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ABSTRACT

Omni-modal large language models (OLLMs) aim to unify audio, vision, and
text understanding within a single framework. While existing benchmarks pri-
marily evaluate general cross-modal question-answering ability, it remains un-
clear whether OLLMs achieve modality-invariant reasoning or exhibit modality-
specific biases. We introduce XModBench, a large-scale tri-modal benchmark
explicitly designed to measure cross-modal consistency. XModBench comprises
60,828 multiple-choice questions spanning five task families and systematically
covers all six modality compositions in question–answer pairs, enabling fine-
grained diagnosis of an OLLM’s modality-invariant reasoning, modality dispar-
ity, and directional imbalance. Experiments show that even the strongest model,
Gemini 2.5 Pro, (i) struggles with spatial and temporal reasoning, achieving less
than 60% accuracy, (ii) reveals persistent modality disparities, with performance
dropping substantially when the same semantic content is conveyed through au-
dio rather than text, and (iii) shows systematic directional imbalance, exhibiting
lower consistency when vision serves as context compared to text. These findings
indicate that current OLLMs remain far from truly modality-invariant reasoning,
and position XModBench as a fundamental diagnostic tool for evaluating and
improving cross-modal competence.

1 INTRODUCTION

Omni-modal large language models (OLLMs) integrate text, vision, and audio into a unified rea-
soning framework (Comanici et al., 2025; Xu et al., 2025; Xing et al., 2025; Su et al., 2023;
Fu et al., 2025b; Cheng et al., 2024; Zhong et al., 2025). However, despite impressive advance-
ments and expanded modality coverage, a key question remains: do these models reason in a truly
modality-invariant manner, or do they still exhibit systematic biases tied to specific input modal-
ities? For humans, cross-modal integration is typically seamless, yet it remains unclear whether
OLLMs demonstrate comparable consistency. When the same semantic content is presented in dif-
ferent forms—spoken audio, written text, or visual images—do models still converge on the same
correct answer? We refer to this property as cross-modal consistency: the ability to maintain sta-
ble predictions regardless of input modality, thereby demonstrating reasoning over shared semantic
representations rather than relying on modality-specific cues. Although directly diagnosing whether
current OLLMs achieve this goal is non-trivial, we can evaluate them through carefully designed
benchmarks that expose inconsistencies. For instance, by posing semantically identical questions
under different modality settings, we can test whether predictions diverge across modalities — an
indicator of reliance on surface-level patterns rather than genuine modality-invariant reasoning.

Recent benchmarks have taken promising steps toward evaluating OLLMs, particularly through
audio-visual tasks that reveal baseline cross-modality performance. Datasets such as Music
AVQA (Li et al., 2022), AV-Reasoner (Lu et al., 2025), and Pano-AVQA (Yun et al., 2021) pri-
marily probe fine-grained audio–visual reasoning, while broader efforts like AVQA (Yang et al.,
2022), WorldSense (Hong et al., 2025), AV-Odyssey Bench (Gong et al., 2024), and OmniBench (Li
et al., 2024b) expand to general multimodal understanding across diverse contexts. However, these
benchmarks largely overlook whether models remain consistent across modalities. While other
works (Park et al., 2025; Zhang et al., 2024) attempt to assess modality consistency, they are re-
stricted to the vision–text setting within vision–language models.
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Table 1: Comparison of multimodal question-answering (QA) benchmarks by modality coverage,
task domains, and modality consistency.

Benchmark #Q Context Modality Candidate Modality Task Domain Mod. Consist.
Text Vision Audio Text Vision Audio Percep. Spatial Temporal Ling. Ext. Know.

MME Bench (Fu et al., 2024a) 2,194 ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗
MMBench (Liu et al., 2024) 3,217 ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗
OcrBench v2 (Fu et al., 2024b) 10,000 ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗
SEED-Bench-2 (Li et al., 2024a) 24,371 ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗

AudioBench Wang et al. (2024) 24,371 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗
Audiopedia (Li et al., 2022) 45,867 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
MMAU (Sakshi et al., 2024) 10,000 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗

AVQA (Yang et al., 2022) 57,335 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗
Pano-AVQA (Yun et al., 2021) 51,700 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗
Music-AVQA (Li et al., 2022) 45,867 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗
SAVE Bench (Sun et al., 2024) 4,350 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗
Video-MME (Fu et al., 2025a) 2,700 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗
WorldSense (Hong et al., 2025) 3,172 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗
AV-Reasoner (Lu et al., 2025) 1,027 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
AV-Odyssey Bench (Gong et al., 2024) 1,142 ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗
OmniBench (Li et al., 2024b) 4,555 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗

XModBench (Ours) 60,828 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

To address this gap, we introduce XModBench, a benchmark specifically designed to evaluate cross-
modal consistency in omni-modal large language models. We formulate all questions in a multiple-
choice format, where each question naturally contains two components: (i) a context describing an
object or event, and (ii) a set of candidates from which the model must select the correct one. Unlike
prior benchmarks that typically fix either the context or the choices to a single modality (Yang et al.,
2022; Li et al., 2024b), XModBench systematically covers all six cross-modal directions among au-
dio, vision, and text (see Tab. 1). To ensure broad coverage and rigorous evaluation, XMODBENCH
spans five domains—perception, spatial reasoning, temporal reasoning, linguistic understanding,
and external knowledge. We curate data across these domains through re-annotation, synthetic con-
struction, and targeted web collection, ensuring both diversity and balance across modalities. The
resulting benchmark comprises 60,828 multiple-choice question–answer pairs (10,138 unique in-
stances), each instantiated in six modality configurations that preserve identical semantics across
audio, visual, and textual forms. This enables both large-scale evaluation and fine-grained diagnosis
of cross-modal consistency. An overview of the benchmark design is illustrated in Fig. 1.

We systematically evaluate models on XMODBENCH, going beyond overall accuracy to provide
fine-grained diagnosis of cross-modal reasoning. Specifically, we analyze three complementary di-
mensions: (1) Task competence—by averaging over all six modality directions, we assess model
performance across perception, spatial, temporal, linguistic, and knowledge tasks, yielding task-
centric comparisons of multimodal competence; (2) Modality disparity—we measure consistency
when the same question is posed in different modalities, where high variability signals reliance
on modality-specific cues rather than shared semantic representations; and (3) Directional imbal-
ance—we compare accuracy when context and candidate modalities are swapped, revealing asym-
metries in cross-modal grounding.

Our experiments show that current OLLMs fall short along all three axes. They perform strongly
on perception and linguistic tasks (best models reach around 70%), but degrade by 15–25 points
on spatial and temporal reasoning. Performance also drops sharply whenever audio is involved, un-
derscoring that auditory representations remain the weakest link. Finally, accuracy is consistently
higher when text serves as the candidate modality, highlighting incomplete bidirectional alignment
across modalities. Together, these findings demonstrate that today’s OLLMs remain far from achiev-
ing modality-invariant reasoning, underscoring the diagnostic value of XMODBENCH.

In summary, XMODBENCH makes the following key contributions:

1. Cross-modal consistency benchmark. We present XMODBENCH, the first tri-modal
multiple-choice question-answering benchmark explicitly designed to evaluate cross-modal
consistency, covering all six modality mappings among audio, vision, and text.

2. Comprehensive coverage. The benchmark spans five task families with 17 subtasks and
60,828 question–answer pairs, ensuring broad domain coverage and fine-grained diagnos-
tics, while its balanced design enables fair assessment of modality-invariant reasoning.

3. Diagnostic metrics. We introduce modality disparity and directional imbalance to directly
measure robustness and bidirectional alignment across modalities. Our experiments reveal
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 Cross-Modality Configuration Task Families

Perception Spatial Temporal

Linguistic
External 
knowledge

The object in which 
image can make this 
sound?

Which audio has a car 
moving from left  to 
right?

How audio clip has 
event order same as 
this video?

Which image write the 
Chinese translation of 
this spoken sentence?

Which audio sounds 
like singing by Taylor 
Swift?

Cross-Modal Triplet

(dog barking)

Q: Which audio clip is most likely produced by 
what you see in this image? 

A

B

D

C

(people marching)

(train horning)

Q: Which image most likely produce what 
you hear in this audio clip? 

(dog barking)A

B

D

C

(dog barking)

(dog barking)

(play piano)

A B

DC

Q: Which phrase most likely describe what 
you see in this image? 
A B

DC
Dog barking People marching

Train horning Play piano

Q: For this phrase “dog barking', which image best 
matches what is described? 

Q: Listen to this audio clip. Which text 
description best matches what you hear?

A B

DC
Dog barking People marching

Train horning Play piano

Q: For this phrase “dog barking', which audio best sounds 
what is described? 

A B

DC

(dog barking) (people marching)

(train horning) (play piano)

“Dog Barking”
(dog barking)

A car moves from left to right

“I can get a head start on dinner 
tonight and …” 5 task families, 17 subtasks

60,828 question-answering pairs

(a) (c)

(d)

Tri-Modal 
Balanced 
Design

(b)

TextImage TextAudio

Text Audio

Image AudioImageAudio

Text Image

Image Audio

ImageAudio Text Image

TextImage Text Audio

TextAudio

Figure 1: Overview of XModBench. (a) Instances are built from aligned text–image–audio triplets;
(b) instantiated into six modality configurations by permuting context and candidate modalities; (c)
spanning five domains with 17 subtasks and 60,828 question–answer pairs; and (d) illustrated with
example multiple-choice questions under balanced modality settings.

systematic weaknesses in current OLLMs, providing actionable insights for developing
more modality-invariant architectures and training strategies.

2 RELATED WORK

Multimodal Question Answering (QA) Benchmarks. A number of benchmarks have been devel-
oped to evaluate multimodal large language models (MLLMs). Grouped by modality composition,
Yin et al. (2024), Liu et al. (2024), and Li et al. (2024a) focus on the vision–text setting (covering
both images and videos). For audio–text evaluation, representative efforts include Wang et al. (2024)
and Sakshi et al. (2024). When combining audio and vision with text, a variety of benchmarks have
emerged, including Yang et al. (2022), Li et al. (2022), Yun et al. (2021), Sun et al. (2024), Hong
et al. (2025), Lu et al. (2025), Gong et al. (2024), Li et al. (2024b), and Zhou et al. (2025). Other re-
cent works, such as Yang et al. (2025), further extend evaluation to diverse multimodal combinations.
Despite their breadth, these benchmarks primarily emphasize coverage across tasks and modalities,
while less attention has been paid to evaluating cross-modal consistency—whether models produce
stable answers when the same semantic content is expressed in different modality forms. Our work
fills this gap by explicitly designing a benchmark centered on modality-invariant reasoning.

Cross-Modality Consistency. Recent work has begun to investigate whether multimodal mod-
els behave consistently across modalities. Park et al. (2025) introduced the Modality Importance
Score to quantify modality bias, which measures how much each modality contributes to answering
questions in VideoQA. Zhang et al. (2024) further proposed the notion of cross-modal consistency
between text and image, defining a consistent model as one that applies the same internal reasoning
to semantically identical inputs across modalities, thereby yielding consistent outcomes. In con-
trast, other studies, such as Sung-Bin et al. (2024) and Choong et al. (2024), report instances of
inconsistent audio-video reasoning, where models hallucinate non-existent sounds or visual signals,
thereby exposing modality bias and cross-modal inconsistency. While these efforts provide pioneer-
ing insights into cross-modal consistency, they are typically confined to specific modality pairs. Our
work not only expands the scope to cover a broader range of modality combinations for state-of-
the-art OLLMs, but also conducts a deeper analysis of their cross-modality reasoning behavior on a
comprehensive task suite.

