SURF (Bay et al., 2006) and Harris descriptors (Harris & Stephens, 1988). Furthermore, we accurately
annotate a set S of m = 18 corresponding point-pairs in the images I and R. The correspondences of the m
point-pairs in S are known accurately, whereas a small number of correspondences in the point-pairs in H may
be incorrect due to errors in point matching algorithms. For example, the different grid corners from the two
images (where vertical and horizontal lines of the grid intersect) in row 1 of Fig. 4 can be incorrectly matched
with each other, as point matching algorithms rely on local similarity features. Note that the indices of the
erroneous point-pairs in H are unknown. We can use the Ar-Lasso algorithm to estimate θ1, θ2 given H, S
and thus reconstruct R by warping the image I using displacement fields u1 := Bθ1, u2 := Bθ2. To show
the utility of m known correspondences, we also perform the reconstruction of R using θ1, θ2 obtained from
R-Lasso. We refer to the reconstructions of R using Ar-Lasso and R-Lasso as RAr-Lasso and RR-Lasso
respectively.

Visualization of Results: We display the reference image I, its underwater refraction R, the reconstruc-
tions of R, i.e. RAr-Lasso and RR-Lasso, and the overlap between R and their reconstructions (i.e., RAr-Lasso
and RR-Lasso) in Fig. 4. To display the overlap between two images R and its estimate RAr-Lasso, we create
a color (RGB) image, and set the Red channel to R, the Green channel to RAr-Lasso and the Blue channel to
all zeros. If the images R and RAr-Lasso are well aligned, the resulting RGB image will appear mostly gray.
In case, there is misalignment, the RGB image will show green or magenta shades in different places. Simi-
larly, the overlap between R and RR-Lasso is also displayed. Clearly, the overlap between R and RAr-Lasso is
more accurate than that between R and RR-Lasso as evidenced by the larger proportion of green or magenta
regions in the latter (eg: elephant’s head). Note that RR-Lasso also looks noisy. The relative reconstruction
error of the reconstructed image R using Ar-Lasso is 0.141 while that using R-Lasso is 0.167. The relative
reconstruction error of the displacement field (u1, u2) using Ar-Lasso is 0.243 while that using R-Lasso
is 0.343.

These results show a proof of concept of the utility of Ar-Lasso in image alignment.

6 Conclusion

We studied the problem of unlabeled compressive sensing with the assumption that the regression vector
is sparse and given additional knowledge of a few correspondences. We proposed a tractable Lasso-based
estimator and derived theoretical performance bounds for our algorithm. We also presented another estimator
based on a modified form of Hard Thresholding Pursuit, with theoretical analysis. We verified the theoretical
findings through numerical experiments. We compared our algorithm with a hard thresholding approach
and an ℓ1 norm formulation and demonstrated that our algorithm outperforms them. Additionally, we
illustrated that having information about a small number of accurate correspondences reduces the sensitivity
of estimation error on the severity of permutation corruption. Lastly, we demonstrated a practical application
of our framework in image registration.
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A Appendix

Please refer to supplemental material for additional experiments and the proofs of lemmas and theorems.
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