
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WebFactory: AUTOMATED COMPRESSION OF
FOUNDATIONAL LANGUAGE INTELLIGENCE INTO
GROUNDED WEB AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current paradigms for training GUI agents are fundamentally limited by a reliance
on either unsafe, non-reproducible live web interactions or costly, scarce human-
crafted data and environments. We argue this focus on data volume overlooks
a more critical factor: the efficiency of compressing a large language model’s
(LLM) latent knowledge into actionable agent behavior. We introduce WebFac-
tory, a novel, fully automated closed-loop reinforcement learning pipeline for
GUI agents, systematically compressing LLM-encoded internet intelligence into
efficient, grounded actions. Our pipeline features a process of scalable envi-
ronment synthesis→ knowledge-aware task generation→ LLM-powered trajec-
tory collection → decomposed reward RL training → systematic agent evalua-
tion. Remarkably, our agent demonstrates exceptional data efficiency and gener-
alization. Trained on synthetic data from only 10 websites within WebFactory,
it achieves performance comparable to GUI agents trained on same amount of
human-annotated data from a much larger set of environments. This superior per-
formance is consistent across our internal offline and online transferring bench-
marks, where our agent also significantly outperforms the base foundation model.
We further provide critical insights into the "embodiment potential" of different
LLM foundations, offering a new axis for model evaluation. This work presents a
scalable and cost-effective paradigm for transforming passive internet knowledge
into active, grounded intelligence, marking a critical step towards general-purpose
interactive agents.

1 INTRODUCTION

The advent of Large Language Models (LLMs) has marked a paradigm shift, creating what we term
"internet-scale intelligence"—the rich world model and reasoning capabilities compressed from the
vast internet corpus (Ouyang et al., 2022). Yet, this intelligence remains descriptive, not action-
able. While an LLM’s knowledge represents a powerful compression of digital experience, an
embodied agent’s single action in a GUI—a click or keystroke—is an exponentially deeper com-
pression, translating abstract intent into tangible environmental change. Bridging this fundamental
"semantic-to-action gap" is the central challenge in creating capable GUI agents; LLMs know about
GUI interactions, they lack the grounding to reliably perform them in complex and dynamic GUI
environments (Shi et al., 2017; Liu et al., 2018; Chezelles et al., 2024).

Current attempts to bridge this gap are caught in a dilemma between scalability and control. On one
hand, reliance on human labor presents a two-fold bottleneck: beyond the immense cost and inherent
biases of annotating thousands of trajectories (Deng et al., 2023; Luo et al., 2025), the painstaking,
manual synthesis of high-fidelity environments can itself consume weeks of expert effort. On the
other hand, training on the live web offers scale but sacrifices control; it is a chaotic environment
where non-determinism, safety risks, and noise present formidable barriers to reproducible research
(Zhou et al., 2024; Miyai et al., 2025; Garg et al., 2025). As a result, neither approach offers a
sustainable path toward creating truly scalable and robust agents.

To overcome these limitations, we argue for a paradigm shift: instead of treating LLMs as mere
components to be fine-tuned, we can leverage them as the architects of their own embodiment. We

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

introduce the concept of Intelligence Compression Factory: a closed-loop, end-to-end pipeline
that systematically transforms the descriptive, internet-scale intelligence of LLMs into grounded,
actionable behavior. As shown in Figure 1, this factory operates not on the noisy live web(Pan
et al., 2024), but within a high-fidelity, fully observable offline environment. Replicating real-world
websites in this manner eliminates non-determinism and safety concerns, thereby creating the ideal
conditions for our factory to operate. Here, an LLM-driven, knowledge-aware task synthesizer
can generate a virtually infinite stream of diverse and executable tasks, shattering the bottleneck of
human annotation.

Our key contributions are the design, implementation, and validation of this factory:

• High-Fidelity Offline Web Environment: An open-source and reproducible suite that faithfully
replicates production websites, providing strict controllability and full observability while elimi-
nating noise, privacy concerns, and non-determinism inherent to live web interaction.

• Knowledge-Driven Task Generation: A mechanism that leverages environment observability
and LLM knowledge to automatically synthesize diverse, executable, and unbiased task instruc-
tions with unambiguous ground-truth answers, removing reliance on costly human annotation.

• Scalable Trajectory Generation: Integration of strong LLM executors (e.g., OpenAI’s
computer-use-preview) within the controlled environment to generate large-scale, high-quality
interaction trajectories. A filtering process ensures reproducibility and correctness, while a novel
“behavioral intent alignment feedback” further enhances information retrieval tasks.

• Reinforcement Learning with Unified Action Space and Decomposed Reward: An RL train-
ing framework supporting GRPO and related algorithms. We design a unified action space and a
decomposed reward function that combines structural format validation with fine-grained accuracy
(action type, click point, input text). For retrieval tasks, normalized F1-based scoring stabilizes
optimization and improves robustness (Christiano et al., 2017; Ouyang et al., 2022).

• Robust Evaluation Protocols: Comprehensive evaluation at both the task level (via key-node
tracking) and sub-task level (via grounding metrics), enabling systematic and reproducible assess-
ment of agent capabilities.

• Open-Sourced Toolchain: A fully released, extensible toolkit including environments, task gen-
erators, training pipeline, and evaluation tools, supporting scalable and reproducible research
across diverse web domains.

Agents trained in WebFactory exhibit superior performance and data efficiency. On our internal
offline and online benchmarks, they consistently outperform both the base foundation model and
existing agents trained on equivalent volumes of human-annotated data(Luo et al., 2025). More
strikingly, despite being trained on only 10 websites, our agent achieves competitive performance
on general benchmarks against counterparts trained on a much broader corpus of human data. This
success offers compelling evidence for the “intelligence compression” philosophy.

Beyond empirical performance, we introduce the concept of “LLM embodiment” , quantifying
how effective foundation LLM tokens are transformed into grounded agent intelligence. Our anal-
ysis reveals that different foundation models possess a varying potential for embodiment, offering
a new axis for model evaluation. Our findings also highlight the critical roles of full environment
observability in maximizing training efficacy.

In summary, this work presents a scalable, safe, and cost-effective approach to transforming LLMs’
descriptive intelligence into actionable GUI agent behaviors. We further propose that the agent
scaling law should be refined beyond data volume to account for a model’s efficiency in intelligence
compression and its inherent capability for embodiment. While validated here in GUI settings,
this paradigm holds strong promise for more complex physical embodied environments (Chevalier-
Boisvert et al., 2018; Shridhar et al., 2020).