3 XMODBENCH: COMPREHENSIVE CROSS-MODAL BALANCED BENCHMARK
We introduce XModBench, a comprehensive multiple-choice question-answering (QA) benchmark
designed to evaluate the cross-modal capabilities and consistency of OLLMs across audio, vision,
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and text. A key feature of XModBench is its modality-balanced design, which creates six
cross-modal variants of semantically identical questions to enable a controlled and fair evaluation
of cross-modal capabilities and consistency (Sec. 3.1). The benchmark offers extensive domain
coverage through five task families and seventeen subtasks (Sec. 3.2), all built upon meticulously
curated, high-quality, and diverse tri-modal data (Sec. 3.3).

3.1 BENCHMARK DESIGN

The central objective of XMODBENCH is to evaluate whether models preserve cross-modal consis-
tency when the same semantic content appears in different modalities. Each item is a four-choice
multiple-choice question consisting of a <context> (question stem) and four <candidates>
(answer options). By systematically permuting text (T), vision (V), and audio (A) across the
<context> and <candidates>, we generate six modality configurations of the same ques-
tion (see Fig. 1 (b) and (d)). This balanced design ensures that no single modality is privileged
and enables consistent evaluation across all directions, which supports three diagnostic properties
aligned with the goals of our benchmark:

(1) Task competence. Since each task is instantiated uniformly across all modality pairs, we mea-
sure competence by averaging accuracy across all context–candidate configurations. This yields a
fair estimate of a model’s overall capability for each task, independent of modality-specific biases.

(2) Modality disparity. By presenting semantically identical questions under different modality
configurations, we keep the content fixed while varying only the modality. For example, to compare
audio and vision, we examine cases where text provides the context with audio candidates (T7→A)
versus text with visual candidates (T7→V), and similarly compare A7→T against V7→T settings. Dif-
ferences in accuracy under these controlled comparisons reveal modality disparities, indicating the
relative competence across different modalities.

(3) Directional imbalance. We examine inverse settings by swapping the modalities of context
and candidates. For example, a model may perform well when vision serves as the context and
text provides the options (V7→T), but perform worse when the same semantic content is presented
as a text context with visual candidates (T7→V). Such differences indicate asymmetric grounding
between the two modalities, and comparable asymmetries are also observed in the audio–text and
audio–vision pair.

3.2 TASK TAXONOMY

Task 4
Linguistic

Translation

Recognition

Emotion

M
usic

Genre G
en

er
al
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tiv
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Fine-grained

6,000 (9
.9%)

Natural 

Environment

Instruments6000 (9.9%)
Instruments

 Composition

3,000 (4.9%)

2D Arrangem
ent

Localization

3D
 M

ovem
ent

Task 1 
Perception

Order

Count
C

al
cu

la
tio

n

Singer  1,200 (2.0%)

Movies 1,200 (2.0%)

2,790 (4.6%
)

2,340 (3.9%
)

3,054 (5.0%
)

3,000 (4
.9%)

2,
46

6 
(4

.1
%

)

2,
63

4 
(4

.3
%

)

4,200 (6.9%)

4,212 (6.9%)

4,032 (6.6%)

6,000 (9.9%)

XModBench

Task 2: 
Spatial 

Reasoning 

Task 5
External 

Knowledge

3,000 (4.9%) 

6,
00

0 (
9.

9%
)

Task 3
Temporal 
reasoning

Figure 2: Distribution of XModBench’s
questions across five task families with spe-
cific subtasks.

XModBench covers five task families with seven-
teen subtasks, spanning perception, spatial reason-
ing, temporal reasoning, linguistic understanding,
and external knowledge (see Fig. 2). Each task is
formulated in the multiple-choice format and fol-
lows the modality-balanced configuration described
in Section 3.1: a <context> is drawn from one
modality and four <candidates> from another.
In this section, we detail the design of these subtasks
and specify how each instance is instantiated across
modalities within every task.

Task 1. Perception. This task evaluates whether
models can recognize the same object, activity, or
scene across modalities. For example, a barking
dog may appear as an image, as its sound, or as
the text description “dog barking.” Here, visual in-
puts are images, audio inputs are recordings of cor-
responding sounds, and text inputs are short labels or
phrases. The data are drawn from diverse domains,
including human activities, animal behaviors, musi-
cal instruments, and natural environments.

We divide perception into several subtasks. General activity recognition mixes candidates from
diverse domains to test broad semantic alignment, while fine-grained activity recognition restricts
candidates to a single domain (e.g., animal species or instrument types), thereby increasing diffi-
culty and requiring precise discrimination. We further design domain-specific subtasks to capture
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ViolinSaxophoneA B
C D

(for V     T task)

(for V    A task)
Double bass Flute

Answer: B

A B

C D

Vision context

(Audio context)

(Text context)
Violin

Question: Which name (or audio) 
most likely to describe (or match)  
the instruments in this image? 
Please provide A, B, C, or D.

C D

(for V     T task)

(for V     A task)

Vision context

Answer: A

A A car moves from 
left to right 

C … from back to 
front

D … from right to 
left…

No movementB

A

(Audio context)

(Text context)
A  car moves from left 
to right …

Question: Which text description (or 
audio) most accurately captures what 
you observed in the video? Choose A, 
B, C, or D

B

Question : Based on the video …, select 
the number (or audio) of a repeated action 
that matches the repetition count, …

A

C

B

C D

(for V     T task)

(for V     A task)

Vision context

Answer: A

D

8 times

5 times

10 times

3 times

B

A

(Audio context)

(Text context)
8 times of 
repetition

Question: Which text (audio) is most likely 
to be the same content as shown in this 
image? Answer the question with A, B, C, or 
D.

A

C

B

C D

(for V     T task)

(for V     A task)

Vision context

Answer: A

D

B

A

(Audio context)

(Text context)

I know that they're looking for me 
and I don't want to get caught. Why 
are the police looking for you?

I believe ..., so I'm not going to be 
caught… 

I know that they're looking for me 
and I don't want to get caught. Why 
are the police looking for you?

… want to get courted 
…

… they're watching for 
…

Question: Which name (or audio) 
most likely to describe (or match)  the 
instruments in this image? Answer the 
question with A, B, C, or D

A B

C

Answer: C

A B
C D

Vision context

(for V    A task)

(for V     T task)
... at the back-left 
(170°).
… front-left  (80°). … back-right (-100°).

… front right (-10°).
(Audio context)

(Text context)
…. Male speaking 
at front-left  
(80°)...

D

Question:  Look at this photo. Which 
singer is shown in this image? Answer 
with A, B, C, or D

Harry Styles
Lady Gaga

A B
C

(for V     T task)

(for V    A task)

Answer: D

A B

C D

Vision context

(Audio context)

(Text context)
Lady Gaga

Ariana Grande
Billie Eilish D

(a) Perception: Instruments (b) Spatial Reasoning: 3D Movements

(d) Temporal Reasoning: Count (e) Linguistic: Recognition

(c) Spatial Reasoning: Localization

(f) External Knowledge: Singer

Figure 3: XModBench task examples. We show sample questions from six subtasks in the bench-
mark. Each question includes possible contexts from different modalities, and for the vision-context
example, the candidates are given in either text or audio.

unique challenges: recognizing natural environments (e.g., rainfall, wind, fire), distinguishing
instruments (e.g., violin, bass, cello), and identifying instrument compositions where multiple
instruments are played together (e.g., violin and bass, or cello and flute). Illustrative examples are
shown in Fig. 1(d) and Fig. 3(a).

Task 2. Spatial reasoning. This task evaluates whether models can interpret object positions and
motion in 2D and 3D space, which is an important factor in vision–language models (Chen et al.,
2024). We extend this ability to the omni-modal setting and design three subtasks. The first is 2D ar-
rangement, where the model determines the left–right order of objects such as musical instruments.
Visual inputs are images of ordered layouts, audio inputs are stereo recordings with left–right cues,
and text inputs describe the relative arrangement; distractors are generated by swapping or permut-
ing positions. The second subtask, 3D localization, using panoramic videos from Shimada et al.
(2023), requires identifying the orientation of events in video frames, spatialized audio, and short
textual descriptions (e.g., “a man speaking from the front-left”); distractors are produced by shifting
the same scene to nearby but incorrect directions through camera or audio rotation. The third sub-
task, 3D movement understanding, focuses on motion directions such as left–right or front–back,
instantiated with street-view or action videos, spatialized audio of approaching or receding sounds,
and textual trajectory descriptions (Fuentes et al., 2022); distractors are clips with incorrect motion
patterns or mismatched vehicle types. Examples for the 3D movement and localization tasks are
shown in Fig. 3(b) and (c), respectively.

Task 3. Temporal reasoning. This task evaluates whether models can understand event order
and frequency across time in video and audio. We design three subtasks. The first is temporal
order, where models infer the correct sequence of events from muted video segments, audio clips,
or textual descriptions and align them across modalities. The second, temporal counting, requires
recognizing the number of repeated actions such as tennis hits, jumps, or drum beats, with distractors
differing in count. For example, a video may show a tennis player hitting the ball three times, and
the model must select the audio clip with exactly three hits or the text “3 times.” The third, temporal
calculation, extends counting by applying simple arithmetic to the repetition number. For instance,
if a video shows a person jumping three times and the query applies 2 × count, the correct answer
should correspond to six repetitions, given either as an audio clip with six jumps or as the text “6
times.” An example of the temporal counting task is in Fig. 3(d).

Task 4. Linguistic understanding. This task covers recognition of linguistic content and inter-
pretation of affective meaning. While prior work separates OCR for vision and ASR for audio (Fu
et al., 2024b; Wang et al., 2024), XModBench unifies them in a cross-modal setting. We design
three subtasks. The first, linguistic recognition, focuses on transcribing text from images, audio, or
phrases; correct candidates require word-level precision, while distractors differ by only one or two
words (see Fig. 3(e)). The second, translation, evaluates English–Chinese translation across modal-
ities, with distractors introducing subtle shifts such as antonyms, degree modifiers (e.g., “very” →
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“a little”), or small changes in numbers and entities. The third, emotion classification, targets af-
fective understanding in dialogue: audio inputs are spoken conversations, visual inputs are muted
video clips with transcripts, and candidates represent emotions such as joy, sadness, or anger, with
distractors drawn from closely related categories.

Task 5. External knowledge. Beyond perceptual and reasoning skills, some tasks require linking
multimodal content with world knowledge. We design three subtasks. The first, movie recognition,
presents audio clips from trailers, visual posters, or short text descriptions of the plot, with candidates
drawn from films of similar genres or storylines. The second, music genre classification, uses
album covers, short audio clips, or textual genre labels, with distractors from closely related genres
(e.g., “jazz” vs. “blues”). The third, singer identification, provides names, portrait images, or audio
clips of songs, with distractors sampled from artists of similar musical styles (see Fig. 3(f)).

3.3 DATA CURATION

The construction of XModBench follows a three-stage pipeline. We begin by collecting large-scale
text–vision–audio triplets across all task domains, then generate task-specific multiple-choice
questions, and finally apply both automated filtering and human verification to ensure quality and
consistency.

