Under review as a conference paper at ICLR 2026

WebFactory: AUTOMATED COMPRESSION OF
FOUNDATIONAL LANGUAGE INTELLIGENCE INTO
GROUNDED WEB AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current paradigms for training GUI agents are fundamentally limited by a reliance
on either unsafe, non-reproducible live web interactions or costly, scarce human-
crafted data and environments. We argue this focus on data volume overlooks
a more critical factor: the efficiency of compressing a large language model’s
(LLM) latent knowledge into actionable agent behavior. We introduce WebFac-
tory, a novel, fully automated closed-loop reinforcement learning pipeline for
GUI agents, systematically compressing LLM-encoded internet intelligence into
efficient, grounded actions. Our pipeline features a process of scalable envi-
ronment synthesis — knowledge-aware task generation — LLM-powered trajec-
tory collection — decomposed reward RL training — systematic agent evalua-
tion. Remarkably, our agent demonstrates exceptional data efficiency and gener-
alization. Trained on synthetic data from only 10 websites within WebFactory,
it achieves performance comparable to GUI agents trained on same amount of
human-annotated data from a much larger set of environments. This superior per-
formance is consistent across our internal offline and online transferring bench-
marks, where our agent also significantly outperforms the base foundation model.
We further provide critical insights into the "embodiment potential” of different
LLM foundations, offering a new axis for model evaluation. This work presents a
scalable and cost-effective paradigm for transforming passive internet knowledge
into active, grounded intelligence, marking a critical step towards general-purpose
interactive agents.

1 INTRODUCTION

The advent of Large Language Models (LLMs) has marked a paradigm shift, creating what we term
"internet-scale intelligence"—the rich world model and reasoning capabilities compressed from the
vast internet corpus (Ouyang et al.| [2022). Yet, this intelligence remains descriptive, not action-
able. While an LLM’s knowledge represents a powerful compression of digital experience, an
embodied agent’s single action in a GUI—a click or keystroke—is an exponentially deeper com-
pression, translating abstract intent into tangible environmental change. Bridging this fundamental
"semantic-to-action gap" is the central challenge in creating capable GUI agents; LLMs know about
GUI interactions, they lack the grounding to reliably perform them in complex and dynamic GUI
environments (Shi et al.| 2017 Liu et al.l [2018; |[Chezelles et al . [2024).

Current attempts to bridge this gap are caught in a dilemma between scalability and control. On one
hand, reliance on human labor presents a two-fold bottleneck: beyond the immense cost and inherent
biases of annotating thousands of trajectories (Deng et al.,[2023; [Luo et al.,|2025), the painstaking,
manual synthesis of high-fidelity environments can itself consume weeks of expert effort. On the
other hand, training on the live web offers scale but sacrifices control; it is a chaotic environment
where non-determinism, safety risks, and noise present formidable barriers to reproducible research
(Zhou et al., [2024}; Miyai et al., [2025} |Garg et al.l 2025). As a result, neither approach offers a
sustainable path toward creating truly scalable and robust agents.

To overcome these limitations, we argue for a paradigm shift: instead of treating LLMs as mere
components to be fine-tuned, we can leverage them as the architects of their own embodiment. We

Under review as a conference paper at ICLR 2026

introduce the concept of Intelligence Compression Factory: a closed-loop, end-to-end pipeline
that systematically transforms the descriptive, internet-scale intelligence of LLMs into grounded,
actionable behavior. As shown in Figure [I] this factory operates not on the noisy live web(Pan
et al.| 2024), but within a high-fidelity, fully observable offline environment. Replicating real-world
websites in this manner eliminates non-determinism and safety concerns, thereby creating the ideal
conditions for our factory to operate. Here, an LLM-driven, knowledge-aware task synthesizer
can generate a virtually infinite stream of diverse and executable tasks, shattering the bottleneck of
human annotation.

Our key contributions are the design, implementation, and validation of this factory:

» High-Fidelity Offline Web Environment: An open-source and reproducible suite that faithfully
replicates production websites, providing strict controllability and full observability while elimi-
nating noise, privacy concerns, and non-determinism inherent to live web interaction.

* Knowledge-Driven Task Generation: A mechanism that leverages environment observability
and LLM knowledge to automatically synthesize diverse, executable, and unbiased task instruc-
tions with unambiguous ground-truth answers, removing reliance on costly human annotation.

* Scalable Trajectory Generation: Integration of strong LLM executors (e.g., OpenAl’s
computer-use-preview) within the controlled environment to generate large-scale, high-quality
interaction trajectories. A filtering process ensures reproducibility and correctness, while a novel
“behavioral intent alignment feedback” further enhances information retrieval tasks.

* Reinforcement Learning with Unified Action Space and Decomposed Reward: An RL train-
ing framework supporting GRPO and related algorithms. We design a unified action space and a
decomposed reward function that combines structural format validation with fine-grained accuracy
(action type, click point, input text). For retrieval tasks, normalized F1-based scoring stabilizes
optimization and improves robustness (Christiano et al., 2017;/Ouyang et al., 2022).

* Robust Evaluation Protocols: Comprehensive evaluation at both the task level (via key-node
tracking) and sub-task level (via grounding metrics), enabling systematic and reproducible assess-
ment of agent capabilities.

* Open-Sourced Toolchain: A fully released, extensible toolkit including environments, task gen-
erators, training pipeline, and evaluation tools, supporting scalable and reproducible research
across diverse web domains.

Agents trained in WebFactory exhibit superior performance and data efficiency. On our internal
offline and online benchmarks, they consistently outperform both the base foundation model and
existing agents trained on equivalent volumes of human-annotated data(Luo et al. [2025). More
strikingly, despite being trained on only 10 websites, our agent achieves competitive performance
on general benchmarks against counterparts trained on a much broader corpus of human data. This
success offers compelling evidence for the “intelligence compression” philosophy.

Beyond empirical performance, we introduce the concept of “LLM embodiment” , quantifying
how effective foundation LLM tokens are transformed into grounded agent intelligence. Our anal-
ysis reveals that different foundation models possess a varying potential for embodiment, offering
a new axis for model evaluation. Our findings also highlight the critical roles of full environment
observability in maximizing training efficacy.

In summary, this work presents a scalable, safe, and cost-effective approach to transforming LLMs’
descriptive intelligence into actionable GUI agent behaviors. We further propose that the agent
scaling law should be refined beyond data volume to account for a model’s efficiency in intelligence
compression and its inherent capability for embodiment. While validated here in GUI settings,
this paradigm holds strong promise for more complex physical embodied environments (Chevalier-
Boisvert et al.l 2018 |Shridhar et al.|, [2020).

