

000
 001
WebFactory: AUTOMATED COMPRESSION OF
 002 **FOUNDATIONAL LANGUAGE INTELLIGENCE INTO**
 003 **GROUNDED WEB AGENTS**
 004
 005
 006

007 **Anonymous authors**
 008 Paper under double-blind review
 009
 010
 011

012 **ABSTRACT**
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031

032 Current paradigms for training GUI agents are fundamentally limited by a reliance
 033 on either unsafe, non-reproducible live web interactions or costly, scarce human-
 034 crafted data and environments. We argue this focus on data volume overlooks
 035 a more critical factor: the efficiency of compressing a large language model's
 036 (LLM) latent knowledge into actionable agent behavior. We introduce **WebFac-**
 037 **tory**, a novel, fully automated closed-loop reinforcement learning pipeline for
 038 GUI agents, systematically compressing LLM-encoded internet intelligence into
 039 efficient, grounded actions. Our pipeline features a process of *scalable envi-*
 040 *ronment synthesis* → *knowledge-aware task generation* → *LLM-powered trajec-*
 041 *tory collection* → *decomposed reward RL training* → *systematic agent evalua-*
 042 *tion*. Remarkably, our agent demonstrates exceptional data efficiency and gener-
 043 alization. Trained on synthetic data from only 10 websites within **WebFactory**,
 044 it achieves performance comparable to GUI agents trained on same amount of
 045 human-annotated data from a much larger set of environments. This superior per-
 046 formance is consistent across our internal offline and online transferring bench-
 047 marks, where our agent also significantly outperforms the base foundation model.
 048 We further provide critical insights into the "embodiment potential" of different
 049 LLM foundations, offering a new axis for model evaluation. This work presents a
 050 scalable and cost-effective paradigm for transforming passive internet knowledge
 051 into active, grounded intelligence, marking a critical step towards general-purpose
 052 interactive agents.

053 **1 INTRODUCTION**

054 The advent of Large Language Models (LLMs) has marked a paradigm shift, creating what we term
 055 "internet-scale intelligence"—the rich world model and reasoning capabilities compressed from the
 056 vast internet corpus (Ouyang et al., 2022). Yet, this intelligence remains descriptive, not action-
 057 able. While an LLM's knowledge represents a powerful compression of digital experience, an
 058 embodied agent's single action in a GUI—a click or keystroke—is an exponentially deeper com-
 059 pression, translating abstract intent into tangible environmental change. Bridging this fundamental
 060 "semantic-to-action gap" is the central challenge in creating capable GUI agents; LLMs *know* about
 061 GUI interactions, they lack the *grounding* to reliably *perform* them in complex and dynamic GUI
 062 environments (Shi et al., 2017; Liu et al., 2018; Chezelles et al., 2024).

063 Current attempts to bridge this gap are caught in a dilemma between scalability and control. On one
 064 hand, reliance on human labor presents a two-fold bottleneck: beyond the immense cost and inherent
 065 biases of annotating thousands of trajectories (Deng et al., 2023; Luo et al., 2025), the painstaking,
 066 manual synthesis of high-fidelity environments can itself consume weeks of expert effort. On the
 067 other hand, training on the live web offers scale but sacrifices control; it is a chaotic environment
 068 where non-determinism, safety risks, and noise present formidable barriers to reproducible research
 069 (Zhou et al., 2024; Miyai et al., 2025; Garg et al., 2025). As a result, neither approach offers a
 070 sustainable path toward creating truly scalable and robust agents.

071 To overcome these limitations, we argue for a paradigm shift: instead of treating LLMs as mere
 072 components to be fine-tuned, we can leverage them as the architects of their own embodiment. We

introduce the concept of **Intelligence Compression Factory**: a closed-loop, end-to-end pipeline that systematically transforms the descriptive, internet-scale intelligence of LLMs into grounded, actionable behavior. As shown in Figure 1, this factory operates not on the noisy live web(Pan et al., 2024), but within a high-fidelity, fully observable offline environment. Replicating real-world websites in this manner eliminates non-determinism and safety concerns, thereby creating the ideal conditions for our factory to operate. Here, an LLM-driven, knowledge-aware task synthesizer can generate a virtually infinite stream of diverse and executable tasks, shattering the bottleneck of human annotation.

Our key contributions are the design, implementation, and validation of this factory:

- **High-Fidelity Offline Web Environment:** An open-source and reproducible suite that faithfully replicates production websites, providing strict controllability and full observability while eliminating noise, privacy concerns, and non-determinism inherent to live web interaction.
- **Knowledge-Driven Task Generation:** A mechanism that leverages environment observability and LLM knowledge to automatically synthesize diverse, executable, and unbiased task instructions with unambiguous ground-truth answers, removing reliance on costly human annotation.
- **Scalable Trajectory Generation:** Integration of strong LLM executors (e.g., OpenAI’s computer-use-preview) within the controlled environment to generate large-scale, high-quality interaction trajectories. A filtering process ensures reproducibility and correctness, while a novel “behavioral intent alignment feedback” further enhances information retrieval tasks.
- **Reinforcement Learning with Unified Action Space and Decomposed Reward:** An RL training framework supporting GRPO and related algorithms. We design a unified action space and a decomposed reward function that combines structural format validation with fine-grained accuracy (action type, click point, input text). For retrieval tasks, normalized F1-based scoring stabilizes optimization and improves robustness (Christiano et al., 2017; Ouyang et al., 2022).
- **Robust Evaluation Protocols:** Comprehensive evaluation at both the task level (via key-node tracking) and sub-task level (via grounding metrics), enabling systematic and reproducible assessment of agent capabilities.
- **Open-Sourced Toolchain:** A fully released, extensible toolkit including environments, task generators, training pipeline, and evaluation tools, supporting scalable and reproducible research across diverse web domains.

Agents trained in **WebFactory** exhibit superior performance and data efficiency. On our internal offline and online benchmarks, they consistently outperform both the base foundation model and existing agents trained on equivalent volumes of human-annotated data(Luo et al., 2025). More strikingly, despite being trained on only 10 websites, our agent achieves competitive performance on general benchmarks against counterparts trained on a much broader corpus of human data. This success offers compelling evidence for the “intelligence compression” philosophy.

Beyond empirical performance, we introduce the concept of “**LLM embodiment**” , quantifying how effective foundation LLM tokens are transformed into grounded agent intelligence. Our analysis reveals that different foundation models possess a varying potential for embodiment, offering a new axis for model evaluation. Our findings also highlight the critical roles of full environment observability in maximizing training efficacy.

In summary, this work presents a scalable, safe, and cost-effective approach to transforming LLMs’ descriptive intelligence into actionable GUI agent behaviors. We further propose that the agent scaling law should be refined beyond data volume to account for a model’s efficiency in intelligence compression and its inherent capability for embodiment. While validated here in GUI settings, this paradigm holds strong promise for more complex physical embodied environments (Chevalier-Boisvert et al., 2018; Shridhar et al., 2020).

2 METHOD

2.1 A HIGH-FIDELITY, FULLY CONTROLLABLE WEB ENVIRONMENT

To enable scalable data generation and automated RL training for web agents, we develop a fully controllable offline environment that preserves the structural richness of production sites while guar-

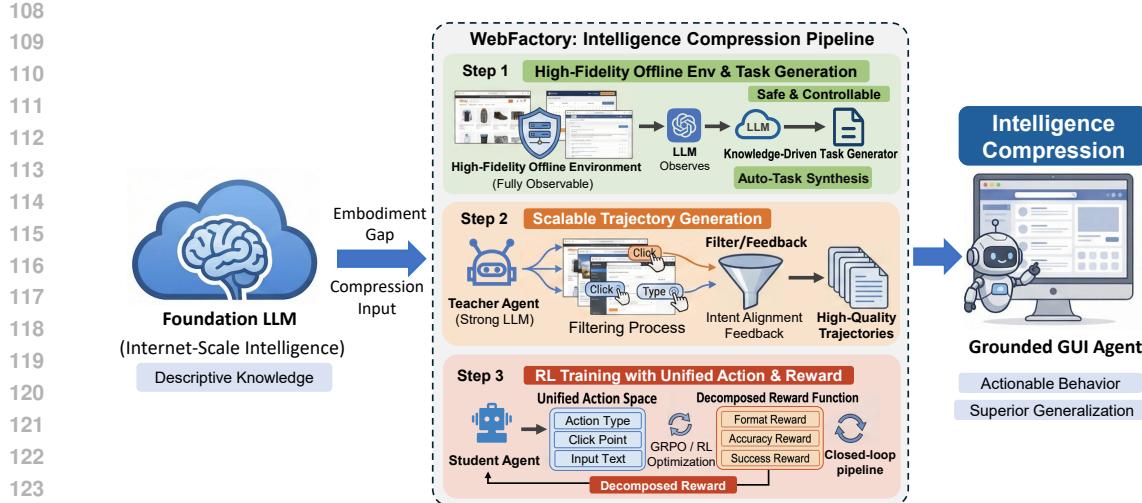


Figure 1: **Overview of the WebFactory**, which compresses foundation-model intelligence into grounded GUI agents through three stages: high-fidelity offline environment & task synthesis, scalable trajectory generation, and unified-action RL training.

anteeing strict reproducibility. A central component is our LLM-assisted synthesis pipeline, which automatically generates realistic websites—including layouts, workflows, and content—enabling low-cost, rapid expansion of training domains without manual engineering. This design achieves three critical objectives: (i) cost-effective synthesis of large-scale, high-quality training data, (ii) safe and systematic RL experimentation without real-world consequences, and (iii) stable, versioned benchmarks for reproducible evaluation.

