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Abstract

One of the objectives of continual learning is to
prevent catastrophic forgetting in learning multi-
ple tasks sequentially, and the existing solutions
have been driven by the conceptualization of the
plasticity-stability dilemma. However, the conver-
gence of continual learning for each sequential task
is less studied so far. In this paper, we provide a
convergence analysis of memory-based continual
learning with stochastic gradient descent and em-
pirical evidence that training current tasks causes
the cumulative degradation of previous tasks. We
propose an adaptive method for nonconvex con-
tinual learning (NCCL), which adjusts step sizes
of both previous and current tasks with the gradi-
ents. The proposed method can achieve the same
convergence rate as the SGD method when the
catastrophic forgetting term which we define in the
paper is suppressed at each iteration. Further, we
demonstrate that the proposed algorithm improves
the performance of continual learning over existing
methods for several image classification tasks.

1 INTRODUCTION

Learning new tasks without forgetting previously learned
tasks is a key aspect of artificial intelligence to be as versa-
tile as humans. Unlike the conventional deep learning that
observes tasks from an i.i.d. distribution, continual learning
train sequentially a model on a non-stationary stream of
data [Ring, 1995, Thrun, 1994]. The continual learning AI
systems struggle with catastrophic forgetting when the data
access of previously learned tasks is restricted [French and
Chater, 2002]. Although novel continual learning methods
successfully learn the non-stationary stream sequentially,
studies on the theoretical convergence analysis of both pre-
vious tasks and a current task have not yet been addressed.

In this line of research, nonconvex stochastic optimization
problems have been well studied on a single task to train
deep neural networks and prove theoretical guarantees of
good convergence.

Previous continual learning algorithms have introduced
novel methods such as a replay memory to store and replay
the previously learned examples [Lopez-Paz and Ranzato,
2017, Aljundi et al., 2019b, Chaudhry et al., 2019a], regular-
ization methods that penalize neural networks [Kirkpatrick
et al., 2017, Zenke et al., 2017], Bayesian methods that uti-
lize the uncertainty of parameters or data points [Nguyen
et al., 2018, Ebrahimi et al., 2020], and other recent ap-
proaches [Yoon et al., 2018, Lee et al., 2019]. The study
of continual learning in Bayesian frameworks formulate a
trained model for previous tasks parameter into an approx-
imate posterior to learn a probabilistic model which have
empirically good performance on entire tasks. However,
Bayesian approaches can fail in practice and it can be hard
to analyze the rigorous convergence due to the approxima-
tion. The memory-based methods are more straightforward
approaches, where the learner stores a small subset of the
data for previous tasks into a memory and utilizes the mem-
ory by replaying samples to keep a model staying in a feasi-
ble region without losing the performance on the previous
tasks. Gradient episodic memory (GEM) [Lopez-Paz and
Ranzato, 2017] first formulated the replay based continual
learning as a constrained optimization problem. This for-
mulation allows us to rephrase the constraints on objectives
for previous tasks as inequalities based on the inner product
of loss gradient vectors for previous tasks and a current
task. However, the gradient update by GEM variants cannot
guarantee both theoretical and empirical convergence of its
constrained optimization problem. The modified gradient
updates do not always satisfy the loss constraint theoreti-
cally, and we can also observe the forgetting phenomenon
occurs empirically. It also implies that this intuitive refor-
mulation violates the constrained optimization problem and
cannot provide theoretical guarantee to prevent catastrophic
forgetting without a rigorous convergence analysis.
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In this work, we explain the cause of catastrophic forgetting
by describing continual learning with a smooth nonconvex
finite-sum optimization problem. In the standard single task
case, SGD [Ghadimi and Lan, 2013], ADAM [Reddi et al.,
2018], YOGI [Zaheer et al., 2018], SVRG [Reddi et al.,
2016], and SCSG [Lei et al., 2017] are the algorithms for
solving nonconvex problems that arise in deep learning.
To analyze the convergence of those algorithms, previous
works study the following nonconvex finite-sum problem

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where we assume that each objective fi(x) with a model x
and a data point index i ∈ [n] for a dataset with size n (by
the convention for notations in nonconvex optimization liter-
ature [Reddi et al., 2016]) is nonconvex with L-smoothness
assumption. In general, we denote fi(x) as f(x; di) where
di is a datapoint tuple (INPUT, OUTPUT) with index i. We
expect that a stochastic gradient descent based algorithm
reaches a stationary point instead of the global minimum in
nonconvex optimization. Unlike the convex case, the con-
vergence is generally measured by the expectation of the
squared norm of a gradient E∥∇f(x)∥2. The theoretical
computational complexity is derived from the ϵ-accurate
solution, which is also known as a stationary point with
E∥∇f(x)∥2 ≤ ϵ. The general nonconvex finite-sum prob-
lems assume that all data points can be sampled during
training iterations. This fact is an obstacle to directly apply
(1) for continual learning problem.