2 METHOD

2.1 A HIGH-FIDELITY, FULLY CONTROLLABLE WEB ENVIRONMENT

To enable scalable data generation and automated RL training for web agents, we develop a fully
controllable offline environment that preserves the structural richness of production sites while guar-

Under review as a conference paper at ICLR 2026

WebFactory: Intelligence Compression Pipeline

Step1 High-Fidelity Offline Env & Task Generation
_ — Safe & Controllable

LLM Knowledge-Driven Task Generator
High-Fidelity Offline Environment Observes .
(Fully Observable) Auto-Task Synthesis
Embodiment

KICT VAl Scalable Trajectory Generation
Gap

i - - Filter/Feedback E
Compressioni { |l _’ i

Intelligence
Compression

)

Input Teacher Agent O
(Strong LLM) S Intent Alignment High-Quality
Filtering Process Feedback Trajectories

Foundation LLM
(Internet-Scale Intelligence)

Grounded GUI Agent

Step 3 RL Training with Unified Action & Reward
Unified Action Space D Reward Function

Descriptive Knowledge Actionable Behavior

Superior Generalization

'g' Acfion T e IS Format Reward ~N
Click Point Accuracy Reward b
GRPO/RL
Student Agent Input Text || Optimization| |_Success Reward ||Closed-loop

pipeline

Decomposed Reward

Figure 1: Overview of the WebFactory, which compresses foundation-model intelligence into
grounded GUI agents through three stages: high-fidelity offline environment & task synthesis, scal-
able trajectory generation, and unified-action RL training.

anteeing strict reproducibility. A central component is our LLM-assisted synthesis pipeline, which
automatically generates realistic websites—including layouts, workflows, and content—enabling
low-cost, rapid expansion of training domains without manual engineering. This design achieves
three critical objectives: (i) cost-effective synthesis of large-scale, high-quality training data, (ii)
safe and systematic RL experimentation without real-world consequences, and (iii) stable, versioned
benchmarks for reproducible evaluation.

The environment eliminates common deployment obstacles: sites boot into pre-authenticated
sessions with seeded profiles, bypassing login/MFA requirements; anti-automation defenses
(CAPTCHA, bot detection) are disabled to isolate agent capabilities; and all content is versioned in
static datasets (e.g., ‘Data. js’) for exact reproducibility. Full access to frontend code, databases,
and interaction logic facilitates rapid iteration and instrumentation.

We curate ten site families spanning key web activities: e-commerce, information search, travel
planning, employment, communication, and enterprise services. These sites feature diverse Ul pat-
terns—from simple forms to drag-and-drop interfaces and hover-triggered menus—providing com-
prehensive coverage of web interaction paradigms.

The entire codebase is open-source, enabling researchers to extend the site collection or implement
custom tasks. Task difficulty is adjustable across data complexity (catalog size, network density), Ul
complexity (multi-level navigation, drag-and-drop, hover menus), and workflow depth (from simple
lookups to multi-step executions). This flexibility supports targeted evaluation of key competencies:
information retrieval, form completion, navigation efficiency, and constraint-based decision-making.

Pipeline integration. The environment supports the end-to-end training pipeline described in
Sec. 2] It exposes ground-truth data and site knowledge for task synthesis, enforces trajectory
correctness during generation, and enables automatic reward computation for RL. For information-
retrieval tasks, canonical answers are directly accessible from the data layer. This infrastructure
serves both as a data-generation platform and as a versioned benchmark for reproducible evaluation.

2.2 A KNOWLEDGE-DRIVEN RL TRAINING PIPELINE FOR WEB AGENTS

2.2.1 KNOWLEDGE PRESERVATION & TASK GENERATION

Knowledge-driven task generation. A critical advantage of our fully observable environment is
the ability to guarantee task validity and answerability. For each site, we extract a machine-readable
knowledge specification capturing: (i) the navigation graph with permissible page transitions, (ii)
page-level semantics and affordances, and (iii) canonical interaction flows (e.g., browse — detail

Under review as a conference paper at ICLR 2026

Shopping (E-commerce) CarRental (Car Hire)

PPl

DoorDash (Food Delivery) Email (Communication) MasterTicket (Ticketing)

Figure 2: Representative offline websites from our curated environment (6 of 10 shown).

— cart). This complete observability eliminates common data generation pitfalls—tasks referenc-
ing non-existent pages, unavailable information, or infeasible actions are prevented by design.

Leveraging this knowledge, we generate two complementary task families:

(a) Operation tasks evaluate long-horizon interaction competence through state-changing actions
(e.g., “Add iPhone 17 with 256GB storage to cart”). These are synthesized by traversing the naviga-
tion graph to ensure all generated procedures are executable on the actual site.

(b) Information-retrieval tasks pose queries with guaranteed answers drawn directly from the ob-
servable data layer (e.g., “What are Cafe A’s weekend hours?”). Since all site data is accessible, we
verify answer availability before task generation and compute the exact navigation path required for
retrieval. This approach produces unambiguous ground-truth answers essential for both supervised
learning and automated reward computation (see Listing|[I] for an example).

The full observability thus transforms traditionally unreliable task generation into a deterministic
process, ensuring every synthesized task is both executable and verifiable—a prerequisite for scal-
able training and evaluation.

{
"id": "task_retrieval_017",
"site": "MealDash”,
"start_url”: "/mealdash”,

"goal": "Search for Cafe A, open its detail page, and tell me the Sunday opening
— time, formatted as HH:MM in 24-hour style.”,
"expected_answers”: [
"11:00",
"11 am”,
"opens at 11:00"
:ly
"key_nodes"”: [
"search_box",
"results_list”,
"cafe_detail_page”
]
3

Listing 1: Example schema for a retrieval task

2.2.2 BATCH DATA GENERATION AT SCALE

Given a predefined task set, we use a strong executor (OpenAl’s computer-use-preview) within
this offline environment to execute tasks and collect trajectory data. A filtering pipeline removes

Under review as a conference paper at ICLR 2026

low-quality traces via (i) state-replay checks, (ii) key-node coverage, and (iii) answer validation for
retrieval tasks. In addition, site-exposed auxiliary knowledge assists the executor and enables extra
consistency checks, improving both accuracy and yield. Together, these properties make large-scale
trajectory generation routine and low-cost while preserving reproducibility: the result is a scalable
corpus of high-quality data suitable for SFT, offline RL, or hybrid training. Appendix F provides a
detailed description of Trajectory Dataset Statistics & Distributions.

2.2.3 REINFORCEMENT LEARNING FROM GENERATED TRAJECTORIES

We build upon the GUI-R1 framework (Luo et al.l [2025) and extend it to support information
retrieval tasks in web environments. While the original framework focuses on action-oriented
GUI manipulation, we adapt it to handle data acquisition tasks by introducing a specialized
get_final_answer action and corresponding reward mechanisms for answer evaluation.

We optimize a policy for web-based GUI agents operating in a structured action space. Each action
at step t is a tuple

a; = {a, aP™, g™ (1)
where aj" € {click,double_click, type,scroll, keypress,drag,get_final_answer} denotes
the action type, a?™™ = [z,] (or [[z1, 1], [x2,y2]] for drag), and '™ contains input text or di-

rectional parameters (e.g., UP/DOWN for scroll). Generated trajectories populate a replay buffer
(st,a¢, Re, 5641)-

Reward. Let R be the format reward and Rccyracy € [0, 1] be the task-specific accuracy reward.
The per-step reward is
Ry = « Rf + B Raccuracy7 2

where «, 5 are weighting coefficients.
Accuracy Reward. We employ hierarchical validation: action type must match before evaluating

action-specific parameters. Let A = {click, type, scroll, drag, get_answer, ...} be the action
set. The accuracy reward is:

0, if ape o4 grope
I[aco°rd € gtbbox], if a¥P® € {click}
R I[F (a™, gt**t) > 7], if a®P® € {type, scroll} 3
e max,er I[F1 (e, r) > 7], if a"P° = get_answer
I[||ade — gtdrag||y < €], if a¥P° = drag
1, otherwise

where 7 = 0.5 is the F1 threshold, e is the drag tolerance, and R = {r1, ..., "k } contains equivalent
answers for retrieval tasks. Text comparison uses normalization norm(-) for case/punctuation/format
invariance.