The environment eliminates common deployment obstacles: sites boot into pre-authenticated sessions with seeded profiles, bypassing login/MFA requirements; anti-automation defenses (CAPTCHA, bot detection) are disabled to isolate agent capabilities; and all content is versioned in static datasets (e.g., ‘Data.js’) for exact reproducibility. Full access to frontend code, databases, and interaction logic facilitates rapid iteration and instrumentation.

We curate ten site families spanning key web activities: e-commerce, information search, travel planning, employment, communication, and enterprise services. These sites feature diverse UI patterns—from simple forms to drag-and-drop interfaces and hover-triggered menus—providing comprehensive coverage of web interaction paradigms.

The entire codebase is open-source, enabling researchers to extend the site collection or implement custom tasks. Task difficulty is adjustable across data complexity (catalog size, network density), UI complexity (multi-level navigation, drag-and-drop, hover menus), and workflow depth (from simple lookups to multi-step executions). This flexibility supports targeted evaluation of key competencies: information retrieval, form completion, navigation efficiency, and constraint-based decision-making.

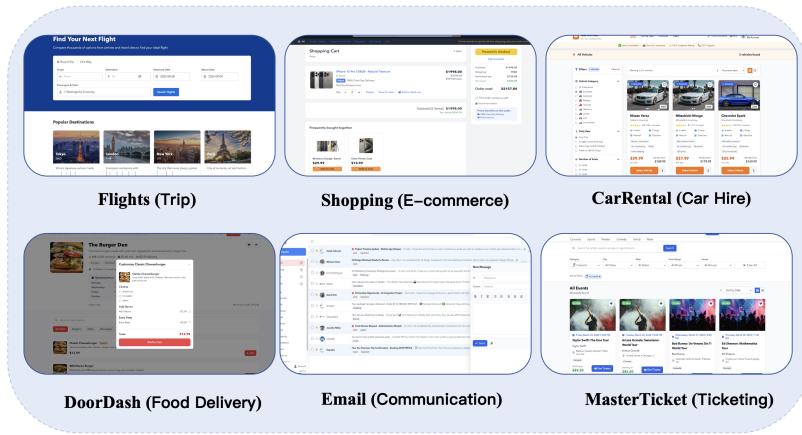
Pipeline integration. The environment supports the end-to-end training pipeline described in Sec. 2.2. It exposes ground-truth data and site knowledge for task synthesis, enforces trajectory correctness during generation, and enables automatic reward computation for RL. For information-retrieval tasks, canonical answers are directly accessible from the data layer. This infrastructure serves both as a data-generation platform and as a versioned benchmark for reproducible evaluation.

2.2 A KNOWLEDGE-DRIVEN RL TRAINING PIPELINE FOR WEB AGENTS

2.2.1 KNOWLEDGE PRESERVATION & TASK GENERATION

Knowledge-driven task generation. A critical advantage of our fully observable environment is the ability to guarantee task validity and answerability. For each site, we extract a machine-readable knowledge specification capturing: (i) the navigation graph with permissible page transitions, (ii) page-level semantics and affordances, and (iii) canonical interaction flows (e.g., browse → detail

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176



177 Figure 2: Representative offline websites from our curated environment (6 of 10 shown).
178

179 → cart). This complete observability eliminates common data generation pitfalls—tasks referencing
180 non-existent pages, unavailable information, or infeasible actions are prevented by design.

181 Leveraging this knowledge, we generate two complementary task families:
182

183 (a) *Operation tasks* evaluate long-horizon interaction competence through state-changing actions
184 (e.g., “Add iPhone 17 with 256GB storage to cart”). These are synthesized by traversing the navigation
185 graph to ensure all generated procedures are executable on the actual site.

186 (b) *Information-retrieval tasks* pose queries with guaranteed answers drawn directly from the ob-
187 servable data layer (e.g., “What are Cafe A’s weekend hours?”). Since all site data is accessible, we
188 verify answer availability before task generation and compute the exact navigation path required for
189 retrieval. This approach produces unambiguous ground-truth answers essential for both supervised
190 learning and automated reward computation (see Listing 1 for an example).

191 The full observability thus transforms traditionally unreliable task generation into a deterministic
192 process, ensuring every synthesized task is both executable and verifiable—a prerequisite for scal-
193 able training and evaluation.

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

```
{
  "id": "task_retrieval_017",
  "site": "MealDash",
  "start_url": "/mealdash",
  "goal": "Search for Cafe A, open its detail page, and tell me the Sunday opening
  ↳ time, formatted as HH:MM in 24-hour style.",
  "expected_answers": [
    "11:00",
    "11 am",
    "opens at 11:00"
  ],
  "key_nodes": [
    "search_box",
    "results_list",
    "cafe_detail_page"
  ]
}
```

210
211
212

213 Listing 1: Example schema for a retrieval task
214

2.2.2 BATCH DATA GENERATION AT SCALE

215 Given a predefined task set, we use a strong executor (OpenAI’s computer-use-preview) within
this offline environment to execute tasks and collect trajectory data. A filtering pipeline removes

216 low-quality traces via (i) state-replay checks, (ii) key-node coverage, and (iii) answer validation for
 217 retrieval tasks. In addition, site-exposed auxiliary knowledge assists the executor and enables extra
 218 consistency checks, improving both accuracy and yield. Together, these properties make large-scale
 219 trajectory generation routine and low-cost while preserving reproducibility: the result is a scalable
 220 corpus of high-quality data suitable for SFT, offline RL, or hybrid training. Appendix F provides a
 221 detailed description of Trajectory Dataset Statistics & Distributions.

222 2.2.3 REINFORCEMENT LEARNING FROM GENERATED TRAJECTORIES

224 We build upon the GUI-R1 framework (Luo et al., 2025) and extend it to support information
 225 retrieval tasks in web environments. While the original framework focuses on action-oriented
 226 GUI manipulation, we adapt it to handle data acquisition tasks by introducing a specialized
 227 `get_final_answer` action and corresponding reward mechanisms for answer evaluation.

229 We optimize a policy for web-based GUI agents operating in a structured action space. Each action
 230 at step t is a tuple

$$231 \mathbf{a}_t = \{a_t^{\text{act}}, a_t^{\text{point}}, a_t^{\text{text}}\}, \quad (1)$$

232 where $a_t^{\text{act}} \in \{\text{click, double_click, type, scroll, keypress, drag, get_final_answer}\}$ denotes
 233 the action type, $a_t^{\text{point}} = [x, y]$ (or $[[x_1, y_1], [x_2, y_2]]$ for `drag`), and a_t^{text} contains input text or di-
 234 rectional parameters (e.g., UP/DOWN for `scroll`). Generated trajectories populate a replay buffer
 235 $(s_t, \mathbf{a}_t, R_t, s_{t+1})$.

237 **Reward.** Let R_f be the format reward and $R_{\text{accuracy}} \in [0, 1]$ be the task-specific accuracy reward.
 238 The per-step reward is

$$239 R_t = \alpha R_f + \beta R_{\text{accuracy}}, \quad (2)$$

240 where α, β are weighting coefficients.

242 **Accuracy Reward.** We employ hierarchical validation: action type must match before evaluating
 243 action-specific parameters. Let $\mathcal{A} = \{\text{click, type, scroll, drag, get_answer, ...}\}$ be the action
 244 set. The accuracy reward is:

$$246 R_{\text{acc}} = \begin{cases} 0, & \text{if } a^{\text{type}} \neq g^{\text{type}} \\ 247 \mathbb{I}[a^{\text{coord}} \in g^{\text{bbox}}], & \text{if } a^{\text{type}} \in \{\text{click}\} \\ 248 \mathbb{I}[F_1(a^{\text{text}}, g^{\text{text}}) \geq \tau], & \text{if } a^{\text{type}} \in \{\text{type, scroll}\} \\ 249 \max_{r \in \mathcal{R}} \mathbb{I}[F_1(a^{\text{text}}, r) \geq \tau], & \text{if } a^{\text{type}} = \text{get_answer} \\ 250 \mathbb{I}[\|a^{\text{drag}} - g^{\text{drag}}\|_2 \leq \epsilon], & \text{if } a^{\text{type}} = \text{drag} \\ 251 1, & \text{otherwise} \end{cases} \quad (3)$$

255 where $\tau = 0.5$ is the F1 threshold, ϵ is the drag tolerance, and $\mathcal{R} = \{r_1, \dots, r_K\}$ contains equivalent
 256 answers for retrieval tasks. Text comparison uses normalization $\text{norm}(\cdot)$ for case/punctuation/format
 257 invariance.