We provide a solution of the above issue by leveraging
memory-based methods, which allow models to access a
partial access to the dataset of previous tasks. In this setting,
we can analyze nonconvex stochastic optimization problems
on the convergence of previous tasks with limited access.
Similar with adaptive methods for noncovex optimization,
we apply adaptive step sizes during optimization to mini-
mize forgetting with theoretical guarantee. Specifically, we
make the following contributions:

• We decompose the finite-sum problem of entire tasks
into two summation terms for previous tasks and a cur-
rent task, respectively. We theoretically show that small
random subsets of previous tasks lead to analyzing the
expected convergence rate of both tasks while learning
a current task.

• We study the convergence of gradient methods under
a small memory where the backward transfer perfor-
mance degrades, and propose a new formulation of
continual learning problem with the forgetting term.
We then show why catastrophic forgetting occurs theo-
retically and empirically.

• Though memory-based methods mitigate forgetting,
previous works does not fully exploit the gradient in-
formation of memory. We introduce a novel adaptive

method and its extension which adjust step sizes be-
tween tasks at each step with theoretical ground, and
demonstrate that both methods show remarkable per-
formance on image classification tasks.

2 RELATED WORK

Memory-based methods. Early memory-based methods
utilize memory by the distillation [Rebuffi et al., 2017, Li
and Hoiem, 2017] or the optimization constraint [Lopez-
Paz and Ranzato, 2017, Chaudhry et al., 2019a]. Especially,
A-GEM [Chaudhry et al., 2019a] simplifies the approach
for constraint violated update steps as the projected gradi-
ent on a reference gradient which ensures that the average
memory loss over previous tasks does not increase. Recent
works [Chaudhry et al., 2019b, 2020a, Riemer et al., 2018]
have shown that updating the gradients on memory directly,
which is called experience replay, is a light and prominent
approach. We focus on convergence of continual learning,
but the above methods focus on increasing the empirical
performance without theoretical guarantee. Our analysis
provides a legitimate theoretical convergence analysis un-
der the standard smooth nonconvex finite-sum optimization
problem setting. Further, [Knoblauch et al., 2020] shows
the perfect memory for optimal continual learning is NP-
hard by using set-theory, but the quantitative analysis of
performance degradation is less studied.

Adaptive step sizes in nonconvex setting. Adaptive step
sizes under smooth nonconvex finite-sum optimization prob-
lem have been studied on general single task cases [Reddi
et al., 2018, Zhang et al., 2020, Zaheer et al., 2018] recently.
[Simsekli et al., 2019, Zhang et al., 2020, Simsekli et al.,
2020] have revealed that there exists a heavy-tailed noise in
some optimization problems for neural networks, such as at-
tention models, and [Zhang et al., 2020] shows that adaptive
methods are helpful to achieve the faster convergence under
the heavy-tailed distribution where stochastic gradients are
poorly concentrated around the mean. In this work, we treat
the continual learning problem where stochastic gradients
of previous tasks are considered as the out-of-distribution
samples in regard to a current task, and develop adaptive
methods which are well-performed in continual learning.

3 PRELIMINARIES

Suppose that we observe the learning procedure on a data
stream of continual learning at some arbitrary observation
point. Let us consider time step t = 0 as given observation
point. We define the previous task P for t < 0 as all visited
data points and the current task C for t ≥ 0 as all data points
which will face in the future. Then, P and C can be defined
as the sets of data points in P and C at time step t = 0,
respectively. Note that the above task description is based
on not a sequence of multiple tasks, but two separate sets to



analyze the convergence of each of P and C when starting to
update the given batch at the current task C at some arbitrary
observation point. We consider a continual learning problem
as a smooth nonconvex finite-sum optimization problem
with two decomposed objectives

min
x∈Rd

h(x) =
1

nf + ng

∑
i∈P∪C

hi(x), (2)

where nf and ng are the numbers of elements for P and C,
and h(x) can be decomposed into as follows:

h(x) =
nf

nf + ng
f(x) +

ng

nf + ng
g(x).

For clarity, we use f(x) = h(x)|P and g(x) = h(x)|C for
the restriction of h to each dataset P and C, respectively.
fi(x) and gj(x) also denotes the objective terms induced
from data where each index is i ∈ P and j ∈ C, respec-
tively.