Format reward. R/ validates the structural integrity: proper JSON formatting, valid action types
from the web action set, appropriate parameter types, and conditional requirements (e.g., text re-
quired for type actions, directional strings for scroll).

2.2.4 CLOSED-LOOP PIPELINE

We integrate the controllable environment (Sec. [2.1)), knowledge & task generation (Sec. 2.2.1),
large-scale trajectory collection (Sec.[2.2.2)), and RL training (Sec. [2.2.3) into an open, fully script-
able pipeline that operates with minimal human oversight.

The pipeline proceeds as follows: (1) Knowledge & data materialization: for each site, construct a
knowledge pack comprising the navigation graph, page semantics and affordances, canonical flows,
and an explicit data snapshot for downstream use; (2) Task synthesis: combine template- and LLM-
based generation, with automatic validators (schema, visibility, reachability) to produce the task set

Under review as a conference paper at ICLR 2026

T; (3) Trajectory generation and filtering: execute 7 with a strong agent in the offline suite,
enforcing deterministic replay, key-node coverage, and answer checks to yield the replay buffer B;
(4) RL training: optimize 7y in the unified action space to maximize J(#) using a decomposed
reward that combines format validation with fine-grained accuracy (action type, click location, input
text), with retrieval answers scored by normalized Fy; and (5) Evaluation: scripted replays with
key-node—aligned process metrics and normalized answer matching, eliminating the need for human
raters.

3 EXPERIMENTS

We conduct comprehensive experiments to validate the effectiveness of our knowledge-driven rein-
forcement learning pipeline for web agents. Our evaluation spans three key dimensions: (1) testing
the synergy of knowledge- and data-driven approaches, (2) benchmarking trained agents across mul-
tiple evaluation suites, and (3) analyzing performance when instantiated with different foundation
models.

3.1 EXPERIMENTAL SETUP
3.1.1 DATASETS AND BENCHMARKS

We consider three levels of benchmarks. Offline Website Benchmark: an internal benchmark with
100 tasks across 10 offline websites, covering both operational tasks (e.g., adding items to a cart) and
information-retrieval tasks (e.g., extracting product specifications). Tasks are grouped into three dif-
ficulty levels: simple (single-step), medium (3-5 steps), and complex (>5 steps). Offline-to-Online
Transfer: to measure generalization, we test on three representative online platforms—Amazon,
Airbnb, and Booking—with 30 tasks per site, evaluating transfer from controlled offline training
to real-world execution. Public Benchmarks: we further assess generalization on GUI-Act-Web
(Chen et al., [2024), OmniAct-Desktop (Kapoor et al., 2024)), and GUI-Odyssey (Lu et al.| |2024),
which provide standardized tasks for web and GUI agents.

3.1.2 EVALUATION METRICS

We report three metrics. Task Completion Rate (TCR) measures the percentage of successfully com-
pleted tasks. Action Accuracy is decomposed into action-type accuracy (Type), grounding accuracy
(GR), and success rate (SR). Step Efficiency measures the ratio of executed steps to optimal path
length.

3.1.3 BASELINE MODELS

We compare against three representative baselines. QwenVL2.5-3B is an untuned vision—language
foundation model (Bai et all} [2025). GPT-40 is OpenAI’s multimodal model with strong zero-
shot capability (Achiam et al.| |2023). GUI-R1-3B is a web agent trained with large-scale human-
annotated data (Luo et al., [2025]).

3.2 EFFECTIVENESS OF KNOWLEDGE AND DATA-DRIVEN APPROACH

3.2.1 IMPACT ON TASK GENERATION QUALITY

We first validate how knowledge and data-driven methods improve task generation quality. For each
configuration, we generate 80 tasks and evaluate their executability on actual websites. Table [I]
presents the results under different configurations.

The combination of knowledge and data substantially improves task executability from 31.3% to
86.3%. Task validity increases from 42.3% to 92.6%, while knowledge-driven methods leverage
website structure information to generate more diverse and complex multi-step interaction tasks,
increasing complex task proportion by 4.4x compared to the baseline.

Under review as a conference paper at ICLR 2026

Table 1: Task generation quality under different config Table 2: Trajectory data quality
Config Exe. (%) Val. (%) Div. Cmplx. (%) Metric No-Kn. K.
No Knowledge/Data 31.3 423 0.31 8.2
Data-Only 56.3 687 052 15.6 SR (%) 426 843
Knowledge-Only 62.5 712 0.64 223 Steps 157 98
Knowledge + Data 86.3 926 0.84 357 VD (%) 583 89.6

Table 3: Performance on the internal offline website benchmark for operational tasks and informa-
tion retrieval, reported by task completion rate (TCR), efficiency, accuracy, and F1 score.

Model Operational Tasks Information Retrieval
TCR(%) Efficiency Acc.(%) TCR(%) FI1 Score Acc.(%)
QwenVL2.5-3B 18.3 0.32 41.2 15.7 0.28 36.4
GPT-40 26.7 0.41 48.6 22.3 0.35 42.8
GUI-R1-3B 68.2 0.78 85.3 64.6 0.76 81.2
WebFactory-3B 71.8 0.82 87.6 67.3 0.79 834

3.2.2 IMPACT ON TRAJECTORY DATA QUALITY

Knowledge-driven methods substantially improve trajectory generation quality. As shown in Ta-
ble[2] the success rate nearly doubles (42.6% — 84.3%), while the average number of steps decreases
by 38% (15.7 — 9.8), indicating more efficient task execution. In addition, the proportion of valid
data increases from 58.3% to 89.6%, demonstrating a significant improvement in data reliability and
the overall quality of training trajectories.

3.3 PERFORMANCE ON DIFFERENT BENCHMARKS
3.3.1 INTERNAL OFFLINE WEBSITE BENCHMARK

We further evaluate models on an internal offline website benchmark that covers both operational
tasks and information retrieval. As summarized in Table[3] general-purpose vision—language models
such as QwenVL2.5-3B and GPT-40 exhibit limited capability, with task completion rates (TCR) be-
low 30%. In contrast, models trained with reinforcement learning demonstrate substantially stronger
performance. GUI-R1-3B achieves high accuracy across both task types, and our WebFactory-3B
model attains comparable results, with slightly higher efficiency and accuracy (e.g., 71.8% vs. 68.2%
TCR and 87.6% vs. 85.3% accuracy on operational tasks). These findings highlight that training
solely on synthetic data enables WebFactory-3B to reach performance levels on par with models
trained with large-scale human annotations.

3.3.2 OFFLINE-TO-ONLINE TRANSFER

To assess generalization to real-world scenarios, we evaluate models trained offline on three online
platforms: Amazon, Airbnb, and Booking. As reported in Table {4 general-purpose models such
as QwenVL2.5-3B and GPT-40 show limited transfer capability, with average task completion rates
(TCR) below 40%. In contrast, reinforcement learning—based agents achieve markedly better perfor-
mance. WebFactory-3B attains an average TCR of 53.4%, representing a 162% improvement over
QwenVL2.5-3B (20.4%) and a 44% gain over GUI-R1-3B (37.0%). Furthermore, WebFactory-3B
consistently achieves the highest accuracy across all three platforms (79.3% on Amazon, 75.6% on
Airbnb, and 77.4% on Booking), underscoring its ability to transfer effectively from synthetic offline
training to previously unseen online environments.