2 METHOD

2.1 A HIGH-FIDELITY, FULLY CONTROLLABLE WEB ENVIRONMENT

To enable scalable data generation and automated RL training for web agents, we develop a fully
controllable offline environment that preserves the structural richness of production sites while guar-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

WebFactory: Intelligence Compression Pipeline

Scalable Trajectory Generation

Intelligence

Compression

Actionable Behavior
RL Training with Unified Action & Reward

Superior Generalization

Safe & Controllable

High-Fidelity Offline Env & Task Generation

Decomposed Reward

Descriptive Knowledge

Foundation LLM

(Internet-Scale Intelligence)

Embodiment
Gap

Compression
Input

Step 1

High-Fidelity Offline Environment

(Fully Observable)

LLM

Auto-Task Synthesis

LLM

Observes

Grounded GUI Agent

Step 2

Step 3

Teacher Agent

(Strong LLM)
Filtering Process

Filter/Feedback

Intent Alignment

Feedback

High-Quality

Trajectories

Student Agent Closed-loop

pipeline

GRPO / RL

Optimization

Action Type

Click Point

Input Text

Figure 1: Overview of the WebFactory, which compresses foundation-model intelligence into
grounded GUI agents through three stages: high-fidelity offline environment & task synthesis, scal-
able trajectory generation, and unified-action RL training.

anteeing strict reproducibility. A central component is our LLM-assisted synthesis pipeline, which
automatically generates realistic websites—including layouts, workflows, and content—enabling
low-cost, rapid expansion of training domains without manual engineering. This design achieves
three critical objectives: (i) cost-effective synthesis of large-scale, high-quality training data, (ii)
safe and systematic RL experimentation without real-world consequences, and (iii) stable, versioned
benchmarks for reproducible evaluation.

The environment eliminates common deployment obstacles: sites boot into pre-authenticated
sessions with seeded profiles, bypassing login/MFA requirements; anti-automation defenses
(CAPTCHA, bot detection) are disabled to isolate agent capabilities; and all content is versioned in
static datasets (e.g., ‘Data.js’) for exact reproducibility. Full access to frontend code, databases,
and interaction logic facilitates rapid iteration and instrumentation.

We curate ten site families spanning key web activities: e-commerce, information search, travel
planning, employment, communication, and enterprise services. These sites feature diverse UI pat-
terns—from simple forms to drag-and-drop interfaces and hover-triggered menus—providing com-
prehensive coverage of web interaction paradigms.

The entire codebase is open-source, enabling researchers to extend the site collection or implement
custom tasks. Task difficulty is adjustable across data complexity (catalog size, network density), UI
complexity (multi-level navigation, drag-and-drop, hover menus), and workflow depth (from simple
lookups to multi-step executions). This flexibility supports targeted evaluation of key competencies:
information retrieval, form completion, navigation efficiency, and constraint-based decision-making.

Pipeline integration. The environment supports the end-to-end training pipeline described in
Sec. 2.2. It exposes ground-truth data and site knowledge for task synthesis, enforces trajectory
correctness during generation, and enables automatic reward computation for RL. For information-
retrieval tasks, canonical answers are directly accessible from the data layer. This infrastructure
serves both as a data-generation platform and as a versioned benchmark for reproducible evaluation.

2.2 A KNOWLEDGE-DRIVEN RL TRAINING PIPELINE FOR WEB AGENTS

2.2.1 KNOWLEDGE PRESERVATION & TASK GENERATION

Knowledge-driven task generation. A critical advantage of our fully observable environment is
the ability to guarantee task validity and answerability. For each site, we extract a machine-readable
knowledge specification capturing: (i) the navigation graph with permissible page transitions, (ii)
page-level semantics and affordances, and (iii) canonical interaction flows (e.g., browse→ detail

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Representative offline websites from our curated environment (6 of 10 shown).

→ cart). This complete observability eliminates common data generation pitfalls—tasks referenc-
ing non-existent pages, unavailable information, or infeasible actions are prevented by design.

Leveraging this knowledge, we generate two complementary task families:

(a) Operation tasks evaluate long-horizon interaction competence through state-changing actions
(e.g., “Add iPhone 17 with 256GB storage to cart”). These are synthesized by traversing the naviga-
tion graph to ensure all generated procedures are executable on the actual site.

(b) Information-retrieval tasks pose queries with guaranteed answers drawn directly from the ob-
servable data layer (e.g., “What are Cafe A’s weekend hours?”). Since all site data is accessible, we
verify answer availability before task generation and compute the exact navigation path required for
retrieval. This approach produces unambiguous ground-truth answers essential for both supervised
learning and automated reward computation (see Listing 1 for an example).

The full observability thus transforms traditionally unreliable task generation into a deterministic
process, ensuring every synthesized task is both executable and verifiable—a prerequisite for scal-
able training and evaluation.

{
"id": "task_retrieval_017",
"site": "MealDash",
"start_url": "/mealdash",
"goal": "Search for Cafe A, open its detail page, and tell me the Sunday opening

time, formatted as HH:MM in 24-hour style.",↪→
"expected_answers": [

"11:00",
"11 am",
"opens at 11:00"

],
"key_nodes": [

"search_box",
"results_list",
"cafe_detail_page"

]
}

Listing 1: Example schema for a retrieval task

2.2.2 BATCH DATA GENERATION AT SCALE

Given a predefined task set, we use a strong executor (OpenAI’s computer-use-preview) within
this offline environment to execute tasks and collect trajectory data. A filtering pipeline removes

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

low-quality traces via (i) state-replay checks, (ii) key-node coverage, and (iii) answer validation for
retrieval tasks. In addition, site-exposed auxiliary knowledge assists the executor and enables extra
consistency checks, improving both accuracy and yield. Together, these properties make large-scale
trajectory generation routine and low-cost while preserving reproducibility: the result is a scalable
corpus of high-quality data suitable for SFT, offline RL, or hybrid training. Appendix F provides a
detailed description of Trajectory Dataset Statistics & Distributions.

2.2.3 REINFORCEMENT LEARNING FROM GENERATED TRAJECTORIES

We build upon the GUI-R1 framework (Luo et al., 2025) and extend it to support information
retrieval tasks in web environments. While the original framework focuses on action-oriented
GUI manipulation, we adapt it to handle data acquisition tasks by introducing a specialized
get_final_answer action and corresponding reward mechanisms for answer evaluation.

We optimize a policy for web-based GUI agents operating in a structured action space. Each action
at step t is a tuple

at = {aact
t , apoint

t , atext
t }, (1)

where aact
t ∈ {click, double_click, type, scroll, keypress, drag, get_final_answer} denotes

the action type, apoint
t = [x, y] (or [[x1, y1], [x2, y2]] for drag), and atext

t contains input text or di-
rectional parameters (e.g., UP/DOWN for scroll). Generated trajectories populate a replay buffer
(st,at, Rt, st+1).

Reward. Let Rf be the format reward and Raccuracy ∈ [0, 1] be the task-specific accuracy reward.
The per-step reward is

Rt = αRf + β Raccuracy, (2)

where α, β are weighting coefficients.

Accuracy Reward. We employ hierarchical validation: action type must match before evaluating
action-specific parameters. Let A = {click, type, scroll, drag, get_answer, ...} be the action
set. The accuracy reward is:

Racc =



0, if atype ̸= gttype

I[acoord ∈ gtbbox], if atype ∈ {click}
I[F1(a

text, gttext) ≥ τ], if atype ∈ {type, scroll}
maxr∈R I[F1(a

text, r) ≥ τ], if atype = get_answer

I[∥adrag − gtdrag∥2 ≤ ϵ], if atype = drag

1, otherwise

(3)

where τ = 0.5 is the F1 threshold, ϵ is the drag tolerance, andR = {r1, ..., rK} contains equivalent
answers for retrieval tasks. Text comparison uses normalization norm(·) for case/punctuation/format
invariance.

