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ABSTRACT

Omni-modal large language models (OLLMs) aim to unify audio, vision, and
text understanding within a single framework. While existing benchmarks pri-
marily evaluate general cross-modal question-answering ability, it remains un-
clear whether OLLMs achieve modality-invariant reasoning or exhibit modality-
specific biases. We introduce XModBench, a large-scale tri-modal benchmark
explicitly designed to measure cross-modal consistency. XModBench comprises
60,828 multiple-choice questions spanning five task families and systematically
covers all six modality compositions in question—answer pairs, enabling fine-
grained diagnosis of an OLLM’s modality-invariant reasoning, modality dispar-
ity, and directional imbalance. Experiments show that even the strongest model,
Gemini 2.5 Pro, (i) struggles with spatial and temporal reasoning, achieving less
than 60% accuracy, (ii) reveals persistent modality disparities, with performance
dropping substantially when the same semantic content is conveyed through au-
dio rather than text, and (iii) shows systematic directional imbalance, exhibiting
lower consistency when vision serves as context compared to text. These findings
indicate that current OLLMs remain far from truly modality-invariant reasoning,
and position XModBench as a fundamental diagnostic tool for evaluating and
improving cross-modal competence.

1 INTRODUCTION

Omni-modal large language models (OLLMs) integrate text, vision, and audro into a unified rea-
soning framework ( s ; , R ;
, ; , ). However desplte 1mpress1ve advance-
ments and expanded modality coverage a key question remains: do these models reason in a truly
modality-invariant manner, or do they still exhibit systematic biases tied to specific input modal-
ities? For humans, cross-modal integration is typically seamless, yet it remains unclear whether
OLLMs demonstrate comparable consistency. When the same semantic content is presented in dif-
ferent forms—spoken audio, written text, or visual images—do models still converge on the same
correct answer? We refer to this property as cross-modal consistency: the ability to maintain sta-
ble predictions regardless of input modality, thereby demonstrating reasoning over shared semantic
representations rather than relying on modality-specific cues. Although directly diagnosing whether
current OLLMs achieve this goal is non-trivial, we can evaluate them through carefully designed
benchmarks that expose inconsistencies. For instance, by posing semantically identical questions
under different modality settings, we can test whether predictions diverge across modalities — an
indicator of reliance on surface-level patterns rather than genuine modality-invariant reasoning.

Recent benchmarks have taken promising steps toward evaluating OLLMs, particularly through
audio-visual tasks that reveal baseline cross-modality performance. Datasets such as Music

AVQA ( , ), AV-Reasoner ( R ), and Pano-AVQA ( s ) pri-
marily probe fine-grained audio—visual reasoning, while broader efforts like AVQA ( ,
), WorldSense ( s ), AV-Odyssey Bench ( s ), and OmniBench (

, ) expand to general multimodal understanding across diverse contexts. However, these
benchmarks largely overlook whether models remain consistent across modalities. While other
works ( , , ) attempt to assess modality consistency, they are re-
stricted to the v1§10n—text setting within vision—language models.
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Table 1: Comparison of multimodal question-answering (QA) benchmarks by modality coverage,
task domains, and modality consistency.

Benchmark | o | Context Modality Candidate Modality | Task Domain | Mod. Consist.
| | Text Vision Audio | Text Vision Audio | Percep. Spatial Temporal Ling. Ext. Know. |
MME Bench (’ N ) 2,194 X v X v X X v X X v v X
MMBench ( . ) 3,217 X v X v X X v v X v v X
OcrBench v2 ( s ) 10,000 X v X v X X v X v X X X
SEED-Bench-2 ( N ) 24,371 v v X v v X v v v v v X
AudioBench ( ) 24,371 X X ' v X X v X X v X X
Audiopedia (: s ) 45,867 X X v v X X X X X v v X
MMAU ( N ) 10,000 X X v v X X v X X v X X
AVQA ( s ) 57,335 X v v v X X v v v X X X
Pano-AVQA ( N ) 51,700 X v s v X X v v X X X X
Music-AVQA ( N ) 45,867 X v v v X X v v v X X X
SAVE Bench ( s ) 4,350 X v v v X X v X X v X X
Video-MME (: N ) 2,700 X v s v X X v v v v v X
WorldSense ( s ) 3,172 X v v v X X v X X X v X
AV-Reasoner ( s ) 1,027 X v v v X X X X v X X X
AV-Odyssey Bench ( ) | 1142 X v v v v ' v v v X v X
OmniBench ( ) 4,555 X v v v X X v X X v X X
XModBench (Ours) [60828 | v v vV G v v v v v

To address this gap, we introduce XModBench, a benchmark specifically designed to evaluate cross-
modal consistency in omni-modal large language models. We formulate all questions in a multiple-
choice format, where each question naturally contains two components: (i) a confext describing an
object or event, and (ii) a set of candidates from which the model must select the correct one. Unlike
pr10r benchmarks that typically fix either the context or the choices to a single modality ( ,

, ), XModBench systematically covers all six cross-modal directions among au-
dio, vision, and text (see Tab. 1). To ensure broad coverage and rigorous evaluation, XMODBENCH
spans five domains—perception, spatial reasoning, temporal reasoning, linguistic understanding,
and external knowledge. We curate data across these domains through re-annotation, synthetic con-
struction, and targeted web collection, ensuring both diversity and balance across modalities. The
resulting benchmark comprises 60,828 multiple-choice question—answer pairs (10,138 unique in-
stances), each instantiated in six modality configurations that preserve identical semantics across
audio, visual, and textual forms. This enables both large-scale evaluation and fine-grained diagnosis
of cross-modal consistency. An overview of the benchmark design is illustrated in Fig. 1.

We systematically evaluate models on XMODBENCH, going beyond overall accuracy to provide
fine-grained diagnosis of cross-modal reasoning. Specifically, we analyze three complementary di-
mensions: (1) Task competence—by averaging over all six modality directions, we assess model
performance across perception, spatial, temporal, linguistic, and knowledge tasks, yielding task-
centric comparisons of multimodal competence; (2) Modality disparity—we measure consistency
when the same question is posed in different modalities, where high variability signals reliance
on modality-specific cues rather than shared semantic representations; and (3) Directional imbal-
ance—we compare accuracy when context and candidate modalities are swapped, revealing asym-
metries in cross-modal grounding.

Our experiments show that current OLLMs fall short along all three axes. They perform strongly
on perception and linguistic tasks (best models reach around 70%), but degrade by 15-25 points
on spatial and temporal reasoning. Performance also drops sharply whenever audio is involved, un-
derscoring that auditory representations remain the weakest link. Finally, accuracy is consistently
higher when text serves as the candidate modality, highlighting incomplete bidirectional alignment
across modalities. Together, these findings demonstrate that today’s OLLMs remain far from achiev-
ing modality-invariant reasoning, underscoring the diagnostic value of XMODBENCH.

In summary, XMODBENCH makes the following key contributions:

1. Cross-modal consistency benchmark. We present XMODBENCH, the first tri-modal
multiple-choice question-answering benchmark explicitly designed to evaluate cross-modal
consistency, covering all six modality mappings among audio, vision, and text.

2. Comprehensive coverage. The benchmark spans five task families with 17 subtasks and
60,828 question—answer pairs, ensuring broad domain coverage and fine-grained diagnos-
tics, while its balanced design enables fair assessment of modality-invariant reasoning.

3. Diagnostic metrics. We introduce modality disparity and directional imbalance to directly
measure robustness and bidirectional alignment across modalities. Our experiments reveal



Under review as a conference paper at ICLR 2026

Cross-Modal Triplet Cross-Modality Configuration Task Families
Image —> Text Audio -» Text @ Perception b= Spatial @© Temporal
“D““* kai'(’ . The object in which Which audio has a car How audio clip has
[ L S image can make this moving from left to event order same as
sound? right? this video?
‘ ol i HENGE e
Balan - Audio AR Linguisti
ﬂ A car moves from left to right Text-glmeeg Desiced Text i Linguistic Q knowledge
en Which image writc the  Which audio sounds
- Chinese translation of  like singing by Taylor

this spoken sentence? Swift?

tonightand ...”