Cross-modal data collection. We curate a large corpus aligned across vision, audio, and text by
combining three sources: (i) re-annotated and extended data from existing multimodal datasets,
such as adapting VGG-Sound for perception tasks or STARSS23 (Lee et al., 2022; Shimada et al.,
2023) for spatial reasoning; (ii) synthetic or model-generated content to cover missing modalities,
for example generating speech audio with FireRedTTS (Guo et al., 2025) or producing rendered
text images for translation tasks; and (iii) web-collected samples for domains not well represented
in public resources, such as singer portraits and songs for the Singer Identification task or trailers
and posters for Movie Recognition from public YouTube videos. This design ensures both coverage
and balance across all five task families. Detailed sources and processing procedures are described
in Appendix F.

Question candidate generation. To ensure the correctness of both the generated questions and
answers, we first construct task-specific multiple-choice templates using our annotated tri-modality
data. The question descriptions are then refined by GPT-5 (OpenAI, 2025) solely to improve lan-
guage fluency and stylistic diversity. Importantly, this refinement does not introduce any new infor-
mation or alter the underlying semantics. Each question is instantiated with a context and four candi-
dates under the modality-balanced configuration, ensuring consistent evaluation across all modality
directions. Distractors are created to be semantically challenging but unambiguous, while templates
are diversified with both human-written prompts and LLM-assisted variations.

LLM filtering and human-in-the-loop verification. To guarantee data quality at scale, we first
adopt foundation models (OpenAI, 2025; Comanici et al., 2025) to filter out low-quality or ambigu-
ous samples. Human annotators then double-check the filtered results to ensure accuracy. After
questions are constructed, an internal round of testing is conducted by annotators, who resolve
ambiguities and validate correctness. Feedback from this process is used to regenerate and retest
questions until high-quality items are obtained.

Overall, this pipeline yields a high-quality benchmark with diverse and well-aligned multimodal
content. More detailed descriptions of dataset sources, generation strategies, and signal-processing
techniques are provided in Appendix F.

4 EXPERIMENTS

4.1 BASELINES

We evaluate XMODBENCH on a diverse set of recent omni-modal large language models. The Gem-
ini series (Comanici et al., 2025; Team et al., 2024) represents state-of-the-art closed-source omni-
modal models, and we include multiple variants ranging from Gemini 1.5 Pro to Gemini 2.5 Pro.
Note that OpenAI APIs do not currently support processing audio and visual modalities jointly
within a single query; therefore, we omit the GPT series from our evaluation. For open-source sys-
tems, we include the latest Qwen2.5-Omni (Xu et al., 2025), Baichuan Omni 1.5 (Li et al., 2025),
and EchoInk-R1 (Xing et al., 2025). Additional open-source omni-modal baselines include Vide-
oLLaMA 2 (Cheng et al., 2024), VITA (Fu et al., 2025b), the Unified-IO 2 series (Large, XL, and
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Table 2: Results on XModBench. We report (a) the performance under different input modalities
across the full benchmark, and (b) the summary of average accuracy for each of the 5 task families.
The highest scores are bolded, and the second highest are underlined.

Model Accuracy on 5 Task Families Modality Configuration Avg.
Perc. Spat. Temp. Ling. Knwl. A 7→ T A 7→ V T 7→ A T 7→ V V 7→ A V 7→ T Std.

no context 25.5 24.8 24.9 24.7 25.5 25.1 24.3 25.4 24.8 25.3 25.7 0.4 25.1

Qwen2.5-VL 91.3 51.4 40.9 84.1 77.2 - - - 60.1 - 74.7 - 67.4
Intern3.5-VL 87.2 42.7 41.4 75.0 68.7 - - - 49.7 - 73.7 - 61.7

PandaGPT 24.6 25.7 24.4 25.5 23.1 24.5 25.0 23.8 25.2 24.5 25.1 0.5 24.7
Unified-IO 2 36.1 23.6 23.8 30.4 26.8 28.9 24.0 25.4 32.0 25.7 32.7 3.7 28.1
Unified-IO 2 XL 42.2 25.0 26.1 30.8 29.5 33.3 27.0 27.1 32.9 26.5 37.4 4.5 30.7
Unified-IO 2 XXL 43.7 28.3 27.7 31.2 34.0 37.4 25.0 31.2 37.8 26.7 39.9 6.3 33.0
VideoLLaMA 2 45.7 33.9 29.2 36.7 36.8 48.6 26.0 25.7 26.5 25.2 66.8 17.4 36.5
VITA 34.8 34.0 29.4 46.1 32.6 40.2 26.0 29.8 26.8 29.9 59.3 12.8 35.4
Baichuan Omni 1.5 58.9 34.9 30.0 62.8 56.7 47.8 35.8 40.5 56.2 38.6 73.0 14.0 48.7
EchoInk-R1 75.8 36.6 37.1 73.3 73.3 64.6 45.9 56.4 60.9 49.9 77.6 11.3 59.2
Qwen2.5-Omni 75.5 38.4 32.3 74.1 72.8 62.0 48.0 55.4 59.6 50.5 76.3 10.1 58.6

Gemini 1.5 Pro 56.2 40.1 37.1 72.6 69.4 52.4 38.2 48.6 70.4 40.7 79.9 16.7 55.0
Gemini 2.0 Flash 66.2 48.4 44.8 70.2 78.1 63.7 49.0 52.2 71.5 47.6 85.2 15.2 61.2
Gemini 2.5 Flash 66.1 48.0 48.6 73.1 82.8 62.6 51.2 55.1 75.7 51.9 86.0 14.2 63.7
Gemini 2.5 Pro 75.9 50.1 60.8 76.8 89.3 71.0 58.9 64.4 79.8 60.8 88.6 11.7 70.6

Human 91.0 89.7 88.9 93.9 93.9 92.4 91.5 91.1 91.8 86.4 95.6 3.0 91.5

XXL variants) (Lu et al., 2024), and PandaGPT (Su et al., 2023). Together, these models represent
a broad spectrum of both closed- and open-source OLLMs.

4.2 MODEL PERFORMANCES

Table 5 reports results across five task families and six cross-modal directions (Audio 7→ Text, Au-
dio 7→ Vision, Text 7→ Audio, Text 7→ Vision, Vision 7→ Audio, Vision 7→ Text). The first subtable
summarizes the average accuracy across all tasks for each modality configuration, while the remain-
ing subtables present detailed performance within each task family. The highest scores are bolded,
and the second highest are underlined. For each model, we also report the overall average accuracy
(Avg.) and standard deviation (Std.) across the six configurations to quantify robustness to modality
shifts. Details of the human evaluation are provided in Appendix E.
Performance by task families. Overall, the Gemini 2.0 and 2.5 series outperform all open-source
systems. Among open models, Qwen2.5-Omni and EchoInk-R1 are the strongest baselines, sur-
passing Gemini 1.5 Pro by 3.6 and 4.2 points, respectively. Across the five task families, spatial and
temporal reasoning remain the most challenging (Gemini 2.5 Pro achieves 50.1 and 60.8), whereas
perception and linguistic tasks reach higher accuracy (75.9 and 76.8). The performance gap be-
tween open- and closed-source systems extends beyond spatial and temporal reasoning to external
knowledge: while Qwen2.5-Omni and EchoInk-R1 perform comparably to Gemini 2.5 Pro on per-
ception, the latter attains 89.3 on external knowledge. These results highlight persistent bottlenecks
in open-source models, as closed-source systems likely benefit from broader web-scale pretraining
and stronger spatial–temporal reasoning capabilities.

Performance by modality configurations. We also analyze performance consistency across modal-
ity configurations on the same tasks and observe clear divergences. Vision–text settings consistently
outperform audio–text ones, confirming that visual representations are more strongly grounded than
audio. In perception tasks, accuracy exceeds 90% with vision–text inputs but drops by over 20 points
with audio–text. Audio–vision combinations without textual anchors yield the lowest scores, high-
lighting the difficulty of aligning heterogeneous signals. Among SOTA systems, Gemini 2.5 Pro
(Avg. 70.6, Std. 11.7) shows the best balance of accuracy and stability, while Qwen2.5-Omni (Std.
10.1) and EchoInk-R1 (Std. 11.3) are the most consistent open models. By contrast, Gemini 1.5 Pro
and Baichuan Omni 1.5 have standard deviations exceeding 14, reflecting weaker robustness to
modality variation.

4.3 MODALITY DISPARITY ANALYSIS

A key challenge for OLLMs is whether they handle audio, vision, and text equally rather
than favoring one modality. XMODBENCH enables this by instantiating identical seman-
tics across modality settings. ∆T vs. V = (AccA7→V − AccA7→T) + (AccV 7→A − AccT7→A),
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Figure 4: Modality disparity across different configura-
tions. Negative scores indicate performance gaps, with
the largest disparities observed between audio and text.

We quantify disparity via paired sub-
traction, e.g., which compares configu-
rations that differ only by substituting
text with vision, thereby isolating the
effect of modality substitution on ac-
curacy. Results in Fig. 4 show that
∆T vs. A exhibits the strongest disparity
(−49 for Gemini 2.5 Pro), ∆V vs. A is mod-
erate (−33), and ∆T vs. V remains smallest
(−15). These findings highlight audio as
the most challenging modality, with vision
showing moderate gaps and text remain-
ing the most robust.

4.4 DIRECTIONAL IMBALANCE

We test whether models behave consistently when swapping the roles of context and candidates. We
define directional imbalance as ∆X↔Y = Acc(X 7→ Y ) − Acc(Y 7→ X), the accuracy gap be-
tween inverse configurations for (X,Y ) ∈ {(A, T ), (V, T ), (V,A)}. As shown in Fig. 5, vision–text
and audio–text pairs exhibit notable asymmetries: Gemini 2.5 Pro drops by 8.8 points from T7→V to
V7→T, and Qwen2.5-Omni shows a 16.6-point gap, while audio–text differences remain around 6–8
points. By contrast, audio–vision pairs are nearly symmetric but achieve much lower overall accu-
racy. These findings suggest that directional imbalance mainly arises in text–vision and audio–text
pairs, likely reflecting training data biases toward text as the dominant output modality.

Text ↦Vision
Imbalance

Vision ↦Text
Text ↦Audio
Imbalance

Audio ↦Text Vision ↦Audio

Imbalance
Audio ↦Vision

Figure 5: Directional imbalance: accuracy gaps between paired inverse settings among audio, vision
and text. Models show clear asymmetries, especially in vision–text and audio–text pairs.

4.5 FAILURE CASE ANALYSIS

To better understand model errors, we prompt systems like Gemini 2.5 Pro and Qwen2.5-Omni
to generate reasoning alongside their answers. As shown in Fig. 6, we observe common failure
cases that reflect modality performance gaps and alignment issues. Example (a) shows a mis-
match between audio-to-text and audio-to-image reasoning: while the model correctly identifies
a didgeridoo by text, it fails to select the matching image, revealing inconsistent grounding. In ex-
ample (b), Qwen-2.5 Omni misinterprets spatial audio motion when switching from audio-to-text
to text-to-audio, reversing the vehicle’s direction. These errors highlight persistent asymmetries
in cross-modal reasoning that only emerge when the same task is posed across different modality
combinations.

4.6 TRIPLE-DOMAIN QUESTION ANSWERING

Real-world omni-modal scenarios often present information jointly across modalities rather than in
isolation. To approximate this setting, we extend XMODBENCH tasks to an audio–visual context,
where both sound and vision are provided in the question stem, while the candidates remain in text.