Format reward. Rf validates the structural integrity: proper JSON formatting, valid action types
from the web action set, appropriate parameter types, and conditional requirements (e.g., text re-
quired for type actions, directional strings for scroll).

2.2.4 CLOSED-LOOP PIPELINE

We integrate the controllable environment (Sec. 2.1), knowledge & task generation (Sec. 2.2.1),
large-scale trajectory collection (Sec. 2.2.2), and RL training (Sec. 2.2.3) into an open, fully script-
able pipeline that operates with minimal human oversight.

The pipeline proceeds as follows: (1) Knowledge & data materialization: for each site, construct a
knowledge pack comprising the navigation graph, page semantics and affordances, canonical flows,
and an explicit data snapshot for downstream use; (2) Task synthesis: combine template- and LLM-
based generation, with automatic validators (schema, visibility, reachability) to produce the task set

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

T ; (3) Trajectory generation and filtering: execute T with a strong agent in the offline suite,
enforcing deterministic replay, key-node coverage, and answer checks to yield the replay buffer B;
(4) RL training: optimize πθ in the unified action space to maximize J(θ) using a decomposed
reward that combines format validation with fine-grained accuracy (action type, click location, input
text), with retrieval answers scored by normalized F1; and (5) Evaluation: scripted replays with
key-node–aligned process metrics and normalized answer matching, eliminating the need for human
raters.

3 EXPERIMENTS

We conduct comprehensive experiments to validate the effectiveness of our knowledge-driven rein-
forcement learning pipeline for web agents. Our evaluation spans three key dimensions: (1) testing
the synergy of knowledge- and data-driven approaches, (2) benchmarking trained agents across mul-
tiple evaluation suites, and (3) analyzing performance when instantiated with different foundation
models.

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS AND BENCHMARKS

We consider three levels of benchmarks. Offline Website Benchmark: an internal benchmark with
100 tasks across 10 offline websites, covering both operational tasks (e.g., adding items to a cart) and
information-retrieval tasks (e.g., extracting product specifications). Tasks are grouped into three dif-
ficulty levels: simple (single-step), medium (3–5 steps), and complex (>5 steps). Offline-to-Online
Transfer: to measure generalization, we test on three representative online platforms—Amazon,
Airbnb, and Booking—with 30 tasks per site, evaluating transfer from controlled offline training
to real-world execution. Public Benchmarks: we further assess generalization on GUI-Act-Web
(Chen et al., 2024), OmniAct-Desktop (Kapoor et al., 2024), and GUI-Odyssey (Lu et al., 2024),
which provide standardized tasks for web and GUI agents.

3.1.2 EVALUATION METRICS

We report three metrics. Task Completion Rate (TCR) measures the percentage of successfully com-
pleted tasks. Action Accuracy is decomposed into action-type accuracy (Type), grounding accuracy
(GR), and success rate (SR). Step Efficiency measures the ratio of executed steps to optimal path
length.

3.1.3 BASELINE MODELS

We compare against three representative baselines. QwenVL2.5-3B is an untuned vision–language
foundation model (Bai et al., 2025). GPT-4o is OpenAI’s multimodal model with strong zero-
shot capability (Achiam et al., 2023). GUI-R1-3B is a web agent trained with large-scale human-
annotated data (Luo et al., 2025).

3.2 EFFECTIVENESS OF KNOWLEDGE AND DATA-DRIVEN APPROACH

3.2.1 IMPACT ON TASK GENERATION QUALITY

We first validate how knowledge and data-driven methods improve task generation quality. For each
configuration, we generate 80 tasks and evaluate their executability on actual websites. Table 1
presents the results under different configurations.

The combination of knowledge and data substantially improves task executability from 31.3% to
86.3%. Task validity increases from 42.3% to 92.6%, while knowledge-driven methods leverage
website structure information to generate more diverse and complex multi-step interaction tasks,
increasing complex task proportion by 4.4× compared to the baseline.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Task generation quality under different config

Config Exe. (%) Val. (%) Div. Cmplx. (%)

No Knowledge/Data 31.3 42.3 0.31 8.2
Data-Only 56.3 68.7 0.52 15.6
Knowledge-Only 62.5 71.2 0.64 22.3
Knowledge + Data 86.3 92.6 0.84 35.7

Table 2: Trajectory data quality

Metric No-Kn. Kn.

SR (%) 42.6 84.3
Steps 15.7 9.8
VD (%) 58.3 89.6

Table 3: Performance on the internal offline website benchmark for operational tasks and informa-
tion retrieval, reported by task completion rate (TCR), efficiency, accuracy, and F1 score.

Model Operational Tasks Information Retrieval

TCR(%) Efficiency Acc.(%) TCR(%) F1 Score Acc.(%)

QwenVL2.5-3B 18.3 0.32 41.2 15.7 0.28 36.4
GPT-4o 26.7 0.41 48.6 22.3 0.35 42.8
GUI-R1-3B 68.2 0.78 85.3 64.6 0.76 81.2

WebFactory-3B 71.8 0.82 87.6 67.3 0.79 83.4

3.2.2 IMPACT ON TRAJECTORY DATA QUALITY

Knowledge-driven methods substantially improve trajectory generation quality. As shown in Ta-
ble 2, the success rate nearly doubles (42.6% → 84.3%), while the average number of steps decreases
by 38% (15.7 → 9.8), indicating more efficient task execution. In addition, the proportion of valid
data increases from 58.3% to 89.6%, demonstrating a significant improvement in data reliability and
the overall quality of training trajectories.

3.3 PERFORMANCE ON DIFFERENT BENCHMARKS

3.3.1 INTERNAL OFFLINE WEBSITE BENCHMARK

We further evaluate models on an internal offline website benchmark that covers both operational
tasks and information retrieval. As summarized in Table 3, general-purpose vision–language models
such as QwenVL2.5-3B and GPT-4o exhibit limited capability, with task completion rates (TCR) be-
low 30%. In contrast, models trained with reinforcement learning demonstrate substantially stronger
performance. GUI-R1-3B achieves high accuracy across both task types, and our WebFactory-3B
model attains comparable results, with slightly higher efficiency and accuracy (e.g., 71.8% vs. 68.2%
TCR and 87.6% vs. 85.3% accuracy on operational tasks). These findings highlight that training
solely on synthetic data enables WebFactory-3B to reach performance levels on par with models
trained with large-scale human annotations.