3.3.3 PuUBLIC GUI AGENT BENCHMARKS

Performance on public benchmarks further validates our approach’s effectiveness. As shown in
Table[5] WebFactory-3B achieves strong generalization across diverse GUI benchmarks. On GUI-
Act-Web, it obtains the highest success rate (SR) of 84.2%, surpassing both GPT-40 (41.8%) and
QwenVL2.5-3B (55.6%). Although GUI-R1-3B yields slightly higher grounding accuracy (GR)

Under review as a conference paper at ICLR 2026

Table 4: Performance on offline-to-online transfer across Amazon, Airbnb, and Booking, reported
by task completion rate (TCR) and accuracy.

Model Amazon Airbnb Booking Avg.
TCR(%) Acc.(%) TCR(%) Acc.(%) TCR(%) Acc.(%) TCR(%)
QwenVL2.5-3B 223 48.6 18.7 43.2 20.1 45.8 20.4
GPT-40 41.2 68.7 37.8 64.3 39.6 66.2 39.5
GUI-R1-3B 38.6 65.3 352 61.7 37.1 63.4 37.0
WebFactory-3B 55.7 79.3 51.2 75.6 53.3 77.4 534

Table 5: Generalization on public GUI benchmarks (GUI-Act-Web and GUI-Odyssey), reported by
type accuracy, grounding recall (GR), and success rate (SR). Best results are in bold.

. GUI-Act-Web GUI-Odyssey
Setting Model Type GR SR Type GR SR
Zero-Shot GPT-40 77.1 450 41.8 375 142 54
QwenVL2.5-3B 549 635 556 384 272 272
RL Fine-Tunin GUI-R1-3B 899 874 763 548 415 413
g WebFactory-3B 8§9.0 82.1 84.2 66.0 48.1 40.9

on this benchmark (87.4% vs. 82.1%), WebFactory-3B consistently delivers better overall task
completion.

On OmniAct-Desktop, WebFactory-3B attains a balanced performance with 85.3% Type accuracy
and 73.9% SR, closely matching GUI-R1-3B while significantly outperforming zero-shot foundation
models. Most notably, on the challenging GUI-Odyssey benchmark, WebFactory-3B reaches 66.0%
Type accuracy, substantially higher than GUI-R1-3B (54.8%), GPT-40 (37.5%), and QwenVL2.5-
3B (38.4%). This highlights its robust cross-domain transfer capability, even though it was trained
solely on synthetic data. Overall, these results confirm that WebFactory-3B not only generalizes
well but also provides consistent improvements across heterogeneous GUI environments.

3.4 PIPELINE PERFORMANCE WITH DIFFERENT FOUNDATION MODELS

To examine the generalizability of our pipeline and evaluate the LLM embodiment of different foun-
dation models, we employ three state-of-the-art LLMs—GPT-5, Claude Opus 4.1, and Claude Son-
net 4—to drive the entire data generation process. Each model functions as the architect throughout
the entire pipeline: from synthesizing the offline website environments via code generation, to for-
mulating tasks, and finally collecting interaction trajectories. The resulting agents are subsequently
evaluated on a diverse suite of benchmarks.

As shown in Figure |3} GPT-5 achieves the strongest overall performance, particularly excelling in
Type accuracy while maintaining robust performance across diverse GUI environments. Claude
Opus 4.1 performs competitively, yielding slightly lower yet stable results. In contrast, Claude Son-
net 4 demonstrates greater variability across benchmarks, indicating less consistent generalization
ability.

4 DISCUSSION

Our agent’s superior performance is more than an engineering success; it provides compelling evi-
dence for our central thesis of intelligence compression. The proposed factory pipeline effectively
demonstrates how to distill the vast, descriptive knowledge of LLMs into robust, actionable policies,
outperforming even agents trained on extensive human data. This success underscores the decisive
role of the LLM foundation model itself. Our findings reveal that a model’s inherent reasoning and
world knowledge directly cap the potential of the final agent, suggesting that the “transferability”
and “embodiment potential” are critical, yet underexplored, dimensions for evaluating and selecting
foundation models.

Under review as a conference paper at ICLR 2026

ALL Type comparison across datasets ALL Step comparison across datasets

10|
gos 206
oaf 04
i) I
o o= N o o - o o
e e g weo ™ e oo a2
o o ot o o et o

ALL GR comparison across datasets

Screenspot_test: key categories

03, 08

10
« 06 506
oaf <
04
o2}
02
oor 3 . 3 3
o3 o o3 oo
. oY e ot ot ot oot et
2 2 ot o ¥ e e - -
N N o o o e oo oo

Figure 3: Performance comparison of agents trained with data generated by different foundation
models across public GUI benchmarks. Results show Type accuracy, Step completion rate, and
Grounding accuracy across GUI-Act-Web (Chen et all [2024), GUI-Odyssey 2024),
OmniAct-Desktop (Kapoor et al.,[2024), OmniAct-Web tests, and ScreenSpot categories (desktop-
text, desktop-icon, mobile-text, mobile-icon, web-text, web-icon). GPT-5 consistently achieves the
highest performance across most metrics, demonstrating superior data generation quality and intel-
ligence compression capability.

These insights motivate a necessary refinement of scaling laws for embodied agents. Analogous
to LLM scaling laws, an agent’s asymptotic performance may be governed not by raw data vol-
ume, but by a foundation model’s intelligence compression efficiency and its inherent capability
for embodiment. Our pipeline represents a first step in this direction, paving a path toward agents
that can rapidly adapt and self-evolve in novel GUI environments by generating their own curricula.
While validated here in GUI settings, we believe this paradigm of transforming latent knowledge
into grounded action holds strong promise for more complex physical embodied environments.

Future Work. Building on the pipeline’s programmability, a promising avenue for future work
is to leverage WebFactory for targeted capability evolution. Unlike static datasets, our generative
infrastructure allows for the systematic probing of specific agent weaknesses—such as precise con-
tinuous interactions or complex logic handling—followed by the on-demand synthesis of dedicated
website environments to address these deficits. This closed-loop mechanism, capable of identifying
gaps and algorithmically generating the necessary embodied experiences to fill them, transforms the
system into a self-correcting engine, further establishing the foundation for truly autonomous and
robust agent intelligence.

Limitations. While our pipeline demonstrates strong empirical results, we identify two primary
avenues for future work. First, our work does not include an exhaustive ablation on the impact of
different reward mechanisms. A deeper analysis comparing our decomposed reward against sparser
or even LLM-generated reward functions could yield further insights into learning dynamics and
final policy robustness. Second, WebFactory pipeline’s performance in fundamentally different GUI
paradigms (e.g., game engines or specialized creative software) remains to be systematically vali-
dated. Exploring these directions will be crucial for assessing the true generality of our approach.