5 task families, 17 subtasks

Audio— I Image = Audi . : 5
e ——a v 60,828 question-answering pairs
(a) (b) ©
Image > Audio Image —» Text Text »Audio

Q: Which audio clip is most likely produced b Q: Which phrase most likely describe what Q: Listen to this audio clip. Which text

what you see in this image? you see in this image? description best matches what you hear? oz
A v B e A Dogbarking /B People marching A Dogbarking ~/ B People marching
C g, D C Train horning D Play piano C Train horning D Play piano
Audio— Image Text->Image Audio = Text
Q: Which image most likely produce what Q: For this phrase “dog barking', which image best Q: For this phrase “dog barking', which audio best sounds
you hear in this audio clip? matches what is described? what is described?

(dog barking)

IR H A v B H Al g B s
| D ’& c @8 D ﬂ C oty D Iy

A

Figure 1: Overview of XModBench. (a) Instances are built from aligned text—image—audio triplets;
(b) instantiated into six modality configurations by permuting context and candidate modalities; (c)
spanning five domains with 17 subtasks and 60,828 question—answer pairs; and (d) illustrated with
example multiple-choice questions under balanced modality settings.

systematic weaknesses in current OLLMs, providing actionable insights for developing
more modality-invariant architectures and training strategies.
2  RELATED WORK

Multimodal Question Answering (QA) Benchmarks. A number of benchmarks have been devel-
oped to evaluate multimodal large language models (MLLMs). Grouped by modality composition,

( ), ( ), and ( ) focus on the vision—text setting (covering
both images and videos). For audio—text evaluation, representative efforts include ( )
and ( ). When combining audio and vision with text, a variety of benchmarks have
emerged, including (2022), (2022), (2021), (2024),

( ), ( ), ( ), ( ), and ( ). Other re-
cent works, such as ( ), further extend evaluation to diverse multimodal combinations.

Despite their breadth, these benchmarks primarily emphasize coverage across tasks and modalities,
while less attention has been paid to evaluating cross-modal consistency—whether models produce
stable answers when the same semantic content is expressed in different modality forms. Our work
fills this gap by explicitly designing a benchmark centered on modality-invariant reasoning.

Cross-Modality Consistency. Recent work has begun to investigate whether multimodal mod-
els behave consistently across modalities. ( ) introduced the Modality Importance
Score to quantify modality bias, which measures how much each modality contributes to answering
questions in VideoQA. ( ) further proposed the notion of cross-modal consistency
between text and image, defining a consistent model as one that applies the same internal reasoning
to semantically identical inputs across modalities, thereby yielding consistent outcomes. In con-
trast, other studies, such as ( ) and ( ), report instances of
inconsistent audio-video reasoning, where models hallucinate non-existent sounds or visual signals,
thereby exposing modality bias and cross-modal inconsistency. While these efforts provide pioneer-
ing insights into cross-modal consistency, they are typically confined to specific modality pairs. Our
work not only expands the scope to cover a broader range of modality combinations for state-of-
the-art OLLMs, but also conducts a deeper analysis of their cross-modality reasoning behavior on a
comprehensive task suite.

3 XMODBENCH: COMPREHENSIVE CROSS-MODAL BALANCED BENCHMARK

We introduce XModBench, a comprehensive multiple-choice question-answering (QA) benchmark
designed to evaluate the cross-modal capabilities and consistency of OLLMs across audio, vision,
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and text. A key feature of XModBench is its modality-balanced design, which creates six
cross-modal variants of semantically identical questions to enable a controlled and fair evaluation
of cross-modal capabilities and consistency (Sec. 3.1). The benchmark offers extensive domain
coverage through five task families and seventeen subtasks (Sec. 3.2), all built upon meticulously
curated, high-quality, and diverse tri-modal data (Sec. 3.3).

3.1 BENCHMARK DESIGN

The central objective of XMODBENCH is to evaluate whether models preserve cross-modal consis-
tency when the same semantic content appears in different modalities. Each item is a four-choice
multiple-choice question consisting of a <context> (question stem) and four <candidates>
(answer options). By systematically permuting text (T), vision (V), and audio (A) across the
<context> and <candidates>, we generate six modality configurations of the same ques-
tion (see Fig. 1 (b) and (d)). This balanced design ensures that no single modality is privileged
and enables consistent evaluation across all directions, which supports three diagnostic properties
aligned with the goals of our benchmark:

(1) Task competence. Since each task is instantiated uniformly across all modality pairs, we mea-
sure competence by averaging accuracy across all context—candidate configurations. This yields a
fair estimate of a model’s overall capability for each task, independent of modality-specific biases.

(2) Modality disparity. By presenting semantically identical questions under different modality
configurations, we keep the content fixed while varying only the modality. For example, to compare
audio and vision, we examine cases where text provides the context with audio candidates (T+—A)
versus text with visual candidates (T+—V), and similarly compare A—T against VT settings. Dif-
ferences in accuracy under these controlled comparisons reveal modality disparities, indicating the
relative competence across different modalities.

(3) Directional imbalance. We examine inverse settings by swapping the modalities of context
and candidates. For example, a model may perform well when vision serves as the context and
text provides the options (V—T), but perform worse when the same semantic content is presented
as a text context with visual candidates (T+—V). Such differences indicate asymmetric grounding
between the two modalities, and comparable asymmetries are also observed in the audio—text and

audio—vision pair. !
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the text description “dog barking.” Here, visual in-

puts are images, audio inputs are recordings of cor- Figure 2: Distribution of XModBench’s

responding sounds, and text inputs are short label§ OF  questions across five task families with spe-
phrases. The data are drawn from diverse domains, .if. subtasks

including human activities, animal behaviors, musi-
cal instruments, and natural environments.

We divide perception into several subtasks. General activity recognition mixes candidates from
diverse domains to test broad semantic alignment, while fine-grained activity recognition restricts
candidates to a single domain (e.g., animal species or instrument types), thereby increasing diffi-
culty and requiring precise discrimination. We further design domain-specific subtasks to capture
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Figure 3: XModBench task examples. We show sample questions from six subtasks in the bench-
mark. Each question includes possible contexts from different modalities, and for the vision-context
example, the candidates are given in either text or audio.

unique challenges: recognizing natural environments (e.g., rainfall, wind, fire), distinguishing
instruments (e.g., violin, bass, cello), and identifying instrument compositions where multiple
instruments are played together (e.g., violin and bass, or cello and flute). Illustrative examples are
shown in Fig. 1(d) and Fig. 3(a).

Task 2. Spatial reasoning. This task evaluates whether models can interpret object positions and
motion in 2D and 3D space, which is an important factor in vision—language models (

). We extend this ability to the omni-modal setting and design three subtasks. The first is 2D ar-
rangement, where the model determines the left-right order of objects such as musical instruments.
Visual inputs are images of ordered layouts, audio inputs are stereo recordings with left-right cues,
and text inputs describe the relative arrangement; distractors are generated by swapping or permut-
ing positions. The second subtask, 3D localization, using panoramic videos from
( ), requires identifying the orientation of events in video frames, spatialized audio, and short
textual descriptions (e.g., “a man speaking from the front-left”); distractors are produced by shifting
the same scene to nearby but incorrect directions through camera or audio rotation. The third sub-
task, 3D movement understanding, focuses on motion directions such as left-right or front—back,
instantiated with street-view or action videos, spatialized audio of approaching or receding sounds,
and textual trajectory descriptions ( , ); distractors are clips with incorrect motion
patterns or mismatched vehicle types. Examples for the 3D movement and localization tasks are
shown in Fig. 3(b) and (c), respectively.

Task 3. Temporal reasoning. This task evaluates whether models can understand event order
and frequency across time in video and audio. We design three subtasks. The first is temporal
order, where models infer the correct sequence of events from muted video segments, audio clips,
or textual descriptions and align them across modalities. The second, temporal counting, requires
recognizing the number of repeated actions such as tennis hits, jumps, or drum beats, with distractors
differing in count. For example, a video may show a tennis player hitting the ball three times, and
the model must select the audio clip with exactly three hits or the text “3 times.” The third, temporal
calculation, extends counting by applying simple arithmetic to the repetition number. For instance,
if a video shows a person jumping three times and the query applies 2 X count, the correct answer
should correspond to six repetitions, given either as an audio clip with six jumps or as the text “6
times.” An example of the temporal counting task is in Fig. 3(d).

