

XMODBENCH: BENCHMARKING CROSS-MODAL CAPABILITIES AND CONSISTENCY IN OMNI-LANGUAGE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

011 Omni-modal large language models (OLLMs) aim to unify audio, vision, and
 012 text understanding within a single framework. While existing benchmarks pri-
 013 marily evaluate general cross-modal question-answering ability, it remains un-
 014 clear whether OLLMs achieve modality-invariant reasoning or exhibit modality-
 015 specific biases. We introduce **XModBench**, a large-scale tri-modal benchmark
 016 explicitly designed to measure cross-modal consistency. XModBench comprises
 017 **60,828** multiple-choice questions spanning **five task families** and systematically
 018 covers all **six modality compositions** in question–answer pairs, enabling fine-
 019 grained diagnosis of an OLLM’s modality-invariant reasoning, modality dis-
 020 parity, and directional imbalance. Experiments show that even the strongest model,
 021 Gemini 2.5 Pro, (i) struggles with spatial and temporal reasoning, achieving less
 022 than 60% accuracy, (ii) reveals persistent modality disparities, with performance
 023 dropping substantially when the same semantic content is conveyed through au-
 024 dio rather than text, and (iii) shows systematic directional imbalance, exhibiting
 025 lower consistency when vision serves as context compared to text. These findings
 026 indicate that current OLLMs remain far from truly modality-invariant reasoning,
 027 and position **XModBench** as a fundamental diagnostic tool for evaluating and
 028 improving cross-modal competence.

1 INTRODUCTION

032 Omni-modal large language models (OLLMs) integrate text, vision, and audio into a unified rea-
 033 soning framework (Comanici et al., 2025; Xu et al., 2025; Xing et al., 2025; Su et al., 2023;
 034 Fu et al., 2025b; Cheng et al., 2024; Zhong et al., 2025). However, despite impressive ad-
 035 vancements and expanded modality coverage, a key question remains: do these models reason in a truly
 036 modality-invariant manner, or do they still exhibit systematic biases tied to specific input modal-
 037 ities? For humans, cross-modal integration is typically seamless, yet it remains unclear whether
 038 OLLMs demonstrate comparable consistency. When the same semantic content is presented in dif-
 039 ferent forms—spoken audio, written text, or visual images—do models still converge on the same
 040 correct answer? We refer to this property as *cross-modal consistency*: the ability to maintain sta-
 041 ble predictions regardless of input modality, thereby demonstrating reasoning over shared semantic
 042 representations rather than relying on modality-specific cues. Although directly diagnosing whether
 043 current OLLMs achieve this goal is non-trivial, we can evaluate them through carefully designed
 044 benchmarks that expose inconsistencies. For instance, by posing semantically identical questions
 045 under different modality settings, we can test whether predictions diverge across modalities — an
 046 indicator of reliance on surface-level patterns rather than genuine modality-invariant reasoning.

047 Recent benchmarks have taken promising steps toward evaluating OLLMs, particularly through
 048 audio-visual tasks that reveal baseline cross-modality performance. Datasets such as Music
 049 AVQA (Li et al., 2022), AV-Reasoner (Lu et al., 2025), and Pano-AVQA (Yun et al., 2021) pri-
 050 marily probe fine-grained audio–visual reasoning, while broader efforts like AVQA (Yang et al.,
 051 2022), WorldSense (Hong et al., 2025), AV-Odyssey Bench (Gong et al., 2024), and OmniBench (Li
 052 et al., 2024b) expand to general multimodal understanding across diverse contexts. However, these
 053 benchmarks largely overlook whether models remain consistent across modalities. While other
 054 works (Park et al., 2025; Zhang et al., 2024) attempt to assess modality consistency, they are re-
 055 stricted to the vision–text setting within vision–language models.

054
055
056
057 Table 1: Comparison of multimodal question-answering (QA) benchmarks by modality coverage,
058 task domains, and modality consistency.
059

Benchmark	#Q	Context Modality			Candidate Modality			Task Domain					Mod. Consist.
		Text	Vision	Audio	Text	Vision	Audio	Percep.	Spatial	Temporal	Ling.	Ext. Know.	
MME Bench (Fu et al., 2024a)	2,194	✗	✓	✗	✓	✗	✗	✓	✗	✗	✓	✓	✗
MMBench (Liu et al., 2024)	3,217	✗	✓	✗	✓	✗	✗	✓	✓	✓	✓	✓	✗
OcrBench v2 (Fu et al., 2024b)	10,000	✗	✓	✗	✓	✗	✗	✓	✓	✓	✗	✗	✗
SEED-Bench-2 (Li et al., 2024a)	24,371	✓	✓	✗	✓	✓	✗	✓	✓	✓	✓	✓	✗
060	061	062	063	064	065	066	067	068	069	070	071	072	073
AudioBench (Wang et al., 2024)	24,371	✗	✗	✓	✓	✓	✗	✓	✗	✗	✓	✗	✗
audiopedia (Li et al., 2022)	45,867	✗	✗	✓	✓	✓	✗	✗	✗	✗	✓	✓	✗
MMAU (Sakshi et al., 2024)	10,000	✗	✗	✓	✓	✓	✗	✓	✗	✓	✓	✗	✗
AVQA (Yang et al., 2022)	57,335	✗	✓	✓	✓	✓	✗	✓	✓	✓	✗	✗	✗
Pano-AVQA (Yun et al., 2021)	51,700	✗	✓	✓	✓	✓	✗	✓	✓	✓	✗	✗	✗
Music-AVQA (Li et al., 2022)	45,867	✗	✓	✓	✓	✓	✗	✓	✓	✓	✗	✗	✗
SAVE-Bench (Sun et al., 2024)	4,350	✗	✓	✓	✓	✓	✗	✓	✓	✓	✓	✓	✗
Video-MME (Fu et al., 2025a)	2,700	✗	✓	✓	✓	✓	✗	✓	✓	✓	✓	✓	✗
WorldSense (Hong et al., 2025)	3,172	✗	✓	✓	✓	✓	✗	✓	✓	✓	✓	✓	✗
AV-Reasoner (Lu et al., 2025)	1,027	✗	✓	✓	✓	✓	✗	✗	✗	✓	✗	✗	✗
AV-Odyssey Bench (Gong et al., 2024)	1,142	✗	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✗
OmniBench (Li et al., 2024b)	4,555	✗	✓	✓	✓	✗	✗	✓	✓	✓	✗	✓	✗
XModBench (Ours)	60,828	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

To address this gap, we introduce **XModBench**, a benchmark specifically designed to evaluate cross-modal consistency in omni-modal large language models. We formulate all questions in a multiple-choice format, where each question naturally contains two components: (i) a *context* describing an object or event, and (ii) a set of *candidates* from which the model must select the correct one. Unlike prior benchmarks that typically fix either the context or the choices to a single modality (Yang et al., 2022; Li et al., 2024b), XModBench systematically covers all six cross-modal directions among audio, vision, and text (see Tab. 1). To ensure broad coverage and rigorous evaluation, XMODBENCH spans five domains—perception, spatial reasoning, temporal reasoning, linguistic understanding, and external knowledge. We curate data across these domains through re-annotation, synthetic construction, and targeted web collection, ensuring both diversity and balance across modalities. The resulting benchmark comprises **60,828** multiple-choice question–answer pairs (10,138 unique instances), each instantiated in six modality configurations that preserve identical semantics across audio, visual, and textual forms. This enables both large-scale evaluation and fine-grained diagnosis of cross-modal consistency. An overview of the benchmark design is illustrated in Fig. 1.

We systematically evaluate models on XMODBENCH, going beyond overall accuracy to provide fine-grained diagnosis of cross-modal reasoning. Specifically, we analyze three complementary dimensions: (1) **Task competence**—by averaging over all six modality directions, we assess model performance across perception, spatial, temporal, linguistic, and knowledge tasks, yielding task-centric comparisons of multimodal competence; (2) **Modality disparity**—we measure consistency when the same question is posed in different modalities, where high variability signals reliance on modality-specific cues rather than shared semantic representations; and (3) **Directional imbalance**—we compare accuracy when context and candidate modalities are swapped, revealing asymmetries in cross-modal grounding.

Our experiments show that current OLLMs fall short along all three axes. They perform strongly on perception and linguistic tasks (best models reach around 70%), but degrade by 15–25 points on spatial and temporal reasoning. Performance also drops sharply whenever audio is involved, underscoring that auditory representations remain the weakest link. Finally, accuracy is consistently higher when text serves as the candidate modality, highlighting incomplete bidirectional alignment across modalities. Together, these findings demonstrate that today’s OLLMs remain far from achieving modality-invariant reasoning, underscoring the diagnostic value of XMODBENCH.

In summary, XMODBENCH makes the following key contributions:

1. **Cross-modal consistency benchmark.** We present XMODBENCH, the first tri-modal multiple-choice question-answering benchmark explicitly designed to evaluate cross-modal consistency, covering all six modality mappings among audio, vision, and text.
2. **Comprehensive coverage.** The benchmark spans five task families with 17 subtasks and 60,828 question–answer pairs, ensuring broad domain coverage and fine-grained diagnostics, while its balanced design enables fair assessment of modality-invariant reasoning.
3. **Diagnostic metrics.** We introduce *modality disparity* and *directional imbalance* to directly measure robustness and bidirectional alignment across modalities. Our experiments reveal

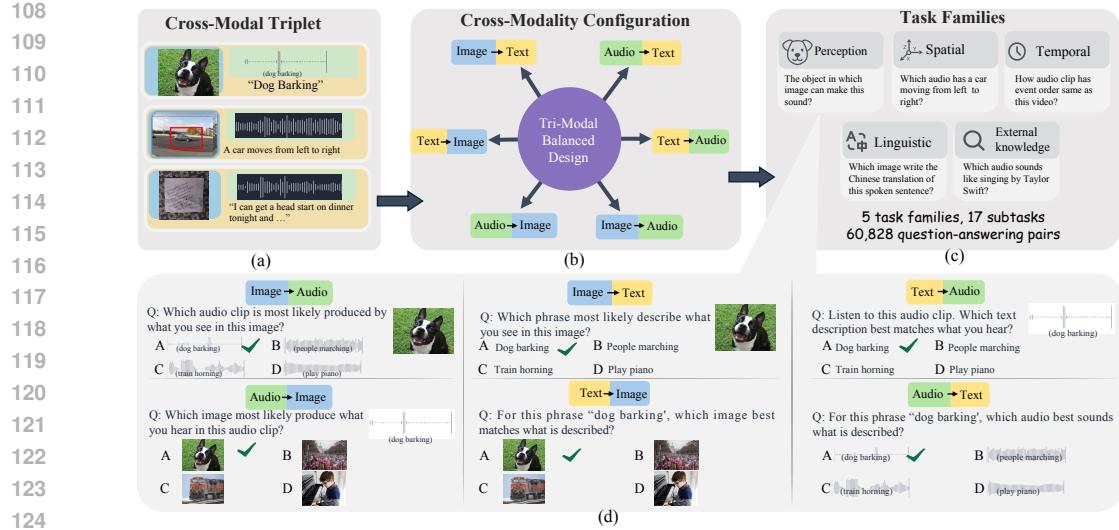


Figure 1: Overview of **XModBench**. (a) Instances are built from aligned text–image–audio triplets; (b) instantiated into six modality configurations by permuting context and candidate modalities; (c) spanning five domains with 17 subtasks and 60,828 question–answer pairs; and (d) illustrated with example multiple-choice questions under balanced modality settings.

systematic weaknesses in current OLLMs, providing actionable insights for developing more modality-invariant architectures and training strategies.

2 RELATED WORK

Multimodal Question Answering (QA) Benchmarks. A number of benchmarks have been developed to evaluate multimodal large language models (MLLMs). Grouped by modality composition, Yin et al. (2024), Liu et al. (2024), and Li et al. (2024a) focus on the vision–text setting (covering both images and videos). For audio–text evaluation, representative efforts include Wang et al. (2024) and Sakshi et al. (2024). When combining audio and vision with text, a variety of benchmarks have emerged, including Yang et al. (2022), Li et al. (2022), Yun et al. (2021), Sun et al. (2024), Hong et al. (2025), Lu et al. (2025), Gong et al. (2024), Li et al. (2024b), and Zhou et al. (2025). Other recent works, such as Yang et al. (2025), further extend evaluation to diverse multimodal combinations. Despite their breadth, these benchmarks primarily emphasize coverage across tasks and modalities, while less attention has been paid to evaluating *cross-modal consistency*—whether models produce stable answers when the same semantic content is expressed in different modality forms. Our work fills this gap by explicitly designing a benchmark centered on modality-invariant reasoning.

Cross-Modality Consistency. Recent work has begun to investigate whether multimodal models behave consistently across modalities. Park et al. (2025) introduced the Modality Importance Score to quantify modality bias, which measures how much each modality contributes to answering questions in VideoQA. Zhang et al. (2024) further proposed the notion of cross-modal consistency between text and image, defining a consistent model as one that applies the same internal reasoning to semantically identical inputs across modalities, thereby yielding consistent outcomes. In contrast, other studies, such as Sung-Bin et al. (2024) and Choong et al. (2024), report instances of inconsistent audio-video reasoning, where models hallucinate non-existent sounds or visual signals, thereby exposing modality bias and cross-modal inconsistency. While these efforts provide pioneering insights into cross-modal consistency, they are typically confined to specific modality pairs. Our work not only expands the scope to cover a broader range of modality combinations for state-of-the-art OLLMs, but also conducts a deeper analysis of their cross-modality reasoning behavior on a comprehensive task suite.

3 XMODBENCH: COMPREHENSIVE CROSS-MODAL BALANCED BENCHMARK

We introduce **XModBench**, a comprehensive multiple-choice question-answering (QA) benchmark designed to evaluate the cross-modal capabilities and consistency of OLLMs across audio, vision,

162 and text. A key feature of **XModBench** is its modality-balanced design, which creates six
 163 cross-modal variants of semantically identical questions to enable a controlled and fair evaluation
 164 of cross-modal capabilities and consistency (Sec. 3.1). The benchmark offers extensive domain
 165 coverage through five task families and seventeen subtasks (Sec. 3.2), all built upon meticulously
 166 curated, high-quality, and diverse tri-modal data (Sec. 3.3).