258 **Format reward.** R_f validates the structural integrity: proper JSON formatting, valid action types
 259 from the web action set, appropriate parameter types, and conditional requirements (e.g., text re-
 260 quired for `type` actions, directional strings for `scroll`).

262 2.2.4 CLOSED-LOOP PIPELINE

263 We integrate the controllable environment (Sec. 2.1), knowledge & task generation (Sec. 2.2.1),
 264 large-scale trajectory collection (Sec. 2.2.2), and RL training (Sec. 2.2.3) into an open, fully script-
 265 able pipeline that operates with minimal human oversight.

266 The pipeline proceeds as follows: (1) **Knowledge & data materialization:** for each site, construct a
 267 knowledge pack comprising the navigation graph, page semantics and affordances, canonical flows,
 268 and an explicit data snapshot for downstream use; (2) **Task synthesis:** combine template- and LLM-
 269 based generation, with automatic validators (schema, visibility, reachability) to produce the task set

270 \mathcal{T} ; (3) **Trajectory generation and filtering**: execute \mathcal{T} with a strong agent in the offline suite,
 271 enforcing deterministic replay, key-node coverage, and answer checks to yield the replay buffer \mathcal{B} ;
 272 (4) **RL training**: optimize π_θ in the unified action space to maximize $J(\theta)$ using a decomposed
 273 reward that combines format validation with fine-grained accuracy (action type, click location, input
 274 text), with retrieval answers scored by normalized F_1 ; and (5) **Evaluation**: scripted replays with
 275 key-node-aligned process metrics and normalized answer matching, eliminating the need for human
 276 raters.

278 3 EXPERIMENTS

281 We conduct comprehensive experiments to validate the effectiveness of our knowledge-driven reinforcement
 282 learning pipeline for web agents. Our evaluation spans three key dimensions: (1) testing
 283 the synergy of knowledge- and data-driven approaches, (2) benchmarking trained agents across multiple
 284 evaluation suites, and (3) analyzing performance when instantiated with different foundation
 285 models.

287 3.1 EXPERIMENTAL SETUP

289 3.1.1 DATASETS AND BENCHMARKS

290 We consider three levels of benchmarks. **Offline Website Benchmark**: an internal benchmark with
 291 100 tasks across 10 offline websites, covering both operational tasks (e.g., adding items to a cart) and
 292 information-retrieval tasks (e.g., extracting product specifications). Tasks are grouped into three difficulty
 293 levels: simple (single-step), medium (3–5 steps), and complex (>5 steps). **Offline-to-Online Transfer**: to measure generalization, we test on three representative online platforms—Amazon,
 294 Airbnb, and Booking—with 30 tasks per site, evaluating transfer from controlled offline training to real-world execution. **Public Benchmarks**: we further assess generalization on GUI-Act-Web
 295 (Chen et al., 2024), OmniAct-Desktop (Kapoor et al., 2024), and GUI-Odyssey (Lu et al., 2024),
 296 which provide standardized tasks for web and GUI agents.

300 3.1.2 EVALUATION METRICS

302 We report three metrics. Task Completion Rate (TCR) measures the percentage of successfully completed
 303 tasks. Action Accuracy is decomposed into action-type accuracy (Type), grounding accuracy (GR), and success rate (SR). Step Efficiency measures the ratio of executed steps to optimal path
 304 length.

307 3.1.3 BASELINE MODELS

309 We compare against three representative baselines. QwenVL2.5-3B is an untuned vision–language
 310 foundation model (Bai et al., 2025). GPT-4o is OpenAI’s multimodal model with strong zero-
 311 shot capability (Achiam et al., 2023). GUI-R1-3B is a web agent trained with large-scale human-
 312 annotated data (Luo et al., 2025).

314 3.2 EFFECTIVENESS OF KNOWLEDGE AND DATA-DRIVEN APPROACH

316 3.2.1 IMPACT ON TASK GENERATION QUALITY

318 We first validate how knowledge and data-driven methods improve task generation quality. For each
 319 configuration, we generate 80 tasks and evaluate their executability on actual websites. Table 1
 320 presents the results under different configurations.

321 The combination of knowledge and data substantially improves task executability from 31.3% to
 322 86.3%. Task validity increases from 42.3% to 92.6%, while knowledge-driven methods leverage
 323 website structure information to generate more diverse and complex multi-step interaction tasks,
 increasing complex task proportion by 4.4× compared to the baseline.

324
325
326
327
328
329
330

Table 1: Task generation quality under different config

Config	Exe. (%)	Val. (%)	Div.	Cmplx. (%)
No Knowledge/Data	31.3	42.3	0.31	8.2
Data-Only	56.3	68.7	0.52	15.6
Knowledge-Only	62.5	71.2	0.64	22.3
Knowledge + Data	86.3	92.6	0.84	35.7

331
332

Table 3: Performance on the internal offline website benchmark for operational tasks and information retrieval, reported by task completion rate (TCR), efficiency, accuracy, and F1 score.

333
334
335
336
337
338
339
340
341

Model	Operational Tasks			Information Retrieval		
	TCR(%)	Efficiency	Acc.(%)	TCR(%)	F1 Score	Acc.(%)
QwenVL2.5-3B	18.3	0.32	41.2	15.7	0.28	36.4
GPT-4o	26.7	0.41	48.6	22.3	0.35	42.8
GUI-R1-3B	68.2	0.78	85.3	64.6	0.76	81.2
WebFactory-3B	71.8	0.82	87.6	67.3	0.79	83.4

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

3.2.2 IMPACT ON TRAJECTORY DATA QUALITY

Knowledge-driven methods substantially improve trajectory generation quality. As shown in Table 2, the success rate nearly doubles (42.6% \rightarrow 84.3%), while the average number of steps decreases by 38% (15.7 \rightarrow 9.8), indicating more efficient task execution. In addition, the proportion of valid data increases from 58.3% to 89.6%, demonstrating a significant improvement in data reliability and the overall quality of training trajectories.

3.3 PERFORMANCE ON DIFFERENT BENCHMARKS

3.3.1 INTERNAL OFFLINE WEBSITE BENCHMARK

We further evaluate models on an internal offline website benchmark that covers both operational tasks and information retrieval. As summarized in Table 3, general-purpose vision–language models such as QwenVL2.5-3B and GPT-4o exhibit limited capability, with task completion rates (TCR) below 30%. In contrast, models trained with reinforcement learning demonstrate substantially stronger performance. GUI-R1-3B achieves high accuracy across both task types, and our WebFactory-3B model attains comparable results, with slightly higher efficiency and accuracy (e.g., 71.8% vs. 68.2% TCR and 87.6% vs. 85.3% accuracy on operational tasks). These findings highlight that training solely on synthetic data enables WebFactory-3B to reach performance levels on par with models trained with large-scale human annotations.

3.3.2 OFFLINE-TO-ONLINE TRANSFER

To assess generalization to real-world scenarios, we evaluate models trained offline on three online platforms: Amazon, Airbnb, and Booking. As reported in Table 4, general-purpose models such as QwenVL2.5-3B and GPT-4o show limited transfer capability, with average task completion rates (TCR) below 40%. In contrast, reinforcement learning–based agents achieve markedly better performance. WebFactory-3B attains an average TCR of 53.4%, representing a 162% improvement over QwenVL2.5-3B (20.4%) and a 44% gain over GUI-R1-3B (37.0%). Furthermore, WebFactory-3B consistently achieves the highest accuracy across all three platforms (79.3% on Amazon, 75.6% on Airbnb, and 77.4% on Booking), underscoring its ability to transfer effectively from synthetic offline training to previously unseen online environments.