Task 4. Linguistic understanding This task covers recognition of 1inguistic content and inter-
pretation of affectwe meaning. While prior work separates OCR for vision and ASR for audio (

s , ), XModBench unifies them in a cross-modal setting. We design
three subtasks The first, llngulstlc recognition, focuses on transcribing text from images, audio, or
phrases; correct candidates require word-level precision, while distractors differ by only one or two
words (see Fig. 3(e)). The second, translation, evaluates English—Chinese translation across modal-
ities, with distractors introducing subtle shifts such as antonyms, degree modifiers (e.g., “very” —
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“a little”), or small changes in numbers and entities. The third, emotion classification, targets af-
fective understanding in dialogue: audio inputs are spoken conversations, visual inputs are muted
video clips with transcripts, and candidates represent emotions such as joy, sadness, or anger, with
distractors drawn from closely related categories.

Task 5. External knowledge. Beyond perceptual and reasoning skills, some tasks require linking
multimodal content with world knowledge. We design three subtasks. The first, movie recognition,
presents audio clips from trailers, visual posters, or short text descriptions of the plot, with candidates
drawn from films of similar genres or storylines. The second, music genre classification, uses
album covers, short audio clips, or textual genre labels, with distractors from closely related genres
(e.g., “jazz” vs. “blues”). The third, singer identification, provides names, portrait images, or audio
clips of songs, with distractors sampled from artists of similar musical styles (see Fig. 3(f)).

3.3 DATA CURATION

The construction of XModBench follows a three-stage pipeline. We begin by collecting large-scale
text—vision—audio triplets across all task domains, then generate task-specific multiple-choice
questions, and finally apply both automated filtering and human verification to ensure quality and
consistency.

Cross-modal data collection. We curate a large corpus aligned across vision, audio, and text by
combining three sources: (i) re-annotated and extended data from existing multimodal datasets,
such as adapting VGG-Sound for perception tasks or STARSS23 ( , ; ,

) for spatial reasoning; (ii) synthetic or model-generated content to cover mlssmg modalities,
for example generating speech audio with FireRedTTS ( , ) or producing rendered
text images for translation tasks; and (iii) web-collected samples for domains not well represented
in public resources, such as singer portraits and songs for the Singer Identification task or trailers
and posters for Movie Recognition from public YouTube videos. This design ensures both coverage
and balance across all five task families. Detailed sources and processing procedures are described
in Appendix F.

Question candidate generation. To ensure the correctness of both the generated questions and
answers, we first construct task-specific multiple-choice templates using our annotated tri-modality
data. The question descriptions are then refined by GPT-5 ( , ) solely to improve lan-
guage fluency and stylistic diversity. Importantly, this refinement does not introduce any new infor-
mation or alter the underlying semantics. Each question is instantiated with a context and four candi-
dates under the modality-balanced configuration, ensuring consistent evaluation across all modality
directions. Distractors are created to be semantically challenging but unambiguous, while templates
are diversified with both human-written prompts and LL.M-assisted variations.

LLM filtering and human-in-the-loop verification. To guarantee data quality at scale, we first
adopt foundation models ( , ; , ) to filter out low-quality or ambigu-
ous samples. Human annotators then double-check the filtered results to ensure accuracy. After
questions are constructed, an internal round of testing is conducted by annotators, who resolve
ambiguities and validate correctness. Feedback from this process is used to regenerate and retest
questions until high-quality items are obtained.

Overall, this pipeline yields a high-quality benchmark with diverse and well-aligned multimodal
content. More detailed descriptions of dataset sources, generation strategies, and signal-processing
techniques are provided in Appendix F.

4 EXPERIMENTS

4.1 BASELINES

We evaluate XMODBENCH on a dlverse set of recent omni-modal large language models. The Gem-
ini series ( R ) represents state-of-the-art closed-source omni-
modal models, and we 1nclude multlple variants ranging from Gemini 1.5 Pro to Gemini 2.5 Pro.
Note that OpenAl APIs do not currently support processing audio and visual modalities jointly
within a single query; therefore, we omit the GPT series from our evaluation. For open-source sys-

tems, we include the latest Qwen2.5-Omni ( s ), Baichuan Omni 1.5 ( s ),
and EchoInk-R1 ( , ). Additional open-source omni-modal baselines include Vide-
oLLaMA 2 ( s ), VITA ( s ), the Unified-IO 2 series (Large, XL, and
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Table 2: Results on XModBench. We report (a) the performance under different input modalities
across the full benchmark, and (b) the summary of average accuracy for each of the 5 task families.
The highest scores are bolded, and the second highest are underlined.

Model Accuracy on 5 Task Families Modality Configuration Avg.
Perc. Spat. Temp. Ling. Knwl. | AT A—V T—A T—V V—=A V=T St
no context ‘ 25.5 24.8 24.9 24.7 25.5 ‘ 25.1 243 254 24.8 253 25.7 0.4 ‘ 25.1
Qwen2.5-VL 91.3 51.4 40.9 84.1 712 - - - 60.1 - 74.7 - 67.4
Intern3.5-VL 87.2 427 41.4 75.0 68.7 - - 49.7 - 73.7 61.7
PandaGPT 24.6 25.7 24.4 25.5 23.1 245 25.0 23.8 25.2 24.5 25.1 0.5 24.7
Unified-10 2 36.1 23.6 23.8 30.4 26.8 28.9 24.0 254 32.0 25.7 32.7 37 | 28.1
Unified-10 2 XL 422 25.0 26.1 30.8 29.5 333 27.0 27.1 329 26.5 374 4.5 30.7
Unified-10 2 XXL 43.7 28.3 27.7 31.2 34.0 37.4 25.0 31.2 37.8 26.7 39.9 6.3 33.0
VideoLLaMA 2 45.7 33.9 29.2 36.7 36.8 48.6 26.0 25.7 26.5 252 66.8 17.4 | 36.5
VITA 34.8 34.0 29.4 46.1 32.6 40.2 26.0 29.8 26.8 29.9 59.3 12.8 | 354
Baichuan Omni 1.5 | 58.9 349 30.0 62.8 56.7 47.8 35.8 40.5 56.2 38.6 73.0 14.0 | 48.7
Echolnk-R1 75.8 36.6 37.1 73.3 733 64.6 459 56.4 60.9 49.9 71.6 11.3 | 59.2
Qwen2.5-Omni 75.5 38.4 323 74.1 72.8 62.0 48.0 554 59.6 50.5 76.3 10.1 | 58.6
Gemini 1.5 Pro 56.2 40.1 37.1 72.6 69.4 524 382 48.6 70.4 40.7 79.9 16.7 | 55.0
Gemini 2.0 Flash 66.2 48.4 44.8 70.2 78.1 63.7 49.0 52.2 71.5 47.6 85.2 152 | 612
Gemini 2.5 Flash 66.1 480 486 731 828 | 626 512 55.1 75.7 519 860 142 | 63.7
Gemini 2.5 Pro 759  50.1 60.8 76.8 89.3 71.0 58.9 64.4 79.8 60.8 88.6 11.7 | 70.6
Human ‘ 91.0 89.7 88.9 93.9 93.9 ‘ 924 91.5 91.1 91.8 86.4 95.6 3.0 ‘ 91.5
XXL variants) ( s ), and PandaGPT ( R ). Together, these models represent

a broad spectrum of both closed- and open-source OLLMs.

4.2 MODEL PERFORMANCES

Table 5 reports results across five task families and six cross-modal directions (Audio +— Text, Au-
dio + Vision, Text — Audio, Text — Vision, Vision +—> Audio, Vision —> Text). The first subtable
summarizes the average accuracy across all tasks for each modality configuration, while the remain-
ing subtables present detailed performance within each task family. The highest scores are bolded,
and the second highest are underlined. For each model, we also report the overall average accuracy
(Avg.) and standard deviation (Std.) across the six configurations to quantify robustness to modality
shifts. Details of the human evaluation are provided in Appendix E.