167 3.1 BENCHMARK DESIGN

168 The central objective of XMODBENCH is to evaluate whether models preserve *cross-modal consistency*
 169 when the same semantic content appears in different modalities. Each item is a four-choice
 170 multiple-choice question consisting of a <context> (question stem) and four <candidates>
 171 (answer options). By systematically permuting text (T), vision (V), and audio (A) across the
 172 <context> and <candidates>, we generate six modality configurations of the same ques-
 173 tion (see Fig. 1 (b) and (d)). This balanced design ensures that no single modality is privileged
 174 and enables consistent evaluation across all directions, which supports three diagnostic properties
 175 aligned with the goals of our benchmark:

176 **(1) Task competence.** Since each task is instantiated uniformly across all modality pairs, we mea-
 177 sure competence by averaging accuracy across all context–candidate configurations. This yields a
 178 fair estimate of a model’s overall capability for each task, independent of modality-specific biases.

179 **(2) Modality disparity.** By presenting semantically identical questions under different modality
 180 configurations, we keep the content fixed while varying only the modality. For example, to compare
 181 audio and vision, we examine cases where text provides the context with audio candidates ($T \rightarrow A$)
 182 versus text with visual candidates ($T \rightarrow V$), and similarly compare $A \rightarrow T$ against $V \rightarrow T$ settings. Dif-
 183 ferences in accuracy under these controlled comparisons reveal modality disparities, indicating the
 184 relative competence across different modalities.

185 **(3) Directional imbalance.** We examine inverse settings by swapping the modalities of context
 186 and candidates. For example, a model may perform well when vision serves as the context and
 187 text provides the options ($V \rightarrow T$), but perform worse when the same semantic content is presented
 188 as a text context with visual candidates ($T \rightarrow V$). Such differences indicate asymmetric grounding
 189 between the two modalities, and comparable asymmetries are also observed in the audio–text and
 190 audio–vision pair.

191 3.2 TASK TAXONOMY

192 XModBench covers five task families with
 193 seventeen subtasks, spanning perception, spatial reasoning,
 194 temporal reasoning, linguistic understanding,
 195 and external knowledge (see Fig. 2). Each task is
 196 formulated in the multiple-choice format and fol-
 197 lows the modality-balanced configuration described
 198 in Section 3.1: a <context> is drawn from one
 199 modality and four <candidates> from another.
 200 In this section, we detail the design of these subtasks
 201 and specify how each instance is instantiated across
 202 modalities within every task.

203 **Task 1. Perception.** This task evaluates whether
 204 models can recognize the same object, activity, or
 205 scene across modalities. For example, a barking
 206 dog may appear as an image, as its sound, or as
 207 the text description “dog barking.” Here, visual
 208 inputs are images, audio inputs are recordings of cor-
 209 responding sounds, and text inputs are short labels or
 210 phrases. The data are drawn from diverse domains,
 211 including human activities, animal behaviors, musi-
 212 cal instruments, and natural environments.

213 We divide perception into several subtasks. **General activity** recognition mixes candidates from
 214 diverse domains to test broad semantic alignment, while **fine-grained activity** recognition restricts
 215 candidates to a single domain (e.g., animal species or instrument types), thereby increasing diffi-
 216 culty and requiring precise discrimination. We further design domain-specific subtasks to capture

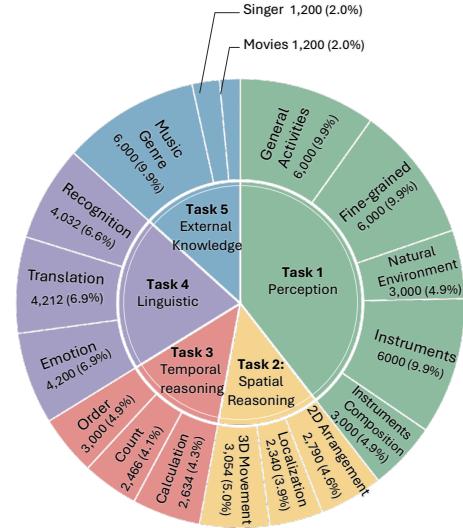


Figure 2: Distribution of XModBench’s questions across five task families with specific subtasks.

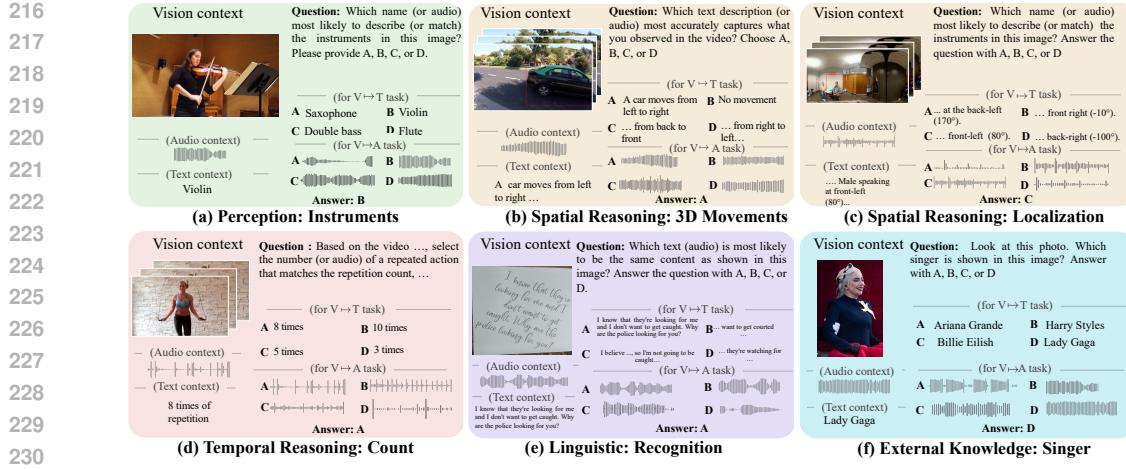


Figure 3: XModBench task examples. We show sample questions from six subtasks in the benchmark. Each question includes possible contexts from different modalities, and for the vision-context example, the candidates are given in either text or audio.

unique challenges: recognizing **natural environments** (e.g., rainfall, wind, fire), distinguishing **instruments** (e.g., violin, bass, cello), and identifying **instrument compositions** where multiple instruments are played together (e.g., violin and bass, or cello and flute). Illustrative examples are shown in Fig. 1(d) and Fig. 3(a).

Task 2. Spatial reasoning. This task evaluates whether models can interpret object positions and motion in 2D and 3D space, which is an important factor in vision–language models (Chen et al., 2024). We extend this ability to the omni-modal setting and design three subtasks. The first is **2D arrangement**, where the model determines the left–right order of objects such as musical instruments. Visual inputs are images of ordered layouts, audio inputs are stereo recordings with left–right cues, and text inputs describe the relative arrangement; distractors are generated by swapping or permuting positions. The second subtask, **3D localization**, using panoramic videos from Shimada et al. (2023), requires identifying the orientation of events in video frames, spatialized audio, and short textual descriptions (e.g., “a man speaking from the front-left”); distractors are produced by shifting the same scene to nearby but incorrect directions through camera or audio rotation. The third subtask, **3D movement understanding**, focuses on motion directions such as left–right or front–back, instantiated with street-view or action videos, spatialized audio of approaching or receding sounds, and textual trajectory descriptions (Fuentes et al., 2022); distractors are clips with incorrect motion patterns or mismatched vehicle types. Examples for the 3D movement and localization tasks are shown in Fig. 3(b) and (c), respectively.

Task 3. Temporal reasoning. This task evaluates whether models can understand **event order** and **frequency** across time in video and audio. We design three subtasks. The first is **temporal order**, where models infer the correct sequence of events from muted video segments, audio clips, or textual descriptions and align them across modalities. The second, **temporal counting**, requires recognizing the number of repeated actions such as tennis hits, jumps, or drum beats, with distractors differing in count. For example, a video may show a tennis player hitting the ball three times, and the model must select the audio clip with exactly three hits or the text “3 times.” The third, **temporal calculation**, extends counting by applying simple arithmetic to the repetition number. For instance, if a video shows a person jumping three times and the query applies $2 \times$ count, the correct answer should correspond to six repetitions, given either as an audio clip with six jumps or as the text “6 times.” An example of the temporal counting task is in Fig. 3(d).

Task 4. Linguistic understanding. This task covers recognition of linguistic content and interpretation of affective meaning. While prior work separates OCR for vision and ASR for audio (Fu et al., 2024b; Wang et al., 2024), XModBench unifies them in a cross-modal setting. We design three subtasks. The first, **linguistic recognition**, focuses on transcribing text from images, audio, or phrases; correct candidates require word-level precision, while distractors differ by only one or two words (see Fig. 3(e)). The second, **translation**, evaluates English–Chinese translation across modalities, with distractors introducing subtle shifts such as antonyms, degree modifiers (e.g., “very” \rightarrow

270 “a little”), or small changes in numbers and entities. The third, **emotion classification**, targets affective understanding in dialogue: audio inputs are spoken conversations, visual inputs are muted video clips with transcripts, and candidates represent emotions such as joy, sadness, or anger, with distractors drawn from closely related categories.

274 **Task 5. External knowledge.** Beyond perceptual and reasoning skills, some tasks require linking
 275 multimodal content with world knowledge. We design three subtasks. The first, **movie recognition**,
 276 presents audio clips from trailers, visual posters, or short text descriptions of the plot, with candidates
 277 drawn from films of similar genres or storylines. The second, **music genre classification**, uses
 278 album covers, short audio clips, or textual genre labels, with distractors from closely related genres
 279 (e.g., “jazz” vs. “blues”). The third, **singer identification**, provides names, portrait images, or audio
 280 clips of songs, with distractors sampled from artists of similar musical styles (see Fig. 3(f)).

281 3.3 DATA CURATION

283 The construction of XModBench follows a three-stage pipeline. We begin by collecting large-scale
 284 text–vision–audio triplets across all task domains, then generate task-specific multiple-choice
 285 questions, and finally apply both automated filtering and human verification to ensure quality and
 286 consistency.

287 **Cross-modal data collection.** We curate a large corpus aligned across vision, audio, and text by
 288 combining three sources: (i) re-annotated and extended data from existing multimodal datasets,
 289 such as adapting VGG-Sound for perception tasks or STARSS23 (Lee et al., 2022; Shimada et al.,
 290 2023) for spatial reasoning; (ii) synthetic or model-generated content to cover missing modalities,
 291 for example generating speech audio with FireRedTTS (Guo et al., 2025) or producing rendered
 292 text images for translation tasks; and (iii) web-collected samples for domains not well represented
 293 in public resources, such as singer portraits and songs for the *Singer Identification* task or trailers
 294 and posters for *Movie Recognition* from public YouTube videos. This design ensures both coverage
 295 and balance across all five task families. Detailed sources and processing procedures are described
 296 in Appendix F.

297 **Question candidate generation.** To ensure the correctness of both the generated questions and
 298 answers, we first construct task-specific multiple-choice templates using our annotated tri-modality
 299 data. The question descriptions are then refined by GPT-5 (OpenAI, 2025) solely to improve lan-
 300 guage fluency and stylistic diversity. Importantly, this refinement does not introduce any new infor-
 301 mation or alter the underlying semantics. Each question is instantiated with a context and four candi-
 302 dates under the modality-balanced configuration, ensuring consistent evaluation across all modality
 303 directions. Distractors are created to be semantically challenging but unambiguous, while templates
 304 are diversified with both human-written prompts and LLM-assisted variations.

305 **LLM filtering and human-in-the-loop verification.** To guarantee data quality at scale, we first
 306 adopt foundation models (OpenAI, 2025; Comanici et al., 2025) to filter out low-quality or ambigu-
 307 ous samples. Human annotators then double-check the filtered results to ensure accuracy. After
 308 questions are constructed, an internal round of testing is conducted by annotators, who resolve
 309 ambiguities and validate correctness. Feedback from this process is used to regenerate and retest
 310 questions until high-quality items are obtained.

311 Overall, this pipeline yields a high-quality benchmark with diverse and well-aligned multimodal
 312 content. More detailed descriptions of dataset sources, generation strategies, and signal-processing
 313 techniques are provided in Appendix F.