3.3.3 PUBLIC GUI AGENT BENCHMARKS

Performance on public benchmarks further validates our approach’s effectiveness. As shown in Table 5, WebFactory-3B achieves strong generalization across diverse GUI benchmarks. On **GUI-Act-Web**, it obtains the highest success rate (SR) of 84.2%, surpassing both GPT-4o (41.8%) and QwenVL2.5-3B (55.6%). Although GUI-R1-3B yields slightly higher grounding accuracy (GR)

Table 2: Trajectory data quality

Metric	No-Kn.	Kn.
SR (%)	42.6	84.3
Steps	15.7	9.8
VD (%)	58.3	89.6

378
379 Table 4: Performance on offline-to-online transfer across Amazon, Airbnb, and Booking, reported
380 by task completion rate (TCR) and accuracy.
381

Model	Amazon		Airbnb		Booking		Avg.
	TCR(%)	Acc. (%)	TCR(%)	Acc. (%)	TCR(%)	Acc. (%)	TCR(%)
QwenVL2.5-3B	22.3	48.6	18.7	43.2	20.1	45.8	20.4
GPT-4o	41.2	68.7	37.8	64.3	39.6	66.2	39.5
GUI-R1-3B	38.6	65.3	35.2	61.7	37.1	63.4	37.0
WebFactory-3B	55.7	79.3	51.2	75.6	53.3	77.4	53.4

388
389 Table 5: Generalization on public GUI benchmarks (GUI-Act-Web and GUI-Odyssey), reported by
390 type accuracy, grounding recall (GR), and success rate (SR). Best results are in bold.
391

Setting	Model	GUI-Act-Web			GUI-Odyssey		
		Type	GR	SR	Type	GR	SR
Zero-Shot	GPT-4o	77.1	45.0	41.8	37.5	14.2	5.4
	QwenVL2.5-3B	54.9	63.5	55.6	38.4	27.2	27.2
RL Fine-Tuning	GUI-R1-3B	89.9	87.4	76.3	54.8	41.5	41.3
	WebFactory-3B	89.0	82.1	84.2	66.0	48.1	40.9

398
399 on this benchmark (87.4% vs. 82.1%), WebFactory-3B consistently delivers better overall task
400 completion.

401 On **OmniAct-Desktop**, WebFactory-3B attains a balanced performance with 85.3% Type accuracy
402 and 73.9% SR, closely matching GUI-R1-3B while significantly outperforming zero-shot foundation
403 models. Most notably, on the challenging **GUI-Odyssey** benchmark, WebFactory-3B reaches 66.0%
404 Type accuracy, substantially higher than GUI-R1-3B (54.8%), GPT-4o (37.5%), and QwenVL2.5-
405 3B (38.4%). This highlights its robust cross-domain transfer capability, even though it was trained
406 solely on synthetic data. Overall, these results confirm that WebFactory-3B not only generalizes
407 well but also provides consistent improvements across heterogeneous GUI environments.

409 3.4 PIPELINE PERFORMANCE WITH DIFFERENT FOUNDATION MODELS

411 To examine the generalizability of our pipeline and evaluate the *LLM embodiment* of different foun-
412 dation models, we employ three state-of-the-art LLMs—GPT-5, Claude Opus 4.1, and Claude Son-
413 net 4—to drive the entire data generation process. Each model functions as the architect throughout
414 the entire pipeline: from synthesizing the offline website environments via code generation, to for-
415 mulating tasks, and finally collecting interaction trajectories. The resulting agents are subsequently
416 evaluated on a diverse suite of benchmarks.

417 As shown in Figure 3, GPT-5 achieves the strongest overall performance, particularly excelling in
418 Type accuracy while maintaining robust performance across diverse GUI environments. Claude
419 Opus 4.1 performs competitively, yielding slightly lower yet stable results. In contrast, Claude Son-
420 net 4 demonstrates greater variability across benchmarks, indicating less consistent generalization
421 ability.

423 4 DISCUSSION

425 Our agent’s superior performance is more than an engineering success; it provides compelling evi-
426 dence for our central thesis of intelligence compression. The proposed factory pipeline effectively
427 demonstrates how to distill the vast, descriptive knowledge of LLMs into robust, actionable policies,
428 outperforming even agents trained on extensive human data. This success underscores the decisive
429 role of the LLM foundation model itself. Our findings reveal that a model’s inherent reasoning and
430 world knowledge directly cap the potential of the final agent, suggesting that the “transferability”
431 and “embodiment potential” are critical, yet underexplored, dimensions for evaluating and selecting
432 foundation models.

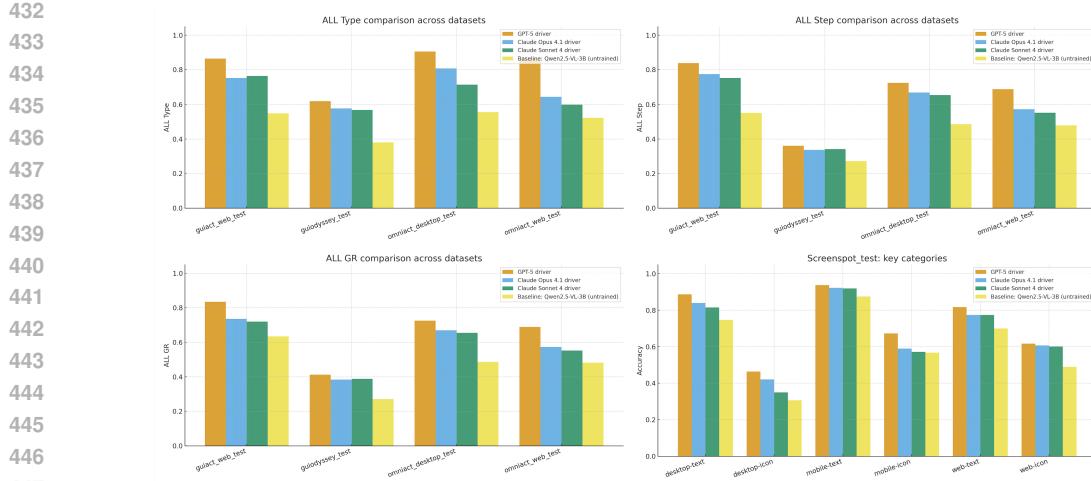


Figure 3: Performance comparison of agents trained with data generated by different foundation models across public GUI benchmarks. Results show Type accuracy, Step completion rate, and Grounding accuracy across GUI-Act-Web (Chen et al., 2024), GUI-Odyssey (Lu et al., 2024), OmniAct-Desktop (Kapoor et al., 2024), OmniAct-Web tests, and ScreenSpot categories (desktop-text, desktop-icon, mobile-text, mobile-icon, web-text, web-icon). GPT-5 consistently achieves the highest performance across most metrics, demonstrating superior data generation quality and intelligence compression capability.

These insights motivate a necessary refinement of scaling laws for embodied agents. Analogous to LLM scaling laws, an agent’s asymptotic performance may be governed not by raw data volume, but by a foundation model’s intelligence compression efficiency and its inherent capability for embodiment. Our pipeline represents a first step in this direction, paving a path toward agents that can rapidly adapt and self-evolve in novel GUI environments by generating their own curricula. While validated here in GUI settings, we believe this paradigm of transforming latent knowledge into grounded action holds strong promise for more complex physical embodied environments.

Future Work. Building on the pipeline’s programmability, a promising avenue for future work is to leverage WebFactory for **targeted capability evolution**. Unlike static datasets, our generative infrastructure allows for the systematic probing of specific agent weaknesses—such as precise continuous interactions or complex logic handling—followed by the on-demand synthesis of dedicated website environments to address these deficits. This closed-loop mechanism, capable of identifying gaps and algorithmically generating the necessary embodied experiences to fill them, transforms the system into a self-correcting engine, further establishing the foundation for truly autonomous and robust agent intelligence.

Limitations. While our pipeline demonstrates strong empirical results, we identify two primary avenues for future work. First, our work does not include an exhaustive ablation on the impact of different reward mechanisms. A deeper analysis comparing our decomposed reward against sparser or even LLM-generated reward functions could yield further insights into learning dynamics and final policy robustness. Second, **WebFactory** pipeline’s performance in fundamentally different GUI paradigms (e.g., game engines or specialized creative software) remains to be systematically validated. Exploring these directions will be crucial for assessing the true generality of our approach.

5 CONCLUSION

WebFactory demonstrates that high-fidelity offline environments, combined with knowledge-driven task generation and automated RL training, can produce web agents that transfer effectively to live websites. By eliminating the brittleness of online experimentation while preserving real-world complexity, our framework enables reproducible, scalable research. The open-source release of all components—websites, generators, training pipeline, and evaluation tools—provides a foundation for

486 the community to build upon. As the intelligence of foundation LLMs increases and their costs
487 decrease, we expect this offline-to-online, intelligence compression paradigm to become an increas-
488 ingly practical path to capable, general-purpose web agents.
489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Reyna Abhyankar, Qi Qi, and Yiyi Zhang. Osworld-human: Benchmarking the efficiency of
543 computer-use agents. *arXiv preprint arXiv:2506.16042*, 2025.

544 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
545 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
546 report. *arXiv preprint arXiv:2303.08774*, 2023.

547

548 Shuai Bai, Kebin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
549 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
550 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
551 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
552 URL <https://arxiv.org/abs/2502.13923>.