Performance by task families. Overall, the Gemini 2.0 and 2.5 series outperform all open-source
systems. Among open models, Qwen2.5-Omni and Echolnk-R1 are the strongest baselines, sur-
passing Gemini 1.5 Pro by 3.6 and 4.2 points, respectively. Across the five task families, spatial and
temporal reasoning remain the most challenging (Gemini 2.5 Pro achieves 50.1 and 60.8), whereas
perception and linguistic tasks reach higher accuracy (75.9 and 76.8). The performance gap be-
tween open- and closed-source systems extends beyond spatial and temporal reasoning to external
knowledge: while Qwen2.5-Omni and Echolnk-R1 perform comparably to Gemini 2.5 Pro on per-
ception, the latter attains 89.3 on external knowledge. These results highlight persistent bottlenecks
in open-source models, as closed-source systems likely benefit from broader web-scale pretraining
and stronger spatial-temporal reasoning capabilities.

Performance by modality configurations. We also analyze performance consistency across modal-
ity configurations on the same tasks and observe clear divergences. Vision—text settings consistently
outperform audio—text ones, confirming that visual representations are more strongly grounded than
audio. In perception tasks, accuracy exceeds 90% with vision—text inputs but drops by over 20 points
with audio—text. Audio—vision combinations without textual anchors yield the lowest scores, high-
lighting the difficulty of aligning heterogeneous signals. Among SOTA systems, Gemini 2.5 Pro
(Avg. 70.6, Std. 11.7) shows the best balance of accuracy and stability, while Qwen2.5-Omni (Std.
10.1) and Echolnk-R1 (Std. 11.3) are the most consistent open models. By contrast, Gemini 1.5 Pro
and Baichuan Omni 1.5 have standard deviations exceeding 14, reflecting weaker robustness to
modality variation.

4.3 MODALITY DISPARITY ANALYSIS

A key challenge for OLLMs is whether they handle audio, vision, and text equally rather
than favoring one modality. XMODBENCH enables this by instantiating identical seman-
tics across modality settings. Agy v = (Accasv — Accast) + (Acevisa — Acersa),
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4.4 DIRECTIONAL IMBALANCE

We test whether models behave consistently when swapping the roles of context and candidates. We
define directional imbalance as Ax .y = Acc(X — Y) — Ace(Y — X), the accuracy gap be-
tween inverse configurations for (X,Y) € {(A,T), (V,T), (V, A)}. As shown in Fig. 5, vision—text
and audio—text pairs exhibit notable asymmetries: Gemini 2.5 Pro drops by 8.8 points from T—V to
V—T, and Qwen2.5-Omni shows a 16.6-point gap, while audio—text differences remain around 6—8
points. By contrast, audio—vision pairs are nearly symmetric but achieve much lower overall accu-
racy. These findings suggest that directional imbalance mainly arises in text—vision and audio—text
pairs, likely reflecting training data biases toward text as the dominant output modality.
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20 0 20 -20 o 2
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20 0 20
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Figure 5: Directional imbalance: accuracy gaps between paired inverse settings among audio, vision
and text. Models show clear asymmetries, especially in vision—text and audio—text pairs.

4.5 FAILURE CASE ANALYSIS

To better understand model errors, we prompt systems like Gemini 2.5 Pro and Qwen2.5-Omni
to generate reasoning alongside their answers. As shown in Fig. 6, we observe common failure
cases that reflect modality performance gaps and alignment issues. Example (a) shows a mis-
match between audio-to-text and audio-to-image reasoning: while the model correctly identifies
a didgeridoo by text, it fails to select the matching image, revealing inconsistent grounding. In ex-
ample (b), Qwen-2.5 Omni misinterprets spatial audio motion when switching from audio-to-text
to text-to-audio, reversing the vehicle’s direction. These errors highlight persistent asymmetries
in cross-modal reasoning that only emerge when the same task is posed across different modality
combinations.

4.6 TRIPLE-DOMAIN QUESTION ANSWERING

Real-world omni-modal scenarios often present information jointly across modalities rather than in
isolation. To approximate this setting, we extend XMODBENCH tasks to an audio—visual context,
where both sound and vision are provided in the question stem, while the candidates remain in text.

We evaluate this dual-context configuration using the Gemini series. Compared with single-modality
baselines, the results (see Appendix D) show modest but consistent gains, indicating that models can
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Figure 6: Failure cases. (a) Gemini 2.5 pro correctly identifies a didgeridoo in text but fails to match
it with the corresponding image candidates. (b) shows Qwen2.5-Omni misinterprets spatial motion
when switching candidates from text to audio. This cases illustrate asymmetries in cross-modal
reasoning.

benefit from simultaneous multimodal cues. However, the improvements are not always additive,
suggesting that current systems do not yet fully exploit complementary signals across modalities.

Table 3: Overall performance of Gemini models under the dual-context setting (audio+visual context
— text). We compare with pairwise baselines (A — T and V +— T), and report the stronger unimodal
baseline max(A — T,V — T).

Setting | Gemini 1.5 Pro | Gemini 2.0 Flash | Gemini 2.5 Pro
A—T 52.76 63.71 70.99
V=T 79.92 85.20 88.60

A+V—T 82.53 (+2.61) 79.84 89.76

5 DISCUSSION

Our benchmark results serve as a diagnostic tool, revealing how underlying data composition and
training methodologies shape model behaviors. By correlating performance patterns with known
model architectures and training reports, we derive three critical insights regarding interleaved data,
domain coverage, and post-training dynamics.

5.1 INTERLEAVED DATA CORRELATES WITH DIRECTIONAL SYMMETRY
A key observation from our imbalance analysis is the link between interleaved training data and
modality-swap robustness.

* Balanced performance in interleaved models: Public official reports indicate that mod-
els such as Qwen-Omni and Google’s Gemini series incorporate massive-scale interleaved
multimodal corpora (e.g., narrated videos, mixed audio—vision documents). Our bench-
mark corroborates this: these models exhibit relatively small performance gaps between
Audio— Vision and Vision—Audio tasks. This suggests that seeing modalities appear in-
terchangeably in context allows the model to build symmetric cross-modal bridges.

Asymmetry in lightly interleaved models: Conversely, models trained primarily on dis-
joint datasets exhibit significant directional asymmetry. For instance, despite strong back-
bones, models relying on open-source data with limited interleaved audio—vision instruc-
tion pairs show a distinct bias. They often perform well in one direction (anchored by their
dominant modality) but fail to generalize when the source-target modalities are swapped,
indicating that insufficient interleaved supervision hinders directional robustness.
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5.2 DOMAIN COVERAGE GAPS AND ENCODER BIAS

Performance inconsistencies across specific sub-tasks reveal “blind spots” in the training data dis-
tribution coverange, particularly regarding to the audio data.

* Spoken vs. Non-Spoken Bias: Many models utilizing speech-centric encoders (e.g., Whis-
per) show a sharp performance drop on non-verbal acoustic tasks, such as environmental
sound classification and spatial reasoning. This implies a data-domain imbalance where
the model is over-fitted to spoken language features at the expense of general acoustic
awareness.

* Specific Task Domain: Distinct gaps in specific categories act as fingerprints for missing
training data. For example, despite its high overall capacity, Gemini 1.5 demonstrates
limited capability in musical reasoning, suggesting an absence of music-theory-oriented
data in its training corpus. Similarly, Echolnk-R1 struggles with spatial-vision tasks relative
to related families, pointing to a lack of spatial-centric visual content.

5.3 'THE DATA EFFECT FOR POST-TRAINING

A comparative analysis between Echolnk-R1 and the Qwen series highlights how post-training
strategies can alter—and sometimes degrade—multimodal alignment when the training data is lim-
ited, even though reinforcement learning is commonly assumed to improve generalization. While
Echolnk-R1 utilizes the Omnilnstruct corpus (focused on spoken instruction following), Qwen incor-
porates interleaved multimodal conversations during post-training. This divergence leads to notable
behavioral differences:

» Alignment Erosion: Echolnk-R1 shows decreased performance in cross-modal (AV/VA)
tasks compared to Qwen. This suggests that aggressive fine-tuning on spoken-only in-
structions may cause “catastrophic forgetting” of the fine-grained cross-modal grounding
acquired during pre-training.