3.3.2 OFFLINE-TO-ONLINE TRANSFER

To assess generalization to real-world scenarios, we evaluate models trained offline on three online
platforms: Amazon, Airbnb, and Booking. As reported in Table 4, general-purpose models such
as QwenVL2.5-3B and GPT-4o show limited transfer capability, with average task completion rates
(TCR) below 40%. In contrast, reinforcement learning–based agents achieve markedly better perfor-
mance. WebFactory-3B attains an average TCR of 53.4%, representing a 162% improvement over
QwenVL2.5-3B (20.4%) and a 44% gain over GUI-R1-3B (37.0%). Furthermore, WebFactory-3B
consistently achieves the highest accuracy across all three platforms (79.3% on Amazon, 75.6% on
Airbnb, and 77.4% on Booking), underscoring its ability to transfer effectively from synthetic offline
training to previously unseen online environments.

3.3.3 PUBLIC GUI AGENT BENCHMARKS

Performance on public benchmarks further validates our approach’s effectiveness. As shown in
Table 5, WebFactory-3B achieves strong generalization across diverse GUI benchmarks. On GUI-
Act-Web, it obtains the highest success rate (SR) of 84.2%, surpassing both GPT-4o (41.8%) and
QwenVL2.5-3B (55.6%). Although GUI-R1-3B yields slightly higher grounding accuracy (GR)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Performance on offline-to-online transfer across Amazon, Airbnb, and Booking, reported
by task completion rate (TCR) and accuracy.

Model Amazon Airbnb Booking Avg.

TCR(%) Acc.(%) TCR(%) Acc.(%) TCR(%) Acc.(%) TCR(%)

QwenVL2.5-3B 22.3 48.6 18.7 43.2 20.1 45.8 20.4
GPT-4o 41.2 68.7 37.8 64.3 39.6 66.2 39.5
GUI-R1-3B 38.6 65.3 35.2 61.7 37.1 63.4 37.0

WebFactory-3B 55.7 79.3 51.2 75.6 53.3 77.4 53.4

Table 5: Generalization on public GUI benchmarks (GUI-Act-Web and GUI-Odyssey), reported by
type accuracy, grounding recall (GR), and success rate (SR). Best results are in bold.

Setting Model GUI-Act-Web GUI-Odyssey
Type GR SR Type GR SR

Zero-Shot GPT-4o 77.1 45.0 41.8 37.5 14.2 5.4
QwenVL2.5-3B 54.9 63.5 55.6 38.4 27.2 27.2

RL Fine-Tuning GUI-R1-3B 89.9 87.4 76.3 54.8 41.5 41.3
WebFactory-3B 89.0 82.1 84.2 66.0 48.1 40.9

on this benchmark (87.4% vs. 82.1%), WebFactory-3B consistently delivers better overall task
completion.

On OmniAct-Desktop, WebFactory-3B attains a balanced performance with 85.3% Type accuracy
and 73.9% SR, closely matching GUI-R1-3B while significantly outperforming zero-shot foundation
models. Most notably, on the challenging GUI-Odyssey benchmark, WebFactory-3B reaches 66.0%
Type accuracy, substantially higher than GUI-R1-3B (54.8%), GPT-4o (37.5%), and QwenVL2.5-
3B (38.4%). This highlights its robust cross-domain transfer capability, even though it was trained
solely on synthetic data. Overall, these results confirm that WebFactory-3B not only generalizes
well but also provides consistent improvements across heterogeneous GUI environments.

3.4 PIPELINE PERFORMANCE WITH DIFFERENT FOUNDATION MODELS

To examine the generalizability of our pipeline and evaluate the LLM embodiment of different foun-
dation models, we employ three state-of-the-art LLMs—GPT-5, Claude Opus 4.1, and Claude Son-
net 4—to drive the entire data generation process. Each model functions as the architect throughout
the entire pipeline: from synthesizing the offline website environments via code generation, to for-
mulating tasks, and finally collecting interaction trajectories. The resulting agents are subsequently
evaluated on a diverse suite of benchmarks.

As shown in Figure 3, GPT-5 achieves the strongest overall performance, particularly excelling in
Type accuracy while maintaining robust performance across diverse GUI environments. Claude
Opus 4.1 performs competitively, yielding slightly lower yet stable results. In contrast, Claude Son-
net 4 demonstrates greater variability across benchmarks, indicating less consistent generalization
ability.

4 DISCUSSION

Our agent’s superior performance is more than an engineering success; it provides compelling evi-
dence for our central thesis of intelligence compression. The proposed factory pipeline effectively
demonstrates how to distill the vast, descriptive knowledge of LLMs into robust, actionable policies,
outperforming even agents trained on extensive human data. This success underscores the decisive
role of the LLM foundation model itself. Our findings reveal that a model’s inherent reasoning and
world knowledge directly cap the potential of the final agent, suggesting that the “transferability”
and “embodiment potential” are critical, yet underexplored, dimensions for evaluating and selecting
foundation models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Performance comparison of agents trained with data generated by different foundation
models across public GUI benchmarks. Results show Type accuracy, Step completion rate, and
Grounding accuracy across GUI-Act-Web (Chen et al., 2024), GUI-Odyssey (Lu et al., 2024),
OmniAct-Desktop (Kapoor et al., 2024), OmniAct-Web tests, and ScreenSpot categories (desktop-
text, desktop-icon, mobile-text, mobile-icon, web-text, web-icon). GPT-5 consistently achieves the
highest performance across most metrics, demonstrating superior data generation quality and intel-
ligence compression capability.

These insights motivate a necessary refinement of scaling laws for embodied agents. Analogous
to LLM scaling laws, an agent’s asymptotic performance may be governed not by raw data vol-
ume, but by a foundation model’s intelligence compression efficiency and its inherent capability
for embodiment. Our pipeline represents a first step in this direction, paving a path toward agents
that can rapidly adapt and self-evolve in novel GUI environments by generating their own curricula.
While validated here in GUI settings, we believe this paradigm of transforming latent knowledge
into grounded action holds strong promise for more complex physical embodied environments.

Future Work. Building on the pipeline’s programmability, a promising avenue for future work
is to leverage WebFactory for targeted capability evolution. Unlike static datasets, our generative
infrastructure allows for the systematic probing of specific agent weaknesses—such as precise con-
tinuous interactions or complex logic handling—followed by the on-demand synthesis of dedicated
website environments to address these deficits. This closed-loop mechanism, capable of identifying
gaps and algorithmically generating the necessary embodied experiences to fill them, transforms the
system into a self-correcting engine, further establishing the foundation for truly autonomous and
robust agent intelligence.

Limitations. While our pipeline demonstrates strong empirical results, we identify two primary
avenues for future work. First, our work does not include an exhaustive ablation on the impact of
different reward mechanisms. A deeper analysis comparing our decomposed reward against sparser
or even LLM-generated reward functions could yield further insights into learning dynamics and
final policy robustness. Second, WebFactory pipeline’s performance in fundamentally different GUI
paradigms (e.g., game engines or specialized creative software) remains to be systematically vali-
dated. Exploring these directions will be crucial for assessing the true generality of our approach.