553

554 Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
555 Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
556 multi-modal os agents at scale. *arXiv preprint arXiv:2409.08264*, 2024.

557

558 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
559 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
560 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

561

562 Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
563 Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
564 gui agents. *arXiv preprint arXiv:2406.11317*, 2024.

565

566 Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
567 Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
568 grounded language learning. *arXiv preprint arXiv:1810.08272*, 2018.

569

570 De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lù,
571 Ori Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart, et al. The browsergym
572 ecosystem for web agent research. *arXiv preprint arXiv:2412.05467*, 2024.

573

574 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
575 reinforcement learning from human preferences. *Advances in neural information processing sys-
576 tems*, 30, 2017.

577

578 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
579 Mind2web: Towards a generalist agent for the web. *Advances in Neural Information Processing
580 Systems*, 36:28091–28114, 2023.

581

582 Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
583 Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
584 *arXiv preprint arXiv:2305.11854*, 2023.

585

586 Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration.
587 *arXiv preprint arXiv:2506.03533*, 2025.

588

589 Divyansh Garg, Shaun VanWeelden, Diego Caples, Andis Draguns, Nikil Ravi, Pranav Putta, Naman
590 Garg, Tomas Abraham, Michael Lara, Federico Lopez, et al. Real: Benchmarking autonomous
591 agents on deterministic simulations of real websites. *arXiv preprint arXiv:2504.11543*, 2025.

592

593 Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
594 and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
595 *arXiv preprint arXiv:2401.13919*, 2024.

596

597 Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
598 and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
599 autonomous agents for desktop and web. In *European Conference on Computer Vision*, pp. 161–
600 178. Springer, 2024.

594 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
 595 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
 596 multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

597

598 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 599 learning. *arXiv preprint arXiv:2110.06169*, 2021.

600

601 Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
 602 learning on web interfaces using workflow-guided exploration. *arXiv preprint arXiv:1802.08802*,
 603 2018.

604

605 Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhui Chen, Gra-
 606 ham Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding. *arXiv
 607 preprint arXiv:2410.13824*, 2024.

608

609 Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
 610 Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
 611 navigation on mobile devices. *arXiv preprint arXiv:2406.08451*, 2024.

612

613 Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
 614 action model for gui agents. *arXiv preprint arXiv:2504.10458*, 2025.

615

616 Atsuyuki Miyai, Zaiying Zhao, Kazuki Egashira, Atsuki Sato, Tatsumi Sunada, Shota Onohara,
 617 Hiromasa Yamanishi, Mashiro Toyooka, Kunato Nishina, Ryoma Maeda, et al. Webchorearena:
 618 Evaluating web browsing agents on realistic tedious web tasks. *arXiv preprint arXiv:2506.01952*,
 619 2025.

620

621 Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-
 622 vised learning of browser agents through environment interaction in the wild. *arXiv preprint
 623 arXiv:2410.02907*, 2024.

624

625 Tianyue Ou, Frank F Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
 626 Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
 627 demonstrations for digital agents at scale. *Advances in Neural Information Processing Systems*,
 628 37:91618–91652, 2024.

629

630 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 631 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 632 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 633 27730–27744, 2022.

634

635 Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
 636 and Ahmed Hassan. Explorer: Scaling exploration-driven web trajectory synthesis for multimodal
 637 web agents. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 6300–
 638 6323, 2025.

639

640 Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang,
 641 Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online environ-
 642 ments. *ArXiv preprint*, abs/2406.12373, 2024. URL <https://arxiv.org/abs/2406.12373>.

643

644 Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
 645 Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curricu-
 646 lum reinforcement learning. *arXiv preprint arXiv:2411.02337*, 2024.

647

648 Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
 649 droidinthewild: A large-scale dataset for android device control. *Advances in Neural Information
 650 Processing Systems*, 36:59708–59728, 2023.

651

652 Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
 653 open-domain platform for web-based agents. In *International Conference on Machine Learning*,
 654 pp. 3135–3144. PMLR, 2017.

648 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 649 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*
 650 *Systems*, 36:8634–8652, 2023.

651

652 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 653 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. *arXiv*
 654 *preprint arXiv:2010.03768*, 2020.

655 Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, and Ruslan Salakhutdinov. Towards
 656 internet-scale training for agents. *arXiv preprint arXiv:2502.06776*, 2025.

657

658 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
 659 and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
 660 *arXiv preprint arXiv:2305.16291*, 2023.

661 Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
 662 Chao Zhang, Bing Yin, et al. Webagent-r1: Training web agents via end-to-end multi-turn rein-
 663 forcement learning. *arXiv preprint arXiv:2505.16421*, 2025.

664

665 Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
 666 and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. *arXiv*
 667 *preprint arXiv:2412.09605*, 2024.

668

669 Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
 670 Huzefa Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents. *arXiv*
 671 *preprint arXiv:2410.13825*, 2024.

672

673 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 674 real-world web interaction with grounded language agents. *Advances in Neural Information Pro-*
 675 *cessing Systems*, 35:20744–20757, 2022.

676

677 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 678 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
 679 *vances in neural information processing systems*, 36:11809–11822, 2023a.

680

681 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 682 React: Synergizing reasoning and acting in language models. In *International Conference on*
 683 *Learning Representations (ICLR)*, 2023b.

684

685 Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
 686 Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, et al. Skillweaver: Web agents can
 687 self-improve by discovering and honing skills. *arXiv preprint arXiv:2504.07079*, 2025.

688

689 Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 690 Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
 691 web environment for building autonomous agents, 2024. URL <https://arxiv.org/abs/2307.13854>.

692

693 Yifei Zhou, Qianlan Yang, Kaixiang Lin, Min Bai, Xiong Zhou, Yu-Xiong Wang, Sergey Levine,
 694 and Li Erran Li. Proposer-agent-evaluator (pae): Autonomous skill discovery for foundation
 695 model internet agents. In *Forty-second International Conference on Machine Learning*, 2025.

696

697

698

699

700

701

702 A DISCLOSURE OF LLM USE.
703704 We used large language models to assist with language polishing and discovering related work. All
705 technical claims, experiments, and analyses were designed, executed, and verified by the authors.
706707 B RELATED WORK
708709
710 **Web environments and benchmarks.** Research on web-agent environments has gradually
711 evolved from simplified DOM-centric tasks to realistic, multi-domain benchmarks. Early con-
712 trolled settings such as MiniWoB and MiniWoB++ provided reproducible yet toy-scale interactions
713 for evaluating RL policies (Shi et al., 2017; Liu et al., 2018). Subsequent efforts increased real-
714 ism: VisualWebArena added multimodal grounding to web-page interactions (Koh et al., 2024),
715 while WebArena introduced high-fidelity, self-hostable environments covering e-commerce, fo-
716 rumns, software development, and content management with integrated tool support (Zhou et al.,
717 2024). WebChoreArena further emphasized long-horizon reasoning and reproducibility by design-
718 ing hundreds of durable, labor-intensive tasks (Miyai et al., 2025). Beyond browser-centric setups,
719 simulation-based environments such as ALFWWorld and BabyAI studied language-grounded, par-
720 tially observed control problems, offering insights on curriculum learning and generalization (Shrid-
721 har et al., 2020; Chevalier-Boisvert et al., 2018). Unlike live-web evaluations, which are hindered by
722 CAPTCHAs, layout drift, and network nondeterminism, **WebFactory** adopts a *versioned, fully of-
723 line, pre-authenticated* design with deterministic rendering and explicit knowledge/data snapshots,
724 enabling *verifiable answers and replayable trajectories* at scale.
725726
727 **Frameworks and datasets.** A parallel line of work has focused on standardizing interfaces and
728 expanding coverage. BrowserGym unifies APIs across multiple environments (MiniWoB, Visu-
729 alWebArena, WebArena), facilitating consistent comparison of agents (Chezelles et al., 2024).
730 Mind2Web aggregates thousands of human-annotated tasks across diverse websites, emphasizing
731 breadth and realistic natural-language instructions (Deng et al., 2023). Other benchmarks extend
732 to OS- and GUI-level control, such as Windows Agent Arena, OSWorld, Android-in-the-wild, and
733 GUI-Odyssey, which target distinct substrates and I/O stacks beyond the browser (Bonatti et al.,
734 2024; Abhyankar et al., 2025; Rawles et al., 2023; Lu et al., 2024). In contrast, **WebFactory** focuses
735 on *browser-native* interaction under complete controllability, while remaining compatible with com-
736 mon evaluation interfaces for cross-benchmark comparison.
737738
739 **Training paradigms for web agents.** Recent work has explored both supervised sequence mod-
740eling and RL-based methods tailored to long-horizon web interaction. Decision Transformer applies
741 return-conditioned sequence modeling to agent trajectories (Chen et al., 2021); conservative offline
742 RL enhances safety when learning from static datasets (Kostrikov et al., 2021); and preference- or
743 feedback-driven optimization aligns policies with human intent (Christiano et al., 2017; Ouyang
744 et al., 2022). Web-specific innovations include curricula derived from agent failure modes and
745 outcome-supervised reward modeling (Qi et al., 2024), success-driven rollouts (Wei et al., 2025),
746 reusable skill abstractions (Zheng et al., 2025), and hierarchical formulations for decomposing
747 complex browsing workflows into subgoals (Furuta et al., 2023). **WebFactory** complements these
748 paradigms by offering a scalable pipeline where synthetic trajectories, unified action spaces, and
749 decomposed rewards can be directly applied to train robust web agents.
750751
752 **Reasoning, exploration, and data collection.** Reasoning scaffolds such as ReAct, Voyager, Re-
753 flexion, and Tree-of-Thoughts enhance planning, self-correction, and exploration (Yao et al., 2023b;
754 Wang et al., 2023; Shinn et al., 2023; Yao et al., 2023a). On the data side, Go-Browse uses
755 graph-guided exploration to diversify trajectories (Gandhi & Neubig, 2025); WebVoyager retro-
756spectively synthesizes demonstrations from failures without human annotations (He et al., 2024);
757 and AgentOccam streamlines observation-action design to align with LLM reasoning (Yang et al.,
758 2024). Curriculum-based difficulty further adapts training to agent errors (Qi et al., 2024). **Web-
759 Factory** provides a reproducible substrate—explicit tasks, normalized answers, and deterministic
760 replays—to evaluate reasoning/exploration methods and generate large, high-signal offline datasets
761 without costly online rollouts.
762