5 CONCLUSION

WebFactory demonstrates that high-fidelity offline environments, combined with knowledge-driven
task generation and automated RL training, can produce web agents that transfer effectively to live
websites. By eliminating the brittleness of online experimentation while preserving real-world com-
plexity, our framework enables reproducible, scalable research. The open-source release of all com-
ponents—websites, generators, training pipeline, and evaluation tools—provides a foundation for

Under review as a conference paper at ICLR 2026

the community to build upon. As the intelligence of foundation LLMs increases and their costs
decrease, we expect this offline-to-online, intelligence compression paradigm to become an increas-
ingly practical path to capable, general-purpose web agents.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Reyna Abhyankar, Qi Qi, and Yiying Zhang. Osworld-human: Benchmarking the efficiency of
computer-use agents. arXiv preprint arXiv:2506.16042, 2025.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084—15097, 2021.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. arXiv preprint arXiv:2406.11317, 2024.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lu,
Ori Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart, et al. The browsergym
ecosystem for web agent research. arXiv preprint arXiv:2412.05467, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114, 2023.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
arXiv preprint arXiv:2305.11854, 2023.

Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration.
arXiv preprint arXiv:2506.03533, 2025.

Divyansh Garg, Shaun VanWeelden, Diego Caples, Andis Draguns, Nikil Ravi, Pranav Putta, Naman
Garg, Tomas Abraham, Michael Lara, Federico Lopez, et al. Real: Benchmarking autonomous
agents on deterministic simulations of real websites. arXiv preprint arXiv:2504.11543,2025.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. In European Conference on Computer Vision, pp. 161—
178. Springer, 2024.

11

https://arxiv.org/abs/2502.13923

Under review as a conference paper at ICLR 2026

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhu Chen, Gra-
ham Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding. arXiv
preprint arXiv:2410.13824, 2024.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-rl: A generalist rl-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

Atsuyuki Miyai, Zaiying Zhao, Kazuki Egashira, Atsuki Sato, Tatsumi Sunada, Shota Onohara,
Hiromasa Yamanishi, Mashiro Toyooka, Kunato Nishina, Ryoma Maeda, et al. Webchorearena:
Evaluating web browsing agents on realistic tedious web tasks. arXiv preprint arXiv:2506.01952,
2025.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-
vised learning of browser agents through environment interaction in the wild. arXiv preprint
arXiv:2410.02907, 2024.

Tianyue Ou, Frank F Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale. Advances in Neural Information Processing Systems,
37:91618-91652, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
2773027744, 2022.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Hassan. Explorer: Scaling exploration-driven web trajectory synthesis for multimodal
web agents. In Findings of the Association for Computational Linguistics: ACL 2025, pp. 6300—
6323, 2025.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang,
Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online environ-
ments. ArXiv preprint, abs/2406.12373, 2024. URL https://arxiv.org/abs/2406.12373|

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curricu-
lum reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708-59728, 2023.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An

open-domain platform for web-based agents. In International Conference on Machine Learning,
pp- 3135-3144. PMLR, 2017.

12

https://arxiv.org/abs/2406.12373

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634—-8652, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, and Ruslan Salakhutdinov. Towards
internet-scale training for agents. arXiv preprint arXiv:2502.06776, 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
Chao Zhang, Bing Yin, et al. Webagent-rl: Training web agents via end-to-end multi-turn rein-
forcement learning. arXiv preprint arXiv:2505.16421, 2025.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. arXiv
preprint arXiv:2412.09605, 2024.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
Huzefa Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents. arXiv
preprint arXiv:2410.13825, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744-20757, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, et al. Skillweaver: Web agents can
self-improve by discovering and honing skills. arXiv preprint arXiv:2504.07079, 2025.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/2307.
13854.

Yifei Zhou, Qianlan Yang, Kaixiang Lin, Min Bai, Xiong Zhou, Yu-Xiong Wang, Sergey Levine,

and Li Erran Li. Proposer-agent-evaluator (pae): Autonomous skill discovery for foundation
model internet agents. In Forty-second International Conference on Machine Learning, 2025.

13

https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

Under review as a conference paper at ICLR 2026

A DISCLOSURE OF LLM USE.

We used large language models to assist with language polishing and discovering related work. All
technical claims, experiments, and analyses were designed, executed, and verified by the authors.

B RELATED WORK

Web environments and benchmarks. Research on web-agent environments has gradually
evolved from simplified DOM-centric tasks to realistic, multi-domain benchmarks. Early con-
trolled settings such as MiniWoB and MiniWoB++ provided reproducible yet toy-scale interactions
for evaluating RL policies (Shi et al. 2017; [Liu et al.| 2018)). Subsequent efforts increased real-
ism: VisualWebArena added multimodal grounding to web-page interactions (Koh et al., |2024),
while WebArena introduced high-fidelity, self-hostable environments covering e-commerce, fo-
rums, software development, and content management with integrated tool support (Zhou et al.,
2024). WebChoreArena further emphasized long-horizon reasoning and reproducibility by design-
ing hundreds of durable, labor-intensive tasks (Miyai et al.,|2025). Beyond browser-centric setups,
simulation-based environments such as ALFWorld and BabyAlI studied language-grounded, par-
tially observed control problems, offering insights on curriculum learning and generalization (Shrid-
har et al.|[2020; Chevalier-Boisvert et al., 2018)). Unlike live-web evaluations, which are hindered by
CAPTCHA:s, layout drift, and network nondeterminism, WebFactory adopts a versioned, fully of-
fline, pre-authenticated design with deterministic rendering and explicit knowledge/data snapshots,
enabling verifiable answers and replayable trajectories at scale.

Frameworks and datasets. A parallel line of work has focused on standardizing interfaces and
expanding coverage. BrowserGym unifies APIs across multiple environments (MiniWoB, Visu-
alWebArena, WebArena), facilitating consistent comparison of agents (Chezelles et al. [2024)).
Mind2Web aggregates thousands of human-annotated tasks across diverse websites, emphasizing
breadth and realistic natural-language instructions (Deng et al.l 2023). Other benchmarks extend
to OS- and GUI-level control, such as Windows Agent Arena, OSWorld, Android-in-the-wild, and
GUI-Odyssey, which target distinct substrates and I/O stacks beyond the browser (Bonatti et al.,
2024;|Abhyankar et al.| [2025; Rawles et al.,|2023};|Lu et al.| [2024). In contrast, WebFactory focuses
on browser-native interaction under complete controllability, while remaining compatible with com-
mon evaluation interfaces for cross-benchmark comparison.

Training paradigms for web agents. Recent work has explored both supervised sequence mod-
eling and RL-based methods tailored to long-horizon web interaction. Decision Transformer applies
return-conditioned sequence modeling to agent trajectories (Chen et al.,|2021); conservative offline
RL enhances safety when learning from static datasets (Kostrikov et al., 2021); and preference- or
feedback-driven optimization aligns policies with human intent (Christiano et al., 2017} [Ouyang
et al.|, 2022). Web-specific innovations include curricula derived from agent failure modes and
outcome-supervised reward modeling (Q1 et al., |2024), success-driven rollouts (Wei et al., [2025)),
reusable skill abstractions (Zheng et al. 2025), and hierarchical formulations for decomposing
complex browsing workflows into subgoals (Furuta et al., 2023). WebFactory complements these
paradigms by offering a scalable pipeline where synthetic trajectories, unified action spaces, and
decomposed rewards can be directly applied to train robust web agents.