5 CONCLUSION

WebFactory demonstrates that high-fidelity offline environments, combined with knowledge-driven
task generation and automated RL training, can produce web agents that transfer effectively to live
websites. By eliminating the brittleness of online experimentation while preserving real-world com-
plexity, our framework enables reproducible, scalable research. The open-source release of all com-
ponents—websites, generators, training pipeline, and evaluation tools—provides a foundation for

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the community to build upon. As the intelligence of foundation LLMs increases and their costs
decrease, we expect this offline-to-online, intelligence compression paradigm to become an increas-
ingly practical path to capable, general-purpose web agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Reyna Abhyankar, Qi Qi, and Yiying Zhang. Osworld-human: Benchmarking the efficiency of
computer-use agents. arXiv preprint arXiv:2506.16042, 2025.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. arXiv preprint arXiv:2406.11317, 2024.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lù,
Ori Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart, et al. The browsergym
ecosystem for web agent research. arXiv preprint arXiv:2412.05467, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
arXiv preprint arXiv:2305.11854, 2023.

Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration.
arXiv preprint arXiv:2506.03533, 2025.

Divyansh Garg, Shaun VanWeelden, Diego Caples, Andis Draguns, Nikil Ravi, Pranav Putta, Naman
Garg, Tomas Abraham, Michael Lara, Federico Lopez, et al. Real: Benchmarking autonomous
agents on deterministic simulations of real websites. arXiv preprint arXiv:2504.11543, 2025.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. In European Conference on Computer Vision, pp. 161–
178. Springer, 2024.

11

https://arxiv.org/abs/2502.13923

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhu Chen, Gra-
ham Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding. arXiv
preprint arXiv:2410.13824, 2024.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

Atsuyuki Miyai, Zaiying Zhao, Kazuki Egashira, Atsuki Sato, Tatsumi Sunada, Shota Onohara,
Hiromasa Yamanishi, Mashiro Toyooka, Kunato Nishina, Ryoma Maeda, et al. Webchorearena:
Evaluating web browsing agents on realistic tedious web tasks. arXiv preprint arXiv:2506.01952,
2025.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-
vised learning of browser agents through environment interaction in the wild. arXiv preprint
arXiv:2410.02907, 2024.

Tianyue Ou, Frank F Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale. Advances in Neural Information Processing Systems,
37:91618–91652, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Hassan. Explorer: Scaling exploration-driven web trajectory synthesis for multimodal
web agents. In Findings of the Association for Computational Linguistics: ACL 2025, pp. 6300–
6323, 2025.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang,
Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online environ-
ments. ArXiv preprint, abs/2406.12373, 2024. URL https://arxiv.org/abs/2406.12373.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curricu-
lum reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp. 3135–3144. PMLR, 2017.

12

https://arxiv.org/abs/2406.12373

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, and Ruslan Salakhutdinov. Towards
internet-scale training for agents. arXiv preprint arXiv:2502.06776, 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
Chao Zhang, Bing Yin, et al. Webagent-r1: Training web agents via end-to-end multi-turn rein-
forcement learning. arXiv preprint arXiv:2505.16421, 2025.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. arXiv
preprint arXiv:2412.09605, 2024.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
Huzefa Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents. arXiv
preprint arXiv:2410.13825, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, et al. Skillweaver: Web agents can
self-improve by discovering and honing skills. arXiv preprint arXiv:2504.07079, 2025.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/2307.
13854.

Yifei Zhou, Qianlan Yang, Kaixiang Lin, Min Bai, Xiong Zhou, Yu-Xiong Wang, Sergey Levine,
and Li Erran Li. Proposer-agent-evaluator (pae): Autonomous skill discovery for foundation
model internet agents. In Forty-second International Conference on Machine Learning, 2025.

13

https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DISCLOSURE OF LLM USE.

We used large language models to assist with language polishing and discovering related work. All
technical claims, experiments, and analyses were designed, executed, and verified by the authors.

B RELATED WORK

Web environments and benchmarks. Research on web-agent environments has gradually
evolved from simplified DOM-centric tasks to realistic, multi-domain benchmarks. Early con-
trolled settings such as MiniWoB and MiniWoB++ provided reproducible yet toy-scale interactions
for evaluating RL policies (Shi et al., 2017; Liu et al., 2018). Subsequent efforts increased real-
ism: VisualWebArena added multimodal grounding to web-page interactions (Koh et al., 2024),
while WebArena introduced high-fidelity, self-hostable environments covering e-commerce, fo-
rums, software development, and content management with integrated tool support (Zhou et al.,
2024). WebChoreArena further emphasized long-horizon reasoning and reproducibility by design-
ing hundreds of durable, labor-intensive tasks (Miyai et al., 2025). Beyond browser-centric setups,
simulation-based environments such as ALFWorld and BabyAI studied language-grounded, par-
tially observed control problems, offering insights on curriculum learning and generalization (Shrid-
har et al., 2020; Chevalier-Boisvert et al., 2018). Unlike live-web evaluations, which are hindered by
CAPTCHAs, layout drift, and network nondeterminism, WebFactory adopts a versioned, fully of-
fline, pre-authenticated design with deterministic rendering and explicit knowledge/data snapshots,
enabling verifiable answers and replayable trajectories at scale.

Frameworks and datasets. A parallel line of work has focused on standardizing interfaces and
expanding coverage. BrowserGym unifies APIs across multiple environments (MiniWoB, Visu-
alWebArena, WebArena), facilitating consistent comparison of agents (Chezelles et al., 2024).
Mind2Web aggregates thousands of human-annotated tasks across diverse websites, emphasizing
breadth and realistic natural-language instructions (Deng et al., 2023). Other benchmarks extend
to OS- and GUI-level control, such as Windows Agent Arena, OSWorld, Android-in-the-wild, and
GUI-Odyssey, which target distinct substrates and I/O stacks beyond the browser (Bonatti et al.,
2024; Abhyankar et al., 2025; Rawles et al., 2023; Lu et al., 2024). In contrast, WebFactory focuses
on browser-native interaction under complete controllability, while remaining compatible with com-
mon evaluation interfaces for cross-benchmark comparison.

Training paradigms for web agents. Recent work has explored both supervised sequence mod-
eling and RL-based methods tailored to long-horizon web interaction. Decision Transformer applies
return-conditioned sequence modeling to agent trajectories (Chen et al., 2021); conservative offline
RL enhances safety when learning from static datasets (Kostrikov et al., 2021); and preference- or
feedback-driven optimization aligns policies with human intent (Christiano et al., 2017; Ouyang
et al., 2022). Web-specific innovations include curricula derived from agent failure modes and
outcome-supervised reward modeling (Qi et al., 2024), success-driven rollouts (Wei et al., 2025),
reusable skill abstractions (Zheng et al., 2025), and hierarchical formulations for decomposing
complex browsing workflows into subgoals (Furuta et al., 2023). WebFactory complements these
paradigms by offering a scalable pipeline where synthetic trajectories, unified action spaces, and
decomposed rewards can be directly applied to train robust web agents.