756 **Live-web automatic task/trajectory generation.** Synatra converts human-oriented tutorials and
 757 indirect instructions into synthetic, executable demonstrations for web agents, enabling large-scale
 758 supervision without manual trajectory annotation (Ou et al., 2024). Harnessing Webpage UIs builds
 759 a large text-rich visual understanding dataset from real webpages, exploiting UI structure as a mul-
 760 timodal supervision signal (Liu et al., 2024). PAE (Proposer-Agent-Evaluator) introduces a pro-
 761 poser–agent–evaluator loop that autonomously proposes web tasks, executes them, and filters tra-
 762 jectories to discover reusable skills for foundation-model agents (Zhou et al., 2025). NNetNav
 763 leverages unsupervised interaction with live websites together with hindsight relabelling to con-
 764 struct browser-agent training data directly from in-the-wild behavior (Murty et al., 2024). InSTA
 765 pushes this line to internet scale, generating and judging tasks and trajectories across a large number
 766 of live websites with LLM-based agents and evaluators (Trabucco et al., 2025). These systems col-
 767 lectively excel in scale and real-world diversity on the live web. In contrast, **WebFactory** operates on
 768 a fully offline, versioned web suite with deterministic rendering, explicit knowledge/data snapshots,
 769 verifiable optimal paths, and replayable trajectories, prioritizing determinism, precise reward spec-
 770 ification, and reproducibility, and thus providing a complementary substrate to live-web pipelines
 771 rather than a replacement.

772 **Weak/indirect-knowledge-to-trajectory pipelines.** WebShop formulates a goal-conditioned
 773 shopping environment on real e-commerce sites, using product metadata and textual descriptions
 774 to supervise grounded navigation and decision making (Yao et al., 2022). Synatra converts human-
 775 oriented web tutorials and other indirect instructions into large-scale executable demonstrations,
 776 providing high-coverage synthetic supervision for web agents (Ou et al., 2024). AgentTrek synthe-
 777 sizes trajectories by guiding replay with web tutorials as high-level instruction sequences, tightening
 778 the link between weak textual knowledge and concrete action sequences (Xu et al., 2024). Explorer
 779 scales exploration-driven web trajectory synthesis across many real webpages, using multimodal
 780 exploration signals to expand demonstration coverage for multimodal web agents (Pahuja et al.,
 781 2025). These pipelines demonstrate how weak or indirect web knowledge can be systematically
 782 transformed into training data on the live web. **WebFactory** instead operates in a fully controllable
 783 offline suite with deterministic rendering, structured knowledge snapshots, and verifiable optimal
 784 paths, offering a reproducible substrate that is complementary to these weak-supervision pipelines.

785 C BUILDING THE OFFLINE WEBSITE SUITE

787 C.1 DESIGN GOALS

789 We target a high-fidelity yet fully controllable suite that (i) boots to pre-authenticated, seeded ses-
 790 sions, (ii) exposes ground-truth knowledge and data for generation and evaluation, (iii) disables
 791 anti-automation friction (CAPTCHA, bot detection), and (iv) is versioned and reproducible.

793 C.2 LLM-DRIVEN BUILD PROCESS

795 We have developed a method for scalable, high-fidelity offline website generation using LLMs,
 796 which we plan to open source to facilitate reproducibility and community extension. The construc-
 797 tion of each offline website is fully automated: the “site recipe” is executed by LLM-driven coding
 798 agents. WebFactory acts as an extensible engine where LLMs function as embodied architects,
 799 enabling scalable generation of high-fidelity web environments.

800 Our automated build process follows a uniform site recipe across domains (e-commerce, travel, *etc.*):

- 802 **1. Scaffold & theming.** Initialize a Next.js/React monorepo with a shared UI kit (forms, tables,
 803 modal, hover menus, drag-and-drop). Provide mobile/desktop breakpoints to produce realistic
 804 layout variety.
- 805 **2. Data layer materialization.** For each site family, export a versioned static snapshot
 806 (Data.js/JSON) with deterministic seeds. Schema includes entities (e.g., Product, Hotel,
 807 Flight, Message), relations, and canonical views (list/detail/cart/checkout).
- 808 **3. Navigation graph & flows.** Encode page graph and canonical flows (e.g., browse → detail
 809 → cart) in a machine-readable knowledge.json. Each node stores visible affordances and
 element locators.

810 4. **Anti-bot off-switch.** Gate any bot-detection middleware by a build flag; fall back to no-
 811 challenge in offline mode.
 812 5. **Benchmark export.** For each version v , release (i) site bundle, (ii) `knowledge.json`, (iii)
 813 `Data.json`, and (iv) scripted evaluators.
 814

815
 816 **Table 6: Overview of offline website families used in our benchmark, including their domains and**
 817 **representative core functionalities.**
 818

Name	Domain	Core Functionality
Shopping	E-commerce marketplace	Marketplace with search, multi-facet filters, cart/wishlist, reviews, multi-step checkout.
Mealdash	Food delivery	Restaurant discovery, dietary filters, cart with quantity/notes, scheduling, order tracking.
Hotels	Hotel booking	Location/date/guest search, amenity filters, room types, price tiers, availability & reservation.
Flights	Flight search & booking	One-way/return/multi-city, flexible dates, carriers/cabin filters, fare comparison, seat selection.
Careerlink	Professional networking & jobs	Job search by skills/company, profiles, applications, resume management, insights.
Carrental	Car rental	Pickup/dropoff, vehicle class, insurance add-ons, driver requirements, booking changes.
MasterTicket	Event ticketing	Artist/venue search, event categories, date filters, seat map, ticket types, fees, checkout.
Staybnb	Short-term rentals	Rentals by location/dates/guests, amenity filters, calendars, pricing, booking flows.
Email	Email client	Folders, compose/reply/forward, attachments, rules, search, threads, contacts.
Companycheck	Company data & intelligence	Company profiles, filings, executives, relationship graph, compliance & due diligence.

838 D TASK SYNTHESIS DETAILS

841 D.1 DUAL-TRACK GENERATION

843 **(1) Template-driven** Define modular spaces for search, filtering, sorting, cart/checkout, form com-
 844 pletion, multi-form workflows, and cross-page navigation. Instantiate by sampling from versioned
 845 `Data.*` with constraints (*e.g.*, “ $\text{price} \leq \$200$ ”, “ $\text{rating} \geq 4$ ”) while respecting site schemas.

846 **(2) LLM-assisted** Feed compact knowledge slices—navigation graph, page affordances, canonical
 847 flows—and sampled data skims to an LLM to propose task *paths* beyond the template envelope
 848 (long-horizon operations and compositional IR).

850 D.2 VALIDATORS & EXECUTABILITY

852 All candidates pass:

853 • **Schema conformance:** fields and operators exist in `Data.json`.
 854 • **Visibility check:** referenced elements/records are reachable and visible given viewport and filters
 855 (uses layout probes).
 856 • **Path feasibility:** dry-run along the known navigation path (`knowledge.json`); failure short-
 857 circuits.
 858 • **Answerability (IR):** canonical answers exist in the data layer with a unique normalized target.