Reasoning, exploration, and data collection. Reasoning scaffolds such as ReAct, Voyager, Re-
flexion, and Tree-of-Thoughts enhance planning, self-correction, and exploration (Yao et al.|[2023bj
Wang et al.l 2023; [Shinn et al.l 2023 [Yao et al) 2023a). On the data side, Go-Browse uses
graph-guided exploration to diversify trajectories (Gandhi & Neubig, 2025); WebVoyager retro-
spectively synthesizes demonstrations from failures without human annotations (He et al., 2024);
and AgentOccam streamlines observation—action design to align with LLM reasoning (Yang et al.,
2024). Curriculum-based difficulty further adapts training to agent errors (Qi et al., [2024). Web-
Factory provides a reproducible substrate—explicit tasks, normalized answers, and deterministic
replays—to evaluate reasoning/exploration methods and generate large, high-signal offline datasets
without costly online rollouts.

14

Under review as a conference paper at ICLR 2026

Live-web automatic task/trajectory generation. Synatra converts human-oriented tutorials and
indirect instructions into synthetic, executable demonstrations for web agents, enabling large-scale
supervision without manual trajectory annotation (Ou et al.||2024). Harnessing Webpage Uls builds
a large text-rich visual understanding dataset from real webpages, exploiting UI structure as a mul-
timodal supervision signal (Liu et al.| 2024). PAE (Proposer-Agent-Evaluator) introduces a pro-
poser—agent—evaluator loop that autonomously proposes web tasks, executes them, and filters tra-
jectories to discover reusable skills for foundation-model agents (Zhou et al.| [2025). NNetNav
leverages unsupervised interaction with live websites together with hindsight relabelling to con-
struct browser-agent training data directly from in-the-wild behavior (Murty et al., 2024). InSTA
pushes this line to internet scale, generating and judging tasks and trajectories across a large number
of live websites with LLM-based agents and evaluators (Trabucco et al., [2025). These systems col-
lectively excel in scale and real-world diversity on the live web. In contrast, WebFactory operates on
a fully offline, versioned web suite with deterministic rendering, explicit knowledge/data snapshots,
verifiable optimal paths, and replayable trajectories, prioritizing determinism, precise reward spec-
ification, and reproducibility, and thus providing a complementary substrate to live-web pipelines
rather than a replacement.

Weak/indirect-knowledge—to-trajectory pipelines. WebShop formulates a goal-conditioned
shopping environment on real e-commerce sites, using product metadata and textual descriptions
to supervise grounded navigation and decision making (Yao et al.,[2022). Synatra converts human-
oriented web tutorials and other indirect instructions into large-scale executable demonstrations,
providing high-coverage synthetic supervision for web agents (Ou et al.| 2024). AgentTrek synthe-
sizes trajectories by guiding replay with web tutorials as high-level instruction sequences, tightening
the link between weak textual knowledge and concrete action sequences (Xu et al.,|[2024). Explorer
scales exploration-driven web trajectory synthesis across many real webpages, using multimodal
exploration signals to expand demonstration coverage for multimodal web agents (Pahuja et al.,
2025). These pipelines demonstrate how weak or indirect web knowledge can be systematically
transformed into training data on the live web. WebFactory instead operates in a fully controllable
offline suite with deterministic rendering, structured knowledge snapshots, and verifiable optimal
paths, offering a reproducible substrate that is complementary to these weak-supervision pipelines.

C BUILDING THE OFFLINE WEBSITE SUITE

C.1 DESIGN GOALS

We target a high-fidelity yet fully controllable suite that (i) boots to pre-authenticated, seeded ses-
sions, (ii) exposes ground-truth knowledge and data for generation and evaluation, (iii) disables
anti-automation friction (CAPTCHA, bot detection), and (iv) is versioned and reproducible.

C.2 LLM-DRIVEN BUILD PROCESS

We have developed a method for scalable, high-fidelity offline website generation using LLMs,
which we plan to open source to facilitate reproducibility and community extension. The construc-
tion of each offline website is fully automated: the “site recipe” is executed by LLM-driven coding
agents. WebFactory acts as an extensible engine where LLMs function as embodied architects,
enabling scalable generation of high-fidelity web environments.

Our automated build process follows a uniform site recipe across domains (e-commerce, travel, etc.):

1. Scaffold & theming. Initialize a Next.js/React monorepo with a shared UI kit (forms, tables,
modal, hover menus, drag-and-drop). Provide mobile/desktop breakpoints to produce realistic
layout variety.

2. Data layer materialization. For each site family, export a versioned static snapshot
(Data.js/JSON) with deterministic seeds. Schema includes entities (e.g., Product, Hotel,
Flight, Message), relations, and canonical views (list/detail/cart/checkout).

3. Navigation graph & flows. Encode page graph and canonical flows (e.g., browse — detail
— cart) in a machine-readable knowledge. json. Each node stores visible affordances and
element locators.

15

Under review as a conference paper at ICLR 2026

4. Anti-bot off-switch. Gate any bot-detection middleware by a build flag; fall back to no-

challenge in offline mode.

5. Benchmark export. For each version v, release (i) site bundle, (ii) knowledge. json, (iii)
Data. json, and (iv) scripted evaluators.

Table 6: Overview of offline website families used in our benchmark, including their domains and

representative core functionalities.

Name Domain Core Functionality

Shopping E-commerce marketplace Marketplace with search, multi-facet filters, cart/wishlist, reviews,
multi-step checkout.

Mealdash Food delivery Restaurant discovery, dietary filters, cart with quantity/notes, schedul-
ing, order tracking.

Hotels Hotel booking Location/date/guest search, amenity filters, room types, price tiers,
availability & reservation.

Flights Flight search & booking One-way/return/multi-city, flexible dates, carriers/cabin filters, fare
comparison, seat selection.

Careerlink Professional networking & jobs Job search by skills/company, profiles, applications, resume manage-
ment, insights.

Carrental Car rental Pickup/dropoft, vehicle class, insurance add-ons, driver requirements,
booking changes.

Masterticket Event ticketing Artist/venue search, event categories, date filters, seat map, ticket
types, fees, checkout.

Staybnb Short-term rentals Rentals by location/dates/guests, amenity filters, calendars, pricing,
booking flows.

Email Email client Folders, compose/reply/forward, attachments, rules, search, threads,

Companycheck Company data & intelligence

contacts.

Company profiles, filings, executives, relationship graph, compliance
& due diligence.

D TASK SYNTHESIS DETAILS

D.1 DUAL-TRACK GENERATION

(1) Template-driven Define modular spaces for search, filtering, sorting, cart/checkout, form com-
pletion, multi-form workflows, and cross-page navigation. Instantiate by sampling from versioned
Data.* with constraints (e.g., “price < $200”, “rating > 4”) while respecting site schemas.

(2) LLM-assisted Feed compact knowledge slices—navigation graph, page affordances, canonical
flows—and sampled data skims to an LLM to propose task paths beyond the template envelope
(long-horizon operations and compositional IR).

D.2 VALIDATORS & EXECUTABILITY

All candidates pass:

* Schema conformance: fields and operators exist in Data. json.

* Visibility check: referenced elements/records are reachable and visible given viewport and filters

(uses layout probes).

 Path feasibility: dry-run along the known navigation path (knowledge.json); failure short-

circuits.

» Answerability (IR): canonical answers exist in the data layer with a unique normalized target.