Reasoning, exploration, and data collection. Reasoning scaffolds such as ReAct, Voyager, Re-
flexion, and Tree-of-Thoughts enhance planning, self-correction, and exploration (Yao et al., 2023b;
Wang et al., 2023; Shinn et al., 2023; Yao et al., 2023a). On the data side, Go-Browse uses
graph-guided exploration to diversify trajectories (Gandhi & Neubig, 2025); WebVoyager retro-
spectively synthesizes demonstrations from failures without human annotations (He et al., 2024);
and AgentOccam streamlines observation–action design to align with LLM reasoning (Yang et al.,
2024). Curriculum-based difficulty further adapts training to agent errors (Qi et al., 2024). Web-
Factory provides a reproducible substrate—explicit tasks, normalized answers, and deterministic
replays—to evaluate reasoning/exploration methods and generate large, high-signal offline datasets
without costly online rollouts.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Live-web automatic task/trajectory generation. Synatra converts human-oriented tutorials and
indirect instructions into synthetic, executable demonstrations for web agents, enabling large-scale
supervision without manual trajectory annotation (Ou et al., 2024). Harnessing Webpage UIs builds
a large text-rich visual understanding dataset from real webpages, exploiting UI structure as a mul-
timodal supervision signal (Liu et al., 2024). PAE (Proposer-Agent-Evaluator) introduces a pro-
poser–agent–evaluator loop that autonomously proposes web tasks, executes them, and filters tra-
jectories to discover reusable skills for foundation-model agents (Zhou et al., 2025). NNetNav
leverages unsupervised interaction with live websites together with hindsight relabelling to con-
struct browser-agent training data directly from in-the-wild behavior (Murty et al., 2024). InSTA
pushes this line to internet scale, generating and judging tasks and trajectories across a large number
of live websites with LLM-based agents and evaluators (Trabucco et al., 2025). These systems col-
lectively excel in scale and real-world diversity on the live web. In contrast, WebFactory operates on
a fully offline, versioned web suite with deterministic rendering, explicit knowledge/data snapshots,
verifiable optimal paths, and replayable trajectories, prioritizing determinism, precise reward spec-
ification, and reproducibility, and thus providing a complementary substrate to live-web pipelines
rather than a replacement.

Weak/indirect-knowledge–to-trajectory pipelines. WebShop formulates a goal-conditioned
shopping environment on real e-commerce sites, using product metadata and textual descriptions
to supervise grounded navigation and decision making (Yao et al., 2022). Synatra converts human-
oriented web tutorials and other indirect instructions into large-scale executable demonstrations,
providing high-coverage synthetic supervision for web agents (Ou et al., 2024). AgentTrek synthe-
sizes trajectories by guiding replay with web tutorials as high-level instruction sequences, tightening
the link between weak textual knowledge and concrete action sequences (Xu et al., 2024). Explorer
scales exploration-driven web trajectory synthesis across many real webpages, using multimodal
exploration signals to expand demonstration coverage for multimodal web agents (Pahuja et al.,
2025). These pipelines demonstrate how weak or indirect web knowledge can be systematically
transformed into training data on the live web. WebFactory instead operates in a fully controllable
offline suite with deterministic rendering, structured knowledge snapshots, and verifiable optimal
paths, offering a reproducible substrate that is complementary to these weak-supervision pipelines.

C BUILDING THE OFFLINE WEBSITE SUITE

C.1 DESIGN GOALS

We target a high-fidelity yet fully controllable suite that (i) boots to pre-authenticated, seeded ses-
sions, (ii) exposes ground-truth knowledge and data for generation and evaluation, (iii) disables
anti-automation friction (CAPTCHA, bot detection), and (iv) is versioned and reproducible.

C.2 LLM-DRIVEN BUILD PROCESS

We have developed a method for scalable, high-fidelity offline website generation using LLMs,
which we plan to open source to facilitate reproducibility and community extension. The construc-
tion of each offline website is fully automated: the “site recipe” is executed by LLM-driven coding
agents. WebFactory acts as an extensible engine where LLMs function as embodied architects,
enabling scalable generation of high-fidelity web environments.

Our automated build process follows a uniform site recipe across domains (e-commerce, travel, etc.):

1. Scaffold & theming. Initialize a Next.js/React monorepo with a shared UI kit (forms, tables,
modal, hover menus, drag-and-drop). Provide mobile/desktop breakpoints to produce realistic
layout variety.

2. Data layer materialization. For each site family, export a versioned static snapshot
(Data.js/JSON) with deterministic seeds. Schema includes entities (e.g., Product, Hotel,
Flight, Message), relations, and canonical views (list/detail/cart/checkout).

3. Navigation graph & flows. Encode page graph and canonical flows (e.g., browse → detail
→ cart) in a machine-readable knowledge.json. Each node stores visible affordances and
element locators.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

4. Anti-bot off-switch. Gate any bot-detection middleware by a build flag; fall back to no-
challenge in offline mode.

5. Benchmark export. For each version v, release (i) site bundle, (ii) knowledge.json, (iii)
Data.json, and (iv) scripted evaluators.

Table 6: Overview of offline website families used in our benchmark, including their domains and
representative core functionalities.

Name Domain Core Functionality

Shopping E-commerce marketplace Marketplace with search, multi-facet filters, cart/wishlist, reviews,
multi-step checkout.

Mealdash Food delivery Restaurant discovery, dietary filters, cart with quantity/notes, schedul-
ing, order tracking.

Hotels Hotel booking Location/date/guest search, amenity filters, room types, price tiers,
availability & reservation.

Flights Flight search & booking One-way/return/multi-city, flexible dates, carriers/cabin filters, fare
comparison, seat selection.

Careerlink Professional networking & jobs Job search by skills/company, profiles, applications, resume manage-
ment, insights.

Carrental Car rental Pickup/dropoff, vehicle class, insurance add-ons, driver requirements,
booking changes.

Masterticket Event ticketing Artist/venue search, event categories, date filters, seat map, ticket
types, fees, checkout.

Staybnb Short-term rentals Rentals by location/dates/guests, amenity filters, calendars, pricing,
booking flows.

Email Email client Folders, compose/reply/forward, attachments, rules, search, threads,
contacts.

Companycheck Company data & intelligence Company profiles, filings, executives, relationship graph, compliance
& due diligence.

D TASK SYNTHESIS DETAILS

D.1 DUAL-TRACK GENERATION

(1) Template-driven Define modular spaces for search, filtering, sorting, cart/checkout, form com-
pletion, multi-form workflows, and cross-page navigation. Instantiate by sampling from versioned
Data.* with constraints (e.g., “price ≤ $200”, “rating ≥ 4”) while respecting site schemas.

(2) LLM-assisted Feed compact knowledge slices—navigation graph, page affordances, canonical
flows—and sampled data skims to an LLM to propose task paths beyond the template envelope
(long-horizon operations and compositional IR).

D.2 VALIDATORS & EXECUTABILITY

All candidates pass:

• Schema conformance: fields and operators exist in Data.json.
• Visibility check: referenced elements/records are reachable and visible given viewport and filters

(uses layout probes).
• Path feasibility: dry-run along the known navigation path (knowledge.json); failure short-

circuits.
• Answerability (IR): canonical answers exist in the data layer with a unique normalized target.