Suppose that the replay memories Mt for time step ∈ [0, T ]
are random variables which are the subsets of P ∪C to cover
prior memory-based approaches [Chaudhry et al., 2019b,a].
To formulate an algorithm for memory-based approaches,
we define mini-batches It which are sampled from a mem-
ory Mt at step t. We now define the stochastic update of
memory-based method

xt+1 = xt − αHt
∇fIt(xt)− βHt

∇gJt
(xt), (3)

where It ⊂ Mt and Jt ⊂ C denote the mini-batches from
the replay memory and the current data stream, respectively.
Here, Ht is the union of It and Jt. In addition, for a given set
S, ∇fS(xt),∇gS(xt) denote the loss gradient of a model
xt with the mini-batch S at time step t. The adaptive step
sizes (learning rates) of∇fIt(xt) and∇gJt(x

t) are denoted
by αHt

and βHt
which are the functions of Ht.

It should be noted the mini-batch It from Mt might contain
a datapoint j ∈ C for some cases, such as ER-Reservoir.

Throughout the paper, we assume L-smoothness and the
following statements.

Assumption 3.1. fi is L-smooth that there exists a constant
L > 0 such that for any x, y ∈ Rd,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥ (4)

where ∥·∥ denotes the Euclidean norm. Then the following
inequality directly holds that

−L

2
∥x− y∥2 ≤ fi(x)− fi(y)− ⟨∇fi(y), x− y⟩

≤ L

2
∥x− y∥2. (5)

We derive Equation 5 in Appendix C. Assumption 3.1 is a
well-known and useful statement in nonconvex finite-sum
optimization problem [Reddi et al., 2016, 2018, Zhang et al.,
2020, Zaheer et al., 2018], and also helps us to describe
the convergence of continual learning. We also assume the
supremum of loss gap between an initial point x0 and a
global optimum x∗ as ∆f , and the upper bound on the
variance of the stochastic gradients as σf in the following.

∆f = sup
x0

f(x0)− f(x∗),

σ2
f = sup

x

1

nf

nf∑
i=1

∥∇fi(x)−∇f(x)∥2.

It should be noted that gj(x),∇gj(x), which denote the
loss and the gradient for a current task, also satisfy all three
above assumptions and the following statement.

To measure the efficiency of a stochastic gradient algorithm,
we define the Incremental First-order Oracle (IFO) frame-
work [Ghadimi and Lan, 2013]. IFO call is defined as a
unit of computational cost by taking an index i which gets
the pair (∇fi(x), fi(x)), and IFO complexity of an algo-
rithm is defined as the summation of IFO calls during opti-
mization. For example, a vanilla stochastic gradient descent
(SGD) algorithm requires computational cost as much as
the batch size bt at each step, and the IFO complexity is
the sum of batch sizes

∑T
t=1 bt. Let T (ϵ) be the minimum

number of iterations to guarantee ϵ-accurate solutions. The
average bound of IFO complexity is less than or equal to∑T (ϵ)

t=1 bt = O(1/ϵ2) [Reddi et al., 2016].

4 CONTINUAL LEARNING AS
NONCONVEX OPTIMIZATION

We first present a theoretical convergence analysis of
memory-based continual learning in nonconvex setting. We
aim to understand why catastrophic forgetting occurs in
terms of the convergence rate, and reformulate the optimiza-
tion problem of continual learning into a nonconvex setting
with theoretical guarantee. For completeness we present all
proofs in Appendix C.

4.1 MEMORY-BASED NONCONVEX CONTINUAL
LEARNING

Unlike conventional smooth nonconvex finite-sum optimiza-
tion problems where each mini-batch is i.i.d-sampled from
the whole dataset P ∪ C, the replay memory based contin-
ual learning encounters a non-i.i.d stream of data C with
access to a small sized memory Mt. Algorithm 1 provides
the pseudocode for memory-based approach with the itera-
tive update rule 3. Now, we can analyze the convergence on
P and C during a learning procedure on an arbitrary data
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Figure 1: Geometric illustration of Non-Convex Continual Learning (NCCL). In continual learning, a model parameter xt

starts from a local optimal point for the previously learned tasks x∗
P . Over T iterations, we expect to reach a new optimal

point x∗
P∪C which has a good performance on both P and C. In the t-th iteration, xt encounters either ∇gJt,pos(x

t) or
∇gJt,neg(x

t). These two cases indicate whether ⟨fIt(xt),∇gJt(x
t)⟩ is positive or not. To prevent xt from escaping the

feasible region, i.e., catastrophic forgetting, we impose a theoretical condition on learning rates for f and g.