* Inefficacy for Spatial Domains: The lack of improvement in spatial audio tasks for
Echolnk, despite heavy instruction tuning, reinforces that modality balance is strictly re-
quired during post-training. Unimodal or text-centric fine-tuning cannot compensate for,
and may actively harm, the model’s ability to process complex multimodal signals.

We believe that the findings discussed above highlight the value of XModBench not only as an
evaluation tool but also as a source of insight for model development. The broader challenge remains
the limited transparency of training data in many state-of-the-art multimodal systems. XModBench
provides a practical way to study the impact of such opacity by enabling controlled comparisons
across models with different training paradigms. For future model developers, this allows clearer
understanding of how data choices influence multimodal alignment. For existing model builders,
greater openness about data sources would further support the refinement of data pipelines and help
reduce modality inconsistencies.

Current benchmarks lack the multimodal-invariant structure and modality-swap design required to
expose these effects, underscoring the role of XModBench in advancing both analysis and informed
model development.

6 CONCLUSION

We introduced XModBench, a benchmark for diagnosing cross-modal consistency in omni-
language models. By systematically interleaving audio, vision, and text across diverse tasks, XMod-
Bench enables fine-grained evaluation of modality disparities, directional imbalances, and modality
invariant capability. Our results show that audio remains the most challenging modality, that models
often behave asymmetrically in inverse settings such as text-vision and audio-text, and that com-
bining audio and vision yields only modest gains. Overall, while current systems are strong in
perception and language, they still lack stable and consistent reasoning across modalities, leaving
ample room for progress toward truly modality-agnostic intelligence.

10
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ETHICS STATEMENT

Our study does not involve private or sensitive personal data. All audiovisual samples are obtained
from publicly available official sources, including previously published research datasets, content
hosted on established open source platforms such as Hugging Face and Kaggle. For all newly gen-
erated labels and annotations, we perform manual verification to ensure correctness and to remove
any potentially inappropriate content. All web-curated data are from publicly accessible and previ-
ously published sources without requiring special authentication. All materials are used solely for
non-commercial academic research. We do not redistribute copyrighted video or audio; only derived
features, annotations, and evaluation results are released.
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APPENDIX

A MINI BENCHMARK RESULT

We will release a standardized 6k-sample XModBench-Lite benchmark, consisting of 5 task families
x 6 modality—configuration settings, with 200 examples per setting. The dataset is balanced across
both task families and modality directions. The overall performance (see Tab. 4) trends and error
patterns closely mirror those reported in Tab.2 of the main paper.

Table 4: Performance on 6k version of XModBench

Accuracy on 5 Task Families \ Modality Configuration \ Avg

\
erc. pat. emp. ing. nwl. — — — — — —
P S T Li Knwl. | AT A—-V T—-A T—=V VA VT
. 5.1 X ’ 5. .5 . X 1 . 1 5.
253 2 24.8 24.4 25.2 26 24.8 242 24 25.5 25 25.0

Model

w/o context

Qwen2.5-VL 915 519 40.5 84.3 76.5 - - - 68.2 - 72.8 60.5
Intern3.5-VL 88.2 418 48.5 75.8 62.4 - - - 46.5 - 73.1 69.8
PandaGPT 249 253 23.8 24.7 213 252 25.5 22.8 24.9 24.8 23.1 24.4
Unified-10 2 36.5 248 24.1 31.2 275 29.8 242 255 32.1 259 335 28.4

Unified-10 2 XL 425 263 26.0 32.5 30.6 33.8 26.8 275 342 27.1 38.8 31.2
Unified-IO2 XXL | 44.1  29.0 273 329 34.7 38.0 26.3 31.8 38.5 27.3 40.5 33.6

VideoLLaMA 2 46.1 342 29.0 37.5 37.4 49.1 26.2 26.0 273 25.5 67.8 36.9
VITA 356 318 29.2 46.1 30.5 452 26.5 26.8 26.1 24.5 52.5 33.6
Baichuan Omni 1.5 | 59.5  35.5 30.8 63.9 572 48.5 36.2 41.1 57.2 39.1 74.5 49.5
Echolnk-R1 73.1 358 36.4 73.3 72.4 66.5 42.1 56.0 65.5 46.8 72.3 532
Qwen2.5-Omni 786 37.1 312 74.2 77.8 69.5 452 54.5 58.1 56.8 74.5 51.4
Gemini 1.5 Pro 56.8 408 38.0 71.0 69.9 53.1 385 49.2 71.2 41.4 80.4 55.7

Gemini 2.0 Flash | 65.4 489 415 722 712 | 685 442 501 743 475 889 | 672
Gemini 2.5 Flash | 66.5 47.1 453 744 812 | 648 494 515 712 510 816 | 686
Gemini 2.5 Pro 748 593 602 758 891 | 768 505 632 751 612 825 | 718
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B MODALITY CONFIGURATION SCORE UNDER FIVE TASK

Table 5 reports the detailed results for all six modality—configuration settings (A—T, A—V, T—A,
T—V, V= A, V—T) across the five task families in XModBench (Perception, Spatial, Temporal,
Linguistic, and Knowledge), as well as the overall average score on the full benchmark.

Table 5: Results on XModBench across 5 task families and 6 predefined cross-modal directions
among Text, Vision, and Audio. The first block reports the average accuracy across all tasks, fol-
lowed by Task 1-5 (Perception, Spatial, Temporal, Linguistic, External knowledge). Scores are

color-coded as < 30, 30-60, 60-90, > 90, with the best in each column highlighted in bold.

| Overall Average | Task 1 - Perception
Model A>T AoV ToA TV VoA VoT | A | Sd |[A—T AoV ToA ToV VoA VT | Ag | Sd
PandaGPT 245 25.0 23.8 2512 245 25.1 247 | 05 245 24.7 24.8 245 24.6 24.7 246 | 0.1
Unified-10 2 289 24.0 254 32.0 25.7 327 28.1 3.7 35.5 253 26.3 559 29.1 44.7 36.1 12.1
Unified-10 2 XL 333 27.0 27.1 329 26.5 374 307 | 45 53.3 279 30.3 59.1 27.6 55.0 422 | 15.0
Unified-10 2 XXL 37.4 25.0 31.2 37.8 26.7 39.9 33.0 6.3 55.0 26.9 39.0 64.2 26.7 50.2 437 | 154
VideoLLaMA 2 48.6 26.0 25.7 26.5 252 66.8 365 | 174 74.7 26.6 28.3 26.8 26.5 91.5 457 | 294
VITA 40.2 26.0 29.8 26.8 29.9 593 354 | 12.8 37.1 254 27.0 23.7 26.4 69.1 348 | 175
Baichuan Omni 1.5 47.8 35.8 40.5 56.2 38.6 73.0 48.7 | 140 42.7 36.3 45.6 87.8 50.3 90.7 589 | 240
Echolnk-R1 64.6 45.9 56.4 60.9 49.9 77.6 59.2 | 11.3 74.1 58.5 69.3 91.6 67.7 93.4 75.8 | 139
Qwen2.5-Omni 62.0 48.0 55.4 59.6 50.5 76.3 58.6 | 10.1 72.9 59.1 69.2 91.2 68.5 92.0 75.5 | 13.3
Gemini 1.5 Pro 524 38.2 48.6 70.4 40.7 79.9 550 | 16.7 41.0 279 45.0 95.8 32.1 953 56.2 | 31.1
Gemini 2.0 Flash 63.7 49.0 2.2 71.5 47.6 85.2 612 | 152 56.8 45.0 54.2 92.7 55.1 93.4 66.2 | 21.2
Gemini 2.5 Flash 62.6 51.2 55.1 75.7 51.9 86.0 63.7 | 142 52.6 443 534 95.4 56.0 95.0 66.1 | 22.8
Gemini 2.5 Pro 71.0 58.9 64.4 79.8 60.8 88.6 70.6 | 11.7 62.3 574 68.5 97.1 72.6 97.6 759 | 174
Human ‘ 924 915 91.1 91.8 86.4 95.6 ‘ 915 ‘ 3.0 ‘ 92.9 94.2 91.3 89.2 85.4 92.9 ‘ 91.0 ‘ 32