314 4 EXPERIMENTS

315 4.1 BASELINES

317 We evaluate XMODBENCH on a diverse set of recent omni-modal large language models. The **Gem-
 318 ini series** (Comanici et al., 2025; Team et al., 2024) represents state-of-the-art closed-source omni-
 319 modal models, and we include multiple variants ranging from Gemini 1.5 Pro to Gemini 2.5 Pro.
 320 Note that OpenAI APIs do not currently support processing audio and visual modalities jointly
 321 within a single query; therefore, we omit the GPT series from our evaluation. For open-source sys-
 322 tems, we include the latest **Qwen2.5-Omni** (Xu et al., 2025), **Baichuan Omni 1.5** (Li et al., 2025),
 323 and **EchoInk-R1** (Xing et al., 2025). Additional open-source omni-modal baselines include **Vide-
 324 oLLaMA 2** (Cheng et al., 2024), **VITA** (Fu et al., 2025b), the **Unified-IO 2** series (Large, XL, and

324
 325
 326
 327
 328 Table 2: **Results on XModBench.** We report (a) the performance under different input modalities
 329 across the full benchmark, and (b) the summary of average accuracy for each of the 5 task families.
 330 The highest scores are **bolded**, and the second highest are underlined.
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341

Model	Accuracy on 5 Task Families					Modality Configuration						Avg.
	Perc.	Spat.	Temp.	Ling.	Knwl.	A \mapsto T	A \mapsto V	T \mapsto A	T \mapsto V	V \mapsto A	V \mapsto T	
no context	25.5	24.8	24.9	24.7	25.5	25.1	24.3	25.4	24.8	25.3	25.7	0.4
Qwen2.5-VL	91.3	51.4	40.9	84.1	77.2	-	-	60.1	-	74.7	-	67.4
Intern3.5-VL	87.2	42.7	41.4	75.0	68.7	-	-	49.7	-	73.7	-	61.7
PandaGPT	24.6	25.7	24.4	25.5	23.1	24.5	25.0	23.8	25.2	24.5	25.1	0.5
Unified-IO 2	36.1	23.6	23.8	30.4	26.8	28.9	24.0	25.4	32.0	25.7	32.7	3.7
Unified-IO 2 XL	42.2	25.0	26.1	30.8	29.5	33.3	27.0	27.1	32.9	26.5	37.4	4.5
Unified-IO 2 XXL	43.7	28.3	27.7	31.2	34.0	37.4	25.0	31.2	37.8	26.7	39.9	6.3
VideoLLaMA 2	45.7	33.9	29.2	36.7	36.8	48.6	26.0	25.7	26.5	25.2	66.8	17.4
VITA	34.8	34.0	29.4	46.1	32.6	40.2	26.0	29.8	26.8	29.9	59.3	12.8
Baichuan Omni 1.5	58.9	34.9	30.0	62.8	56.7	47.8	35.8	40.5	56.2	38.6	73.0	14.0
EchoInk-R1	75.8	36.6	37.1	73.3	73.3	64.6	45.9	56.4	60.9	49.9	77.6	11.3
Qwen2.5-Omni	75.5	38.4	32.3	74.1	72.8	62.0	48.0	55.4	59.6	50.5	76.3	10.1
Gemini 1.5 Pro	56.2	40.1	37.1	72.6	69.4	52.4	38.2	48.6	70.4	40.7	79.9	16.7
Gemini 2.0 Flash	66.2	48.4	44.8	70.2	78.1	63.7	49.0	52.2	71.5	47.6	85.2	15.2
Gemini 2.5 Flash	66.1	48.0	48.6	73.1	82.8	62.6	51.2	55.1	75.7	51.9	86.0	14.2
Gemini 2.5 Pro	75.9	50.1	60.8	76.8	89.3	71.0	58.9	64.4	79.8	60.8	88.6	11.7
Human	91.0	89.7	88.9	93.9	93.9	92.4	91.5	91.1	91.8	86.4	95.6	3.0
												91.5

342
 343 XXL variants) (Lu et al., 2024), and **PandaGPT** (Su et al., 2023). Together, these models represent
 344 a broad spectrum of both closed- and open-source OLLMs.
 345

346 4.2 MODEL PERFORMANCES

347
 348 Table 5 reports results across five task families and six cross-modal directions (Audio \mapsto Text, Audio
 349 \mapsto Vision, Text \mapsto Audio, Text \mapsto Vision, Vision \mapsto Audio, Vision \mapsto Text). The first subtable
 350 summarizes the average accuracy across all tasks for each modality configuration, while the remaining
 351 subtables present detailed performance within each task family. The highest scores are **bolded**,
 352 and the second highest are underlined. For each model, we also report the overall average accuracy
 353 (Avg.) and standard deviation (Std.) across the six configurations to quantify robustness to modality
 354 shifts. Details of the human evaluation are provided in Appendix E.

355
 356 **Performance by task families.** Overall, the Gemini 2.0 and 2.5 series outperform all open-source
 357 systems. Among open models, Qwen2.5-Omni and EchoInk-R1 are the strongest baselines, sur-
 358 passing Gemini 1.5 Pro by 3.6 and 4.2 points, respectively. Across the five task families, spatial and
 359 temporal reasoning remain the most challenging (Gemini 2.5 Pro achieves 50.1 and 60.8), whereas
 360 perception and linguistic tasks reach higher accuracy (75.9 and 76.8). The performance gap be-
 361 tween open- and closed-source systems extends beyond spatial and temporal reasoning to external
 362 knowledge: while Qwen2.5-Omni and EchoInk-R1 perform comparably to Gemini 2.5 Pro on per-
 363 ception, the latter attains 89.3 on external knowledge. These results highlight persistent bottlenecks
 364 in open-source models, as closed-source systems likely benefit from broader web-scale pretraining
 365 and stronger spatial-temporal reasoning capabilities.

366
 367 **Performance by modality configurations.** We also analyze performance consistency across modal-
 368 ity configurations on the same tasks and observe clear divergences. Vision-text settings consistently
 369 outperform audio-text ones, confirming that visual representations are more strongly grounded than
 370 audio. In perception tasks, accuracy exceeds 90% with vision-text inputs but drops by over 20 points
 371 with audio-text. Audio-vision combinations without textual anchors yield the lowest scores, high-
 372 lighting the difficulty of aligning heterogeneous signals. Among SOTA systems, Gemini 2.5 Pro
 373 (Avg. 70.6, Std. 11.7) shows the best balance of accuracy and stability, while Qwen2.5-Omni (Std.
 374 10.1) and EchoInk-R1 (Std. 11.3) are the most consistent open models. By contrast, Gemini 1.5 Pro
 375 and Baichuan Omni 1.5 have standard deviations exceeding 14, reflecting weaker robustness to
 376 modality variation.

377 4.3 MODALITY DISPARITY ANALYSIS

378 A key challenge for OLLMs is whether they handle audio, vision, and text equally rather
 379 than favoring one modality. XMODBENCH enables this by instantiating identical seman-
 380 tics across modality settings. $\Delta_{T \text{ vs. } V} = (Acc_{A \mapsto V} - Acc_{A \mapsto T}) + (Acc_{V \mapsto A} - Acc_{T \mapsto A})$,

We quantify disparity via paired subtraction, e.g., which compares configurations that differ only by substituting **text** with **vision**, thereby isolating the effect of modality substitution on accuracy. Results in Fig. 4 show that $\Delta_{T \text{ vs. } A}$ exhibits the strongest disparity (−49 for Gemini 2.5 Pro), $\Delta_{V \text{ vs. } A}$ is moderate (−33), and $\Delta_{T \text{ vs. } V}$ remains smallest (−15). *These findings highlight audio as the most challenging modality, with vision showing moderate gaps and text remaining the most robust.*

4.4 DIRECTIONAL IMBALANCE

We test whether models behave consistently when swapping the roles of context and candidates. We define *directional imbalance* as $\Delta_{X \leftrightarrow Y} = \text{Acc}(X \mapsto Y) - \text{Acc}(Y \mapsto X)$, the accuracy gap between inverse configurations for $(X, Y) \in \{(A, T), (V, T), (V, A)\}$. As shown in Fig. 5, vision–text and audio–text pairs exhibit notable asymmetries: Gemini 2.5 Pro drops by 8.8 points from T→V to V→T, and Qwen2.5-Omni shows a 16.6-point gap, while audio–text differences remain around 6–8 points. By contrast, **audio–vision** pairs are nearly symmetric but achieve much lower overall accuracy. *These findings suggest that directional imbalance mainly arises in text–vision and audio–text pairs, likely reflecting training data biases toward text as the dominant output modality.*

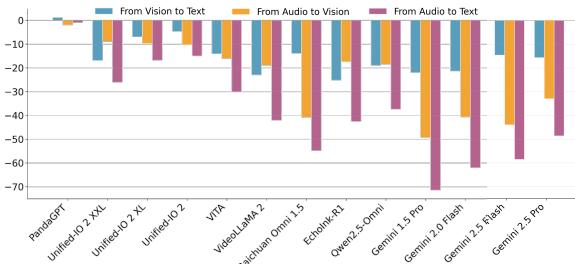


Figure 4: Modality disparity across different configurations. Negative scores indicate performance gaps, with the largest disparities observed between audio and text.

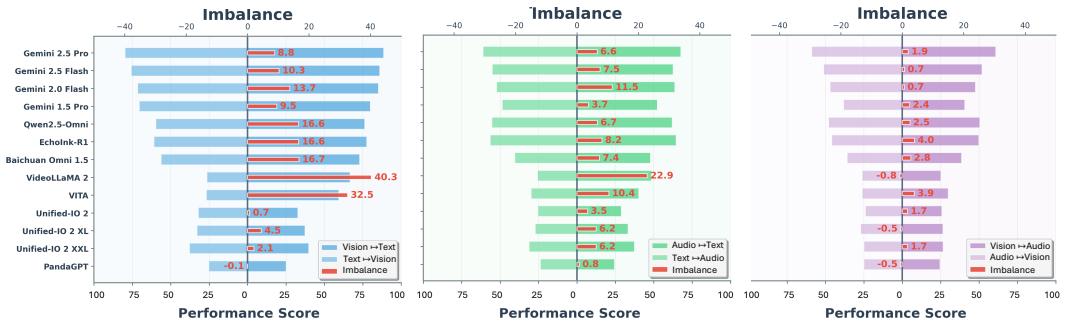


Figure 5: Directional imbalance: accuracy gaps between paired inverse settings among audio, vision and text. Models show clear asymmetries, especially in vision–text and audio–text pairs.

4.5 FAILURE CASE ANALYSIS

To better understand model errors, we prompt systems like Gemini 2.5 Pro and Qwen2.5-Omni to generate reasoning alongside their answers. As shown in Fig. 6, we observe common failure cases that reflect modality performance gaps and alignment issues. Example (a) shows a mismatch between audio-to-text and audio-to-image reasoning: while the model correctly identifies a didgeridoo by text, it fails to select the matching image, revealing inconsistent grounding. In example (b), Qwen-2.5 Omni misinterprets spatial audio motion when switching from audio-to-text to text-to-audio, reversing the vehicle’s direction. These errors highlight persistent asymmetries in cross-modal reasoning that only emerge when the same task is posed across different modality combinations.

4.6 TRIPLE-DOMAIN QUESTION ANSWERING

Real-world ommi-modal scenarios often present information jointly across modalities rather than in isolation. To approximate this setting, we extend **XMODBENCH** tasks to an audio–visual context, where both sound and vision are provided in the question stem, while the candidates remain in text.

We evaluate this dual-context configuration using the Gemini series. Compared with single-modality baselines, the results (see Appendix D) show modest but consistent gains, indicating that models can

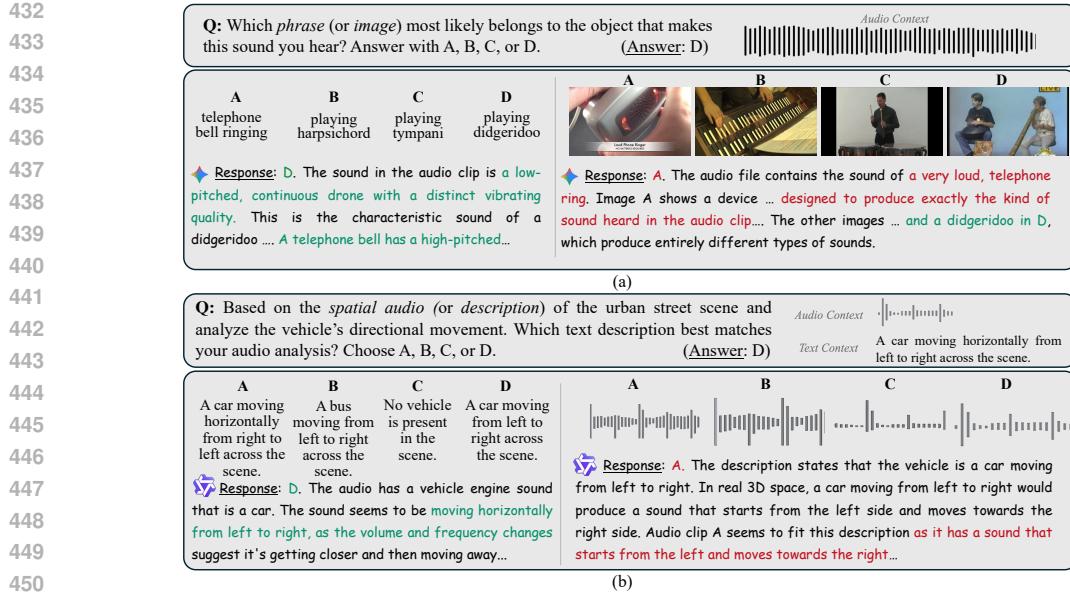


Figure 6: Failure cases. (a) Gemini 2.5 pro correctly identifies a didgeridoo in text but fails to match it with the corresponding image candidates. (b) shows Qwen2.5-Omni misinterprets spatial motion when switching candidates from text to audio. This cases illustrate asymmetries in cross-modal reasoning.

benefit from simultaneous multimodal cues. However, the improvements are not always additive, suggesting that current systems do not yet fully exploit complementary signals across modalities.

Table 3: Overall performance of Gemini models under the dual-context setting (audio+visual context \mapsto text). We compare with pairwise baselines ($A \mapsto T$ and $V \mapsto T$), and report the stronger unimodal baseline $\max(A \mapsto T, V \mapsto T)$.

Setting	Gemini 1.5 Pro	Gemini 2.0 Flash	Gemini 2.5 Pro
$A \mapsto T$	52.76	63.71	70.99
$V \mapsto T$	79.92	85.20	88.60
$A+V \mapsto T$	82.53 (+2.61)	79.84	89.76

5 DISCUSSION

Our benchmark results serve as a diagnostic tool, revealing how underlying data composition and training methodologies shape model behaviors. By correlating performance patterns with known model architectures and training reports, we derive three critical insights regarding interleaved data, domain coverage, and post-training dynamics.

5.1 INTERLEAVED DATA CORRELATES WITH DIRECTIONAL SYMMETRY

A key observation from our imbalance analysis is the link between interleaved training data and modality-swap robustness.

- **Balanced performance in interleaved models:** Public official reports indicate that models such as *Qwen-Omni* and Google’s *Gemini* series incorporate massive-scale interleaved multimodal corpora (e.g., narrated videos, mixed audio–vision documents). Our benchmark corroborates this: these models exhibit relatively small performance gaps between $\text{Audio} \rightarrow \text{Vision}$ and $\text{Vision} \rightarrow \text{Audio}$ tasks. This suggests that seeing modalities appear interchangeably in context allows the model to build symmetric cross-modal bridges.
- **Asymmetry in lightly interleaved models:** Conversely, models trained primarily on disjoint datasets exhibit significant directional asymmetry. For instance, despite strong backbones, models relying on open-source data with limited interleaved audio–vision instruction pairs show a distinct bias. They often perform well in one direction (anchored by their dominant modality) but fail to generalize when the source-target modalities are swapped, indicating that insufficient interleaved supervision hinders directional robustness.

486
487

5.2 DOMAIN COVERAGE GAPS AND ENCODER BIAS

488
489

Performance inconsistencies across specific sub-tasks reveal “blind spots” in the training data distribution coverage, particularly regarding to the audio data.