Algorithm 1 Nonconvex Continual Learning (NCCL)

Require: Previous task set P , current task set C, initial
model x0.
Sample a initial memory M0 ⊂ P ▷ By replay schemes,
the selection dist. of M0 are different.
for t = 0 to T − 1 do

Sample a mini-batch It ⊂Mt

Sample a mini-batch Jt ⊂ C
Compute step sizes αHt

, βHt
by∇fIt(xt),∇gJt

(xt)
xt+1 ← xt − αHt

∇fIt(xt)− βHt
∇gJt

(xt)
Update Mt+1 by the rule of replay scheme with Jt.

end for

stream from two consecutive sets P and C for continual
learning [Chaudhry et al., 2019a,b, 2020b].

By limited access to P , the expectation of gradient update
EIt⊂Mt

[∇fIt(xt)] in Equation 3 for f(x) is a biased esti-
mate of the gradient∇f(xt). At the timestep t, we have

∇fMt
(xt) = EIt

[
∇fIt(xt)|Mt

]
= EIt

[
∇f(xt) + et|Mt

]
= ∇f(xt) + eMt

,

where et and eMt
denote the error terms,∇fIt(xt)−∇f(xt)

and the expectation over It given Mt, respectively. It should
be noted that a given replay memory Mt with small size at
timestep t introduces an inevitable overfitting bias.

For example, there exist two popular memory schemes,
episodic memory and ER-reservoir. The episodic mem-
ory Mt = M0 for all t is uniformly sampled once from
a random sequence of P , and ER-reservoir iteratively sam-
ples the replay memory Mt by the selection rule Mt ⊂
Mt−1 ∪ Jt. Here, we denote the history of Mt as M[0:t] =
(M0, · · · ,Mt). To compute the expectation over all stochas-
ticities of NCCL, we need to derive the expectation of
∇fMt(x

t) over the randomness of Mt. We formalize the
expectation over all learning trials with the selection ran-
domness as follows.

Lemma 4.1. If M0 is uniformly sampled from P , then both
episodic memory and ER-reservoir satisfies

EM[0:t]

[
∇fMt(x

t)
]
= ∇f(xt) and EM[0:t]

[eMt ] = 0.

Note that taking expectation iteratively with respect to the
history M[0:t] is needed to compute the expected value of
gradients for Mt. Surprisingly, taking the expectation of
overfitting error over memory selection gets zero. However,
it does not imply et = 0 for each learning trial with some
M[0:t].

4.2 THEORETICAL CONVERGENCE ANALYSIS

We now propose two terms of interest in a gradient update
of nonconvex continual learning (NCCL). We define the
overfitting term Bt and the catastrophic forgetting term Γt

as follows:

Bt = (Lα2
Ht
− αHt

)⟨∇f(xt), et⟩+ βHt
⟨∇gJt

(xt), et⟩,

Γt =
β2
Ht

L

2
∥∇gJt

(xt)∥2 − βHt
(1− αHt

L)⟨∇fIt(xt),∇gJt
(xt)⟩.

The amount of effect on convergence by a single update can
be measured by using Equation 5 as follows:

f(xt+1) ≤ f(xt)− ⟨∇f(xt), αHt
∇fIt(xt) + βHt

∇gJt
(xt)⟩

+
L

2
∥αHt∇fIt(xt) + βHt∇gJt(x

t)∥2 (6)

by letting x ← xt+1 and y ← xt. Note that the above
inequality can be rewritten as

f(xt+1) ≤ f(xt)−
(
αHt
− L

2
α2
Ht

)
∥∇f(xt)∥2 + Γt +Bt

+
L

2
α2
Ht
∥et∥2.

A NCCL algorithm update its model with two additional
terms Bt,Γt compared to conventional SGD. An overfitting



term Bt and a catastrophic forgetting term Γt are obtained
by grouping terms that contain et and ∇gJt(x

t), respec-
tively. These two terms inevitably degrade the performance
of NCCL with respect to time. It should be noted that Γt has
⟨∇fIt(xt),∇gJt

(xt)⟩, which is a key factor to determine
interference and transfer [Riemer et al., 2018]. On the other
hand, Bt includes et, which is an error gradient between the
batch from Mt and the entire dataset P .

Since taking the expectation over all stochasticities of NCCL
implies the total expectation, we define the operator of total
expectation with respect to 0 ≤ t < T for ease of exposition
as follows:

Et = EM[0:t]

[
EIt [EJt [ · |It]] |M[0:t]

]
.

In addition, we denote ET−1 = E. We first state the stepwise
change of upper bound.