| Task 2 - Spatial | Task 3 - Temporal
Model |A—»T A~V T—A T~V V—A V=T |Ag | Sd |[A—-T A—-V T—A T—V VoA VT | Ag | Sd
PandaGPT 255 26.6 26.0 202 258 23.1 25.7 14 219 253 24.8 26.0 245 239 24.4 14
Unified-10 2 26.0 20.7 224 25.0 23.1 24.7 236 | 1.9 22.7 224 25.1 243 25.8 224 238 | 15
Unified-10 2 XL 24.8 23.0 25.8 26.0 26.0 245 250 | 1.2 223 245 28.8 221 26.0 327 26.1 | 4.1
Unified-10 2 XXL 29.6 23.6 30.9 25.5 29.5 30.7 283 | 3.0 243 274 25.3 29.6 252 344 277 | 3.8
VideoLLaMA 2 43.9 27.8 244 275 252 543 339 | 123 31.0 25.0 27.7 25.9 25.8 39.8 292 | 5.6
VITA 423 28.9 24.6 30.9 25.1 522 340 | 11.0 31.1 25.1 26.1 24.6 27.6 41.7 294 | 65
Baichuan Omni 1.5 38.1 28.0 25.1 31.7 253 61.2 349 | 13.8 27.0 25.2 239 26.9 25.0 522 30.0 | 10.9
Echolnk-R1 41.3 272 26.8 34.0 28.0 62.2 36.6 | 13.7 382 26.2 38.6 31.1 26.9 61.6 37.1 | 13.1
Qwen2.5-Omni 41.8 312 26.7 344 28.6 67.8 384 | 153 26.9 28.7 36.6 25.6 253 50.8 323 | 10.0
Gemini 1.5 Pro 2 Sil2) 245 51.4 23.7 72.8 40.1 | 19.0 37.1 272 31.0 473 245 55.7 37.1 122
Gemini 2.0 Flash 45.2 43.1 29.2 56.4 335 83.0 484 | 204 51.8 30.8 38.6 48.0 274 72.0 448 | 16.3
Gemini 2.5 Flash 45.6 314 30.2 71.2 26.7 83.2 48.0 | 23.8 48.8 39.6 39.1 514 38.0 74.6 48.6 | 139
Gemini 2.5 Pro 41.0 329 321 75.8 30.3 88.3 50.1 | 254 76.4 54.4 57.7 554 50.6 70.6 60.8 | 10.3
Human ‘ 933 93.3 81.7 86.7 86.7 96.7 ‘ 89.7 ‘ 57 ‘ 90.0 85.0 86.7 91.7 83.3 96.7 ‘ 88.9 ‘ 4.9

| Task 4 - Linguistic | Task 5 - External Knowledge
Model |[AST AoV ToA ToV VoA VoT | Ag | Sd |[AST AoV ToA ToV VoA VeoT | Ag | Sd
PandaGPT 28.0 243 20.7 24.7 243 313 255 | 3.6 22.8 239 22.6 23.6 233 22.6 231 | 05
Unified-10 2 324 215 27.6 279 252 41.7 304 | 6.0 28.2 242 25.8 27.1 253 29.9 26.8 | 2.1
Unified-10 2 XL 344 31.7 245 28.8 23.6 41.8 30.8 | 6.8 319 279 26.2 28.6 29.5 329 295 | 25
Unified-I0 2 XXL 39.9 23.0 25.5 30.1 223 46.6 312 | 99 384 239 353 39.5 29.7 374 340 | 6.0
VideoLLaMA 2 50.3 252 242 25.2 24.1 71.2 36.7 | 19.8 429 25.5 23.9 27.0 24.4 76.9 36.8 | 20.9
VITA 522 26.8 47.1 29.9 47.9 72.5 46.1 | 16.6 385 24.1 242 24.7 22.6 61.2 326 | 152
Baichuan Omni 1.5 71.0 45.7 65.8 51.8 58.7 77.6 62.8 | 13.1 543 43.9 41.9 829 33.7 83.2 56.7 | 21.5
Echolnk-R1 86.0 57.4 74.6 64.4 70.1 873 733 | 11.8 833 60.4 72.7 83.6 56.6 833 733 | 12.3
Qwen2.5-Omni 85.6 61.8 73.6 64.6 71.5 87.5 74.1 10.6 83.0 59.2 70.7 82.5 58.6 83.2 728 | 11.8
Gemini 1.5 Pro 86.2 524 72.3 68.7 70.7 85.5 72.6 | 12.0 62.3 52.5 70.2 88.8 523 90.3 69.4 | 17.0
Gemini 2.0 Flash 83.6 575 68.6 67.3 60.9 83.4 702 | 11.1 81.2 68.3 70.5 93.1 61.3 94.2 78.1 | 13.6
Gemini 2.5 Flash 84.1 68.3 70.9 66.8 64.4 84.4 73.1 8.9 82.0 722 81.7 93.9 74.5 92.7 828 | 9.0
Gemini 2.5 Pro 84.9 67.5 75.5 76.1 65.8 91.4 76.8 | 9.9 90.3 82.5 88.2 94.6 84.8 95.1 89.3 | 5.1
Human ‘ 89.2 96.7 97.5 93.3 91.7 95.0 ‘ 93.9 ‘ 2.8 ‘ 96.7 88.3 98.3 98.3 85.0 96.7 ‘ 93.9 ‘ 58

C TASK SPECIFICED MODEL PERFORMANCE

C.1 TASK 1: PERCEPTUAL TASK

Table 6: T1 (Perception) Results

Model Perception Task

Model Task General General - Hard Scene Instruments Instruments-multi
Audio — Text 81.05 71.39 67.20 47.75 44.09
Audio — Vision 76.26 65.25 64.60 44.30 36.60
Gemini 2.5 Pro Text — Audio 79.95 79.22 75.05 59.05 49.30
s Text — Vision 98.90 97.87 90.80 97.90 99.80
Vision — Audio 88.73 79.35 84.40 61.92 48.79
Vision — Text 98.37 97.50 95.00 97.19 99.80

Continued on next page
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Table 6 — continued from previous page