490

- **Spoken vs. Non-Spoken Bias:** Many models utilizing speech-centric encoders (e.g., Whisper) show a sharp performance drop on non-verbal acoustic tasks, such as environmental sound classification and spatial reasoning. This implies a data-domain imbalance where the model is over-fitted to spoken language features at the expense of general acoustic awareness.
- **Specific Task Domain:** Distinct gaps in specific categories act as fingerprints for missing training data. For example, despite its high overall capacity, *Gemini 1.5* demonstrates limited capability in musical reasoning, suggesting an absence of music-theory-oriented data in its training corpus. Similarly, *EchoInk-R1* struggles with spatial-vision tasks relative to related families, pointing to a lack of spatial-centric visual content.

500

5.3 THE DATA EFFECT FOR POST-TRAINING

501

A comparative analysis between *EchoInk-R1* and the *Qwen* series highlights how post-training strategies can alter—and sometimes degrade—multimodal alignment when the training data is limited, even though reinforcement learning is commonly assumed to improve generalization. While *EchoInk-R1* utilizes the *OmniInstruct* corpus (focused on spoken instruction following), *Qwen* incorporates interleaved multimodal conversations during post-training. This divergence leads to notable behavioral differences:

507

- **Alignment Erosion:** *EchoInk-R1* shows decreased performance in cross-modal (AV/VA) tasks compared to *Qwen*. This suggests that aggressive fine-tuning on spoken-only instructions may cause “catastrophic forgetting” of the fine-grained cross-modal grounding acquired during pre-training.
- **Inefficacy for Spatial Domains:** The lack of improvement in spatial audio tasks for *EchoInk*, despite heavy instruction tuning, reinforces that modality balance is strictly required during post-training. Unimodal or text-centric fine-tuning cannot compensate for, and may actively harm, the model’s ability to process complex multimodal signals.

516

We believe that the findings discussed above highlight the value of XModBench not only as an evaluation tool but also as a source of insight for model development. The broader challenge remains the limited transparency of training data in many state-of-the-art multimodal systems. XModBench provides a practical way to study the impact of such opacity by enabling controlled comparisons across models with different training paradigms. For future model developers, this allows clearer understanding of how data choices influence multimodal alignment. For existing model builders, greater openness about data sources would further support the refinement of data pipelines and help reduce modality inconsistencies.

524

Current benchmarks lack the multimodal-invariant structure and modality-swap design required to expose these effects, underscoring the role of XModBench in advancing both analysis and informed model development.

527

6 CONCLUSION

529

We introduced **XModBench**, a benchmark for diagnosing cross-modal consistency in omni-language models. By systematically interleaving audio, vision, and text across diverse tasks, XModBench enables fine-grained evaluation of modality disparities, directional imbalances, and modality invariant capability. Our results show that audio remains the most challenging modality, that models often behave asymmetrically in inverse settings such as text-vision and audio-text, and that combining audio and vision yields only modest gains. Overall, while current systems are strong in perception and language, they still lack stable and consistent reasoning across modalities, leaving ample room for progress toward truly modality-agnostic intelligence.

530

531

532

533

534

535

536

537

538

539

540

541

542

ETHICS STATEMENT

544

Our study does not involve private or sensitive personal data. All audiovisual samples are obtained from publicly available official sources, including previously published research datasets, content hosted on established open source platforms such as Hugging Face and Kaggle. For all newly generated labels and annotations, we perform manual verification to ensure correctness and to remove any potentially inappropriate content. All web-curated data are from publicly accessible and previously published sources without requiring special authentication. All materials are used solely for non-commercial academic research. We do not redistribute copyrighted video or audio; only derived features, annotations, and evaluation results are released.

552

REFERENCES

554

V.R. Algazi, R.O. Duda, D.M. Thompson, and C. Avendano. The cipic hrtf database. In *Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No.01TH8575)*, pp. 99–102, 2001. doi: 10.1109/ASPAA.2001.969552.

557

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14455–14465, 2024.

562

Honglie Chen, Weidi Xie, Triantafyllos Afouras, Arsha Nagrani, Andrea Vedaldi, and Andrew Zisserman. Localizing visual sounds the hard way. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16867–16876, 2021.

565

Ssu-Yen Chen, Chao-Chun Hsu, Chuan-Chun Kuo, and Lun-Wei Ku. Emotionlines: An emotion corpus of multi-party conversations. *arXiv preprint arXiv:1802.08379*, 2018.

569

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and audio understanding in video-lmms. *arXiv preprint arXiv:2406.07476*, 2024.

571

Wey Yeh Choong, Yangyang Guo, and Mohan Kankanhalli. Vidhal: Benchmarking temporal hallucinations in vision llmms. *arXiv preprint arXiv:2411.16771*, 2024.

574

Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025.

578

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation benchmark for multimodal large language models, 2024a. URL <https://arxiv.org/abs/2306.13394>.

582

Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation benchmark of multi-modal llmms in video analysis. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 24108–24118, 2025a.

587

Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao, Zuwei Long, Heting Gao, Ke Li, et al. Vita-1.5: Towards gpt-4o level real-time vision and speech interaction. *arXiv preprint arXiv:2501.01957*, 2025b.

590

Ling Fu, Zhebin Kuang, Jiajun Song, Mingxin Huang, Biao Yang, Yuzhe Li, Linghao Zhu, Qidi Luo, Xinyu Wang, Hao Lu, et al. Ocrbench v2: An improved benchmark for evaluating large multimodal models on visual text localization and reasoning. *arXiv preprint arXiv:2501.00321*, 2024b.

594 Magdalena Fuentes, Bea Steers, Pablo Zinemanas, Martin Rocamora, Luca Bondi, Julia Wilkins,
 595 Qianyi Shi, Yao Hou, Samarjit Das, Xavier Serra, et al. Urban sound & sight: Dataset and
 596 benchmark for audio-visual urban scene understanding. In *ICASSP 2022-2022 IEEE International
 597 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 141–145. IEEE, 2022.

598 GbotHQ. Ocr dataset rendering. GitHub: <https://github.com/GbotHQ/ocr-dataset-rendering/>, 2024. MIT License, Accessed: YYYY-MM-DD.

601 Kaixiong Gong, Kaituo Feng, Bohao Li, Yibing Wang, Mofan Cheng, Shijia Yang, Jiaming Han,
 602 Benyou Wang, Yutong Bai, Zhuoran Yang, et al. Av-odyssey bench: Can your multimodal llms
 603 really understand audio-visual information? *arXiv preprint arXiv:2412.02611*, 2024.

604 Hao-Han Guo, Yao Hu, Fei-Yu Shen, Xu Tang, Yi-Chen Wu, Feng-Long Xie, and Kun Xie.
 605 Firededts-1s: An upgraded streamable foundation text-to-speech system. *arXiv preprint
 606 arXiv:2503.20499*, 2025.

608 Jack Hong, Shilin Yan, Jiayin Cai, Xiaolong Jiang, Yao Hu, and Weidi Xie. Worldsense: Evaluating
 609 real-world omnimodal understanding for multimodal llms. *arXiv preprint arXiv:2502.04326*,
 610 2025.

611 Dongjin Kim, Sung Jin Um, Sangmin Lee, and Jung Uk Kim. Learning to visually localize sound
 612 sources from mixtures without prior source knowledge. In *Proceedings of the IEEE/CVF Confer-
 613 ence on Computer Vision and Pattern Recognition*, pp. 26467–26476, 2024.

615 Seung Hyun Lee, Gyeongrok Oh, Wonmin Byeon, Chanyoung Kim, Won Jeong Ryoo, Sang Ho
 616 Yoon, Hyunjun Cho, Jihyun Bae, Jinkyu Kim, and Sangpil Kim. Sound-guided semantic video
 617 generation. In *European Conference on Computer Vision*, pp. 34–50. Springer, 2022.

618 Bochen Li, Xinzha Liu, Karthik Dinesh, Zhiyao Duan, and Gaurav Sharma. Creating a multitrack
 619 classical music performance dataset for multimodal music analysis: Challenges, insights, and
 620 applications. *IEEE Transactions on Multimedia*, 21(2):522–535, 2018.

622 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 623 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF
 624 Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024a.

625 Guangyao Li, Yake Wei, Yapeng Tian, Chenliang Xu, Ji-Rong Wen, and Di Hu. Learning to answer
 626 questions in dynamic audio-visual scenarios. In *Proceedings of the IEEE/CVF conference on
 627 computer vision and pattern recognition*, pp. 19108–19118, 2022.

629 Yadong Li, Jun Liu, Tao Zhang, Song Chen, Tianpeng Li, Zehuan Li, Lijun Liu, Lingfeng
 630 Ming, Guosheng Dong, Da Pan, et al. Baichuan-omni-1.5 technical report. *arXiv preprint
 631 arXiv:2501.15368*, 2025.

632 Yizhi Li, Ge Zhang, Yinghao Ma, Ruibin Yuan, Kang Zhu, Hangyu Guo, Yiming Liang, Jiaheng
 633 Liu, Zekun Wang, Jian Yang, et al. Omnibench: Towards the future of universal omni-language
 634 models. *arXiv preprint arXiv:2409.15272*, 2024b.

635 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 636 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 637 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024.

639 Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek
 640 Hoiem, and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models with
 641 vision language audio and action. In *Proceedings of the IEEE/CVF Conference on Computer
 642 Vision and Pattern Recognition*, pp. 26439–26455, 2024.

643 Lidong Lu, Guo Chen, Zhiqi Li, Yicheng Liu, and Tong Lu. Av-reasoner: Improving and bench-
 644 marking clue-grounded audio-visual counting for mllms. *arXiv preprint arXiv:2506.05328*, 2025.

645 Piotr Majdak, Péter Balázs, and Bernhard Laback. Spatially oriented format for acoustics: A data
 646 exchange format representing head-related transfer functions. In *Audio Engineering Society Con-
 647 vention 134*. Audio Engineering Society, 2013.

648 Juan F. Montesinos, Olga Slizovskaia, and Gloria Haro. Solos: A dataset for audio-visual music
 649 analysis. *2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)*,
 650 pp. 1–6, 2020. URL <https://api.semanticscholar.org/CorpusID:219687731>.
 651

652 Andraida Olteanu. Gtzan dataset: Music genre classification. Kaggle
 653 Dataset: <https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification/>, 2024. Accessed: YYYY-
 654 MM-DD.
 655

656 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>, Au-
 657 gust 2025.
 658

659 Jean Park, Kuk Jin Jang, Basam Alasaly, Sriharsha Mopidevi, Andrew Zolensky, Eric Eaton, In-
 660 sup Lee, and Kevin Johnson. Assessing modality bias in video question answering benchmarks
 661 with multimodal large language models. In *Proceedings of the AAAI Conference on Artificial
 Intelligence*, pp. 19821–19829, 2025.
 662

663 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Rada Mihalcea, and Erik
 664 Cambria. MELD: A multimodal multi-party dataset for emotion recognition in conversation. In
 665 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL)*,
 666 pp. 527–536, 2019.
 667

668 Ville Pulkki. Virtual sound source positioning using vector base amplitude panning. *Journal of the
 audio engineering society*, 45(6):456–466, 1997.
 669

670 S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaneswaran Selvakumar, Oriol Nieto, Ra-
 671 mani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. Mmau: A massive multi-task audio
 672 understanding and reasoning benchmark. *arXiv preprint arXiv:2410.19168*, 2024.
 673

674 Kazuki Shimada, Archontis Politis, Parthasarathy Sudarsanam, Daniel A Krause, Kengo Uchida,
 675 Sharath Adavanne, Aapo Hakala, Yuichiro Koyama, Naoya Takahashi, Shusuke Takahashi, et al.
 676 Starss23: An audio-visual dataset of spatial recordings of real scenes with spatiotemporal anno-
 677 tations of sound events. *Advances in neural information processing systems*, 36:72931–72957,
 678 2023.
 679

680 Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and Deng Cai. Pandagpt: One model to
 681 instruction-follow them all. *arXiv preprint arXiv:2305.16355*, 2023.
 682

683 Guangzhi Sun, Wenyi Yu, Changli Tang, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
 684 Yuxuan Wang, and Chao Zhang. video-salmonn: Speech-enhanced audio-visual large language
 685 models. *arXiv preprint arXiv:2406.15704*, 2024.
 686

687 Kim Sung-Bin, Oh Hyun-Bin, JungMok Lee, Arda Senocak, Joon Son Chung, and Tae-Hyun Oh.
 688 Avhbench: A cross-modal hallucination benchmark for audio-visual large language models. *arXiv
 preprint arXiv:2410.18325*, 2024.
 689

690 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 691 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 692 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
 693

694 Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan Liu, Wenyu Zhang, Zhengyuan Liu, AiTi
 695 Aw, and Nancy F Chen. Audiobench: A universal benchmark for audio large language models.
 696 *arXiv preprint arXiv:2406.16020*, 2024.
 697

698 Christoph Wendler. Renderedtext. Hugging Face Dataset: <https://huggingface.co/datasets/wendlerc/RenderedText>, 2024. Accessed: YYYY-MM-DD.
 699

700 Zhenghao Xing, Xiaowei Hu, Chi-Wing Fu, Wenhui Wang, Jifeng Dai, and Pheng-Ann Heng.
 701 Echoink-r1: Exploring audio-visual reasoning in multimodal llms via reinforcement learning.
 702 *arXiv preprint arXiv:2505.04623*, 2025.
 703

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 704 Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.
 705

702 Pinci Yang, Xin Wang, Xuguang Duan, Hong Chen, Runze Hou, Cong Jin, and Wenwu Zhu. Avqa:
 703 A dataset for audio-visual question answering on videos. In *Proceedings of the 30th ACM inter-*
 704 *national conference on multimedia*, pp. 3480–3491, 2022.

705 Yudong Yang, Jimin Zhuang, Guangzhi Sun, Changli Tang, Yixuan Li, Peihan Li, Yifan Jiang, Wei
 706 Li, Zejun Ma, and Chao Zhang. Acvubench: Audio-centric video understanding benchmark.
 707 *arXiv preprint arXiv:2503.19951*, 2025.

708 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 709 multimodal large language models. *National Science Review*, 11(12):nwae403, 2024.

710 Heeseung Yun, Youngjae Yu, Wonsuk Yang, Kangil Lee, and Gunhee Kim. Pano-avqa: Grounded
 711 audio-visual question answering on 360deg videos. In *Proceedings of the IEEE/CVF Interna-*
 712 *tional Conference on Computer Vision*, pp. 2031–2041, 2021.