Lemma 4.2. Suppose that Assumption 3.1 holds and 0 <
αHt
≤ 2

L . For xt updated by Algorithm 1, we have

Et∥∇f(xt)∥2 ≤ Et

[
f(xt)− f(xt+1) +Bt + Γt

αHt
(1− L

2 αHt
)

]

+ Et

[
αHtL

2(1− L
2 αHt)

σ2
f

]
. (7)

Surprisingly, we observe Et[Bt] = 0 by Lemma 4.1. It
should be also noted that the individual trial with a randomly
given M0 cannot cancel the effect of Bt. We discuss more
details of overfitting to memory in Appendix E.

We now describe a convergence analysis of Algorithm 1.
We telescope over training iterations for the current task,
which leads to obtain the following theorem.

Theorem 4.3. Let αHt = α = c√
T

for some 0 < c ≤ 2
√
T

L

and t ∈ {0, · · · , T − 1}. By Lemma 4.2, the iterates of
NCCL satisfy

min
t

E∥∇f(xt)∥2 ≤ A√
T

(
1

c

(
∆f +

T−1∑
t=0

E [Γt]

)
+

Lc

2
σ2
f

)

where A = 1/(1− Lα/2).

We also prove the convergence rate of a current task C
with the gradient udpates from the replay-memory M in
continual learining.

Lemma 4.4. Suppose that It ∩ Jt = ∅, Taking expectation
over It ⊂Mt and Jt ⊂ C, we have

min
t

E∥∇h|M∪C(x
t)∥2 ≤

√
2∆h|M∪C

L

T
σh|M∪C

, (8)

where ∆h|M∪C
and σh|M∪C

is the version of loss gap and
the variance for h on M ∪ C, respectively.

Thus, the convergence of a current task C is guaranteed,
since its superset M ∪ C is converged. Otherwise, the con-
vergence rate might differ from the conventional SGD for C
by the given ∆h|M∪C

, σh|M∪C
at time 0, but the asymptotic

convergence rate is still identical.

One key observation is that E[Γt] are cumulatively added
on the upper bound of E∥∇f(x)∥2, which is a constant in
conventional SGD. The loss gap ∆f and the variance of gra-
dients σf are fixed values. In practice, tightening

∑
t E[Γt]

appears to be critical for the performance of NCCL. How-
ever,

∑T−1
t=0 E[Γt]/

√
T is not guaranteed to converge to 0.

This fact gives rise to catastrophic forgetting in terms of a
nondecreasing upper bound. We now show the key condition
of the convergence of

∑T−1
t=0 E[Γt]/

√
T .

Lemma 4.5. Let an upper bound β > βHt
> 0. Consider

two cases, β < α and β ≥ α for α in Theorem 4.3. We have
the following bound

T−1∑
t=0

E[Γt]√
T

< O
(
1/T 3/2 + 1/T

)
when β < α,

T−1∑
t=0

E[Γt]√
T

< O
(√

T + 1/
√
T
)
, when β ≥ α.

With the following theorem, we show that f(x) can con-
verge even if we have limited access to P .

Theorem 4.6. Let βHt
< α = c√

T
for all t. Then we have

the convergence rate

min
t

E∥∇f(xt)∥2 ≤ O

(
1√
T

)
. (9)

Otherwise, f(x) is not guaranteed to converge when β ≥ α
and might diverge at the rate O(

√
T ).

Corollary 4.7. For βHt
< α = c√

T
for all t, the IFO

complexity of Algorithm 1 to obtain an ϵ-accurate solution
is:

IFO calls = O(1/ϵ2). (10)

We build intuituions about the convergence condition of the
previous tasks P in Theorem 4.6. As empirically shown in
stable A-GEM and stable ER-Reservoir [Mirzadeh et al.,
2020], the condition of βHt

< α theoretically implies that
decaying step size is a key solution to continual learning
considering when we pick any arbitrary observation points.

Remark 4.8. To prevent catastrophic forgetting, the step
size of g(x), βHt

should be lower than the step size of f(x),
αHt

. It should also be noted that EM[1:t]
[Bt|M0] is not al-

ways 0 for any M0. This implies that, from time step 0, each
trial with different given M0 also has the non-zero cumula-
tive sum

∑
EM[1:T ]

[Bt|M0], which occurs overestimating
bias theoretically.



The convergence rate with respect to the marginalization
on M0 in Theorem 4.6 exactly match the usual nonconvex
SGD rates. The selection rules for M0 with various memory
schemes are important to reduce the variance of convergence
rate with having the mean convergence rate as Equation
9 among trials. This is why memory schemes matters in
continual learning in terms of variance. Please see more
details in Appendix E.