861 D.3 DIFFICULTY CONTROL & CURRICULUM

863 We sample along three axes: data complexity (catalog/graph density), UI complexity (multi-level
 nav, drag-and-drop, hover), and workflow depth (lookup → multi-step execution). Curricula ramp

864

Algorithm 1 Knowledge-driven Task Factory

```

865 1: for site  $s$  in sites do
866 2:    $K \leftarrow \text{load\_knowledge}(s); D \leftarrow \text{load\_data}(s)$ 
867 3:   for spec in templates  $\cup$  llm_prompts do
868 4:      $cands \leftarrow \text{instantiate}(\text{spec}, D, \text{difficulty})$ 
869 5:     for  $t$  in  $cands$  do
870 6:       if  $\text{schema\_ok}(t, D) \&& \text{visible}(t, K) \&& \text{path\_feasible}(t, K)$  then
871 7:          $\text{attach\_gold\_path}(t, K); \text{emit } t$ 
872 8:       end if
873 9:     end for
874 10:   end for
875 11: end for

```

876

877

(i) start URLs, (ii) number of required filters, (iii) cross-page hops, (iv) time/step budget. Each emitted task is stored with a difficulty tag and *gold* path.

878

879

E TRAJECTORY GENERATION DETAILS

880

881

E.1 EXECUTOR & INSTRUMENTATION

882

883

We execute the pre-validated task set \mathcal{T} with a strong executor (OpenAI computer-use-preview) inside the offline suite. Each step logs:

884

885

- page ID, viewport hash, DOM key-node set;

886

- action tuple $\mathbf{a}_t = \{a_t^{act}, a_t^{point}, a_t^{text}\}$ and matched locator;

887

- state diff summary (element attributes, cart contents, form values).

888

Screenshots and structured traces are stored in Parquet; per-episode metadata carries seed, site version, and curriculum tier.

889

890

E.2 FILTERING & DETERMINISM

891

892

We remove low-quality traces via:

893

894

1. **Deterministic replay**: re-run with the same seed; reject if hashes (viewport, key-node set, cart snapshot) mismatch.
2. **Key-node coverage**: ensure required nodes along the gold path are visited in the right order.
3. **IR validation**: compute normalized F_1 against canonical answer; drop if below threshold.

895

Accepted trajectories populate the replay buffer \mathcal{B} with tuples $(s_t, \mathbf{a}_t, R_t, s_{t+1})$.

896

897

F TRAJECTORY DATASET STATISTICS & DISTRIBUTIONS

898

899

To better understand the dynamics of user interactions within the trajectory dataset, we analyze both the overall action distribution and the transition patterns between different actions.

900

901

F.1 ACTION DISTRIBUTION

902

903

Figure 4 presents the distribution of ground-truth actions. The dataset is dominated by `click` actions, which account for nearly half of all recorded interactions (47.8%). This is followed by `wait` (24.1%) and `scroll` (20.9%), reflecting common patterns in typical graphical user interface (GUI) usage. Less frequent actions include `type` (5.3%), `keypress` (1.8%), and `double_click` (0.2%). These results suggest that the dataset is heavily skewed towards basic navigational primitives (`click`, `wait`, and `scroll`), which together comprise over 90% of the interactions.

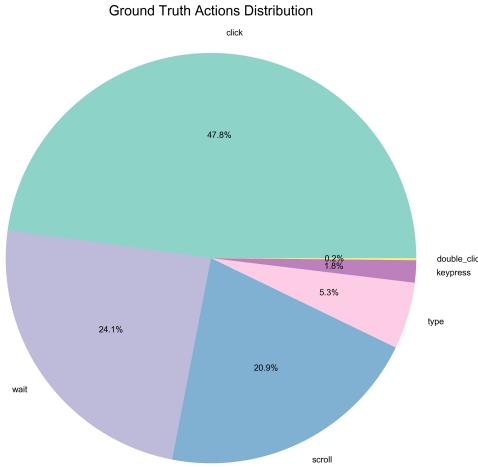


Figure 4: Ground truth action distribution in the dataset.

F.2 ACTION TRANSITION DYNAMICS

To capture sequential dependencies, we compute the transition frequency between all pairs of actions (Figure 5). The heatmap reveals several key patterns:

- `click` frequently transitions back to itself (812 times), and is also followed by `wait` (551) and `scroll` (191). This indicates that clicking is often interleaved with periods of waiting or subsequent navigation.
- `scroll` transitions strongly to itself (419) and also to `click` (289), reflecting the natural alternation between scrolling content and selecting items.
- `wait` is another central action, often followed by `click` (480) and self-repetition (241), which captures idle or delay states before further activity.
- Rare transitions occur for `double_click` and `keypress`, consistent with their overall low frequency.

Together, these findings highlight that the dataset is structured around a small number of dominant action primitives, with strong self-loops and predictable sequential dynamics. Such patterns are valuable for modeling purposes, as they suggest that predictive models may benefit from emphasizing high-frequency transitions while carefully handling the long-tail actions.

G RL TRAINING DETAILS

G.1 ACTION SPACE (WEB-SPECIFIC)

We operate in a structured space:

$$\mathbf{a}_t = \{a_t^{\text{act}}, a_t^{\text{point}}, a_t^{\text{text}}\},$$

$$a_t^{\text{act}} \in \{\text{click, double_click, type, scroll, keypress, drag, get_final_answer}\}.$$

A concise specification is provided in Table 7.

G.2 REWARD

Per-step reward:

$$R_t = \alpha R_f + \beta R_{\text{accuracy}}, \quad (4)$$

where R_f enforces structured outputs (valid JSON, tags, type constraints) and R_{accuracy} is action-specific:

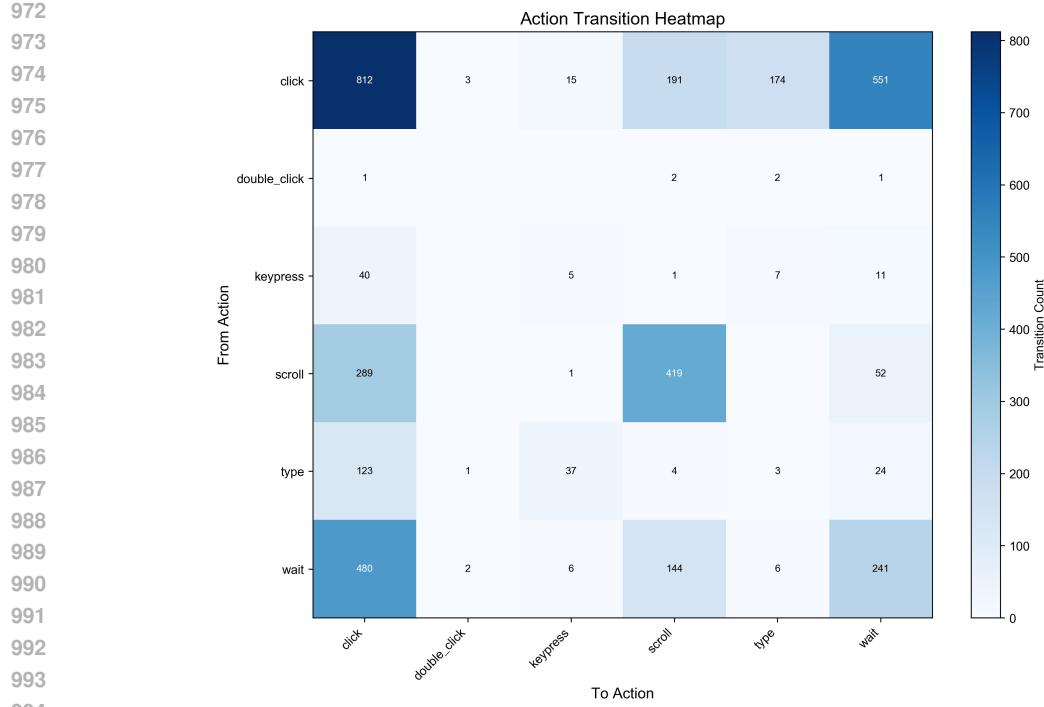


Figure 5: Action transition heatmap showing transition counts between actions.

Table 7: Detailed specification of the web agent action space, listing each supported action together with its required point parameters (coordinates) and text parameters.

1000	Action	Point Parameter	Text Parameter
1001	click	$[x, y]$	—
1003	double_click	$[x, y]$	—
1004	type	$[-100, -100]$	input text (required)
1005	scroll	$[-100, -100]$	UP/DOWN
1006	keypress	$[-100, -100]$	key name (e.g., ENTER)
1007	drag	$[[x_1, y_1], [x_2, y_2]]$	UP/DOWN
1009	get_final_answer	$[-100, -100]$	final answer text

- **Click family** (click/double_click): inside-target check + distance tolerance (140px) to element center.
- **Text family** (type/keypress): token-level F_1 with case/punctuation normalization; single-token special-cased.
- **Scroll/drag**: exact direction match; drag validates source–target coordinates.
- **IR answer**: final answer scored by normalized F_1 against canonical target.