We evaluate this dual-context configuration using the Gemini series. Compared with single-modality
baselines, the results (see Appendix D) show modest but consistent gains, indicating that models can
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Q: Which phrase (or image) most likely belongs to the object that makes 
this sound you hear? Answer with A, B, C, or D.    (Answer: D) 

Response: D. The sound in the audio clip is a low-
pitched, continuous drone with a distinct vibrating 
quality. This is the characteristic sound of a 
didgeridoo …. A telephone bell has a high-pitched…

Response: A. The audio file contains the sound of a very loud, telephone 
ring. Image A shows a device … designed to produce exactly the kind of 
sound heard in the audio clip…. The other images … and a didgeridoo in D, 
which produce entirely different types of sounds.

telephone 
bell ringing

playing 
harpsichord

playing 
didgeridoo

playing 
tympani 

A B C D
A B C D

(a)
Q: Based on the spatial audio (or description) of the urban street scene and 
analyze the vehicle’s directional movement. Which text description best matches 
your audio analysis? Choose A, B, C, or D.      (Answer: D)

Response: D. The audio has a vehicle engine sound 
that is a car. The sound seems to be moving horizontally 
from left to right, as the volume and frequency changes 
suggest it's getting closer and then moving away...

Response: A. The description states that the vehicle is a car moving 
from left to right. In real 3D space, a car moving from left to right would 
produce a sound that starts from the left side and moves towards the 
right side. Audio clip A seems to fit this description as it has a sound that 
starts from the left and moves towards the right…

A car moving 
from left to 
right across 
the scene.

A bus 
moving from 
left to right 
across the 

scene.

A car moving 
horizontally 
from right to 
left across the 

scene.

No vehicle 
is present 

in the 
scene.

A B C D A B C D

A car moving horizontally from 
left to right across the scene.

(b)

Figure 6: Failure cases. (a) Gemini 2.5 pro correctly identifies a didgeridoo in text but fails to match
it with the corresponding image candidates. (b) shows Qwen2.5-Omni misinterprets spatial motion
when switching candidates from text to audio. This cases illustrate asymmetries in cross-modal
reasoning.

benefit from simultaneous multimodal cues. However, the improvements are not always additive,
suggesting that current systems do not yet fully exploit complementary signals across modalities.

Table 3: Overall performance of Gemini models under the dual-context setting (audio+visual context
7→ text). We compare with pairwise baselines (A 7→ T and V 7→ T), and report the stronger unimodal
baseline max(A 7→ T,V 7→ T).

Setting Gemini 1.5 Pro Gemini 2.0 Flash Gemini 2.5 Pro

A 7→ T 52.76 63.71 70.99
V 7→ T 79.92 85.20 88.60

A+V 7→ T 82.53 (+2.61) 79.84 89.76

5 DISCUSSION
Our benchmark results serve as a diagnostic tool, revealing how underlying data composition and
training methodologies shape model behaviors. By correlating performance patterns with known
model architectures and training reports, we derive three critical insights regarding interleaved data,
domain coverage, and post-training dynamics.
5.1 INTERLEAVED DATA CORRELATES WITH DIRECTIONAL SYMMETRY
A key observation from our imbalance analysis is the link between interleaved training data and
modality-swap robustness.

• Balanced performance in interleaved models: Public official reports indicate that mod-
els such as Qwen-Omni and Google’s Gemini series incorporate massive-scale interleaved
multimodal corpora (e.g., narrated videos, mixed audio–vision documents). Our bench-
mark corroborates this: these models exhibit relatively small performance gaps between
Audio→Vision and Vision→Audio tasks. This suggests that seeing modalities appear in-
terchangeably in context allows the model to build symmetric cross-modal bridges.

• Asymmetry in lightly interleaved models: Conversely, models trained primarily on dis-
joint datasets exhibit significant directional asymmetry. For instance, despite strong back-
bones, models relying on open-source data with limited interleaved audio–vision instruc-
tion pairs show a distinct bias. They often perform well in one direction (anchored by their
dominant modality) but fail to generalize when the source-target modalities are swapped,
indicating that insufficient interleaved supervision hinders directional robustness.

9
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5.2 DOMAIN COVERAGE GAPS AND ENCODER BIAS

Performance inconsistencies across specific sub-tasks reveal “blind spots” in the training data dis-
tribution coverange, particularly regarding to the audio data.

• Spoken vs. Non-Spoken Bias: Many models utilizing speech-centric encoders (e.g., Whis-
per) show a sharp performance drop on non-verbal acoustic tasks, such as environmental
sound classification and spatial reasoning. This implies a data-domain imbalance where
the model is over-fitted to spoken language features at the expense of general acoustic
awareness.

• Specific Task Domain: Distinct gaps in specific categories act as fingerprints for missing
training data. For example, despite its high overall capacity, Gemini 1.5 demonstrates
limited capability in musical reasoning, suggesting an absence of music-theory-oriented
data in its training corpus. Similarly, EchoInk-R1 struggles with spatial-vision tasks relative
to related families, pointing to a lack of spatial-centric visual content.

5.3 THE DATA EFFECT FOR POST-TRAINING
A comparative analysis between EchoInk-R1 and the Qwen series highlights how post-training
strategies can alter—and sometimes degrade—multimodal alignment when the training data is lim-
ited, even though reinforcement learning is commonly assumed to improve generalization. While
EchoInk-R1 utilizes the OmniInstruct corpus (focused on spoken instruction following), Qwen incor-
porates interleaved multimodal conversations during post-training. This divergence leads to notable
behavioral differences:

• Alignment Erosion: EchoInk-R1 shows decreased performance in cross-modal (AV/VA)
tasks compared to Qwen. This suggests that aggressive fine-tuning on spoken-only in-
structions may cause “catastrophic forgetting” of the fine-grained cross-modal grounding
acquired during pre-training.

• Inefficacy for Spatial Domains: The lack of improvement in spatial audio tasks for
EchoInk, despite heavy instruction tuning, reinforces that modality balance is strictly re-
quired during post-training. Unimodal or text-centric fine-tuning cannot compensate for,
and may actively harm, the model’s ability to process complex multimodal signals.

We believe that the findings discussed above highlight the value of XModBench not only as an
evaluation tool but also as a source of insight for model development. The broader challenge remains
the limited transparency of training data in many state-of-the-art multimodal systems. XModBench
provides a practical way to study the impact of such opacity by enabling controlled comparisons
across models with different training paradigms. For future model developers, this allows clearer
understanding of how data choices influence multimodal alignment. For existing model builders,
greater openness about data sources would further support the refinement of data pipelines and help
reduce modality inconsistencies.

Current benchmarks lack the multimodal-invariant structure and modality-swap design required to
expose these effects, underscoring the role of XModBench in advancing both analysis and informed
model development.

6 CONCLUSION

We introduced XModBench, a benchmark for diagnosing cross-modal consistency in omni-
language models. By systematically interleaving audio, vision, and text across diverse tasks, XMod-
Bench enables fine-grained evaluation of modality disparities, directional imbalances, and modality
invariant capability. Our results show that audio remains the most challenging modality, that models
often behave asymmetrically in inverse settings such as text-vision and audio-text, and that com-
bining audio and vision yields only modest gains. Overall, while current systems are strong in
perception and language, they still lack stable and consistent reasoning across modalities, leaving
ample room for progress toward truly modality-agnostic intelligence.

10
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ETHICS STATEMENT

Our study does not involve private or sensitive personal data. All audiovisual samples are obtained
from publicly available official sources, including previously published research datasets, content
hosted on established open source platforms such as Hugging Face and Kaggle. For all newly gen-
erated labels and annotations, we perform manual verification to ensure correctness and to remove
any potentially inappropriate content. All web-curated data are from publicly accessible and previ-
ously published sources without requiring special authentication. All materials are used solely for
non-commercial academic research. We do not redistribute copyrighted video or audio; only derived
features, annotations, and evaluation results are released.
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APPENDIX

A MINI BENCHMARK RESULT

We will release a standardized 6k-sample XModBench-Lite benchmark, consisting of 5 task families
× 6 modality–configuration settings, with 200 examples per setting. The dataset is balanced across
both task families and modality directions. The overall performance (see Tab. 4) trends and error
patterns closely mirror those reported in Tab.2 of the main paper.

Table 4: Performance on 6k version of XModBench

Model Accuracy on 5 Task Families Modality Configuration Avg.
Perc. Spat. Temp. Ling. Knwl. A → T A → V T → A T → V V → A V → T

w/o context 25.3 25.1 24.8 24.4 25.2 26.5 24.8 24.2 24.1 25.5 25.1 25.0

Qwen2.5-VL 91.5 51.9 40.5 84.3 76.5 - - - 68.2 - 72.8 60.5
Intern3.5-VL 88.2 41.8 48.5 75.8 62.4 - - - 46.5 - 73.1 69.8

PandaGPT 24.9 25.3 23.8 24.7 21.3 25.2 25.5 22.8 24.9 24.8 23.1 24.4
Unified-IO 2 36.5 24.8 24.1 31.2 27.5 29.8 24.2 25.5 32.1 25.9 33.5 28.4
Unified-IO 2 XL 42.5 26.3 26.0 32.5 30.6 33.8 26.8 27.5 34.2 27.1 38.8 31.2
Unified-IO 2 XXL 44.1 29.0 27.3 32.9 34.7 38.0 26.3 31.8 38.5 27.3 40.5 33.6
VideoLLaMA 2 46.1 34.2 29.0 37.5 37.4 49.1 26.2 26.0 27.3 25.5 67.8 36.9
VITA 35.6 31.8 29.2 46.1 30.5 45.2 26.5 26.8 26.1 24.5 52.5 33.6
Baichuan Omni 1.5 59.5 35.5 30.8 63.9 57.2 48.5 36.2 41.1 57.2 39.1 74.5 49.5
EchoInk-R1 73.1 35.8 36.4 73.3 72.4 66.5 42.1 56.0 65.5 46.8 72.3 53.2
Qwen2.5-Omni 78.6 37.1 31.2 74.2 77.8 69.5 45.2 54.5 58.1 56.8 74.5 51.4

Gemini 1.5 Pro 56.8 40.8 38.0 71.0 69.9 53.1 38.5 49.2 71.2 41.4 80.4 55.7
Gemini 2.0 Flash 65.4 48.9 41.5 72.2 71.2 68.5 44.2 50.1 74.3 47.5 88.9 67.2
Gemini 2.5 Flash 66.5 47.1 45.3 74.4 81.2 64.8 49.4 57.5 77.2 51.0 81.6 68.6
Gemini 2.5 Pro 74.8 59.3 60.2 75.8 89.1 76.8 50.5 63.2 75.1 61.2 82.5 71.8
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B MODALITY CONFIGURATION SCORE UNDER FIVE TASK

Table 5 reports the detailed results for all six modality–configuration settings (A7→T, A7→V, T7→A,
T7→V, V7→A, V7→T) across the five task families in XModBench (Perception, Spatial, Temporal,
Linguistic, and Knowledge), as well as the overall average score on the full benchmark.

Table 5: Results on XModBench across 5 task families and 6 predefined cross-modal directions
among Text, Vision, and Audio. The first block reports the average accuracy across all tasks, fol-
lowed by Task 1–5 (Perception, Spatial, Temporal, Linguistic, External knowledge). Scores are
color-coded as < 30 , 30–60 , 60–90 , ≥ 90 , with the best in each column highlighted in bold.