4.3 REFORMULATED PROBLEM OF CONTINUAL
LEARNING

The previous section showed the essential factors in con-
tinual learning to observe the theoretical convergence rate.
The overfitting bias term Bt has a strong dependence on the
memory selection rule and can be computed exactly only
if we can access the entire dataset P during learning on C.
In terms of expectation, we have shown that the effect of
Bt is negligible. We also show that its empirical effect is
less important than Γt in Figure 2. Then we focus on the
performance degradation by the catastrophic forgetting term
Γt. For every trial, the worst-case convergence is dependent
on ∆f +

∑T−1
t=0 E [Γt] by Theorem 4.3. To tighten the up-

per bound and keep the model to be converged, we should
minimize the cumulative sum of Γt. We now reformulate
the continual learning problem 2 as follows.

minimize
αHt , βHt

T−1∑
t=0

E[Γt]

subject to 0 < βHt
< αHt

≤ 2/L for all t < T (11)

It is noted that the above reformulation presents a theoreti-
cally guaranteed continual learning framework for memory-
based approaches in nonconvex setting and the constraint is
to guarantee the convergence of both f(x) and g(x).

5 ADAPTIVE METHODS FOR
CONTINUAL LEARNING

As discussed in the above Section, we can solve a memory-
based continual learning by minimizing

∑T−1
t=0 E[Γt]. Adap-

tive methods are variants of SGD, which automatically ad-
just the step size (learning rate) on a per-feature basis. In this
section, we review A-GEM in terms of adaptive methods,
and also propose a new algorithm (NCCL) for achieving
adaptivity in continual learning. For brevity, we denote the
inner product ⟨∇fIt(xt),∇gJt(x

t)⟩ as ΛHt .

5.1 A-GEM

A-GEM [Chaudhry et al., 2019a] propose a surrogate of
∇gJt(x

t) as the following equation to avoid violating the
constraint when the case of interference, ΛHt

≤ 0:

∇gJt
(xt)−

〈
∇fIt(xt)

∥∇fIt(xt)∥
,∇gJt

(xt)

〉
∇fIt(xt)

∥∇fIt(xt)∥
.

Let β be the step size for g(x) when the constraint is not
violated. Then we can interpret the surrogate as an adaptive
learning rate αHt

, which is α(1− ⟨∇fIt (x
t),∇gJt (x

t)⟩
∥∇fIt (x

t)∥2 ) to can-
cel out the negative component of∇fIt(xt) on∇gJt

(xt).

For the transfer case ΛHt > 0, A-GEM use αHt = 0.
After applying the surrogate, E[Γt] is reduced as shown in
Appendix D. It is noted that A-GEM theoretically violates
the constraints of (11) to prevent catastrophic forgetting by
letting αHt

= 0 and does not utilize the better transfer effect.
Then, A-GEM is an adaptive method without theoretical
guarantee.

5.2 NCCL

As discussed above, we note that E[Γt] is a quadratic poly-
nomial of βHt

. For the interference case ΛHt
≤ 0, the

minimum point of polynomial, β∗
Ht

has a negative value
which violates the constraint βHt > 0, and E[Γt] is mono-
tonically increasing on βHt > 0. Then, we instead adapt
αHt

to reduce the value of E[Γt] at time t by adopting the
scheme of A-GEM. The minimum of the polynomial on
E[Γt] can be obtained when the case of transfer, ΛHt

> 0
by differentiating on βHt

. Then the minimum E[Γ∗
t ] and the

optimal step size β∗
Ht

can be obtained as

β∗
Ht

=
(1− αHtL)ΛHt

L∥∇gJt
(xt)∥2

, E[Γ∗
t ] = −

(1− αHt
L)ΛHt

2L∥∇gJt
(xt)∥2

.

To satisfy the constraints of (11), we should update∇fIt(xt)
with non-zero step size and βHt

< αHt
for all t. Then the

proposed adaptive method for memory-based approaches is
given by

αHt
=

{
α(1− ΛHt

∥∇fIt (x
t)∥2 ), ΛHt ≤ 0

α, ΛHt > 0,

βHt =

{
α, ΛHt ≤ 0

min
(
α(1− δ),

(1−αL)ΛHt

L∥∇gJt (x
t)∥2

)
, ΛHt > 0

where α = c/
√
T and δ is some constant 0 < δ ≪ 1. Note

that our two adaptive learning rates are a stepwise greedy
perspective choice of memory-based continual learning.