D.3 DIFFICULTY CONTROL & CURRICULUM

We sample along three axes: data complexity (catalog/graph density), UI complexity (multi-level
nav, drag-and-drop, hover), and workflow depth (lookup→ multi-step execution). Curricula ramp

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 Knowledge-driven Task Factory

1: for site s in sites do
2: K ← load_knowledge(s); D ← load_data(s)
3: for spec in templates ∪ llm_prompts do
4: cands← instantiate(spec, D, difficulty)
5: for t in cands do
6: if schema_ok(t,D) && visible(t,K) && path_feasible(t,K) then
7: attach_gold_path(t,K); emit t
8: end if
9: end for

10: end for
11: end for

(i) start URLs, (ii) number of required filters, (iii) cross-page hops, (iv) time/step budget. Each
emitted task is stored with a difficulty tag and gold path.

E TRAJECTORY GENERATION DETAILS

E.1 EXECUTOR & INSTRUMENTATION

We execute the pre-validated task set T with a strong executor (OpenAI computer-use-preview)
inside the offline suite. Each step logs:

• page ID, viewport hash, DOM key-node set;

• action tuple at = {aactt , apointt , atextt } and matched locator;

• state diff summary (element attributes, cart contents, form values).

Screenshots and structured traces are stored in Parquet; per-episode metadata carries seed, site ver-
sion, and curriculum tier.

E.2 FILTERING & DETERMINISM

We remove low-quality traces via:

1. Deterministic replay: re-run with the same seed; reject if hashes (viewport, key-node set, cart
snapshot) mismatch.

2. Key-node coverage: ensure required nodes along the gold path are visited in the right order.

3. IR validation: compute normalized F1 against canonical answer; drop if below threshold.

Accepted trajectories populate the replay buffer B with tuples (st,at, Rt, st+1).

F TRAJECTORY DATASET STATISTICS & DISTRIBUTIONS

To better understand the dynamics of user interactions within the trajectory dataset, we analyze both
the overall action distribution and the transition patterns between different actions.

F.1 ACTION DISTRIBUTION

Figure 4 presents the distribution of ground-truth actions. The dataset is dominated by click actions,
which account for nearly half of all recorded interactions (47.8%). This is followed by wait (24.1%)
and scroll (20.9%), reflecting common patterns in typical graphical user interface (GUI) usage.
Less frequent actions include type (5.3%), keypress (1.8%), and double_click (0.2%). These
results suggest that the dataset is heavily skewed towards basic navigational primitives (click, wait,
and scroll), which together comprise over 90% of the interactions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 4: Ground truth action distribution in the dataset.

F.2 ACTION TRANSITION DYNAMICS

To capture sequential dependencies, we compute the transition frequency between all pairs of actions
(Figure 5). The heatmap reveals several key patterns:

• click frequently transitions back to itself (812 times), and is also followed by wait (551)
and scroll (191). This indicates that clicking is often interleaved with periods of waiting
or subsequent navigation.

• scroll transitions strongly to itself (419) and also to click (289), reflecting the natural
alternation between scrolling content and selecting items.

• wait is another central action, often followed by click (480) and self-repetition (241),
which captures idle or delay states before further activity.

• Rare transitions occur for double_click and keypress, consistent with their overall low
frequency.

Together, these findings highlight that the dataset is structured around a small number of dominant
action primitives, with strong self-loops and predictable sequential dynamics. Such patterns are
valuable for modeling purposes, as they suggest that predictive models may benefit from emphasiz-
ing high-frequency transitions while carefully handling the long-tail actions.

G RL TRAINING DETAILS

G.1 ACTION SPACE (WEB-SPECIFIC)

We operate in a structured space:

at = {aact
t , apoint

t , atext
t },

aact
t ∈ {click, double_click, type, scroll, keypress, drag, get_final_answer}.

A concise specification is provided in Table 7.

G.2 REWARD

Per-step reward:
Rt = αRf + βRaccuracy, (4)

where Rf enforces structured outputs (valid JSON, tags, type constraints) and Raccuracy is action-
specific:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: Action transition heatmap showing transition counts between actions.

Table 7: Detailed specification of the web agent action space, listing each supported action together
with its required point parameters (coordinates) and text parameters.

Action Point Parameter Text Parameter

click [x, y] –
double_click [x, y] –
type [−100,−100] input text (required)
scroll [−100,−100] UP/DOWN
keypress [−100,−100] key name (e.g., ENTER)
drag [[x1, y1], [x2, y2]] UP/DOWN
get_final_answer [−100,−100] final answer text

• Click family (click/double_click): inside-target check + distance tolerance (140px) to ele-
ment center.

• Text family (type/keypress): token-level F1 with case/punctuation normalization; single-token
special-cased.

• Scroll/drag: exact direction match; drag validates source–target coordinates.

• IR answer: final answer scored by normalized F1 against canonical target.

G.3 TRAINING ALGORITHM (GRPO/PPO)

We extend GUI-R1 with an IR-aware head and reward. GRPO is used for group-normalized advan-
tages over multi-sample rollouts.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 GRPO for Web Agents

1: for episode e = 1 to E do
2: Sample task batch {pi}
3: for each pi do
4: Generate n trajectories; compute Ri,1..n

5: µi←mean(Ri,∗), σi←std(Ri,∗)
6: Ai,j←(Ri,j − µi)/(σi + ϵ)
7: end for
8: Update πθ with PPO loss and KL penalty
9: if e mod s = 0 then

10: save checkpoint
11: end if
12: end for

H IMPLEMENTATION DETAILS

H.1 TRAINING INFRASTRUCTURE

Model. Qwen2.5-VL-3B; vision encoder initially frozen; max screenshot 1258× 1258.
Distributed training.

• Actors: 4 GPUs with FSDP; rollouts: 1 GPU via vLLM.

• Global batch 64, micro-batch 4; optimizer states CPU offloaded.

Optimization. AdamW, lr 1×10−6, wd 0.01, grad clip 1.0, fixed KL 0.01.

H.2 WEB AGENT DATA PROCESSING

Parquet traces contain (i) screenshots + action history, (ii) task instruction, (iii) ground-truth actions
with bboxes, (iv) task-type flags.

H.3 REWARD COMPUTATION FOR WEB TASKS

See Sec. G for per-action rules; format reward enforces valid JSON, required <think>/<answer>
tags, numeric types, and conditional fields.

Table 8: Hyperparameters used for web agent RL training.

Parameter Value

Episodes E 15
Rollout temperature 1.0
Responses per prompt n 5
Global / micro batch 64 / 4
Max prompt / response tokens 2048 / 1024
Image resolution 1258× 1258

PPO clip 0.2
Discount γ 1.0
α (format) / β (accuracy) 0.2 / 0.8
KL penalty 0.01
Learning rate 1× 10−6

GPUs 4 × V100/A100

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

I OFFLINE-TO-ONLINE TRANSFER EVALUATION DETAILS

In this section, we provide a comprehensive specification of the experimental protocol used for the
Offline-to-Online Transfer evaluation (Table 4 in the main text). To ensure rigorous validation of
agent capabilities in live, dynamic environments, we constructed a custom benchmark of 90 live
tasks across Amazon, Airbnb, and Booking.