G.3 TRAINING ALGORITHM (GRPO/PPO)

We extend GUI-R1 with an IR-aware head and reward. GRPO is used for group-normalized advantages over multi-sample rollouts.

1026 **Algorithm 2** GRPO for Web Agents

```

1027 1: for episode  $e = 1$  to  $E$  do
1028 2:   Sample task batch  $\{p_i\}$ 
1029 3:   for each  $p_i$  do
1030 4:     Generate  $n$  trajectories; compute  $R_{i,1..n}$ 
1031 5:      $\mu_i \leftarrow \text{mean}(R_{i,*})$ ,  $\sigma_i \leftarrow \text{std}(R_{i,*})$ 
1032 6:      $A_{i,j} \leftarrow (R_{i,j} - \mu_i) / (\sigma_i + \epsilon)$ 
1033 7:   end for
1034 8:   Update  $\pi_\theta$  with PPO loss and KL penalty
1035 9:   if  $e \bmod s = 0$  then
1036 10:     save checkpoint
1037 11:   end if
1038 12: end for

```

1039 **H IMPLEMENTATION DETAILS**1040 **H.1 TRAINING INFRASTRUCTURE**1041 **Model.** Qwen2.5-VL-3B; vision encoder initially frozen; max screenshot 1258×1258 .1042 **Distributed training.**

1043

- 1044 • Actors: 4 GPUs with FSDP; rollouts: 1 GPU via vLLM.
- 1045 • Global batch 64, micro-batch 4; optimizer states CPU offloaded.

1046 **Optimization.** AdamW, lr 1×10^{-6} , wd 0.01, grad clip 1.0, fixed KL 0.01.1047 **H.2 WEB AGENT DATA PROCESSING**1048 **Parquet traces** contain (i) screenshots + action history, (ii) task instruction, (iii) ground-truth actions
1049 with bboxes, (iv) task-type flags.1050 **H.3 REWARD COMPUTATION FOR WEB TASKS**1051 See Sec. G for per-action rules; format reward enforces valid JSON, required <think>/<answer>
1052 tags, numeric types, and conditional fields.

1053 Table 8: Hyperparameters used for web agent RL training.

1054 Parameter	1055 Value
1056 Episodes E	1057 15
1058 Rollout temperature	1.0
1059 Responses per prompt n	5
1060 Global / micro batch	64 / 4
1061 Max prompt / response tokens	2048 / 1024
1062 Image resolution	1258×1258
1063 PPO clip	0.2
1064 Discount γ	1.0
1065 α (format) / β (accuracy)	0.2 / 0.8
1066 KL penalty	0.01
1067 Learning rate	1×10^{-6}
1068 GPUs	$4 \times$ V100/A100

1080 I OFFLINE-TO-ONLINE TRANSFER EVALUATION DETAILS 1081

1082 In this section, we provide a comprehensive specification of the experimental protocol used for the
1083 Offline-to-Online Transfer evaluation (Table 4 in the main text). To ensure rigorous validation of
1084 agent capabilities in live, dynamic environments, we constructed a custom benchmark of 90 live
1085 tasks across Amazon, Airbnb, and Booking.

1087 I.1 METHODOLOGY FOR UNBIASED TASK CONSTRUCTION 1088

1089 To prevent selection bias and ensure the benchmark accurately reflects real-world usage, we adhered
1090 to a “User-First, Model-Agnostic” design protocol. Tasks were defined based on necessary user
1091 workflows prior to any agent evaluation.

- 1092 • **Funnel-Based Coverage:** We strictly stratified tasks by user conversion stages to ensure
1093 full spectrum coverage:
 - 1095 – *Discovery*: Ambiguous search queries requiring exploration.
 - 1096 – *Refinement*: Complex filtering involving price ranges, brands, and amenity con-
1097 straints.
 - 1098 – *Action*: State-changing operations such as adding items to a cart or selecting specific
1099 dates.
- 1100 • **Complexity Alignment:** We deliberately excluded trivial single-step tasks. All tasks align
1101 with “Medium” (3–5 steps) and “High” (>5 steps) complexity tiers to force long-horizon
1102 reasoning.
- 1103 • **Cross-Domain Mapping:** Online platforms were selected to strictly correspond to our
1104 offline training domains to evaluate transfer capability: Amazon → Shopping, Airbnb →
1105 StayBnB, and Booking → Hotels.

1107 I.2 EXECUTABILITY AND STABILITY VERIFICATION 1108

1109 Live websites are subject to frequent changes, A/B testing, and inventory fluctuations. To rule out
1110 failures caused by external factors (e.g., out-of-stock items or UI updates), all tasks are manually
1111 verified for feasibility within 24 hours prior to agent evaluation. This ensures that reported failures
1112 are due to agent capability rather than environmental errors.

1113 I.3 STATISTICAL SIGNIFICANCE ANALYSIS 1114

1115 Given the sample size of $N = 90$ (30 tasks per platform), we calculated the 95% Confidence
1116 Intervals (CI) for the success rates using the Wilson Score Interval method, which is robust for
1117 smaller sample sizes.

- 1119 • **Baseline (QwenVL2.5-3B):** 20.4% [95% CI: 13.0% – 30.0%]
- 1120 • **WebFactory-3B (Ours):** 53.4% [95% CI: 43.0% – 63.5%]

1122 Notably, there is **no overlap** between the confidence intervals. The lower bound of our method
1123 (43.0%) is substantially higher than the upper bound of the baseline (30.0%). This statistical analysis
1124 confirms that the 162% relative improvement reported in the main text is robust and significant,
1125 rather than a result of sampling noise.

1127 I.4 REPRESENTATIVE TASK SPECIFICATIONS 1128

1129 Table 9 provides representative examples of the tasks used in the evaluation, detailing the required
1130 interactions and complexity constraints.

1131 **Conclusion on Rigor.** The tasks detailed above involve Modal Interactions, Calendar Pickers,
1132 and Multi-step Filtering—complex UI patterns that standard multimodal models (e.g., QwenVL2.5,
1133 20.4% SR) struggle to handle zero-shot. The 53.4% success rate of WebFactory-3B, supported by

1134
 1135 Table 9: Representative tasks from the Offline-to-Online Transfer Benchmark. Tasks are designed to
 1136 test specific interaction capabilities including precise search, constraint filtering, and complex state
 1137 changes.

1138 Platform	1139 Category	1140 Design & Complexity	1141 Constraints	1142 Representative Instruction
1143 Amazon	A: Precise Search	Req: Precise keyword matching; navigate to detail page to verify specs.	UI: Search bar, Click.	“Search for ‘Sony WH-1000XM5 headphones’, click on the black version, and tell me the current price.”
		Req: Apply multiple compound filters (price, brand, Prime) before clicking result.	UI: Sidebar filters.	“Find a ‘Gaming Monitor’ under \$300 from ‘ASUS’ with ‘144Hz’ refresh rate. Add the first result to the cart.”
	C: Cart Flow	Req: State changes; multi-page navigation.	UI: Add-to-cart, verify cart.	“Add a ‘Logitech MX Master 3S’ to your cart, then go to the cart and change the quantity to 2.”
1151 Airbnb	A: Date/Loc Search	Req: Complex calendar interaction; location input.	UI: Date-picker, search field.	“Search for a stay in ‘Kyoto, Japan’ for ‘2 adults’ from ‘September 10’ to ‘September 15’.”
		Req: Open modal window; scroll to find/check specific boxes.	UI: Modal popups, checkboxes.	“Find a home in ‘Paris’ that has ‘Wifi’, ‘Kitchen’, and ‘Washing Machine’. Open the detail page of the highest-rated listing.”
	C: Detail Extraction	Req: Parse unstructured long-text descriptions.	UI: Text parsing, scrolling.	“Go to the first listing for ‘Cabin in Lake Tahoe’ and verify if ‘Pets are allowed’ in the house rules.”
1162 Booking	A: Multi-Criteria	Req: Handle location, dates, room/guest config simultaneously.	UI: Complex form filling.	“Search for a hotel in ‘New York’ for ‘2 adults, 1 child’ for the weekend of ‘September 14th’.”
		Req: Operate sorting dropdowns; select under constraints.	UI: Dropdowns, list parsing.	“Sort hotels in ‘London’ by ‘Top Reviewed’ and click on the hotel with the highest score under £200/night.”
	C: Room Config	Req: Navigate to detail page; extensive scroll; specific selection.	UI: Deep navigation.	“Search for ‘Hilton Tokyo’, scroll to available rooms, and select a ‘King Room’ with ‘Breakfast Included’.”

1174 non-overlapping confidence intervals, provides strong evidence that our “Intelligence Compression”
 1175 paradigm successfully transfers generalizable logic from controlled offline data to unseen, noisy
 1176 online environments.

1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187