Overall Average Task 1 - Perception

Model A 7→ T A 7→ V T 7→ A T 7→ V V 7→ A V 7→ T Avg. Std. A 7→ T A 7→ V T 7→ A T 7→ V V 7→ A V 7→ T Avg. Std.

PandaGPT 24.5 25.0 23.8 25.2 24.5 25.1 24.7 0.5 24.5 24.7 24.8 24.5 24.6 24.7 24.6 0.1
Unified-IO 2 28.9 24.0 25.4 32.0 25.7 32.7 28.1 3.7 35.5 25.3 26.3 55.9 29.1 44.7 36.1 12.1
Unified-IO 2 XL 33.3 27.0 27.1 32.9 26.5 37.4 30.7 4.5 53.3 27.9 30.3 59.1 27.6 55.0 42.2 15.0
Unified-IO 2 XXL 37.4 25.0 31.2 37.8 26.7 39.9 33.0 6.3 55.0 26.9 39.0 64.2 26.7 50.2 43.7 15.4
VideoLLaMA 2 48.6 26.0 25.7 26.5 25.2 66.8 36.5 17.4 74.7 26.6 28.3 26.8 26.5 91.5 45.7 29.4
VITA 40.2 26.0 29.8 26.8 29.9 59.3 35.4 12.8 37.1 25.4 27.0 23.7 26.4 69.1 34.8 17.5
Baichuan Omni 1.5 47.8 35.8 40.5 56.2 38.6 73.0 48.7 14.0 42.7 36.3 45.6 87.8 50.3 90.7 58.9 24.0
EchoInk-R1 64.6 45.9 56.4 60.9 49.9 77.6 59.2 11.3 74.1 58.5 69.3 91.6 67.7 93.4 75.8 13.9
Qwen2.5-Omni 62.0 48.0 55.4 59.6 50.5 76.3 58.6 10.1 72.9 59.1 69.2 91.2 68.5 92.0 75.5 13.3

Gemini 1.5 Pro 52.4 38.2 48.6 70.4 40.7 79.9 55.0 16.7 41.0 27.9 45.0 95.8 32.1 95.3 56.2 31.1
Gemini 2.0 Flash 63.7 49.0 52.2 71.5 47.6 85.2 61.2 15.2 56.8 45.0 54.2 92.7 55.1 93.4 66.2 21.2
Gemini 2.5 Flash 62.6 51.2 55.1 75.7 51.9 86.0 63.7 14.2 52.6 44.3 53.4 95.4 56.0 95.0 66.1 22.8
Gemini 2.5 Pro 71.0 58.9 64.4 79.8 60.8 88.6 70.6 11.7 62.3 57.4 68.5 97.1 72.6 97.6 75.9 17.4

Human 92.4 91.5 91.1 91.8 86.4 95.6 91.5 3.0 92.9 94.2 91.3 89.2 85.4 92.9 91.0 3.2

Task 2 - Spatial Task 3 - Temporal

Model A 7→ T A 7→ V T 7→ A T 7→ V V 7→ A V 7→ T Avg. Std. A 7→ T A 7→ V T 7→ A T 7→ V V 7→ A V 7→ T Avg. Std.

PandaGPT 25.5 26.6 26.0 27.2 25.8 23.1 25.7 1.4 21.9 25.3 24.8 26.0 24.5 23.9 24.4 1.4
Unified-IO 2 26.0 20.7 22.4 25.0 23.1 24.7 23.6 1.9 22.7 22.4 25.1 24.3 25.8 22.4 23.8 1.5
Unified-IO 2 XL 24.8 23.0 25.8 26.0 26.0 24.5 25.0 1.2 22.3 24.5 28.8 22.1 26.0 32.7 26.1 4.1
Unified-IO 2 XXL 29.6 23.6 30.9 25.5 29.5 30.7 28.3 3.0 24.3 27.4 25.3 29.6 25.2 34.4 27.7 3.8
VideoLLaMA 2 43.9 27.8 24.4 27.5 25.2 54.3 33.9 12.3 31.0 25.0 27.7 25.9 25.8 39.8 29.2 5.6
VITA 42.3 28.9 24.6 30.9 25.1 52.2 34.0 11.0 31.1 25.1 26.1 24.6 27.6 41.7 29.4 6.5
Baichuan Omni 1.5 38.1 28.0 25.1 31.7 25.3 61.2 34.9 13.8 27.0 25.2 23.9 26.9 25.0 52.2 30.0 10.9
EchoInk-R1 41.3 27.2 26.8 34.0 28.0 62.2 36.6 13.7 38.2 26.2 38.6 31.1 26.9 61.6 37.1 13.1
Qwen2.5-Omni 41.8 31.2 26.7 34.4 28.6 67.8 38.4 15.3 26.9 28.7 36.6 25.6 25.3 50.8 32.3 10.0

Gemini 1.5 Pro 37.2 31.2 24.5 51.4 23.7 72.8 40.1 19.0 37.1 27.2 31.0 47.3 24.5 55.7 37.1 12.2
Gemini 2.0 Flash 45.2 43.1 29.2 56.4 33.5 83.0 48.4 20.4 51.8 30.8 38.6 48.0 27.4 72.0 44.8 16.3
Gemini 2.5 Flash 45.6 31.4 30.2 71.2 26.7 83.2 48.0 23.8 48.8 39.6 39.1 51.4 38.0 74.6 48.6 13.9
Gemini 2.5 Pro 41.0 32.9 32.1 75.8 30.3 88.3 50.1 25.4 76.4 54.4 57.7 55.4 50.6 70.6 60.8 10.3

Human 93.3 93.3 81.7 86.7 86.7 96.7 89.7 5.7 90.0 85.0 86.7 91.7 83.3 96.7 88.9 4.9

Task 4 - Linguistic Task 5 - External Knowledge

Model A 7→ T A 7→ V T 7→ A T 7→ V V 7→ A V 7→ T Avg. Std. A 7→ T A 7→ V T 7→ A T 7→ V V 7→ A V 7→ T Avg. Std.

PandaGPT 28.0 24.3 20.7 24.7 24.3 31.3 25.5 3.6 22.8 23.9 22.6 23.6 23.3 22.6 23.1 0.5
Unified-IO 2 32.4 27.5 27.6 27.9 25.2 41.7 30.4 6.0 28.2 24.2 25.8 27.1 25.3 29.9 26.8 2.1
Unified-IO 2 XL 34.4 31.7 24.5 28.8 23.6 41.8 30.8 6.8 31.9 27.9 26.2 28.6 29.5 32.9 29.5 2.5
Unified-IO 2 XXL 39.9 23.0 25.5 30.1 22.3 46.6 31.2 9.9 38.4 23.9 35.3 39.5 29.7 37.4 34.0 6.0
VideoLLaMA 2 50.3 25.2 24.2 25.2 24.1 71.2 36.7 19.8 42.9 25.5 23.9 27.0 24.4 76.9 36.8 20.9
VITA 52.2 26.8 47.1 29.9 47.9 72.5 46.1 16.6 38.5 24.1 24.2 24.7 22.6 61.2 32.6 15.2
Baichuan Omni 1.5 77.0 45.7 65.8 51.8 58.7 77.6 62.8 13.1 54.3 43.9 41.9 82.9 33.7 83.2 56.7 21.5
EchoInk-R1 86.0 57.4 74.6 64.4 70.1 87.3 73.3 11.8 83.3 60.4 72.7 83.6 56.6 83.3 73.3 12.3
Qwen2.5-Omni 85.6 61.8 73.6 64.6 71.5 87.5 74.1 10.6 83.0 59.2 70.7 82.5 58.6 83.2 72.8 11.8

Gemini 1.5 Pro 86.2 52.4 72.3 68.7 70.7 85.5 72.6 12.0 62.3 52.5 70.2 88.8 52.3 90.3 69.4 17.0
Gemini 2.0 Flash 83.6 57.5 68.6 67.3 60.9 83.4 70.2 11.1 81.2 68.3 70.5 93.1 61.3 94.2 78.1 13.6
Gemini 2.5 Flash 84.1 68.3 70.9 66.8 64.4 84.4 73.1 8.9 82.0 72.2 81.7 93.9 74.5 92.7 82.8 9.0
Gemini 2.5 Pro 84.9 67.5 75.5 76.1 65.8 91.4 76.8 9.9 90.3 82.5 88.2 94.6 84.8 95.1 89.3 5.1

Human 89.2 96.7 97.5 93.3 91.7 95.0 93.9 2.8 96.7 88.3 98.3 98.3 85.0 96.7 93.9 5.8

C TASK SPECIFICED MODEL PERFORMANCE

C.1 TASK 1: PERCEPTUAL TASK

Table 6: T1 (Perception) Results

Model Perception Task

Model Task General General - Hard Scene Instruments Instruments-multi

Gemini 2.5 Pro

Audio 7→ Text 81.05 71.39 67.20 47.75 44.09
Audio 7→ Vision 76.26 65.25 64.60 44.30 36.60
Text 7→ Audio 79.95 79.22 75.05 59.05 49.30
Text 7→ Vision 98.90 97.87 90.80 97.90 99.80
Vision 7→ Audio 88.73 79.35 84.40 61.92 48.79
Vision 7→ Text 98.37 97.50 95.00 97.19 99.80

Continued on next page
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Table 6 – continued from previous page

Model Perception Task

Model Task General General - Hard Scene Instruments Instruments-multi

Gemini 2.5 Flash

Audio 7→ Text 81.00 50.00 51.01 45.82 35.27
Audio 7→ Vision 62.63 50.39 47.60 30.99 29.92
Text 7→ Audio 79.80 59.13 57.34 37.90 32.99
Text 7→ Vision 98.96 91.45 90.20 96.50 99.74
Vision 7→ Audio 82.10 60.59 67.54 39.80 29.92
Vision 7→ Text 98.39 96.62 92.60 89.88 97.27

Gemini 2.0 Flash

Audio 7→ Text 81.10 62.07 54.00 47.05 39.80
Audio 7→ Vision 67.45 51.68 49.80 31.50 24.80
Text 7→ Audio 79.95 60.64 53.80 38.80 37.60
Text 7→ Vision 98.95 91.45 80.40 96.90 95.60
Vision 7→ Audio 82.50 66.45 53.00 37.90 35.40
Vision 7→ Text 96.95 90.22 84.80 96.70 98.40

Gemini 1.5 Pro

Audio 7→ Text 80.90 36.38 29.20 30.93 27.40
Audio 7→ Vision 34.35 30.00 28.40 23.60 23.00
Text 7→ Audio 80.25 45.88 41.80 31.10 26.20
Text 7→ Vision 98.75 95.88 89.40 98.10 97.00
Vision 7→ Audio 41.85 34.38 31.80 27.70 25.00
Vision 7→ Text 95.10 94.62 87.80 98.90 100.00

Qwen2.5 Omni

Audio 7→ Text 80.00 74.50 79.20 69.37 61.40
Audio 7→ Vision 71.10 54.30 59.80 58.30 51.80
Text 7→ Audio 81.20 69.90 78.80 67.40 48.80
Text 7→ Vision 94.90 87.70 89.60 90.80 92.80
Vision 7→ Audio 83.90 68.50 61.20 68.30 60.60
Vision 7→ Text 97.50 87.00 88.00 91.80 95.80

EchoInk

Audio 7→ Text 87.55 74.80 77.10 68.20 63.00
Audio 7→ Vision 74.60 58.40 49.00 58.20 52.10
Text 7→ Audio 84.57 66.40 79.40 69.14 46.80
Text 7→ Vision 95.00 91.80 88.40 89.78 92.80
Vision 7→ Audio 82.80 68.80 60.40 69.14 57.52
Vision 7→ Text 96.00 95.20 87.80 92.38 95.79