713 Xiang Zhang, Senyu Li, Ning Shi, Bradley Hauer, Zijun Wu, Grzegorz Kondrak, Muhammad Abdul-
 714 Mageed, and Laks VS Lakshmanan. Cross-modal consistency in multimodal large language mod-
 715 *els. arXiv preprint arXiv:2411.09273*, 2024.

716 Yunhua Zhang, Ling Shao, and Cees GM Snoek. Repetitive activity counting by sight and sound.
 717 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 718 14070–14079, 2021.

719 Hao Zhong, Muzhi Zhu, Zongze Du, Zheng Huang, Canyu Zhao, Mingyu Liu, Wen Wang, Hao
 720 Chen, and Chunhua Shen. Omni-r1: Reinforcement learning for omnimodal reasoning via two-
 721 system collaboration. *arXiv preprint arXiv:2505.20256*, 2025.

722 Ziwei Zhou, Rui Wang, and Zuxuan Wu. Daily-omni: Towards audio-visual reasoning with temporal
 723 alignment across modalities. *arXiv preprint arXiv:2505.17862*, 2025.

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A MINI BENCHMARK RESULT

We will release a standardized 6k-sample XModBench-Lite benchmark, consisting of 5 task families \times 6 modality-configuration settings, with 200 examples per setting. The dataset is balanced across both task families and modality directions. The overall performance (see Tab. 4) trends and error patterns closely mirror those reported in Tab.2 of the main paper.

Table 4: Performance on 6k version of XModBench

Model	Accuracy on 5 Task Families					Modality Configuration						Avg.
	Perc.	Spat.	Temp.	Ling.	Knwl.	A \rightarrow T	A \rightarrow V	T \rightarrow A	T \rightarrow V	V \rightarrow A	V \rightarrow T	
w/o context	25.3	25.1	24.8	24.4	25.2	26.5	24.8	24.2	24.1	25.5	25.1	25.0
Qwen2.5-VL	91.5	51.9	40.5	84.3	76.5	-	-	-	68.2	-	72.8	60.5
Intern3.5-VL	88.2	41.8	48.5	75.8	62.4	-	-	-	46.5	-	73.1	69.8
PandaGPT	24.9	25.3	23.8	24.7	21.3	25.2	25.5	22.8	24.9	24.8	23.1	24.4
Unified-IO 2	36.5	24.8	24.1	31.2	27.5	29.8	24.2	25.5	32.1	25.9	33.5	28.4
Unified-IO 2 XL	42.5	26.3	26.0	32.5	30.6	33.8	26.8	27.5	34.2	27.1	38.8	31.2
Unified-IO 2 XXL	44.1	29.0	27.3	32.9	34.7	38.0	26.3	31.8	38.5	27.3	40.5	33.6
VideoLLaMA 2	46.1	34.2	29.0	37.5	37.4	49.1	26.2	26.0	27.3	25.5	67.8	36.9
VITA	35.6	31.8	29.2	46.1	30.5	45.2	26.5	26.8	26.1	24.5	52.5	33.6
Baichuan Omni 1.5	59.5	35.5	30.8	63.9	57.2	48.5	36.2	41.1	57.2	39.1	74.5	49.5
EchoInk-R1	73.1	35.8	36.4	73.3	72.4	66.5	42.1	56.0	65.5	46.8	72.3	53.2
Qwen2.5-Omni	78.6	37.1	31.2	74.2	77.8	69.5	45.2	54.5	58.1	56.8	74.5	51.4
Gemini 1.5 Pro	56.8	40.8	38.0	71.0	69.9	53.1	38.5	49.2	71.2	41.4	80.4	55.7
Gemini 2.0 Flash	65.4	48.9	41.5	72.2	71.2	68.5	44.2	50.1	74.3	47.5	88.9	67.2
Gemini 2.5 Flash	66.5	47.1	45.3	74.4	81.2	64.8	49.4	57.5	77.2	51.0	81.6	68.6
Gemini 2.5 Pro	74.8	59.3	60.2	75.8	89.1	76.8	50.5	63.2	75.1	61.2	82.5	71.8

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 B MODALITY CONFIGURATION SCORE UNDER FIVE TASK

812 Table 5 reports the detailed results for all six modality-configuration settings ($A \rightarrow T$, $A \rightarrow V$, $T \rightarrow A$,
 813 $T \rightarrow V$, $V \rightarrow A$, $V \rightarrow T$) across the five task families in XModBench (Perception, Spatial, Temporal,
 814 Linguistic, and Knowledge), as well as the overall average score on the full benchmark.
 815

816 Table 5: Results on **XModBench** across 5 task families and 6 predefined cross-modal directions
 817 among **Text**, **Vision**, and **Audio**. The first block reports the average accuracy across all tasks, fol-
 818 lowed by Task 1–5 (Perception, Spatial, Temporal, Linguistic, External knowledge). Scores are
 819 color-coded as < 30, 30–60, 60–90, ≥ 90, with the best in each column highlighted in **bold**.
 820

821 Model	Overall Average										Task 1 - Perception									
	$A \rightarrow T$	$A \rightarrow V$	$T \rightarrow A$	$T \rightarrow V$	$V \rightarrow A$	$V \rightarrow T$	Avg.	Std.	$A \rightarrow T$	$A \rightarrow V$	$T \rightarrow A$	$T \rightarrow V$	$V \rightarrow A$	$V \rightarrow T$	Avg.	Std.				
PandaGPT	24.5	25.0	23.8	25.2	24.5	25.1	24.7	0.5	24.5	24.7	24.8	24.5	24.6	24.7	24.6	0.1				
Unified-IO 2	28.9	24.0	25.4	32.0	25.7	32.7	28.1	3.7	35.5	25.3	26.3	55.9	29.1	44.7	36.1	12.1				
Unified-IO 2 XL	33.3	27.0	27.1	32.9	26.5	37.4	30.7	4.5	53.3	27.9	30.3	59.1	27.6	55.0	42.2	15.0				
Unified-IO 2 XXL	37.4	25.0	31.2	37.8	26.7	39.9	33.0	6.3	55.0	26.9	39.0	64.2	26.7	50.2	43.7	15.4				
VideoLLaMA 2	48.6	26.0	25.7	26.5	25.2	66.8	36.5	17.4	74.7	26.6	28.3	26.8	26.5	91.5	45.7	29.4				
VITA	40.2	26.0	29.8	26.8	29.9	59.3	35.4	12.8	37.1	25.4	27.0	23.7	26.4	69.1	34.8	17.5				
Baichuan Omni 1.5	47.8	35.8	40.5	56.2	38.6	73.0	48.7	14.0	42.7	36.3	45.6	87.8	50.3	90.7	58.9	24.0				
Echolink-R1	64.6	45.9	56.4	60.9	49.9	77.6	59.2	11.3	74.1	58.5	69.3	91.6	67.7	93.4	75.8	13.9				
Qwen2.5-Omni	62.0	48.0	55.4	59.6	50.5	76.3	58.6	10.1	72.9	59.1	69.2	91.2	68.5	92.0	75.5	13.3				
Gemini 1.5 Pro	52.4	38.2	48.6	70.4	40.7	79.9	55.0	16.7	41.0	27.9	45.0	95.8	32.1	95.3	56.2	31.1				
Gemini 2.0 Flash	63.7	49.0	52.2	71.5	47.6	85.2	61.2	15.2	56.8	45.0	54.2	92.7	55.1	93.4	66.2	21.2				
Gemini 2.5 Flash	62.6	51.2	55.1	75.7	51.9	86.0	63.7	14.2	52.6	44.3	53.4	95.4	56.0	95.0	66.1	22.8				
Gemini 2.5 Pro	71.0	58.9	64.4	79.8	60.8	88.6	70.6	11.7	62.3	57.4	68.5	97.1	72.6	97.6	75.9	17.4				
Human	92.4	91.5	91.1	91.8	86.4	95.6	91.5	3.0	92.9	94.2	91.3	89.2	85.4	92.9	91.0	3.2				
830 Model	Task 2 - Spatial										Task 3 - Temporal									
	$A \rightarrow T$	$A \rightarrow V$	$T \rightarrow A$	$T \rightarrow V$	$V \rightarrow A$	$V \rightarrow T$	Avg.	Std.	$A \rightarrow T$	$A \rightarrow V$	$T \rightarrow A$	$T \rightarrow V$	$V \rightarrow A$	$V \rightarrow T$	Avg.	Std.				
PandaGPT	25.5	26.6	26.0	27.2	25.8	23.1	25.7	1.4	21.9	25.3	24.8	26.0	24.5	23.9	24.4	1.4				
Unified-IO 2	26.0	20.7	22.4	25.0	23.1	24.7	23.6	1.9	22.7	22.4	25.1	24.3	25.8	22.4	23.8	1.5				
Unified-IO 2 XL	24.8	23.0	25.8	26.0	24.5	25.0	25.0	1.2	22.3	24.5	28.8	22.1	26.0	32.7	26.1	4.1				
Unified-IO 2 XXL	29.6	23.6	30.9	25.5	29.5	30.7	28.3	3.0	24.3	27.4	25.3	29.6	25.2	34.4	27.7	3.8				
VideoLLaMA 2	43.9	27.8	24.4	27.5	25.2	54.3	33.9	12.3	31.0	25.0	27.7	25.9	25.8	39.8	29.2	5.6				
VITA	42.3	28.9	24.6	30.9	25.1	52.2	34.0	11.0	31.1	25.1	26.1	24.6	27.6	41.7	29.4	6.5				
Baichuan Omni 1.5	38.1	28.0	25.1	31.7	25.3	61.2	34.9	13.8	27.0	25.2	23.9	26.9	25.0	52.2	30.0	10.9				
Echolink-R1	41.3	27.2	26.8	34.0	28.0	62.2	36.6	13.7	38.2	26.2	38.6	31.1	26.9	61.6	37.1	13.1				
Qwen2.5-Omni	41.8	31.2	26.7	34.4	28.6	67.8	38.4	15.3	26.9	28.7	36.6	25.6	25.3	50.8	32.3	10.0				
Gemini 1.5 Pro	37.2	31.2	24.5	51.4	23.7	72.8	40.1	19.0	37.1	27.2	31.0	47.3	24.5	55.7	37.1	12.2				
Gemini 2.0 Flash	45.2	43.1	29.2	56.4	33.5	83.0	48.4	20.4	51.8	30.8	38.6	48.0	27.4	72.0	44.8	16.3				
Gemini 2.5 Flash	45.6	31.4	30.2	71.2	26.7	83.2	48.0	23.8	48.8	39.6	39.1	51.4	38.0	74.6	48.6	13.9				
Gemini 2.5 Pro	41.0	32.9	32.1	75.8	30.3	88.3	50.1	25.4	76.4	54.4	57.7	55.4	50.6	70.6	60.8	10.3				
Human	93.3	93.3	81.7	86.7	86.7	96.7	89.7	5.7	90.0	85.0	86.7	91.7	83.3	96.7	88.9	4.9				
840 Model	Task 4 - Linguistic										Task 5 - External Knowledge									
	$A \rightarrow T$	$A \rightarrow V$	$T \rightarrow A$	$T \rightarrow V$	$V \rightarrow A$	$V \rightarrow T$	Avg.	Std.	$A \rightarrow T$	$A \rightarrow V$	$T \rightarrow A$	$T \rightarrow V$	$V \rightarrow A$	$V \rightarrow T$	Avg.	Std.				
PandaGPT	28.0	24.3	20.7	24.7	24.3	31.3	25.5	3.6	22.8	23.9	22.6	23.6	23.3	22.6	23.1	0.5				
Unified-IO 2	32.4	27.5	27.6	27.9	25.2	41.7	30.4	6.0	28.2	24.2	25.8	27.1	25.3	29.9	26.8	2.1				
Unified-IO 2 XL	34.4	31.7	24.5	28.8	23.6	41.8	30.8	6.8	31.9	27.9	26.2	28.6	29.5	32.9	29.5	2.5				
Unified-IO 2 XXL	39.9	23.0	25.5	30.1	22.3	46.6	31.2	9.9	38.4	23.9	35.3	39.5	29.7	37.4	34.0	6.0				
VideoLLaMA 2	50.3	25.2	24.2	25.2	24.1	71.2	36.7	19.8	42.9	25.5	23.9	27.0	24.4	76.9	36.8	20.9				
VITA	52.2	26.8	47.1	29.9	47.9	72.5	46.1	16.6	38.5	24.1	24.2	24.7	22.6	61.2	32.6	15.2				
Baichuan Omni 1.5	77.0	45.7	65.8	51.8	58.7	77.6	62.8	13.1	54.3	43.9	41.9	82.9	33.7	83.2	56.7	21.5				
Echolink-R1	86.0	57.4	74.6	64.4	70.1	87.3	73.3	11.8	83.3	60.4	72.7	83.6	56.6	83.3	73.3	12.3				
Qwen2.5-Omni	85.6	61.8	73.6	64.6	71.5	87.5	74.1	10.6	83.0	59.2	70.7	82.5	58.6	83.2	72.8	11.8				
Gemini 1.5 Pro	86.2	52.4	72.3	68.7	70.7	85.5	72.6	12.0	62.3	52.5	70.2	88.8	52.3	90.3	69.4	17.0				
Gemini 2.0 Flash	83.6	57.5	68.6	67.3	60.9	83.4	70.2	11.1	81.2	68.3	70.5	93.1	61.3	94.2	78.1	13.6				
Gemini 2.5 Flash	84.1	68.3	70.9	66.8	64.4	84.4	73.1	8.9	82.0	72.2	81.7	93.9	74.5	92.7	82.8	9.0				
Gemini 2.5 Pro	84.9	67.5	75.5	76.1	65.8	91.4	76.8	9.9	90.3	82.5	88.2	94.6	84.8	95.1	89.3	5.1				
Human	89.2	96.7	97.5	93.3	91.7	95.0	93.9	2.8	96.7	88.3	98.3	98.3	85.0	96.7	93.9	5.8				