I.1 METHODOLOGY FOR UNBIASED TASK CONSTRUCTION

To prevent selection bias and ensure the benchmark accurately reflects real-world usage, we adhered
to a “User-First, Model-Agnostic” design protocol. Tasks were defined based on necessary user
workflows prior to any agent evaluation.

• Funnel-Based Coverage: We strictly stratified tasks by user conversion stages to ensure
full spectrum coverage:

– Discovery: Ambiguous search queries requiring exploration.
– Refinement: Complex filtering involving price ranges, brands, and amenity con-

straints.
– Action: State-changing operations such as adding items to a cart or selecting specific

dates.

• Complexity Alignment: We deliberately excluded trivial single-step tasks. All tasks align
with “Medium” (3–5 steps) and “High” (>5 steps) complexity tiers to force long-horizon
reasoning.

• Cross-Domain Mapping: Online platforms were selected to strictly correspond to our
offline training domains to evaluate transfer capability: Amazon→ Shopping, Airbnb→
StayBnB, and Booking→ Hotels.

I.2 EXECUTABILITY AND STABILITY VERIFICATION

Live websites are subject to frequent changes, A/B testing, and inventory fluctuations. To rule out
failures caused by external factors (e.g., out-of-stock items or UI updates), all tasks are manually
verified for feasibility within 24 hours prior to agent evaluation. This ensures that reported failures
are due to agent capability rather than environmental errors.

I.3 STATISTICAL SIGNIFICANCE ANALYSIS

Given the sample size of N = 90 (30 tasks per platform), we calculated the 95% Confidence
Intervals (CI) for the success rates using the Wilson Score Interval method, which is robust for
smaller sample sizes.

• Baseline (QwenVL2.5-3B): 20.4% [95% CI: 13.0% – 30.0%]

• WebFactory-3B (Ours): 53.4% [95% CI: 43.0% – 63.5%]

Notably, there is no overlap between the confidence intervals. The lower bound of our method
(43.0%) is substantially higher than the upper bound of the baseline (30.0%). This statistical analysis
confirms that the 162% relative improvement reported in the main text is robust and significant,
rather than a result of sampling noise.

I.4 REPRESENTATIVE TASK SPECIFICATIONS

Table 9 provides representative examples of the tasks used in the evaluation, detailing the required
interactions and complexity constraints.

Conclusion on Rigor. The tasks detailed above involve Modal Interactions, Calendar Pickers,
and Multi-step Filtering—complex UI patterns that standard multimodal models (e.g., QwenVL2.5,
20.4% SR) struggle to handle zero-shot. The 53.4% success rate of WebFactory-3B, supported by

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Representative tasks from the Offline-to-Online Transfer Benchmark. Tasks are designed to
test specific interaction capabilities including precise search, constraint filtering, and complex state
changes.

Platform Category Design & Complexity Con-
straints

Representative Instruction

Amazon

A: Precise
Search

Req: Precise keyword matching;
navigate to detail page to verify
specs.
UI: Search bar, Click.

“Search for ‘Sony WH-1000XM5
headphones’, click on the black
version, and tell me the current
price.”

B: Constraint
Filtering

Req: Apply multiple compound
filters (price, brand, Prime) before
clicking result.
UI: Sidebar filters.

“Find a ‘Gaming Monitor’ under
$300 from ‘ASUS’ with ‘144Hz’
refresh rate. Add the first result to
the cart.”

C: Cart Flow Req: State changes; multi-page
navigation.
UI: Add-to-cart, verify cart.

“Add a ‘Logitech MX Master 3S’
to your cart, then go to the cart
and change the quantity to 2.”

Airbnb

A: Date/Loc
Search

Req: Complex calendar interac-
tion; location input.
UI: Date-picker, search field.

“Search for a stay in ‘Ky-
oto, Japan’ for ‘2 adults’ from
‘September 10’ to ‘September
15’.”

B: Amenity Fil-
tering

Req: Open modal window; scroll
to find/check specific boxes.
UI: Modal popups, checkboxes.

“Find a home in ‘Paris’ that has
‘Wifi’, ‘Kitchen’, and ‘Washing
Machine’. Open the detail page
of the highest-rated listing.”

C: Detail Ex-
traction

Req: Parse unstructured long-
text descriptions.
UI: Text parsing, scrolling.

“Go to the first listing for ‘Cabin
in Lake Tahoe’ and verify if ‘Pets
are allowed’ in the house rules.”

Booking

A: Multi-
Criteria

Req: Handle location, dates,
room/guest config simultane-
ously.
UI: Complex form filling.

“Search for a hotel in ‘New York’
for ‘2 adults, 1 child’ for the
weekend of ‘September 14th’.”

B: Sort & Select Req: Operate sorting dropdowns;
select under constraints.
UI: Dropdowns, list parsing.

“Sort hotels in ‘London’ by ‘Top
Reviewed’ and click on the ho-
tel with the highest score under
£200/night.”

C: Room Config Req: Navigate to detail page; ex-
tensive scroll; specific selection.
UI: Deep navigation.

“Search for ‘Hilton Tokyo’, scroll
to available rooms, and select a
‘King Room’ with ‘Breakfast In-
cluded’.”

non-overlapping confidence intervals, provides strong evidence that our “Intelligence Compression”
paradigm successfully transfers generalizable logic from controlled offline data to unseen, noisy
online environments.

22

	Introduction
	Method
	A High-Fidelity, Fully Controllable Web Environment
	A Knowledge-Driven RL Training Pipeline for Web Agents
	Knowledge Preservation & Task Generation
	Batch Data Generation at Scale
	Reinforcement Learning from Generated Trajectories
	Closed-Loop Pipeline

	Experiments
	Experimental Setup
	Datasets and Benchmarks
	Evaluation Metrics
	Baseline Models

	Effectiveness of Knowledge and Data-Driven Approach
	Impact on Task Generation Quality
	Impact on Trajectory Data Quality

	Performance on Different Benchmarks
	Internal Offline Website Benchmark
	Offline-to-Online Transfer
	Public GUI Agent Benchmarks

	Pipeline Performance with Different Foundation Models

	Discussion
	Conclusion
	Disclosure of LLM use.
	Related Work
	Building the Offline Website Suite
	Design Goals
	LLM-Driven Build Process

	Task Synthesis Details
	Dual-Track Generation
	Validators & Executability
	Difficulty Control & Curriculum

	Trajectory Generation Details
	Executor & Instrumentation
	Filtering & Determinism

	Trajectory Dataset Statistics & Distributions
	Action Distribution
	Action Transition Dynamics

	RL Training Details
	Action Space (Web-Specific)
	Reward
	Training Algorithm (GRPO/PPO)

	Implementation Details
	Training Infrastructure
	Web Agent Data Processing
	Reward Computation for Web Tasks

	Offline-to-Online Transfer Evaluation Details
	Methodology for Unbiased Task Construction
	Executability and Stability Verification
	Statistical Significance Analysis
	Representative Task Specifications