Baichuan Omni 1.5

Audio 7→ Text 55.85 44.05 46.40 36.44 31.00
Audio 7→ Vision 44.45 37.43 43.20 29.60 26.60
Text 7→ Audio 63.80 50.90 53.60 32.80 27.00
Text 7→ Vision 97.35 88.10 81.20 84.50 88.00
Vision 7→ Audio 68.25 53.75 58.80 38.40 32.20
Vision 7→ Text 95.90 87.12 86.80 92.70 90.80

VideoLLaMA 2

Audio 7→ Text 86.84 76.85 77.26 75.86 56.89
Audio 7→ Vision 26.82 26.82 24.45 29.26 25.82
Text 7→ Audio 30.69 28.21 28.89 28.45 25.07
Text 7→ Vision 25.49 27.49 26.03 29.25 25.89
Vision 7→ Audio 29.28 27.47 25.30 29.26 21.04
Vision 7→ Text 97.05 91.48 87.45 89.40 92.23

VITA

Audio 7→ Text 43.30 32.99 39.18 39.18 30.93
Audio 7→ Vision 22.68 20.62 28.87 28.87 25.77
Text 7→ Audio 28.96 24.24 24.92 28.28 28.62
Text 7→ Vision 20.62 25.77 31.96 21.65 18.56
Vision 7→ Audio 23.57 29.29 24.92 25.93 28.28
Vision 7→ Text 64.95 73.20 58.76 74.23 74.23

Unified IO 2

Audio 7→ Text 49.05 45.26 32.04 26.46 24.44
Audio 7→ Vision 27.00 26.84 30.65 19.40 22.45
Text 7→ Audio 26.68 25.86 25.27 27.64 26.20
Text 7→ Vision 73.28 56.44 72.67 27.26 49.89
Vision 7→ Audio 27.89 24.09 43.22 24.05 26.26
Vision 7→ Text 55.83 44.21 32.81 48.66 41.86

Unified IO 2 XL

Audio 7→ Text 76.64 71.68 57.82 33.68 26.87
Audio 7→ Vision 28.04 25.21 34.89 22.29 29.22
Text 7→ Audio 39.47 28.46 33.02 23.80 26.84
Text 7→ Vision 81.89 68.28 69.87 22.09 53.29
Vision 7→ Audio 26.46 24.43 35.05 24.80 27.03
Vision 7→ Text 61.10 51.83 53.06 60.49 48.50

Unified IO 2 XXL

Audio 7→ Text 83.63 71.20 45.88 41.45 32.83
Audio 7→ Vision 29.07 23.28 27.41 27.09 27.87
Text 7→ Audio 59.87 44.10 35.40 27.68 28.09
Text 7→ Vision 86.07 73.08 71.29 36.07 54.44
Vision 7→ Audio 28.66 29.81 24.82 24.01 26.07
Vision 7→ Text 53.46 48.64 40.49 61.85 46.68

PandaGPT Audio 7→ Text 25.03 28.80 24.49 24.30 19.99
Audio 7→ Vision 26.52 27.37 24.63 24.89 20.15

Continued on next page
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Table 6 – continued from previous page

Model Perception Task

Model Task General General - Hard Scene Instruments Instruments-multi

PandaGPT

Text 7→ Audio 25.40 29.65 24.25 24.77 20.08
Text 7→ Vision 25.07 28.68 24.22 24.52 20.19
Vision 7→ Audio 25.26 28.81 24.50 24.52 19.85
Vision 7→ Text 25.26 28.70 24.64 24.90 20.05

C.2 TASK 2: SPATIAL REASONING

Table 7: T2 (Spatial) Task Results

Model Spatial Task

Model Task Arrangement Moving Direction Indoor

Gemini 2.5 Pro

Audio 7→ Text 28.82 69.39 24.87
Audio 7→ Vision 24.73 40.65 33.38
Text 7→ Audio 30.09 39.02 27.09
Text 7→ Vision 95.70 58.85 72.73
Vision 7→ Audio 29.01 38.10 23.86
Vision 7→ Text 95.21 85.23 84.56

Gemini 2.5 Flash

Audio 7→ Text 27.53 83.53 25.64
Audio 7→ Vision 26.54 36.03 31.61
Text 7→ Audio 25.81 35.34 29.37
Text 7→ Vision 91.40 66.44 55.71
Vision 7→ Audio 27.44 26.44 26.12
Vision 7→ Text 91.40 84.05 74.25

Gemini 2.0 Flash

Audio 7→ Text 28.82 82.71 24.10
Audio 7→ Vision 26.45 37.58 35.38
Text 7→ Audio 27.31 39.41 21.01
Text 7→ Vision 67.53 66.99 34.62
Vision 7→ Audio 25.81 45.78 28.86
Vision 7→ Text 89.25 99.02 60.76

Gemini 1.5 Pro

Audio 7→ Text 29.25 57.37 24.87
Audio 7→ Vision 27.10 32.87 33.59
Text 7→ Audio 19.25 34.26 20.00
Text 7→ Vision 64.30 50.80 39.23
Vision 7→ Audio 23.66 21.82 25.57
Vision 7→ Text 95.48 80.00 43.04

Qwen2.5 Omni

Audio 7→ Text 21.29 75.28 28.89
Audio 7→ Vision 28.60 35.83 29.23
Text 7→ Audio 20.22 31.52 28.35
Text 7→ Vision 45.38 26.98 30.77
Vision 7→ Audio 23.87 34.69 27.34
Vision 7→ Text 80.86 81.63 41.01

EchoInk

Audio 7→ Text 27.79 61.62 34.34
Audio 7→ Vision 24.97 25.59 30.98
Text 7→ Audio 26.60 28.96 24.92
Text 7→ Vision 46.80 25.59 29.63
Vision 7→ Audio 24.88 31.31 27.95
Vision 7→ Text 80.13 61.62 44.78

Baichuan Omni 1.5

Audio 7→ Text 28.39 71.43 14.36
Audio 7→ Vision 28.17 28.51 27.18
Text 7→ Audio 22.37 27.21 25.57
Text 7→ Vision 35.70 36.32 23.08
Vision 7→ Audio 25.38 22.95 27.59
Vision 7→ Text 71.40 82.95 29.37

Continued on next page
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Table 7 – continued from previous page
Model Spatial Task

Model Task Arrangement Moving Direction Indoor

VideoLLaMA 2

Audio 7→ Text 31.40 62.44 37.76
Audio 7→ Vision 27.40 27.75 28.22
Text 7→ Audio 26.76 27.04 19.53
Text 7→ Vision 27.36 27.01 28.25
Vision 7→ Audio 25.63 29.28 20.77
Vision 7→ Text 46.96 84.21 31.70

VITA

Audio 7→ Text 29.90 77.32 19.59
Audio 7→ Vision 30.93 26.80 28.87
Text 7→ Audio 23.23 25.59 25.00
Text 7→ Vision 29.90 31.96 30.93
Vision 7→ Audio 24.92 25.59 24.66
Vision 7→ Text 57.73 55.67 43.30

Unified IO 2

Audio 7→ Text 23.03 20.47 34.40
Audio 7→ Vision 21.98 17.20 22.89
Text 7→ Audio 23.50 20.69 22.87
Text 7→ Vision 25.63 24.03 25.22
Vision 7→ Audio 24.09 17.32 27.86
Vision 7→ Text 28.60 24.10 21.49

Unified IO 2 XL

Audio 7→ Text 23.09 28.42 22.88
Audio 7→ Vision 22.20 20.09 26.75
Text 7→ Audio 24.82 22.92 29.70
Text 7→ Vision 24.18 24.25 29.56
Vision 7→ Audio 24.12 21.78 32.17
Vision 7→ Text 27.41 24.10 21.93

Unified IO 2 XXL

Audio 7→ Text 22.58 30.07 36.18
Audio 7→ Vision 24.54 24.02 22.37
Text 7→ Audio 25.85 38.11 28.71
Text 7→ Vision 25.39 30.02 21.10
Vision 7→ Audio 25.45 28.33 34.77
Vision 7→ Text 30.36 30.91 30.80

PandaGPT

Audio 7→ Text 25.42 25.62 25.44
Audio 7→ Vision 27.22 25.63 26.91
Text 7→ Audio 27.06 25.58 25.27
Text 7→ Vision 27.01 25.95 28.57
Vision 7→ Audio 27.16 25.53 24.57
Vision 7→ Text 21.19 25.72 22.34

C.3 TASK 3: TEMPORAL REASONING

Table 8: T3 (Temporal) Task Results

Model Temporal Task

Model Task Order Counting Calculation

Gemini 2.5 Pro

Audio 7→ Text 96.18 57.36 75.78
Audio 7→ Vision 95.38 37.88 29.87
Text 7→ Audio 95.39 50.00 27.60
Text 7→ Vision 99.80 35.85 30.63
Vision 7→ Audio 96.35 34.70 20.65
Vision 7→ Text 99.80 40.58 71.46

Gemini 2.5 Flash

Audio 7→ Text 41.40 49.60 55.40
Audio 7→ Vision 58.99 33.07 26.88
Text 7→ Audio 61.00 29.40 27.00
Text 7→ Vision 99.15 29.45 25.51

Continued on next page
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Table 8 – continued from previous page
Model Temporal Task

Model Task Order Counting Calculation

Vision 7→ Audio 63.39 26.58 24.13
Vision 7→ Text 99.20 53.37 71.22

Gemini 2.0 Flash

Audio 7→ Text 43.60 52.60 59.20
Audio 7→ Vision 33.40 30.17 28.93
Text 7→ Audio 61.40 28.80 25.60
Text 7→ Vision 81.40 33.33 29.16
Vision 7→ Audio 33.40 28.22 20.65
Vision 7→ Text 99.20 57.87 58.90

Gemini 1.5 Pro

Audio 7→ Text 34.40 30.00 47.00
Audio 7→ Vision 32.00 24.44 25.10
Text 7→ Audio 38.60 30.20 24.20
Text 7→ Vision 82.00 33.88 26.14
Vision 7→ Audio 27.60 23.87 21.88
Vision 7→ Text 98.40 25.26 43.56

Qwen2.5 Omni

Audio 7→ Text 28.20 25.80 26.60
Audio 7→ Vision 34.80 22.22 28.96
Text 7→ Audio 63.80 19.40 26.60
Text 7→ Vision 24.80 22.90 28.96
Vision 7→ Audio 26.40 23.57 25.93
Vision 7→ Text 85.00 41.41 25.93

EchoInk

Audio 7→ Text 35.00 48.48 30.98
Audio 7→ Vision 30.98 23.57 23.91
Text 7→ Audio 68.69 21.89 25.25
Text 7→ Vision 43.10 22.56 27.61
Vision 7→ Audio 31.99 23.57 25.25
Vision 7→ Text 93.60 46.80 44.44

Baichuan Omni 1.5

Audio 7→ Text 23.00 34.40 23.60
Audio 7→ Vision 23.80 25.74 25.99
Text 7→ Audio 23.40 23.00 25.40
Text 7→ Vision 25.80 26.23 28.77
Vision 7→ Audio 25.20 28.34 21.47
Vision 7→ Text 70.20 53.18 33.13