849 C TASK SPECIFED MODEL PERFORMANCE

850 C.1 TASK 1: PERCEPTUAL TASK

851 Table 6: T1 (Perception) Results

852 Model		853 Perception Task				
854 Model	855 Task	856 General	857 General - Hard	858 Scene	859 Instruments	860 Instruments-multi
Gemini 2.5 Pro	Audio \rightarrow Text	81.05	71.39	67.20	47.75	44.09
	Audio \rightarrow Vision	76.26	65.25	64.60	44.30	36.60
	Text \rightarrow Audio	79.95	79.22	75.05	59.05	49.30
	Text \rightarrow Vision	98.90	97.87	90.80	97.90	99.80
	Vision \rightarrow Audio	88.73	79.35	84.40	61.92	48.79
	Vision \rightarrow Text	98.37	97.50	95.00	97.19	99.80

863 Continued on next page

864

865

866

867

Table 6 – continued from previous page

Model		Perception Task				
Model	Task	General	General - Hard	Scene	Instruments	Instruments-multi
Gemini 2.5 Flash	Audio \leftrightarrow Text	81.00	50.00	51.01	45.82	35.27
	Audio \leftrightarrow Vision	62.63	50.39	47.60	30.99	29.92
	Text \leftrightarrow Audio	79.80	59.13	57.34	37.90	32.99
	Text \leftrightarrow Vision	98.96	91.45	90.20	96.50	99.74
	Vision \leftrightarrow Audio	82.10	60.59	67.54	39.80	29.92
	Vision \leftrightarrow Text	98.39	96.62	92.60	89.88	97.27
Gemini 2.0 Flash	Audio \leftrightarrow Text	81.10	62.07	54.00	47.05	39.80
	Audio \leftrightarrow Vision	67.45	51.68	49.80	31.50	24.80
	Text \leftrightarrow Audio	79.95	60.64	53.80	38.80	37.60
	Text \leftrightarrow Vision	98.95	91.45	80.40	96.90	95.60
	Vision \leftrightarrow Audio	82.50	66.45	53.00	37.90	35.40
	Vision \leftrightarrow Text	96.95	90.22	84.80	96.70	98.40
Gemini 1.5 Pro	Audio \leftrightarrow Text	80.90	36.38	29.20	30.93	27.40
	Audio \leftrightarrow Vision	34.35	30.00	28.40	23.60	23.00
	Text \leftrightarrow Audio	80.25	45.88	41.80	31.10	26.20
	Text \leftrightarrow Vision	98.75	95.88	89.40	98.10	97.00
	Vision \leftrightarrow Audio	41.85	34.38	31.80	27.70	25.00
	Vision \leftrightarrow Text	95.10	94.62	87.80	98.90	100.00
Qwen2.5 Omni	Audio \leftrightarrow Text	80.00	74.50	79.20	69.37	61.40
	Audio \leftrightarrow Vision	71.10	54.30	59.80	58.30	51.80
	Text \leftrightarrow Audio	81.20	69.90	78.80	67.40	48.80
	Text \leftrightarrow Vision	94.90	87.70	89.60	90.80	92.80
	Vision \leftrightarrow Audio	83.90	68.50	61.20	68.30	60.60
	Vision \leftrightarrow Text	97.50	87.00	88.00	91.80	95.80
EchoInk	Audio \leftrightarrow Text	87.55	74.80	77.10	68.20	63.00
	Audio \leftrightarrow Vision	74.60	58.40	49.00	58.20	52.10
	Text \leftrightarrow Audio	84.57	66.40	79.40	69.14	46.80
	Text \leftrightarrow Vision	95.00	91.80	88.40	89.78	92.80
	Vision \leftrightarrow Audio	82.80	68.80	60.40	69.14	57.52
	Vision \leftrightarrow Text	96.00	95.20	87.80	92.38	95.79
Baichuan Omni 1.5	Audio \leftrightarrow Text	55.85	44.05	46.40	36.44	31.00
	Audio \leftrightarrow Vision	44.45	37.43	43.20	29.60	26.60
	Text \leftrightarrow Audio	63.80	50.90	53.60	32.80	27.00
	Text \leftrightarrow Vision	97.35	88.10	81.20	84.50	88.00
	Vision \leftrightarrow Audio	68.25	53.75	58.80	38.40	32.20
	Vision \leftrightarrow Text	95.90	87.12	86.80	92.70	90.80
VideoLLaMA 2	Audio \leftrightarrow Text	86.84	76.85	77.26	75.86	56.89
	Audio \leftrightarrow Vision	26.82	26.82	24.45	29.26	25.82
	Text \leftrightarrow Audio	30.69	28.21	28.89	28.45	25.07
	Text \leftrightarrow Vision	25.49	27.49	26.03	29.25	25.89
	Vision \leftrightarrow Audio	29.28	27.47	25.30	29.26	21.04
	Vision \leftrightarrow Text	97.05	91.48	87.45	89.40	92.23
VITA	Audio \leftrightarrow Text	43.30	32.99	39.18	39.18	30.93
	Audio \leftrightarrow Vision	22.68	20.62	28.87	28.87	25.77
	Text \leftrightarrow Audio	28.96	24.24	24.92	28.28	28.62
	Text \leftrightarrow Vision	20.62	25.77	31.96	21.65	18.56
	Vision \leftrightarrow Audio	23.57	29.29	24.92	25.93	28.28
	Vision \leftrightarrow Text	64.95	73.20	58.76	74.23	74.23
Unified IO 2	Audio \leftrightarrow Text	49.05	45.26	32.04	26.46	24.44
	Audio \leftrightarrow Vision	27.00	26.84	30.65	19.40	22.45
	Text \leftrightarrow Audio	26.68	25.86	25.27	27.64	26.20
	Text \leftrightarrow Vision	73.28	56.44	72.67	27.26	49.89
	Vision \leftrightarrow Audio	27.89	24.09	43.22	24.05	26.26
	Vision \leftrightarrow Text	55.83	44.21	32.81	48.66	41.86
Unified IO 2 XL	Audio \leftrightarrow Text	76.64	71.68	57.82	33.68	26.87
	Audio \leftrightarrow Vision	28.04	25.21	34.89	22.29	29.22
	Text \leftrightarrow Audio	39.47	28.46	33.02	23.80	26.84
	Text \leftrightarrow Vision	81.89	68.28	69.87	22.09	53.29
	Vision \leftrightarrow Audio	26.46	24.43	35.05	24.80	27.03
	Vision \leftrightarrow Text	61.10	51.83	53.06	60.49	48.50
Unified IO 2 XXL	Audio \leftrightarrow Text	83.63	71.20	45.88	41.45	32.83
	Audio \leftrightarrow Vision	29.07	23.28	27.41	27.09	27.87
	Text \leftrightarrow Audio	59.87	44.10	35.40	27.68	28.09
	Text \leftrightarrow Vision	86.07	73.08	71.29	36.07	54.44
	Vision \leftrightarrow Audio	28.66	29.81	24.82	24.01	26.07
	Vision \leftrightarrow Text	53.46	48.64	40.49	61.85	46.68
PandaGPT	Audio \leftrightarrow Text	25.03	28.80	24.49	24.30	19.99
	Audio \leftrightarrow Vision	26.52	27.37	24.63	24.89	20.15

Continued on next page

918

919

920

921

922

923

924

925

926

C.2 TASK 2: SPATIAL REASONING

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Table 6 – continued from previous page

Model		Perception Task				
Model	Task	General	General - Hard	Scene	Instruments	Instruments-multi
PandaGPT	Text \leftrightarrow Audio	25.40	29.65	24.25	24.77	20.08
	Text \leftrightarrow Vision	25.07	28.68	24.22	24.52	20.19
	Vision \leftrightarrow Audio	25.26	28.81	24.50	24.52	19.85
	Vision \leftrightarrow Text	25.26	28.70	24.64	24.90	20.05

Table 7: T2 (Spatial) Task Results

Model		Spatial Task		
Model	Task	Arrangement	Moving Direction	Indoor
Gemini 2.5 Pro	Audio \rightarrow Text	28.82	69.39	24.87
	Audio \rightarrow Vision	24.73	40.65	33.38
	Text \rightarrow Audio	30.09	39.02	27.09
	Text \rightarrow Vision	95.70	58.85	72.73
	Vision \rightarrow Audio	29.01	38.10	23.86
	Vision \rightarrow Text	95.21	85.23	84.56
Gemini 2.5 Flash	Audio \rightarrow Text	27.53	83.53	25.64
	Audio \rightarrow Vision	26.54	36.03	31.61
	Text \rightarrow Audio	25.81	35.34	29.37
	Text \rightarrow Vision	91.40	66.44	55.71
	Vision \rightarrow Audio	27.44	26.44	26.12
	Vision \rightarrow Text	91.40	84.05	74.25
Gemini 2.0 Flash	Audio \rightarrow Text	28.82	82.71	24.10
	Audio \rightarrow Vision	26.45	37.58	35.38
	Text \rightarrow Audio	27.31	39.41	21.01
	Text \rightarrow Vision	67.53	66.99	34.62
	Vision \rightarrow Audio	25.81	45.78	28.86
	Vision \rightarrow Text	89.25	99.02	60.76
Gemini 1.5 Pro	Audio \rightarrow Text	29.25	57.37	24.87
	Audio \rightarrow Vision	27.10	32.87	33.59
	Text \rightarrow Audio	19.25	34.26	20.00
	Text \rightarrow Vision	64.30	50.80	39.23
	Vision \rightarrow Audio	23.66	21.82	25.57
	Vision \rightarrow Text	95.48	80.00	43.04
Qwen2.5 Omni	Audio \rightarrow Text	21.29	75.28	28.89
	Audio \rightarrow Vision	28.60	35.83	29.23
	Text \rightarrow Audio	20.22	31.52	28.35
	Text \rightarrow Vision	45.38	26.98	30.77
	Vision \rightarrow Audio	23.87	34.69	27.34
	Vision \rightarrow Text	80.86	81.63	41.01
EchoInk	Audio \rightarrow Text	27.79	61.62	34.34
	Audio \rightarrow Vision	24.97	25.59	30.98
	Text \rightarrow Audio	26.60	28.96	24.92
	Text \rightarrow Vision	46.80	25.59	29.63
	Vision \rightarrow Audio	24.88	31.31	27.95
	Vision \rightarrow Text	80.13	61.62	44.78
Baichuan Omni 1.5	Audio \rightarrow Text	28.39	71.43	14.36
	Audio \rightarrow Vision	28.17	28.51	27.18
	Text \rightarrow Audio	22.37	27.21	25.57
	Text \rightarrow Vision	35.70	36.32	23.08
	Vision \rightarrow Audio	25.38	22.95	27.59
	Vision \rightarrow Text	71.40	82.95	29.37

Continued on next page

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 7 – continued from previous page

Model		Spatial Task		
Model	Task	Arrangement	Moving Direction	Indoor
VideoLLaMA 2	Audio \rightarrow Text	31.40	62.44	37.76
	Audio \rightarrow Vision	27.40	27.75	28.22
	Text \rightarrow Audio	26.76	27.04	19.53
	Text \rightarrow Vision	27.36	27.01	28.25
	Vision \rightarrow Audio	25.63	29.28	20.77
	Vision \rightarrow Text	46.96	84.21	31.70
VITA	Audio \rightarrow Text	29.90	77.32	19.59
	Audio \rightarrow Vision	30.93	26.80	28.87
	Text \rightarrow Audio	23.23	25.59	25.00
	Text \rightarrow Vision	29.90	31.96	30.93
	Vision \rightarrow Audio	24.92	25.59	24.66
	Vision \rightarrow Text	57.73	55.67	43.30
Unified IO 2	Audio \rightarrow Text	23.03	20.47	34.40
	Audio \rightarrow Vision	21.98	17.20	22.89
	Text \rightarrow Audio	23.50	20.69	22.87
	Text \rightarrow Vision	25.63	24.03	25.22
	Vision \rightarrow Audio	24.09	17.32	27.86
	Vision \rightarrow Text	28.60	24.10	21.49
Unified IO 2 XL	Audio \rightarrow Text	23.09	28.42	22.88
	Audio \rightarrow Vision	22.20	20.09	26.75
	Text \rightarrow Audio	24.82	22.92	29.70
	Text \rightarrow Vision	24.18	24.25	29.56
	Vision \rightarrow Audio	24.12	21.78	32.17
	Vision \rightarrow Text	27.41	24.10	21.93
Unified IO 2 XXL	Audio \rightarrow Text	22.58	30.07	36.18
	Audio \rightarrow Vision	24.54	24.02	22.37
	Text \rightarrow Audio	25.85	38.11	28.71
	Text \rightarrow Vision	25.39	30.02	21.10
	Vision \rightarrow Audio	25.45	28.33	34.77
	Vision \rightarrow Text	30.36	30.91	30.80
PandaGPT	Audio \rightarrow Text	25.42	25.62	25.44
	Audio \rightarrow Vision	27.22	25.63	26.91
	Text \rightarrow Audio	27.06	25.58	25.27
	Text \rightarrow Vision	27.01	25.95	28.57
	Vision \rightarrow Audio	27.16	25.53	24.57
	Vision \rightarrow Text	21.19	25.72	22.34

1010
1011
1012
1013
C.3 TASK 3: TEMPORAL REASONING1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 8: T3 (Temporal) Task Results

Model		Temporal Task		
Model	Task	Order	Counting	Calculation
Gemini 2.5 Pro	Audio \rightarrow Text	96.18	57.36	75.78
	Audio \rightarrow Vision	95.38	37.88	29.87
	Text \rightarrow Audio	95.39	50.00	27.60
	Text \rightarrow Vision	99.80	35.85	30.63
	Vision \rightarrow Audio	96.35	34.70	20.65
	Vision \rightarrow Text	99.80	40.58	71.46
Gemini 2.5 Flash	Audio \rightarrow Text	41.40	49.60	55.40
	Audio \rightarrow Vision	58.99	33.07	26.88
	Text \rightarrow Audio	61.00	29.40	27.00
	Text \rightarrow Vision	99.15	29.45	25.51