Model Perception Task
Model Task General General - Hard Scene Instruments Instruments-multi
Audio — Text 81.00 50.00 51.01 45.82 35.27
Audio — Vision 62.63 50.39 47.60 30.99 29.92
Gemini 2.5 Flash Text — quio 79.80 59.13 57.34 37.90 32.99
i Text — Vision 98.96 91.45 90.20 96.50 99.74
Vision — Audio 82.10 60.59 67.54 39.80 29.92
Vision — Text 98.39 96.62 92.60 89.88 97.27
Audio — Text 81.10 62.07 54.00 47.05 39.80
Audio — Vision 67.45 51.68 49.80 31.50 24.80
Gemini 2.0 Flash Text — A}quo 79.95 60.64 53.80 38.80 37.60
: Text — Vision 98.95 91.45 80.40 96.90 95.60
Vision — Audio 82.50 66.45 53.00 37.90 35.40
Vision — Text 96.95 90.22 84.80 96.70 98.40
Audio — Text 80.90 36.38 29.20 30.93 27.40
Audio — Vision 34.35 30.00 28.40 23.60 23.00
Gemini 1.5 Pro Text — A}quo 80.25 45.88 41.80 31.10 26.20
Text — Vision 98.75 95.88 89.40 98.10 97.00
Vision — Audio 41.85 34.38 31.80 27.70 25.00
Vision — Text 95.10 94.62 87.80 98.90 100.00
Audio — Text 80.00 74.50 79.20 69.37 61.40
Audio — Vision 71.10 54.30 59.80 58.30 51.80
Qwen2.5 Omni Text — quio 81.20 69.90 78.80 67.40 48.80
! Text — Vision 94.90 87.70 89.60 90.80 92.80
Vision — Audio 83.90 68.50 61.20 68.30 60.60
Vision — Text 97.50 87.00 88.00 91.80 95.80
Audio — Text 87.55 74.80 77.10 68.20 63.00
Audio — Vision 74.60 58.40 49.00 58.20 52.10
Echolnk Text — A.u(:]io 84.57 66.40 79.40 69.14 46.80
Text — Vision 95.00 91.80 88.40 89.78 92.80
Vision — Audio 82.80 68.80 60.40 69.14 57.52
Vision — Text 96.00 95.20 87.80 92.38 95.79
Audio — Text 55.85 44.05 46.40 36.44 31.00
Audio — Vision 44.45 37.43 43.20 29.60 26.60
Baichuan Omni 1.5 Text — A}lqio 63.80 50.90 53.60 32.80 27.00
Text — Vision 97.35 88.10 81.20 84.50 88.00
Vision — Audio 68.25 53.75 58.80 38.40 32.20
Vision +— Text 95.90 87.12 86.80 92.70 90.80
Audio — Text 86.84 76.85 77.26 75.86 56.89
Audio — Vision 26.82 26.82 24.45 29.26 25.82
. Text — Audio 30.69 28.21 28.89 28.45 25.07
VideoLLaMA 2 Text > Vision 25.49 27.49 26.03 29.25 25.89
Vision — Audio 29.28 27.47 25.30 29.26 21.04
Vision — Text 97.05 91.48 87.45 89.40 92.23
Audio — Text 43.30 32.99 39.18 39.18 30.93
Audio — Vision 22.68 20.62 28.87 28.87 25.77
VITA Text — A}lqio 28.96 24.24 24.92 28.28 28.62
Text — Vision 20.62 25.77 31.96 21.65 18.56
Vision — Audio 23.57 29.29 24.92 2593 28.28
Vision — Text 64.95 73.20 58.76 74.23 74.23
Audio — Text 49.05 45.26 32.04 26.46 24.44
Audio — Vision 27.00 26.84 30.65 19.40 22.45
Unified 10 2 Text — A}quo 26.68 25.86 25.27 27.64 26.20
Text — Vision 73.28 56.44 72.67 27.26 49.89
Vision — Audio 27.89 24.09 4322 24.05 26.26
Vision — Text 55.83 44.21 32.81 48.66 41.86
Audio — Text 76.64 71.68 57.82 33.68 26.87
Audio — Vision 28.04 25.21 34.89 22.29 29.22
. Text — Audio 39.47 28.46 33.02 23.80 26.84
Unified 02 XL it s Vision 81.89 68.28 69.87 22.09 53.29
Vision — Audio 26.46 24.43 35.05 24.80 27.03
Vision — Text 61.10 51.83 53.06 60.49 48.50
Audio — Text 83.63 71.20 45.88 41.45 32.83
Audio — Vision 29.07 23.28 27.41 27.09 27.87
. Text — Audio 59.87 44.10 35.40 27.68 28.09
Unified 02 XXL g1t v Vision 86.07 73.08 71.29 36.07 54.44
Vision — Audio 28.66 29.81 24.82 24.01 26.07
Vision — Text 53.46 48.64 40.49 61.85 46.68
PandaGPT Aud1:0 — Tﬁ:x} 25.03 28.80 24.49 24.30 19.99
Audio — Vision 26.52 27.37 24.63 24.89 20.15

Continued on next page
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Table 6 — continued from previous page

Model Perception Task
Model Task General General - Hard Scene Instruments Instruments-multi
Text — Audio 25.40 29.65 24.25 24.77 20.08
PandaGPT Text — Vision 25.07 28.68 2422 24.52 20.19
anda Vision — Audio  25.26 28.81 24.50 24.52 19.85
Vision +— Text 25.26 28.70 24.64 24.90 20.05

C.2 TASK 2: SPATIAL REASONING

Table 7: T2 (Spatial) Task Results

Model Spatial Task
Model Task Arrangement Moving Direction Indoor
Audio — Text 28.82 69.39 24.87
Audio — Vision 24.73 40.65 33.38
Gemini 2.5 Pro Text +— A}ldio 30.09 39.02 27.09
Text — Vision 95.70 58.85 72.73
Vision — Audio 29.01 38.10 23.86
Vision — Text 95.21 85.23 84.56
Audio — Text 27.53 83.53 25.64
Audio — Vision 26.54 36.03 31.61
.. Text — Audio 25.81 35.34 29.37
Gemini 2.5 Flash i 1 Vision 91.40 66.44 5571
Vision — Audio 27.44 26.44 26.12
Vision — Text 91.40 84.05 74.25
Audio — Text 28.82 82.71 24.10
Audio — Vision 26.45 37.58 35.38
.. Text — Audio 27.31 3941 21.01
Gemini 2.0 Flash 1+ Vision 67.53 66.99 34.62
Vision — Audio 25.81 45.78 28.86
Vision — Text 89.25 99.02 60.76
Audio — Text 29.25 57.37 24.87
Audio — Vision 27.10 32.87 33.59
Gemini 1.5 Pro Text — A}lc}io 19.25 34.26 20.00
Text — Vision 64.30 50.80 39.23
Vision — Audio 23.66 21.82 25.57
Vision — Text 95.48 80.00 43.04
Audio — Text 21.29 75.28 28.89
Audio — Vision 28.60 35.83 29.23
Qwen2.5 Omni Text — A}ldio 20.22 31.52 28.35
Text — Vision 45.38 26.98 30.77
Vision — Audio 23.87 34.69 27.34
Vision — Text 80.86 81.63 41.01
Audio — Text 27.79 61.62 34.34
Audio — Vision 24.97 25.59 30.98
Echolnk Text +— Apdio 26.60 28.96 24.92
Text — Vision 46.80 25.59 29.63
Vision — Audio 24.88 31.31 27.95
Vision — Text 80.13 61.62 44.78
Audio — Text 28.39 71.43 14.36
Audio — Vision 28.17 28.51 27.18
Baichuan Omni 1.5 Text +— Apdio 22.37 27.21 25.57
Text — Vision 35.70 36.32 23.08
Vision — Audio 25.38 22.95 27.59
Vision — Text 71.40 82.95 29.37

Continued on next page
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Table 7 — continued from previous page

Model Spatial Task

Model Task Arrangement Moving Direction Indoor
Audio — Text 31.40 62.44 37.76

Audio — Vision 27.40 2775 28.22

. Text > Audio 26.76 27.04 19.53
VideoLLaMA 2 Text > Vision 27.36 27.01 28.25
Vision — Audio 25.63 29.28 20.77

Vision — Text 46.96 84.21 31.70

Audio — Text 29.90 7732 19.59

Audio — Vision 30.93 26.80 28.87

VITA Text — Audio 23.23 25.59 25.00
Text > Vision 29.90 31.96 30.93

Vision — Audio 24.92 25.59 24.66

Vision — Text 57.73 55.67 4330

Audio — Text 23.03 2047 34.40

Audio > Vision 21.98 17.20 22.89

. Text > Audio 23.50 20.69 22.87
Unified IO 2 Text > Vision 25.63 24.03 2522
Vision — Audio 24.09 17.32 27.86

Vision —s Text 28.60 24.10 21.49

Audio — Text 23.09 28.42 22.88

Audio > Vision 22.20 20.09 26.75

. Text — Audio 24.8 2.9 29.70
Unified IO2XL 1L Vision 24.18 2425 29.56
Vision — Audio 2412 2178 3217

Vision — Text 27.41 24.10 21.93

Audio — Text 22.58 30.07 36.18

Audio s Vision 24.54 24.02 22.37

. Text — Audio 25.85 38.11 28.71
Unified TO 2 XXL vt v Vision 25.39 30.02 21.10
Vision — Audio 25.45 28.33 34.77

Vision — Text 30.36 30.91 30.80

Audio s Text 2542 25.62 2544

Audio — Vision 27.22 25.63 2691

Text — Audio 27.06 25.58 2527

PandaGPT Text > Vision 27.01 25.95 28.57
Vision — Audio 27.16 25.53 2457

Vision — Text 21.19 2572 2234

C.3 TASK 3: TEMPORAL REASONING

Table 8: T3 (Temporal) Task Results

Model Temporal Task
Model Task Order Counting Calculation
Audio — Text 96.18 57.36 75.78
Audio — Vision  95.38 37.88 29.87
Gemini 2.5 Pr Text — Audio 95.39 50.00 27.60
¢ = Fro Text— Vision ~ 99.80  35.85 30.63
Vision — Audio  96.35 34.70 20.65
Vision +— Text 99.80 40.58 71.46
Audio — Text 41.40 49.60 55.40
Audio — Vision  58.99 33.07 26.88
Text — Audio 61.00 29.40 27.00