VideoLLaMA 2

Audio 7→ Text 25.82 35.90 31.23
Audio 7→ Vision 25.23 25.80 24.03
Text 7→ Audio 34.29 22.09 26.70
Text 7→ Vision 26.66 26.06 24.90
Vision 7→ Audio 27.03 23.64 26.67
Vision 7→ Text 50.40 32.44 36.67

VITA

Audio 7→ Text 26.26 38.14 28.87
Audio 7→ Vision 16.49 31.17 27.52
Text 7→ Audio 26.80 27.61 23.91
Text 7→ Vision 22.68 25.62 25.58
Vision 7→ Audio 28.62 26.71 27.59
Vision 7→ Text 42.27 49.66 33.10

Unified IO 2

Audio 7→ Text 24.28 18.25 25.44
Audio 7→ Vision 21.50 22.61 23.03
Text 7→ Audio 30.02 23.46 21.89
Text 7→ Vision 25.25 24.85 22.86
Vision 7→ Audio 25.46 26.29 25.65
Vision 7→ Text 27.68 16.25 23.37

Unified IO 2 XL

Audio 7→ Text 24.65 24.63 17.47
Audio 7→ Vision 26.03 30.21 17.39
Text 7→ Audio 27.52 28.83 30.02
Text 7→ Vision 25.09 19.16 22.17
Vision 7→ Audio 22.64 24.92 30.57

Continued on next page
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Table 8 – continued from previous page
Model Temporal Task

Model Task Order Counting Calculation

Vision 7→ Text 37.30 36.42 24.44

Unified IO 2 XXL

Audio 7→ Text 24.41 26.81 21.62
Audio 7→ Vision 25.26 29.68 27.17
Text 7→ Audio 28.83 22.43 24.61
Text 7→ Vision 23.70 37.78 27.37
Vision 7→ Audio 23.63 24.69 27.28
Vision 7→ Text 41.69 38.50 22.95

Panda

Audio 7→ Text 25.85 16.77 23.17
Audio 7→ Vision 26.06 22.60 27.31
Text 7→ Audio 25.72 22.81 25.80
Text 7→ Vision 26.31 22.77 29.02
Vision 7→ Audio 26.10 22.77 24.59
Vision 7→ Text 25.51 22.94 23.37

C.4 TASK 4: LINGUISTIC TASK

Table 9: T4 Linguistic Task Results

Model Linguistic Task

Model Task Recognition Translation Emotion

Gemini 2.5 Pro

Audio 7→ Text 97.16 96.58 60.86
Audio 7→ Vision 91.65 67.95 42.75
Text 7→ Audio 80.35 81.62 64.51
Text 7→ Vision 93.58 67.38 67.31
Vision 7→ Audio 80.81 73.22 43.43
Vision 7→ Text 99.54 100.00 74.54

Gemini 2.5 Flash

Audio 7→ Text 94.05 97.44 60.86
Audio 7→ Vision 68.01 93.30 43.67
Text 7→ Audio 76.92 81.34 54.43
Text 7→ Vision 72.88 67.24 60.14
Vision 7→ Audio 74.95 72.93 45.22
Vision 7→ Text 99.40 96.72 57.14

Gemini 2.0 Flash

Audio 7→ Text 92.86 97.29 60.57
Audio 7→ Vision 68.30 67.66 36.43
Text 7→ Audio 69.79 81.20 54.86
Text 7→ Vision 73.92 67.66 60.43
Vision 7→ Audio 66.52 73.08 43.00
Vision 7→ Text 96.43 97.15 56.71

Gemini 1.5 Pro

Audio 7→ Text 94.94 97.15 60.43
Audio 7→ Vision 73.96 46.72 36.57
Text 7→ Audio 83.33 80.91 52.57
Text 7→ Vision 76.93 66.81 62.43
Vision 7→ Audio 80.80 92.02 39.20
Vision 7→ Text 96.73 96.44 63.29

Qwen2.5 Omni

Audio 7→ Text 94.64 96.72 65.29
Audio 7→ Vision 62.95 73.36 48.94
Text 7→ Audio 81.25 86.75 52.71
Text 7→ Vision 65.03 69.09 59.79
Vision 7→ Audio 82.44 88.60 43.57
Vision 7→ Text 97.17 97.72 67.57

EchoInk
Audio 7→ Text 92.93 95.96 69.02
Audio 7→ Vision 64.98 71.38 35.69
Text 7→ Audio 80.47 81.48 61.95

Continued on next page
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Table 9 – continued from previous page
Model Linguistic Task

Model Task Recognition Translation Emotion

Text 7→ Vision 68.35 67.68 57.24
Vision 7→ Audio 81.48 85.86 43.10
Vision 7→ Text 96.63 97.31 68.01

Baichuan Omni 1.5

Audio 7→ Text 87.05 96.01 48.00
Audio 7→ Vision 55.36 56.55 25.25
Text 7→ Audio 64.29 84.94 48.29
Text 7→ Vision 55.95 52.56 46.99
Vision 7→ Audio 65.03 84.06 27.14
Vision 7→ Text 92.56 96.72 43.43

VideoLLaMA 2

Audio 7→ Text 69.04 67.40 14.48
Audio 7→ Vision 24.82 26.00 24.68
Text 7→ Audio 22.82 22.02 27.68
Text 7→ Vision 25.03 25.80 24.65
Vision 7→ Audio 24.07 23.25 25.01
Vision 7→ Text 83.86 86.80 43.00

VITA

Audio 7→ Text 39.18 73.20 44.33
Audio 7→ Vision 24.74 24.74 30.93
Text 7→ Audio 39.73 55.56 46.13
Text 7→ Vision 30.93 25.77 32.99
Vision 7→ Audio 53.87 61.95 27.95
Vision 7→ Text 86.60 88.66 42.27

Unified IO 2

Audio 7→ Text 62.01 14.06 21.05
Audio 7→ Vision 35.66 20.90 25.83
Text 7→ Audio 26.60 26.36 29.85
Text 7→ Vision 25.89 26.00 31.82
Vision 7→ Audio 24.24 25.14 26.27
Vision 7→ Text 66.06 18.90 40.01

Unified IO 2 XL

Audio 7→ Text 69.63 17.26 16.29
Audio 7→ Vision 45.46 26.28 23.28
Text 7→ Audio 27.82 23.75 21.90
Text 7→ Vision 30.65 25.26 30.47
Vision 7→ Audio 25.07 23.70 21.88
Vision 7→ Text 75.27 23.23 27.02

Unified IO 2 XXL

Audio 7→ Text 72.67 17.63 29.46
Audio 7→ Vision 18.23 27.43 23.24
Text 7→ Audio 23.04 25.97 27.47
Text 7→ Vision 31.09 27.84 31.42
Vision 7→ Audio 19.43 23.31 24.06
Vision 7→ Text 78.04 26.88 34.88

PandaGPT

Audio 7→ Text 27.12 28.83 28.03
Audio 7→ Vision 22.38 22.23 28.23
Text 7→ Audio 22.06 18.88 21.20
Text 7→ Vision 22.10 24.96 27.04
Vision 7→ Audio 22.55 22.40 27.99
Vision 7→ Text 33.96 32.67 27.20

C.5 TASK 5: EXTERNAL KNOWLEDGE
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Table 10: T5 (External) Task Results

Model External Task

Model Task Genre Movie Singer

Gemini 2.5 Pro

Audio 7→ Text 83.28 93.00 94.67
Audio 7→ Vision 74.80 89.90 82.67
Text 7→ Audio 78.16 94.50 91.95
Text 7→ Vision 85.76 97.99 100.00
Vision 7→ Audio 72.42 92.00 90.00
Vision 7→ Text 88.95 96.45 100.00

Gemini 2.5 Flash

Audio 7→ Text 83.78 93.00 69.13
Audio 7→ Vision 63.36 82.41 70.92
Text 7→ Audio 78.56 90.45 76.00
Text 7→ Vision 85.00 97.99 98.67
Vision 7→ Audio 63.96 88.32 71.33
Vision 7→ Text 86.34 98.00 93.71

Gemini 2.0 Flash

Audio 7→ Text 83.50 88.00 72.00
Audio 7→ Vision 62.40 86.50 56.00
Text 7→ Audio 78.46 82.50 50.67
Text 7→ Vision 84.50 98.00 96.67
Vision 7→ Audio 66.43 79.50 38.00
Vision 7→ Text 87.50 95.00 100.00

Gemini 1.5 Pro

Audio 7→ Text 61.70 78.00 47.33
Audio 7→ Vision 42.90 74.50 40.00
Text 7→ Audio 63.53 84.50 62.67
Text 7→ Vision 82.10 95.50 88.67
Vision 7→ Audio 45.59 74.00 37.33
Vision 7→ Text 87.10 95.00 88.67

Qwen2.5 Omni

Audio 7→ Text 89.50 79.50 80.00
Audio 7→ Vision 61.40 67.50 48.67
Text 7→ Audio 85.65 70.50 56.00
Text 7→ Vision 74.20 94.50 78.67
Vision 7→ Audio 81.82 60.50 33.33
Vision 7→ Text 79.00 92.50 78.00

EchoInk

Audio 7→ Text 87.54 82.50 80.00
Audio 7→ Vision 61.95 68.00 51.33
Text 7→ Audio 84.51 73.00 60.67
Text 7→ Vision 77.78 93.00 80.00
Vision 7→ Audio 62.63 64.50 42.67
Vision 7→ Text 79.12 93.50 77.33

Baichuan Omni 1.5

Audio 7→ Text 65.60 56.00 41.33
Audio 7→ Vision 45.30 54.50 32.00
Text 7→ Audio 25.75 60.00 40.00
Text 7→ Vision 77.00 94.50 77.33
Vision 7→ Audio 27.15 46.50 27.33
Vision 7→ Text 81.20 94.50 74.00

VideoLLaMA 2

Audio 7→ Text 62.60 26.59 39.38
Audio 7→ Vision 26.23 23.56 26.72
Text 7→ Audio 24.85 21.59 25.34
Text 7→ Vision 26.40 28.55 26.09
Vision 7→ Audio 25.67 23.56 24.10
Vision 7→ Text 68.27 80.55 82.02

VITA

Audio 7→ Text 46.39 40.21 28.87
Audio 7→ Vision 20.62 26.80 24.74
Text 7→ Audio 21.89 25.50 25.33
Text 7→ Vision 20.62 31.96 21.65
Vision 7→ Audio 23.23 22.00 22.67
Vision 7→ Text 47.42 81.44 54.64

Continued on next page
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Table 10 – continued from previous page
Model External Task

Model Task Genre Movie Singer

Unified IO 2

Audio 7→ Text 31.83 22.53 30.09
Audio 7→ Vision 22.30 29.03 21.40
Text 7→ Audio 26.25 24.51 26.71
Text 7→ Vision 34.46 26.03 20.71
Vision 7→ Audio 25.45 20.57 30.01
Vision 7→ Text 27.90 34.59 27.33

Unified IO 2 XL

Audio 7→ Text 36.80 27.52 31.40
Audio 7→ Vision 29.23 29.09 25.40
Text 7→ Audio 24.12 25.09 29.34
Text 7→ Vision 34.41 24.57 26.68
Vision 7→ Audio 26.51 32.55 29.41
Vision 7→ Text 24.86 35.76 38.05

Unified IO 2 XXL

Audio 7→ Text 57.68 22.71 34.70
Audio 7→ Vision 26.83 20.56 24.42
Text 7→ Audio 47.92 26.52 31.43
Text 7→ Vision 51.85 24.01 42.75
Vision 7→ Audio 25.06 30.57 33.40
Vision 7→ Text 28.20 36.55 47.36

Panda

Audio 7→ Text 25.77 21.32 21.24
Audio 7→ Vision 25.74 24.49 21.42
Text 7→ Audio 22.11 25.18 20.37
Text 7→ Vision 24.63 24.64 21.40
Vision 7→ Audio 23.93 24.58 21.29
Vision 7→ Text 26.32 21.07 20.39

C.6 EVALUATION COST

We provide a detailed evaluation cost section as a reference of usage. We evaluate on the full version (60k
sample) of XModBench, API-based models we test Gemini 2.5 Pro, we report the token usage for evaluating
the overall benchmark and each task family . For open-source models we report Qwen2.5-Omni, we report the
evaluation runing time, using with eight A6000 GPUs and each GPU run one process.