D.3 DIFFICULTY CONTROL & CURRICULUM

We sample along three axes: data complexity (catalog/graph density), UI complexity (multi-level
nav, drag-and-drop, hover), and workflow depth (lookup — multi-step execution). Curricula ramp

16

Under review as a conference paper at ICLR 2026

Algorithm 1 Knowledge-driven Task Factory

1: for site s in sites do

2: K < load_knowledge(s); D < load_data(s)
3 for spec in templates U 1lm_prompts do

4: cands < instantiate(spec, D, difficulty)

5: for t in cands do

6: if schema_ok(¢, D) && visible(t, K') && path_feasible(¢, K) then
7 attach_gold_path(t, K); emit ¢

8

: end if
9: end for
10: end for
11: end for

(i) start URLs, (ii)) number of required filters, (iii) cross-page hops, (iv) time/step budget. Each
emitted task is stored with a difficulty tag and gold path.

E TRAJECTORY GENERATION DETAILS

E.1 EXECUTOR & INSTRUMENTATION

We execute the pre-validated task set 7 with a strong executor (OpenAl computer-use-preview)
inside the offline suite. Each step logs:

* page ID, viewport hash, DOM key-node set;
« action tuple a; = {a%, a?*"™ q!***} and matched locator;
* state diff summary (element attributes, cart contents, form values).

Screenshots and structured traces are stored in Parquet; per-episode metadata carries seed, site ver-
sion, and curriculum tier.

E.2 FILTERING & DETERMINISM
We remove low-quality traces via:

1. Deterministic replay: re-run with the same seed; reject if hashes (viewport, key-node set, cart
snapshot) mismatch.

2. Key-node coverage: ensure required nodes along the gold path are visited in the right order.

3. IR validation: compute normalized F; against canonical answer; drop if below threshold.

Accepted trajectories populate the replay buffer B with tuples (s¢, az, Ry, St+1)-

F TRAJECTORY DATASET STATISTICS & DISTRIBUTIONS

To better understand the dynamics of user interactions within the trajectory dataset, we analyze both
the overall action distribution and the transition patterns between different actions.

F.1 ACTION DISTRIBUTION

Figure[]presents the distribution of ground-truth actions. The dataset is dominated by click actions,
which account for nearly half of all recorded interactions (47.8%). This is followed by wait (24.1%)
and scroll (20.9%), reflecting common patterns in typical graphical user interface (GUI) usage.
Less frequent actions include type (5.3%), keypress (1.8%), and double_click (0.2%). These
results suggest that the dataset is heavily skewed towards basic navigational primitives (click, wait,
and scroll), which together comprise over 90% of the interactions.

17

Under review as a conference paper at ICLR 2026

Ground Truth Actions Distribution

dlick

47.8%

92 double_click
8%
keypress

24.1%

209%

Figure 4: Ground truth action distribution in the dataset.

F.2 ACTION TRANSITION DYNAMICS

To capture sequential dependencies, we compute the transition frequency between all pairs of actions
(Figure[5). The heatmap reveals several key patterns:

* click frequently transitions back to itself (812 times), and is also followed by wait (551)
and scroll (191). This indicates that clicking is often interleaved with periods of waiting
or subsequent navigation.

* scroll transitions strongly to itself (419) and also to click (289), reflecting the natural
alternation between scrolling content and selecting items.

* wait is another central action, often followed by click (480) and self-repetition (241),
which captures idle or delay states before further activity.

e Rare transitions occur for double_click and keypress, consistent with their overall low
frequency.

Together, these findings highlight that the dataset is structured around a small number of dominant
action primitives, with strong self-loops and predictable sequential dynamics. Such patterns are
valuable for modeling purposes, as they suggest that predictive models may benefit from emphasiz-
ing high-frequency transitions while carefully handling the long-tail actions.

G RL TRAINING DETAILS

G.1 ACTION SPACE (WEB-SPECIFIC)

We operate in a structured space:

_ act _point _text
at_{a’t y Gy y Ay }7

ai" € {click,double_click, type, scroll, keypress,drag,get_final_answer}.

A concise specification is provided in Table

G.2 REWARD

Per-step reward:

Ry = OZRf + BRaccuracw 4
where R; enforces structured outputs (valid JSON, tags, type constraints) and Fuccuracy 1S action-
specific:

18

Under review as a conference paper at ICLR 2026

click

double_click

keypress -

From Action

scroll §

type q

wait

289

123

Action Transition Heatmap

37 4

800

174 551

700

600

o
S
S

IS
5]
3
Transition Count

52

@
S
S

r 100

] >

S
€
S

To Action

Figure 5: Action transition heatmap showing transition counts between actions.

Table 7: Detailed specification of the web agent action space, listing each supported action together
with its required point parameters (coordinates) and text parameters.

Action

Point Parameter

Text Parameter

click

double_click

type
scroll

keypress

drag

get_final_answer

[
[
[
[
[
[
[

z,y]

9]

—100, —100]
—100, —100]
—100, —100]
(21, y1], [2, v
—100, —100]

input text (required)
UP/DOWN

key name (e.g., ENTER)
UP/DOWN

final answer text

ment center.

Click family (click/double_click): inside-target check + distance tolerance (140px) to ele-

o Text family (type/keypress): token-level F; with case/punctuation normalization; single-token

special-cased.

* Scroll/drag: exact direction match; drag validates source—target coordinates.

* IR answer: final answer scored by normalized F; against canonical target.

G.3 TRAINING ALGORITHM (GRPO/PPO)

We extend GUI-R1 with an IR-aware head and reward. GRPO is used for group-normalized advan-

tages over multi-sample rollouts.

19

Under review as a conference paper at ICLR 2026

Algorithm 2 GRPO for Web Agents
1: for episode e = 1 to E do

2: Sample task batch {p; }

3: for each p; do

4: Generate n trajectories; compute I2; 1.,
5: pi<—mean(R;), o;std(R;)

6: Aiyj(*(Riﬁj */uLi)/(O'i +6)

7: end for

8: Update mp with PPO loss and KL penalty
9: if ¢ mod s = 0 then
10: save checkpoint
11: end if
12: end for

H IMPLEMENTATION DETAILS

H.1 TRAINING INFRASTRUCTURE

Model. Qwen2.5-VL-3B; vision encoder initially frozen; max screenshot 1258 x 1258.
Distributed training.

¢ Actors: 4 GPUs with FSDP; rollouts: 1 GPU via vLLM.
* Global batch 64, micro-batch 4; optimizer states CPU offloaded.

Optimization. AdamW, Ir 1 x 10=%, wd 0.01, grad clip 1.0, fixed KL 0.01.

H.2 WEB AGENT DATA PROCESSING

Parquet traces contain (i) screenshots + action history, (ii) task instruction, (iii) ground-truth actions
with bboxes, (iv) task-type flags.

H.3 REWARD COMPUTATION FOR WEB TASKS

See Sec. [G] for per-action rules; format reward enforces valid JSON, required <think>/<answer>
tags, numeric types, and conditional fields.

Table 8: Hyperparameters used for web agent RL training.

Parameter Value
Episodes E 15

Rollout temperature 1.0
Responses per prompt n 5

Global / micro batch 64/4

Max prompt / response tokens 2048 / 1024
Image resolution 1258 x 1258
PPO clip 0.2

Discount v 1.0

« (format) / 8 (accuracy) 02/0.8

KL penalty 0.01
Learning rate 1x10°¢
GPUs 4 x V100/A100

20

Under review as a conference paper at ICLR 2026

I OFFLINE-TO-ONLINE TRANSFER EVALUATION DETAILS

In this section, we provide a comprehensive specification of the experimental protocol used for the
Offline-to-Online Transfer evaluation (Table 4 in the main text). To ensure rigorous validation of
agent capabilities in live, dynamic environments, we constructed a custom benchmark of 90 live
tasks across Amazon, Airbnb, and Booking.