6 EXPERIMENTS

We use two following metrics to evaluate algorithms. (1)
Average accuracy is defined as 1

T

∑T
j=1 aT,j , where ai,j

denotes the test accuracy on task j after training on task i.
(2) Forgetting is the average maximum forgetting is defined
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Figure 2: Metrics for continual learning (CL) algorithms trained on split-CIFAR100 with different 5 seeds . (a) Forgetting
versus

∑
E[Γt] at the end of training. (b) Evolution of

∑
E[Γt] during continual learning. (c) Empirical verification of

the relation between ∥∇f(x)∥ for the first task and test loss of the first task in split CIFAR-100. (d)-(e) are the empirical
verification of

∑
E[Γt] versus ∥∇f(x)∥ for the first task in CL algorithms. The red horizontal line indicates the empirical

∥∇f(x)∥ right after training the first task. (f) Illustration of empirical Bt at the end of each task.

as 1
T−1

∑T−1
j=1 max

l∈[T−1]
(al,j − aT,j). Due to limited space,

we report the details of architecture and learning procedure
and missing results with additional datasets in Appendix B.

6.1 EXPERIMENTAL SETUP

Datasets. We demonstrate the experimental results on stan-
dard continual learning benckmarks: Permuted-MNIST
[Kirkpatrick et al., 2017] is a MNIST [LeCun et al., 1998]
based dataset, where each task has a fixed permutation of
pixels and transform data points by the permutation to make
each task distribution unrelated. Split-MNIST [Zenke et al.,
2017] splits MNIST dataset into five tasks. Each task con-
sists of two classes, for example (1, 7), (3, 4), and has ap-
proximately 12K images. Split-CIFAR10, 100, and Mini-
Imagenet also split versions of CIFAR-10, 100 [Krizhevsky
et al., 2009], and MiniImagenet [Vinyals et al., 2016] into
five tasks and 20 tasks.

Baselines. We report the experimental evaluation on the
online continual setting which implies a model is trained
with a single epoch. We compare with the following con-
tinual learning baselines. Fine-tune is a simple method
that a model trains observed data naively without any sup-
port, such as replay memory. Elastic weight consolidation
(EWC) is a regularization based method by Fisher Infor-
mation [Kirkpatrick et al., 2017]. ER-Reservoir chooses
samples to store from a data stream with a probability pro-
portional to the number of observed data points. The re-
play memory returns a random subset of samples at each

iteration for experience replay. ER-Reservoir [Chaudhry
et al., 2019b] shows a powerful performance in continual
learning scenario. GEM and A-GEM [Lopez-Paz and Ran-
zato, 2017, Chaudhry et al., 2019a] use gradient episodic
memory to overcome forgetting. The key idea of GEM
is gradient projection with quadratic programming and A-
GEM simplifies this procedure. We also compare with iCarl,
MER, ORTHOG-SUBSPACE [Chaudhry et al., 2020b], sta-
ble SGD [Mirzadeh et al., 2020], and MC-SGD [Mirzadeh
et al., 2021].

6.2 EXPERIMENT RESULTS

The following tables show our main experimental results,
which is averaged over 5 runs. We denote the number of ex-
amples per class per task at the top of each column. Overall,
NCCL + memory schemes outperform baseline methods
especially in the forgetting metric. Our goal is to demon-
strate the usefulness of the adaptive methods to reduce the
catastrophic forgetting, and to show empirical evidence for
our convergence analysis. We remark that NCCL success-
fully suppress forgetting by a large margin compared to
baselines. It is noted that NCCL also outperforms A-GEM,
which does not maximize transfer when ΛHt

> 0 and vio-
lates the proposed constraints in (11).

We now investigate the proposed terms with regard to
memory-based continual learning,

∑
E[Γt] and Bt. To ver-

ify our theoretical analysis, in Figure 2 we show the cumula-
tive catastrophic forgetting term

∑
t E[Γt] is the key factor

of the convergence of the first task in split-CIFAR100. Dur-



Table 1: Accuary and Forgetitng results between the proposed methods (NCCL+Ring, NCCL+Reservoir) and other baselines
in task-incremental learning. When the replay-memory is used, we denote the memory size as the number of examples per
class per task. The additional results and the detailed setting with different memory size is in Appendix B.