Table 11: Evaluation cost estimation for models across the five task families and the full benchmark.

Model Perc. Spat. Temp. Ling. Knwl. Total

Gemini 2.5 Pro (Token usage) 26.0M 13.5M 25.1M 4.3M 14.0M 82.9M

Qwen2.5-Omni (Hours) 6.3 1.4 1.4 1.4 2.1 12.7

D INTERLEAVING VISUAL AUDIO INPUT

In the preceding experiments, we showed that omni-language models exhibit varying performance in pairwise
cross-modal reasoning, particularly between vision–text and audio–text tasks. Yet, real-world multimodal sce-
narios are more complex: information from multiple modalities often arrives simultaneously and must be pro-
cessed in an integrated manner. To address this challenge, we extend all tasks in XModBench to an audio–visual
context configuration, where the question stem provides both audio and visual cues, while the candidate space
remains identical to the original text-based setting.

We evaluate this dual-context setup using the Gemini series of models, which represent some of the most
advanced omni-language systems available. The results, presented in Tab. 12, enable a direct comparison with
the pairwise baseline and reveal how models leverage—or fail to leverage—simultaneous multimodal evidence.
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Table 12: Overall performance of Gemini models under the dual-context setting (audio+visual con-
text 7→ text). We compare with pairwise baselines (A 7→ T and V 7→ T), and report the stronger
unimodal baseline max(A 7→ T,V 7→ T).

Setting Gemini 1.5 Pro Gemini 2.0 Flash Gemini 2.5 Pro

A 7→ T 52.76 63.71 70.99
V 7→ T 79.92 85.20 88.60

A+V 7→ T 82.53 (+2.61) 79.84 89.76

E HUMAN SURVEY

To evaluate human performance and establish reference baselines, we conducted a user study on a subset of
XModBench. Participants answered multiple-choice questions under different modality configurations, with
Figure 7 showing a screenshot of the interface and example questions. For each subtask, we collected responses
from 10 valid participants per modality configuration.

F TECHINIQAL DETAILS IN TRIPLET DATA COLLECTION AND
PROCESSING.DATA FOR EACH SUBTASK

In this section, we provide detailed descriptions of the data sources are collected, and how each data in each
modality are processed for each subtask in XModBench.

F.1 PERCEPTUAL RECOGNITION

General Categories. We utilize the VGGSound Source (VGG-SS) dataset(Chen et al., 2021; Kim et al.,
2024), a large-scale video benchmark designed for sound source localization, which provides video-level an-
notations across diverse sound activities. The dataset covers 200 categories with approximately 5,000 video
clips, where sound sources are annotated with bounding boxes to ensure clear visibility in each clip. For our
benchmark, we extract a 2-second segment corresponding to the loudest audio channel as the audio input, and
randomly sample a single frame from the same clip as the visual input. The activity class name serves as the tex-
tual description. To construct multiple-choice questions, four additional activity labels are randomly sampled
as distractors, resulting in four candidate answers per instance. We then use Gemini 2.5-flash lite to(Comanici
et al., 2025) filter if each instance if the audio and video frame is clear to be hear and the image frame and audio
are all match the category name.

Fine-grained Categories. This subtask uses the same pool of video clips as the General Categories setting.
The difference lies in reorganizing the activity classes into eight fine-grained clusters: Animal sounds, Musical
instruments, Human activities, Transportation, Tools and utilities, Urban sounds, Human speech, and Natural
sounds. For each instance, we select the target activity along with four distractor activities sampled from the
same fine-grained cluster. This ensures that all answer choices belong to the same semantic domain, making
the recognition task more challenging and diagnostic within a coherent category group.

Figure 7: Sample question of human survey
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Natural Environment. We draw data from the Landscapes dataset(Lee et al., 2022), which consists of
ambient audio–video clips capturing natural outdoor scenes. Following the same selection protocol as in the
General Categories task, we extract a 2-second segment from the dominant audio channel as the audio input,
and randomly sample one frame from the corresponding video as the visual input. The dataset’s categorical
labels are used as the textual descriptions.

Instruments. Instrument data is collected from the Solos dataset(Montesinos et al., 2020), which contains
recordings of 13 distinct instruments: violin, viola, cello, double bass, flute, oboe, clarinet, bassoon, saxophone,
trumpet, horn, trombone, and tuba. We use the video frames as the visual modality, the isolated performance
recordings as the audio modality, and the instrument names as textual labels.

Instrument Composition. We employ the URMP dataset(Li et al., 2018), a multimodal corpus designed
for music performance analysis, which provides video and audio recordings of ensemble performances. For
this subtask, we leverage clips containing multiple instruments playing together, using the mixture audio as
input, sampled video frames as the visual modality, and instrument combination labels as text.

F.2 SPATIAL REASONING

2D Horizontal Arrangement. This subtask is derived from the URMP dataset(Li et al., 2018), which
contains multi-instrument ensemble recordings with annotated left-to-right spatial positions of each performer
and independent audio channels per instrument. We construct multiple-choice questions by generating three
distractor options through random shuffling of instrument order along the horizontal axis. For the visual modal-
ity, cropped player images are concatenated into a composite frame that preserves their spatial arrangement.
For the audio modality, stereo spatialization is synthesized by assigning distinct azimuth values to each shuffled
configuration and adjusting the relative channel balance using a panning algorithm (e.g., vector-base amplitude
panning(Pulkki, 1997)). This design ensures that listeners can clearly perceive the relative horizontal positions
of the instruments.

3D Localization. This subtask builds on the STARSS23 dataset(Shimada et al., 2023), which provides
panoramic video with time-stamped annotations of sound source depth, azimuth, and activity. For the vi-
sual modality, we annotate sound sources with bounding boxes and generate alternative views by rotating the
camera perspective to +90◦, 180◦, and −90◦ (positive defined as left). The corresponding videos are cre-
ated through spatial cropping of frames. For the audio modality, we utilize the four-channel microphone array
(MIC) recordings and simulate azimuthal rotation by first encoding the array signals into first-order Ambisonics
(FOA), applying a 2D rotation matrix to the X–Y components, and decoding back into microphone signals with
loudness normalization. To further enhance perceptual realism, each spatial microphone signal is additionally
processed with head-related transfer functions (HRTFs) in the SOFA format(Majdak et al., 2013; Algazi et al.,
2001).

3D Movements. This subtask is based on the Urbansas dataset(Fuentes et al., 2022), which provides street-
view traffic videos with detailed audio annotations indicating vehicle types and the presence of off-screen
sounds. Each clip includes labels specifying the vehicle category, whether the sound source is visible in the
video, and its temporal activity. We curate video segments from this dataset and highlight the target vehicle by
overlaying a red bounding box to establish clear audio–visual correspondence.

F.3 TEMPORAL REASONING

Event Order. This subtask is derived from 2-second video clips in the VGGSound Source (VGG-SS)
dataset(Chen et al., 2021), originally used in the Perceptual Recognition task where each clip is annotated
with an activity class label. For temporal ordering, we randomly sample 3–5 clips from different classes and
generate four candidate event sequences by shuffling their order. Each sequence is represented across three
modalities: (i) a text description (e.g., “Event A → Event B → Event C”), (ii) a concatenated video sequence,
and (iii) a concatenated audio sequence. Multiple-choice questions are formed by selecting one sequence as
the correct answer and presenting the stem in one modality, while the four candidate sequences are given in
another modality.

Repetition Count. Following the setup in(Zhang et al., 2021), this subtask focuses on counting repeated
events. Visual data is generated from synthetic renderings of repeated object actions, while audio data consists
of temporal patterns with clear repetitions (e.g., sequences of knocks or claps). Text prompts explicitly query
the number of repetitions in either modality.

Repetition Calculation. Also inspired by(Zhang et al., 2021), this subtask extends beyond direct counting
by requiring simple arithmetic over observed repetitions. Both audio and video are rendered with variable fre-
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quencies of repeated events, while the text prompts encode arithmetic formulations that ask models to compute
totals (e.g., “three knocks plus two knocks”).

F.4 LINGUISTIC UNDERSTANDING

Linguistic Recognition. This subtask targets recognition of textual content across modalities. Images are
collected from OCR-rendered text data(Wendler, 2024), each paired with its ground-truth transcript. Audio is
generated from these transcripts using a TTS system(Guo et al., 2025), allowing for cross-modal recognition
between text, vision, and speech.

Translation. This subtask examines cross-lingual translation. Input sequences consist of English text with
multiple-choice options in Chinese. Text data is derived from OCR-rendered images(Wendler, 2024), while
translations are generated using Gemini(Team et al., 2024). Visual inputs are rendered using the OCR dataset
rendering toolkit(GbotHQ, 2024), and audio is synthesized from both languages with a TTS system(Guo et al.,
2025).

Dialogue Emotion. This subtask focuses on multimodal emotion recognition in conversational settings.
Visual data consists of face videos displaying emotional expressions extracted from multi-party dialogue
clips(Chen et al., 2018; Poria et al., 2019). Each dialogue is paired with transcripts and annotated with cat-
egorical emotions (anger, disgust, fear, sadness, surprise, and joy). We filter clips to lengths between 5–30
seconds. The video data is stripped of original audio but accompanied by transcripts to enable inference of
emotion from dialogue and facial expression. Audio inputs consist of the original speech tracks, and text inputs
are provided as the emotion category names.

F.5 EXTERNAL KNOWLEDGE

Music Genre Classification. This subtask evaluates music genre recognition. We collect audio samples
from the GTZAN dataset(Olteanu, 2024), covering multiple musical styles. To complement the audio, we also
collect representative album cover images for each genre category.

Movie Matching. This subtask requires linking multimodal cues to movie identities. We collect a set of
recent films from IMDb. For the visual modality, we use official posters. To prevent trivial text matching
between posters and movie titles, we use written plot summaries from IMDb as the text modality. Audio is
sampled as 30-second clips from publicly available trailers on YouTube.

Singer Identification. This subtask targets cross-modal recognition of popular singers. Images of singers
are collected from the web, while audio consists of short clips (3–5 songs each) sampled from their publicly
available music videos on YouTube. Text inputs include singer names and associated biographical metadata.
We select a diverse set of internationally recognized artists, including American singers Ariana Grande, Bad
Bunny, Billie Eilish, Bruno Mars, Chappell Roan, Harry Styles, and Chinese singers David Tao, Eason Chan,
Faye Wong, G.E.M., and Jay Chou.

G LLM USAGE

We used large language models (LLMs) to assist in the preparation of this paper. Their role was limited to
language editing such as proofreading and rephrasing. All ideas, experiments, and analyses were conceived
and conducted by the authors.
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