19
Continued on next page

Table 8 – continued from previous page

Model		Temporal Task		
Model	Task	Order	Counting	Calculation
Gemini 2.0 Flash	Vision \mapsto Audio	63.39	26.58	24.13
	Vision \mapsto Text	99.20	53.37	71.22
Gemini 1.5 Pro	Audio \mapsto Text	43.60	52.60	59.20
	Audio \mapsto Vision	33.40	30.17	28.93
	Text \mapsto Audio	61.40	28.80	25.60
	Text \mapsto Vision	81.40	33.33	29.16
	Vision \mapsto Audio	33.40	28.22	20.65
	Vision \mapsto Text	99.20	57.87	58.90
Qwen2.5 Omni	Audio \mapsto Text	34.40	30.00	47.00
	Audio \mapsto Vision	32.00	24.44	25.10
	Text \mapsto Audio	38.60	30.20	24.20
	Text \mapsto Vision	82.00	33.88	26.14
	Vision \mapsto Audio	27.60	23.87	21.88
	Vision \mapsto Text	98.40	25.26	43.56
EchoInk	Audio \mapsto Text	28.20	25.80	26.60
	Audio \mapsto Vision	34.80	22.22	28.96
	Text \mapsto Audio	63.80	19.40	26.60
	Text \mapsto Vision	24.80	22.90	28.96
	Vision \mapsto Audio	26.40	23.57	25.93
	Vision \mapsto Text	85.00	41.41	25.93
Baichuan Omni 1.5	Audio \mapsto Text	35.00	48.48	30.98
	Audio \mapsto Vision	30.98	23.57	23.91
	Text \mapsto Audio	68.69	21.89	25.25
	Text \mapsto Vision	43.10	22.56	27.61
	Vision \mapsto Audio	31.99	23.57	25.25
	Vision \mapsto Text	93.60	46.80	44.44
VideoLLaMA 2	Audio \mapsto Text	23.00	34.40	23.60
	Audio \mapsto Vision	23.80	25.74	25.99
	Text \mapsto Audio	23.40	23.00	25.40
	Text \mapsto Vision	25.80	26.23	28.77
	Vision \mapsto Audio	25.20	28.34	21.47
	Vision \mapsto Text	70.20	53.18	33.13
VITA	Audio \mapsto Text	25.82	35.90	31.23
	Audio \mapsto Vision	25.23	25.80	24.03
	Text \mapsto Audio	34.29	22.09	26.70
	Text \mapsto Vision	26.66	26.06	24.90
	Vision \mapsto Audio	27.03	23.64	26.67
	Vision \mapsto Text	50.40	32.44	36.67
Unified IO 2	Audio \mapsto Text	26.26	38.14	28.87
	Audio \mapsto Vision	16.49	31.17	27.52
	Text \mapsto Audio	26.80	27.61	23.91
	Text \mapsto Vision	22.68	25.62	25.58
	Vision \mapsto Audio	28.62	26.71	27.59
	Vision \mapsto Text	42.27	49.66	33.10
Unified IO 2 XL	Audio \mapsto Text	24.28	18.25	25.44
	Audio \mapsto Vision	21.50	22.61	23.03
	Text \mapsto Audio	30.02	23.46	21.89
	Text \mapsto Vision	25.25	24.85	22.86
	Vision \mapsto Audio	25.46	26.29	25.65
	Vision \mapsto Text	27.68	16.25	23.37

Continued on next page

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Table 8 – continued from previous page

Model		Temporal Task		
Model	Task	Order	Counting	Calculation
Unified IO 2 XXL	Vision \leftrightarrow Text	37.30	36.42	24.44
	Audio \leftrightarrow Text	24.41	26.81	21.62
	Audio \leftrightarrow Vision	25.26	29.68	27.17
	Text \leftrightarrow Audio	28.83	22.43	24.61
	Text \leftrightarrow Vision	23.70	37.78	27.37
	Vision \leftrightarrow Audio	23.63	24.69	27.28
Panda	Vision \leftrightarrow Text	41.69	38.50	22.95
	Audio \leftrightarrow Text	25.85	16.77	23.17
	Audio \leftrightarrow Vision	26.06	22.60	27.31
	Text \leftrightarrow Audio	25.72	22.81	25.80
	Text \leftrightarrow Vision	26.31	22.77	29.02
	Vision \leftrightarrow Audio	26.10	22.77	24.59
	Vision \leftrightarrow Text	25.51	22.94	23.37

C.4 TASK 4: LINGUISTIC TASK

Table 9: T4 Linguistic Task Results

Model		Linguistic Task		
Model	Task	Recognition	Translation	Emotion
Gemini 2.5 Pro	Audio \leftrightarrow Text	97.16	96.58	60.86
	Audio \leftrightarrow Vision	91.65	67.95	42.75
	Text \leftrightarrow Audio	80.35	81.62	64.51
	Text \leftrightarrow Vision	93.58	67.38	67.31
	Vision \leftrightarrow Audio	80.81	73.22	43.43
	Vision \leftrightarrow Text	99.54	100.00	74.54
Gemini 2.5 Flash	Audio \leftrightarrow Text	94.05	97.44	60.86
	Audio \leftrightarrow Vision	68.01	93.30	43.67
	Text \leftrightarrow Audio	76.92	81.34	54.43
	Text \leftrightarrow Vision	72.88	67.24	60.14
	Vision \leftrightarrow Audio	74.95	72.93	45.22
	Vision \leftrightarrow Text	99.40	96.72	57.14
Gemini 2.0 Flash	Audio \leftrightarrow Text	92.86	97.29	60.57
	Audio \leftrightarrow Vision	68.30	67.66	36.43
	Text \leftrightarrow Audio	69.79	81.20	54.86
	Text \leftrightarrow Vision	73.92	67.66	60.43
	Vision \leftrightarrow Audio	66.52	73.08	43.00
	Vision \leftrightarrow Text	96.43	97.15	56.71
Gemini 1.5 Pro	Audio \leftrightarrow Text	94.94	97.15	60.43
	Audio \leftrightarrow Vision	73.96	46.72	36.57
	Text \leftrightarrow Audio	83.33	80.91	52.57
	Text \leftrightarrow Vision	76.93	66.81	62.43
	Vision \leftrightarrow Audio	80.80	92.02	39.20
	Vision \leftrightarrow Text	96.73	96.44	63.29
Qwen2.5 Omni	Audio \leftrightarrow Text	94.64	96.72	65.29
	Audio \leftrightarrow Vision	62.95	73.36	48.94
	Text \leftrightarrow Audio	81.25	86.75	52.71
	Text \leftrightarrow Vision	65.03	69.09	59.79
	Vision \leftrightarrow Audio	82.44	88.60	43.57
	Vision \leftrightarrow Text	97.17	97.72	67.57
EchoInk	Audio \leftrightarrow Text	92.93	95.96	69.02
	Audio \leftrightarrow Vision	64.98	71.38	35.69
	Text \leftrightarrow Audio	80.47	81.48	61.95

Continued on next page

Table 9 – continued from previous page

Model		Linguistic Task		
Model	Task	Recognition	Translation	Emotion
Baichuan Omni 1.5	Text \leftrightarrow Vision	68.35	67.68	57.24
	Vision \leftrightarrow Audio	81.48	85.86	43.10
	Vision \leftrightarrow Text	96.63	97.31	68.01
VideoLLaMA 2	Audio \leftrightarrow Text	87.05	96.01	48.00
	Audio \leftrightarrow Vision	55.36	56.55	25.25
	Text \leftrightarrow Audio	64.29	84.94	48.29
	Text \leftrightarrow Vision	55.95	52.56	46.99
	Vision \leftrightarrow Audio	65.03	84.06	27.14
	Vision \leftrightarrow Text	92.56	96.72	43.43
VITA	Audio \leftrightarrow Text	69.04	67.40	14.48
	Audio \leftrightarrow Vision	24.82	26.00	24.68
	Text \leftrightarrow Audio	22.82	22.02	27.68
	Text \leftrightarrow Vision	25.03	25.80	24.65
	Vision \leftrightarrow Audio	24.07	23.25	25.01
	Vision \leftrightarrow Text	83.86	86.80	43.00
Unified IO 2	Audio \leftrightarrow Text	39.18	73.20	44.33
	Audio \leftrightarrow Vision	24.74	24.74	30.93
	Text \leftrightarrow Audio	39.73	55.56	46.13
	Text \leftrightarrow Vision	30.93	25.77	32.99
	Vision \leftrightarrow Audio	53.87	61.95	27.95
	Vision \leftrightarrow Text	86.60	88.66	42.27
Unified IO 2 XL	Audio \leftrightarrow Text	62.01	14.06	21.05
	Audio \leftrightarrow Vision	35.66	20.90	25.83
	Text \leftrightarrow Audio	26.60	26.36	29.85
	Text \leftrightarrow Vision	25.89	26.00	31.82
	Vision \leftrightarrow Audio	24.24	25.14	26.27
	Vision \leftrightarrow Text	66.06	18.90	40.01
Unified IO 2 XXL	Audio \leftrightarrow Text	69.63	17.26	16.29
	Audio \leftrightarrow Vision	45.46	26.28	23.28
	Text \leftrightarrow Audio	27.82	23.75	21.90
	Text \leftrightarrow Vision	30.65	25.26	30.47
	Vision \leftrightarrow Audio	25.07	23.70	21.88
	Vision \leftrightarrow Text	75.27	23.23	27.02
PandaGPT	Audio \leftrightarrow Text	72.67	17.63	29.46
	Audio \leftrightarrow Vision	18.23	27.43	23.24
	Text \leftrightarrow Audio	23.04	25.97	27.47
	Text \leftrightarrow Vision	31.09	27.84	31.42
	Vision \leftrightarrow Audio	19.43	23.31	24.06
	Vision \leftrightarrow Text	78.04	26.88	34.88

C.5 TASK 5: EXTERNAL KNOWLEDGE

Table 10: T5 (External) Task Results

Model		External Task		
Model	Task	Genre	Movie	Singer
Gemini 2.5 Pro	Audio \leftrightarrow Text	83.28	93.00	94.67
	Audio \leftrightarrow Vision	74.80	89.90	82.67
	Text \leftrightarrow Audio	78.16	94.50	91.95
	Text \leftrightarrow Vision	85.76	97.99	100.00
	Vision \leftrightarrow Audio	72.42	92.00	90.00
	Vision \leftrightarrow Text	88.95	96.45	100.00
Gemini 2.5 Flash	Audio \leftrightarrow Text	83.78	93.00	69.13
	Audio \leftrightarrow Vision	63.36	82.41	70.92
	Text \leftrightarrow Audio	78.56	90.45	76.00
	Text \leftrightarrow Vision	85.00	97.99	98.67
	Vision \leftrightarrow Audio	63.96	88.32	71.33
	Vision \leftrightarrow Text	86.34	98.00	93.71
Gemini 2.0 Flash	Audio \leftrightarrow Text	83.50	88.00	72.00
	Audio \leftrightarrow Vision	62.40	86.50	56.00
	Text \leftrightarrow Audio	78.46	82.50	50.67
	Text \leftrightarrow Vision	84.50	98.00	96.67
	Vision \leftrightarrow Audio	66.43	79.50	38.00
	Vision \leftrightarrow Text	87.50	95.00	100.00
Gemini 1.5 Pro	Audio \leftrightarrow Text	61.70	78.00	47.33
	Audio \leftrightarrow Vision	42.90	74.50	40.00
	Text \leftrightarrow Audio	63.53	84.50	62.67
	Text \leftrightarrow Vision	82.10	95.50	88.67
	Vision \leftrightarrow Audio	45.59	74.00	37.33
	Vision \leftrightarrow Text	87.10	95.00	88.67
Qwen2.5 Omni	Audio \leftrightarrow Text	89.50	79.50	80.00
	Audio \leftrightarrow Vision	61.40	67.50	48.67
	Text \leftrightarrow Audio	85.65	70.50	56.00
	Text \leftrightarrow Vision	74.20	94.50	78.67
	Vision \leftrightarrow Audio	81.82	60.50	33.33
	Vision \leftrightarrow Text	79.00	92.50	78.00
EchoInk	Audio \leftrightarrow Text	87.54	82.50	80.00
	Audio \leftrightarrow Vision	61.95	68.00	51.33
	Text \leftrightarrow Audio	84.51	73.00	60.67
	Text \leftrightarrow Vision	77.78	93.00	80.00
	Vision \leftrightarrow Audio	62.63	64.50	42.67
	Vision \leftrightarrow Text	79.12	93.50	77.33
Baichuan Omni 1.5	Audio \leftrightarrow Text	65.60	56.00	41.33
	Audio \leftrightarrow Vision	45.30	54.50	32.00
	Text \leftrightarrow Audio	25.75	60.00	40.00
	Text \leftrightarrow Vision	77.00	94.50	77.33
	Vision \leftrightarrow Audio	27.15	46.50	27.33
	Vision \leftrightarrow Text	81.20	94.50	74.00
VideoLLaMA 2	Audio \leftrightarrow Text	62.60	26.59	39.38
	Audio \leftrightarrow Vision	26.23	23.56	26.72
	Text \leftrightarrow Audio	24.85	21.59	25.34
	Text \leftrightarrow Vision	26.40	28.55	26.09
	Vision \leftrightarrow Audio	25.67	23.56	24.10
	Vision \leftrightarrow Text	68.27	80.55	82.02
VITA	Audio \leftrightarrow Text	46.39	40.21	28.87
	Audio \leftrightarrow Vision	20.62	26.80	24.74
	Text \leftrightarrow Audio	21.89	25.50	25.33
	Text \leftrightarrow Vision	20.62	31.96	21.65
	Vision \leftrightarrow Audio	23.23	22.00	22.67
	Vision \leftrightarrow Text	47.42	81.44	54.64