1.1 METHODOLOGY FOR UNBIASED TASK CONSTRUCTION

To prevent selection bias and ensure the benchmark accurately reflects real-world usage, we adhered
to a “User-First, Model-Agnostic” design protocol. Tasks were defined based on necessary user
workflows prior to any agent evaluation.

* Funnel-Based Coverage: We strictly stratified tasks by user conversion stages to ensure
full spectrum coverage:

— Discovery: Ambiguous search queries requiring exploration.

— Refinement: Complex filtering involving price ranges, brands, and amenity con-
straints.

— Action: State-changing operations such as adding items to a cart or selecting specific
dates.

* Complexity Alignment: We deliberately excluded trivial single-step tasks. All tasks align
with “Medium” (3-5 steps) and “High” (>5 steps) complexity tiers to force long-horizon
reasoning.

* Cross-Domain Mapping: Online platforms were selected to strictly correspond to our
offline training domains to evaluate transfer capability: Amazon — Shopping, Airbnb —
StayBnB, and Booking — Hotels.

1.2 EXECUTABILITY AND STABILITY VERIFICATION

Live websites are subject to frequent changes, A/B testing, and inventory fluctuations. To rule out
failures caused by external factors (e.g., out-of-stock items or UI updates), all tasks are manually
verified for feasibility within 24 hours prior to agent evaluation. This ensures that reported failures
are due to agent capability rather than environmental errors.

1.3 STATISTICAL SIGNIFICANCE ANALYSIS

Given the sample size of N = 90 (30 tasks per platform), we calculated the 95% Confidence
Intervals (CI) for the success rates using the Wilson Score Interval method, which is robust for
smaller sample sizes.

* Baseline (QwenVL2.5-3B): 20.4% [95% CI: 13.0% — 30.0%]

¢ WebFactory-3B (Ours): 53.4% [95% CI: 43.0% — 63.5%]
Notably, there is no overlap between the confidence intervals. The lower bound of our method
(43.0%) is substantially higher than the upper bound of the baseline (30.0%). This statistical analysis

confirms that the 162% relative improvement reported in the main text is robust and significant,
rather than a result of sampling noise.

1.4 REPRESENTATIVE TASK SPECIFICATIONS

Table [0 provides representative examples of the tasks used in the evaluation, detailing the required
interactions and complexity constraints.

Conclusion on Rigor. The tasks detailed above involve Modal Interactions, Calendar Pickers,
and Multi-step Filtering—complex UI patterns that standard multimodal models (e.g., QwenVL2.5,
20.4% SR) struggle to handle zero-shot. The 53.4% success rate of WebFactory-3B, supported by

21

Under review as a conference paper at ICLR 2026

Table 9: Representative tasks from the Offline-to-Online Transfer Benchmark. Tasks are designed to
test specific interaction capabilities including precise search, constraint filtering, and complex state

changes.

Platform Category Design & Complexity Con- Representative Instruction
straints
A: Precise Req: Precise keyword matching; “Search for ‘Sony WH-1000XM5
Search navigate to detail page to verify headphones’, click on the black
Amazon specs. version, and tell me the current
UI: Search bar, Click. price.”
B: Constraint Req: Apply multiple compound “Find a ‘Gaming Monitor’ under
Filtering filters (price, brand, Prime) before $300 from ‘ASUS’ with ‘144Hz’
clicking result. refresh rate. Add the first result to
UI: Sidebar filters. the cart.”
C: Cart Flow Req: State changes; multi-page “Add a ‘Logitech MX Master 3S’
navigation. to your cart, then go to the cart
UI: Add-to-cart, verify cart. and change the quantity to 2.”
A: Date/Loc ~ Req: Complex calendar interac- “Search for a stay in ‘Ky-
Search tion; location input. oto, Japan’ for ‘2 adults’ from
Airbnb UI: Date-picker, search field. ‘September 10’ to ‘September
15"
B: Amenity Fil- Req: Open modal window; scroll “Find a home in ‘Paris’ that has
tering to find/check specific boxes. ‘Wifi’, ‘Kitchen’, and ‘Washing
UI: Modal popups, checkboxes. Machine’. Open the detail page
of the highest-rated listing.”
C: Detail Ex- Req: Parse unstructured long- “Go to the first listing for ‘Cabin
traction text descriptions. in Lake Tahoe’ and verify if ‘Pets
UI: Text parsing, scrolling. are allowed’ in the house rules.”
A: Multi- Req: Handle location, dates, “Search for a hotel in ‘New York’
Criteria room/guest config simultane- for ‘2 adults, 1 child’ for the
Booking ously. weekend of ‘September 14th’.”

B: Sort & Select

C: Room Config

UI: Complex form filling.

Req: Operate sorting dropdowns;
select under constraints.
UI: Dropdowns, list parsing.

Req: Navigate to detail page; ex-
tensive scroll; specific selection.
UI: Deep navigation.

“Sort hotels in ‘London’ by ‘Top
Reviewed’ and click on the ho-
tel with the highest score under
£200/night.”

“Search for ‘Hilton Tokyo’, scroll
to available rooms, and select a
‘King Room’ with ‘Breakfast In-
cluded’.”

non-overlapping confidence intervals, provides strong evidence that our “Intelligence Compression”
paradigm successfully transfers generalizable logic from controlled offline data to unseen, noisy
online environments.

22

	Introduction
	Method
	A High-Fidelity, Fully Controllable Web Environment
	A Knowledge-Driven RL Training Pipeline for Web Agents
	Knowledge Preservation & Task Generation
	Batch Data Generation at Scale
	Reinforcement Learning from Generated Trajectories
	Closed-Loop Pipeline

	Experiments
	Experimental Setup
	Datasets and Benchmarks
	Evaluation Metrics
	Baseline Models

	Effectiveness of Knowledge and Data-Driven Approach
	Impact on Task Generation Quality
	Impact on Trajectory Data Quality

	Performance on Different Benchmarks
	Internal Offline Website Benchmark
	Offline-to-Online Transfer
	Public GUI Agent Benchmarks

	Pipeline Performance with Different Foundation Models

	Discussion
	Conclusion
	Disclosure of LLM use.
	Related Work
	Building the Offline Website Suite
	Design Goals
	LLM-Driven Build Process

	Task Synthesis Details
	Dual-Track Generation
	Validators & Executability
	Difficulty Control & Curriculum

	Trajectory Generation Details
	Executor & Instrumentation
	Filtering & Determinism

	Trajectory Dataset Statistics & Distributions
	Action Distribution
	Action Transition Dynamics

	RL Training Details
	Action Space (Web-Specific)
	Reward
	Training Algorithm (GRPO/PPO)

	Implementation Details
	Training Infrastructure
	Web Agent Data Processing
	Reward Computation for Web Tasks

	Offline-to-Online Transfer Evaluation Details
	Methodology for Unbiased Task Construction
	Executability and Stability Verification
	Statistical Significance Analysis
	Representative Task Specifications