Method
dataset Permuted-MNIST split-CIFAR 100 split-MiniImagenet

memory size 5 5 1

memory accuracy forgetting accuracy forgetting accuracy forgetting

Fine-tune ✗ 47.9 0.29(0.01) 40.4(2.83) 0.31(0.02) 36.1(1.31) 0.24(0.03)
EWC ✗ 63.1(1.40) 0.18(0.01) 42.7(1.89) 0.28(0.03) 34.8(2.34) 0.24(0.04)

stable SGD ✗ 80.1 (0.51) 0.09 (0.01) 59.9(1.81) 0.08(0.01) - -
MC-SGD ✗ 85.3 (0.61) 0.06 (0.01) 63.3 (2.21) 0.06 (0.03) - -
A-GEM ✓ 64.1(0.74) 0.19(0.01) 59.9(2.64) 0.10(0.02) 42.3(1.42) 0.17(0.01)
ER-Ring ✓ 75.8(0.24) 0.07(0.01) 62.6(1.77) 0.08(0.02) 49.8(2.92) 0.12(0.01)

ER-Reservoir ✓ 76.2(0.38) 0.07(0.01) 65.5(1.99) 0.09(0.02) 44.4(3.22) 0.17(0.02)
ORHOG-subspace ✓ 84.32(1.1) 0.11(0.01) 64.38(0.95) 0.055(0.007) 51.4(1.44) 0.10(0.01)

NCCL + Ring ✓ 84.41(0.32) 0.053(0.002) 61.09(1.47) 0.02(0.01) 45.5(0.245) 0.041(0.01)
NCCL+Reservoir ✓ 88.22(0.26) 0.028(0.003) 63.68(0.18) 0.028(0.009) 41.0(1.02) 0.09 (0.01)

Multi-task 91.3 0 71 0 65.1 0

ing continual learning,
∑

t E[Γt] increases in all methods of
Figure 2b. Figrure 2a, 2d, 2e show that the larger

∑
t E[Γt]

causes the larger forgetting and ∥∇f(x)∥ for the first task.
We can observe that ∥∇f(x)∥ gets larger than 4, which is
for the red line, when

∑
t E[Γt] becomes larger than 2. We

also verify that the theoretical result Et[Bt] = 0 is valid in
Figure 2f. It implies that the empirical results of Lemma 4.1,
which show the effect of Bt on Equation 7. Furthermore, the
memory bias helps to tighten the convergence rate of P by
having negative values in practice. Even with tiny memory,
the estimated Bt has much smaller value than E[Γt] as we
can observe in Figure 2. For experience replay, we need not
to worry about the degradation by memory bias and would
like to emphasize that tiny memory can slightly help to keep
the convergence on P empirically. We conclude that the
overfitting bias term might not be a major factor in degrad-
ing the performance of continual learning agent when it is
compared to the catastrophic forgetting term Γt. Next, we
modify the clipping bound of βHt in Section of adaptive
methods to resolve the lower performance in terms of av-
erage accuracy. In Table 1, NCCL+Ring does not have the
best average accuracy score, even though it has the lowest
value of

∑
E[Γt]. As we discussed earlier, it is because the

convergence rate of C is slower than vanilla ER-Ring with
the fixed step sizes. Now, we remove the restriction of βHt ,
min

(
α(1− δ),

(1−αL)ΛHt

L∥∇gJt (x
t)∥2

)
for ΛHt > 0, and instead

apply the maximum clipping bound βmax to maximize the
transfer effect, which occurs if ΛHt

> 0, by getting E[Γ∗
t ].

In the original version, we force βHt < α to reduce the-
oretical catastrophic forgetting term completely. However,
replacing with βmax is helpful in terms of average accuracy
as shown in Appendix B. It means that βmax is a hyper-
parameter to increase the average accuracy by balancing

between forgetting on P and learning on C. In Appendix
B, we add more results with larger sizes of memory, which
shows that NCCL outperforms in terms of average accuracy.
It means that estimating transfer and interference in terms of
ΛHt

to alleviate forgetting by the small memory for NCCL
is less effective.

Table 2: Results of class incremental split-CIFAR100 with
Memory size = 10,000.

Methods accuracy

Finetune 3.06(0.2)
A-GEM 2.40(0.2)

GSS-Greedy [Aljundi et al., 2019b] 19.53(1.3)
MIR [Aljundi et al., 2019a] 20.02(1.7)

ER + GMED [Jin et al., 2020] 20.93(1.6)
MIR + GMED [Jin et al., 2020] 21.22(1.0)

NCCL-Reservoir (ours) 21.95(0.3)

7 CONCLUSION

We have presented a theoretical convergence analysis of
continual learning. Our proof shows that a training model
can circumvent catastrophic forgetting by suppressing catas-
trophic forgetting term in terms of the convergence on pre-
vious task. We demonstrate theoretically and empirically
that adaptive methods with memory schemes show the bet-
ter performance in terms of forgetting. It is also noted that
there exist two factors on the convergence of previous task:
catastrophic forgetting and overfitting to memory. Finally, it
is expected the proposed nonconvex framework is helpful
to analyze the convergence rate of CL algorithms.
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