Continued on next page

1242
1243 **Table 10 – continued from previous page**
1244
1245

Model		External Task		
Model	Task	Genre	Movie	Singer
Unified IO 2	Audio \leftrightarrow Text	31.83	22.53	30.09
	Audio \leftrightarrow Vision	22.30	29.03	21.40
	Text \leftrightarrow Audio	26.25	24.51	26.71
	Text \leftrightarrow Vision	34.46	26.03	20.71
	Vision \leftrightarrow Audio	25.45	20.57	30.01
	Vision \leftrightarrow Text	27.90	34.59	27.33
Unified IO 2 XL	Audio \leftrightarrow Text	36.80	27.52	31.40
	Audio \leftrightarrow Vision	29.23	29.09	25.40
	Text \leftrightarrow Audio	24.12	25.09	29.34
	Text \leftrightarrow Vision	34.41	24.57	26.68
	Vision \leftrightarrow Audio	26.51	32.55	29.41
	Vision \leftrightarrow Text	24.86	35.76	38.05
Unified IO 2 XXL	Audio \leftrightarrow Text	57.68	22.71	34.70
	Audio \leftrightarrow Vision	26.83	20.56	24.42
	Text \leftrightarrow Audio	47.92	26.52	31.43
	Text \leftrightarrow Vision	51.85	24.01	42.75
	Vision \leftrightarrow Audio	25.06	30.57	33.40
	Vision \leftrightarrow Text	28.20	36.55	47.36
Panda	Audio \leftrightarrow Text	25.77	21.32	21.24
	Audio \leftrightarrow Vision	25.74	24.49	21.42
	Text \leftrightarrow Audio	22.11	25.18	20.37
	Text \leftrightarrow Vision	24.63	24.64	21.40
	Vision \leftrightarrow Audio	23.93	24.58	21.29
	Vision \leftrightarrow Text	26.32	21.07	20.39

1272

C.6 EVALUATION COST

1273
1274 We provide a detailed evaluation cost section as a reference of usage. We evaluate on the full version (60k
1275 sample) of XModBench, API-based models we test **Gemini 2.5 Pro**, we report the *token usage* for evaluating
1276 the overall benchmark and each task family . For open-source models we report **Qwen2.5-Omni**, we report the
1277 *evaluation runing time*, using with eight A6000 GPUs and each GPU run one process.1278 Table 11: Evaluation cost estimation for models across the five task families and the full benchmark.
1279

Model	Perc.	Spat.	Temp.	Ling.	Knwl.	Total
Gemini 2.5 Pro (<i>Token usage</i>)	26.0M	13.5M	25.1M	4.3M	14.0M	82.9M
Qwen2.5-Omni (<i>Hours</i>)	6.3	1.4	1.4	1.4	2.1	12.7

1286

D INTERLEAVING VISUAL AUDIO INPUT

1287
1288 In the preceding experiments, we showed that omni-language models exhibit varying performance in pairwise
1289 cross-modal reasoning, particularly between vision–text and audio–text tasks. Yet, real-world multimodal
1290 scenarios are more complex: information from multiple modalities often arrives simultaneously and must be
1291 processed in an integrated manner. To address this challenge, we extend all tasks in XModBench to an audio–visual
1292 context configuration, where the question stem provides both audio and visual cues, while the candidate space
1293 remains identical to the original text-based setting.1294 We evaluate this dual-context setup using the Gemini series of models, which represent some of the most
1295 advanced omni-language systems available. The results, presented in Tab. 12, enable a direct comparison with
the pairwise baseline and reveal how models leverage—or fail to leverage—simultaneous multimodal evidence.

1296 Table 12: Overall performance of Gemini models under the dual-context setting (audio+visual con-
 1297 text \mapsto text). We compare with pairwise baselines ($A \mapsto T$ and $V \mapsto T$), and report the stronger
 1298 unimodal baseline $\max(A \mapsto T, V \mapsto T)$.

Setting	Gemini 1.5 Pro	Gemini 2.0 Flash	Gemini 2.5 Pro
$A \mapsto T$	52.76	63.71	70.99
$V \mapsto T$	79.92	85.20	88.60
$A+V \mapsto T$	82.53 (+2.61)	79.84	89.76

E HUMAN SURVEY

1308 To evaluate human performance and establish reference baselines, we conducted a user study on a subset of
 1309 **XModBench**. Participants answered multiple-choice questions under different modality configurations, with
 1310 Figure 7 showing a screenshot of the interface and example questions. For each subtask, we collected responses
 1311 from 10 valid participants per modality configuration.

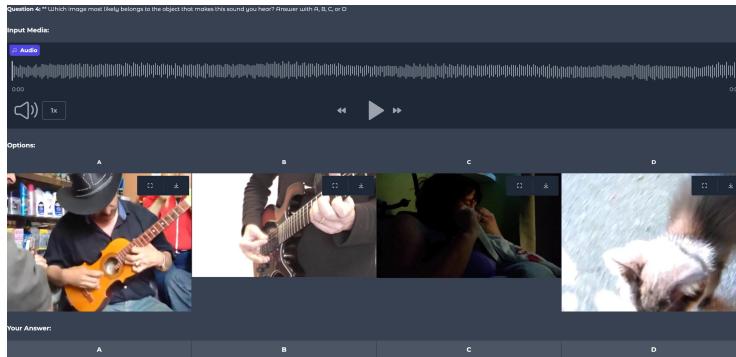
F TECHINIQAL DETAILS IN TRIPLET DATA COLLECTION AND 1314 PROCESSING. DATA FOR EACH SUBTASK

1316 In this section, we provide detailed descriptions of the data sources are collected, and how each data in each
 1317 modality are processed for each subtask in XModBench.

F.1 PERCEPTUAL RECOGNITION

1321 **General Categories.** We utilize the VGGSound Source (VGG-SS) dataset(Chen et al., 2021; Kim et al.,
 1322 2024), a large-scale video benchmark designed for sound source localization, which provides video-level an-
 1323 notations across diverse sound activities. The dataset covers 200 categories with approximately 5,000 video
 1324 clips, where sound sources are annotated with bounding boxes to ensure clear visibility in each clip. For our
 1325 benchmark, we extract a 2-second segment corresponding to the loudest audio channel as the audio input, and
 1326 randomly sample a single frame from the same clip as the visual input. The activity class name serves as the tex-
 1327 tual description. To construct multiple-choice questions, four additional activity labels are randomly sampled
 1328 as distractors, resulting in four candidate answers per instance. We then use Gemini 2.5-flash lite to(Comanici
 1329 et al., 2025) filter if each instance if the audio and video frame is clear to be hear and the image frame and audio
 1330 are all match the category name.

1330 **Fine-grained Categories.** This subtask uses the same pool of video clips as the General Categories setting.
 1331 The difference lies in reorganizing the activity classes into eight fine-grained clusters: *Animal sounds*, *Musical*
 1332 *instruments*, *Human activities*, *Transportation*, *Tools and utilities*, *Urban sounds*, *Human speech*, and *Natural*
 1333 *sounds*. For each instance, we select the target activity along with four distractor activities sampled from the
 1334 same fine-grained cluster. This ensures that all answer choices belong to the same semantic domain, making
 1335 the recognition task more challenging and diagnostic within a coherent category group.



1343 Figure 7: Sample question of human survey

1350
 1351 **Natural Environment.** We draw data from the Landscapes dataset(Lee et al., 2022), which consists of
 1352 ambient audio–video clips capturing natural outdoor scenes. Following the same selection protocol as in the
 1353 General Categories task, we extract a 2-second segment from the dominant audio channel as the audio input,
 1354 and randomly sample one frame from the corresponding video as the visual input. The dataset’s categorical
 1355 labels are used as the textual descriptions.

1356 **Instruments.** Instrument data is collected from the Solos dataset(Montesinos et al., 2020), which contains
 1357 recordings of 13 distinct instruments: violin, viola, cello, double bass, flute, oboe, clarinet, bassoon, saxophone,
 1358 trumpet, horn, trombone, and tuba. We use the video frames as the visual modality, the isolated performance
 1359 recordings as the audio modality, and the instrument names as textual labels.

1360 **Instrument Composition.** We employ the URMP dataset(Li et al., 2018), a multimodal corpus designed
 1361 for music performance analysis, which provides video and audio recordings of ensemble performances. For
 1362 this subtask, we leverage clips containing multiple instruments playing together, using the mixture audio as
 1363 input, sampled video frames as the visual modality, and instrument combination labels as text.

1364 F.2 SPATIAL REASONING

1365 **2D Horizontal Arrangement.** This subtask is derived from the URMP dataset(Li et al., 2018), which
 1366 contains multi-instrument ensemble recordings with annotated left-to-right spatial positions of each performer
 1367 and independent audio channels per instrument. We construct multiple-choice questions by generating three
 1368 distractor options through random shuffling of instrument order along the horizontal axis. For the visual modality,
 1369 cropped player images are concatenated into a composite frame that preserves their spatial arrangement.
 1370 For the audio modality, stereo spatialization is synthesized by assigning distinct azimuth values to each shuffled
 1371 configuration and adjusting the relative channel balance using a panning algorithm (e.g., vector-base amplitude
 1372 panning(Pulkki, 1997)). This design ensures that listeners can clearly perceive the relative horizontal positions
 1373 of the instruments.

1374 **3D Localization.** This subtask builds on the STARSS23 dataset(Shimada et al., 2023), which provides
 1375 panoramic video with time-stamped annotations of sound source depth, azimuth, and activity. For the visual
 1376 modality, we annotate sound sources with bounding boxes and generate alternative views by rotating the
 1377 camera perspective to $+90^\circ$, 180° , and -90° (positive defined as left). The corresponding videos are created
 1378 through spatial cropping of frames. For the audio modality, we utilize the four-channel microphone array
 1379 (MIC) recordings and simulate azimuthal rotation by first encoding the array signals into first-order Ambisonics
 1380 (FOA), applying a 2D rotation matrix to the X–Y components, and decoding back into microphone signals with
 1381 loudness normalization. To further enhance perceptual realism, each spatial microphone signal is additionally
 1382 processed with head-related transfer functions (HRTFs) in the SOFA format(Majdak et al., 2013; Algazi et al.,
 1383 2001).

1384 **3D Movements.** This subtask is based on the Urbansas dataset(Fuentes et al., 2022), which provides street-
 1385 view traffic videos with detailed audio annotations indicating vehicle types and the presence of off-screen
 1386 sounds. Each clip includes labels specifying the vehicle category, whether the sound source is visible in the
 1387 video, and its temporal activity. We curate video segments from this dataset and highlight the target vehicle by
 1388 overlaying a red bounding box to establish clear audio–visual correspondence.

1389 F.3 TEMPORAL REASONING

1390 **Event Order.** This subtask is derived from 2-second video clips in the VGGSound Source (VGG-SS)
 1391 dataset(Chen et al., 2021), originally used in the Perceptual Recognition task where each clip is annotated
 1392 with an activity class label. For temporal ordering, we randomly sample 3–5 clips from different classes and
 1393 generate four candidate event sequences by shuffling their order. Each sequence is represented across three
 1394 modalities: (i) a text description (e.g., “Event A \rightarrow Event B \rightarrow Event C”), (ii) a concatenated video sequence,
 1395 and (iii) a concatenated audio sequence. Multiple-choice questions are formed by selecting one sequence as
 1396 the correct answer and presenting the stem in one modality, while the four candidate sequences are given in
 1397 another modality.

1398 **Repetition Count.** Following the setup in(Zhang et al., 2021), this subtask focuses on counting repeated
 1399 events. Visual data is generated from synthetic renderings of repeated object actions, while audio data consists
 1400 of temporal patterns with clear repetitions (e.g., sequences of knocks or claps). Text prompts explicitly query
 1401 the number of repetitions in either modality.

1402 **Repetition Calculation.** Also inspired by(Zhang et al., 2021), this subtask extends beyond direct counting
 1403 by requiring simple arithmetic over observed repetitions. Both audio and video are rendered with variable fre-

1404 frequencies of repeated events, while the text prompts encode arithmetic formulations that ask models to compute
 1405 totals (e.g., “three knocks plus two knocks”).
 1406

1407 F.4 LINGUISTIC UNDERSTANDING

1409 **Linguistic Recognition.** This subtask targets recognition of textual content across modalities. Images are
 1410 collected from OCR-rendered text data(Wendler, 2024), each paired with its ground-truth transcript. Audio is
 1411 generated from these transcripts using a TTS system(Guo et al., 2025), allowing for cross-modal recognition
 1412 between text, vision, and speech.

1413 **Translation.** This subtask examines cross-lingual translation. Input sequences consist of English text with
 1414 multiple-choice options in Chinese. Text data is derived from OCR-rendered images(Wendler, 2024), while
 1415 translations are generated using Gemini(Team et al., 2024). Visual inputs are rendered using the OCR dataset
 1416 rendering toolkit(GbotHQ, 2024), and audio is synthesized from both languages with a TTS system(Guo et al.,
 1417 2025).

1418 **Dialogue Emotion.** This subtask focuses on multimodal emotion recognition in conversational settings.
 1419 Visual data consists of face videos displaying emotional expressions extracted from multi-party dialogue
 1420 clips(Chen et al., 2018; Poria et al., 2019). Each dialogue is paired with transcripts and annotated with cat-
 1421 egorical emotions (anger, disgust, fear, sadness, surprise, and joy). We filter clips to lengths between 5–30
 1422 seconds. The video data is stripped of original audio but accompanied by transcripts to enable inference of
 1423 emotion from dialogue and facial expression. Audio inputs consist of the original speech tracks, and text inputs
 1424 are provided as the emotion category names.

1425 F.5 EXTERNAL KNOWLEDGE

1427 **Music Genre Classification.** This subtask evaluates music genre recognition. We collect audio samples
 1428 from the GTZAN dataset(Olteanu, 2024), covering multiple musical styles. To complement the audio, we also
 1429 collect representative album cover images for each genre category.

1430 **Movie Matching.** This subtask requires linking multimodal cues to movie identities. We collect a set of
 1431 recent films from IMDb. For the visual modality, we use official posters. To prevent trivial text matching
 1432 between posters and movie titles, we use written plot summaries from IMDb as the text modality. Audio is
 1433 sampled as 30-second clips from publicly available trailers on YouTube.

1435 **Singer Identification.** This subtask targets cross-modal recognition of popular singers. Images of singers
 1436 are collected from the web, while audio consists of short clips (3–5 songs each) sampled from their publicly
 1437 available music videos on YouTube. Text inputs include singer names and associated biographical metadata.
 1438 We select a diverse set of internationally recognized artists, including American singers Ariana Grande, Bad
 1439 Bunny, Billie Eilish, Bruno Mars, Chappell Roan, Harry Styles, and Chinese singers David Tao, Eason Chan,
 1440 Faye Wong, G.E.M., and Jay Chou.

1441 G LLM USAGE

1443 We used large language models (LLMs) to assist in the preparation of this paper. Their role was limited to
 1444 language editing such as proofreading and rephrasing. All ideas, experiments, and analyses were conceived
 1445 and conducted by the authors.

1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457