Gemini 2.5 Flash .1\, Vision 99.15 29.45 25.51

Continued on next page
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Table 8 — continued from previous page

Model Temporal Task
Model Task Order Counting Calculation
Vision — Audio  63.39 26.58 24.13
Vision +— Text  99.20 53.37 71.22
Audio — Text 43.60 52.60 59.20
Audio + Vision  33.40 30.17 28.93
. Text — Audio 61.40 28.80 25.60
Gemini 20 Flash .1\, Vision 81.40 33.33 29.16
Vision — Audio  33.40 28.22 20.65
Vision +— Text  99.20 57.87 58.90
Audio — Text 34.40 30.00 47.00
Audio + Vision  32.00 24.44 25.10
Gemini 1.5 Pro Text — Audio 38.60 30.20 24.20
: Text — Vision 82.00 33.88 26.14
Vision — Audio  27.60 23.87 21.88
Vision — Text 98.40 25.26 43.56
Audio — Text 28.20 25.80 26.60
Audio + Vision  34.80 2022 28.96
Qwen?.5 Omni Text — Audio 63.80 19.40 26.60
: Text — Vision 24.80 22.90 28.96
Vision — Audio  26.40 23.57 25.93
Vision > Text 85.00 41.41 25.93
Audio — Text 35.00 48.48 30.98
Audio > Vision  30.98 23.57 2391
Echolnk Text — Audio 68.69 21.89 25.25
choln Text — Vision  43.10 22.56 27.61
Vision — Audio 31.99 23.57 25.25
Vision > Text  93.60 46.80 44.44
Audio > Text 23.00 34.40 23.60
Audio  Vision  23.80 25.74 25.99
Baichuan Omni 1.5 Text— Audio 23.40 23.00 25.40
aichuan Lmnt L5 eyt 5 Vision 25.80 26.23 28.77
Vision — Audio  25.20 28.34 21.47
Vision > Text  70.20 53.18 33.13
Audio > Text 25.82 35.90 31.23
Audio — Vision  25.23 25.80 24.03
. Text — Audio 34.29 22.09 26.70
VideoLLaMA 2 Text s Vision 2666  26.06 24.90
Vision — Audio  27.03 23.64 26.67
Vision — Text  50.40 32.44 36.67
Audio > Text 26.26 38.14 28.87
Audio — Vision  16.49 31.17 27.52
VITA Text > Audio 26.80 27.61 23.91
Text — Vision 22.68 25.62 25.58
Vision — Audio 28.62 26.71 27.59
Vision — Text  42.27 49.66 33.10
Audio > Text 24.28 18.25 25.44
Audio — Vision  21.50 2261 23.03
. Text — Audio 30.02 23.46 21.89
Unified 10 2 Text s Vision 2525  24.85 22.86
Vision > Audio  25.46 26.29 25.65
Vision — Text 27.68 16.25 23.37
Audio > Text 24.65 24.63 17.47
Audio — Vision 26.03 30.21 17.39
. Text — Audio 27.52 28.83 30.02
Unified I02XL o) Vision 2509 19.16 22.17
Vision +— Audio ~ 22.64 24.92 30.57
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Table 8 — continued from previous page

Model Temporal Task
Model Task Order Counting Calculation
Vision — Text 37.30 36.42 24.44
Audio — Text 24.41 26.81 21.62
Audio — Vision  25.26 29.68 27.17
. Text — Audio 28.83 2243 24.61
Unified 02 XXL  pexis Vision 2370 37.78 2737
Vision — Audio  23.63 24.69 27.28
Vision — Text 41.69 38.50 22.95
Audio — Text 25.85 16.77 23.17
Audio — Vision  26.06 22.60 27.31
Panda Text — Audio 25.72 22.81 25.30
Text — Vision 26.31 22.77 29.02
Vision — Audio  26.10 22.77 24.59
Vision — Text 25.51 22.94 23.37

C.4 TASK 4: LINGUISTIC TASK

Table 9: T4 Linguistic Task Results

Model Linguistic Task
Model Task Recognition Translation Emotion
Audio — Text 97.16 96.58 60.86
Audio — Vision 91.65 67.95 42.75
Gemini 2.5 Pro Text — Audio 80.35 81.62 64.51
. Text — Vision 93.58 67.38 67.31
Vision — Audio 80.81 73.22 43.43
Vision — Text 99.54 100.00 74.54
Audio — Text 94.05 97.44 60.86
Audio — Vision 68.01 93.30 43.67
. Text — Audio 76.92 81.34 54.43
Gemini 2.5 Flash i 5 Vision 72.88 67.24 60.14
Vision — Audio 74.95 72.93 45.22
Vision — Text 99.40 96.72 57.14
Audio — Text 92.86 97.29 60.57
Audio +— Vision 68.30 67.66 36.43
. Text — Audio 69.79 81.20 54.86
Gemini 2.0 Flash 1+ Vision 73.92 67.66 60.43
Vision — Audio 66.52 73.08 43.00
Vision +— Text 96.43 97.15 56.71
Audio — Text 94.94 97.15 60.43
Audio — Vision 73.96 46.72 36.57
Gemini 1.5 Pro Text — Audio 83.33 80.91 52.57
: Text — Vision 76.93 66.81 62.43
Vision — Audio 80.80 92.02 39.20
Vision +— Text 96.73 96.44 63.29
Audio — Text 94.64 96.72 65.29
Audio — Vision 62.95 73.36 48.94
Qwen2.5 Omni Text — Audio 81.25 86.75 52.71
: Text — Vision 65.03 69.09 59.79
Vision — Audio 82.44 88.60 43.57
Vision — Text 97.17 97.72 67.57
Audio — Text 92.93 95.96 69.02
Echolnk Audio — Vision 64.98 71.38 35.69
Text — Audio 80.47 81.48 61.95
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Table 9 — continued from previous page

Model Linguistic Task
Model Task Recognition Translation Emotion
Text — Vision 68.35 67.68 57.24
Vision — Audio 81.48 85.86 43.10
Vision — Text 96.63 97.31 68.01
Audio — Text 87.05 96.01 48.00
Audio + Vision 55.36 56.55 25.25
Baichuan Omni 1.5 TeXt— Audio 64.29 84.94 48.29
1ehu "9 Text — Vision 55.95 52.56 46.99
Vision — Audio 65.03 84.06 27.14
Vision > Text 92.56 96.72 43.43
Audio > Text 69.04 67.40 14.48
Audio — Vision 24.82 26.00 24.68
. Text — Audio 22.82 22.02 27.68
VideoLLaMA 2 Text - Vision 25.03 25.80 24.65
Vision — Audio 24.07 23.25 25.01
Vision — Text 83.86 86.80 43.00
Audio — Text 39.18 73.20 4433
Audio — Vision 24.74 24.74 30.93
VITA Text — Audio 39.73 55.56 46.13
Text — Vision 30.93 25.77 32.99
Vision — Audio 53.87 61.95 27.95
Vision — Text 86.60 88.66 4227
Audio — Text 62.01 14.06 21.05
Audio — Vision 35.66 20.90 25.83
. Text — Audio 26.60 26.36 29.85
Unified 10 2 Text > Vision 25.89 26.00 31.82
Vision — Audio 2424 25.14 26.27
Vision — Text 66.06 18.90 40.01
Audio — Text 69.63 17.26 16.29
Audio — Vision 45.46 26.28 23.28
. Text — Audio 27.82 23.75 21.90
Unified 10 2 XL Text > Vision 30.65 25.26 30.47
Vision — Audio 25.07 23.70 21.88
Vision > Text 75.27 23.23 27.02
Audio — Text 72.67 17.63 29.46
Audio > Vision 18.23 27.43 23.24
. Text — Audio 23.04 25.97 27.47
Unified 10 2 XXL 10t + s Vision 31.09 27.84 31.42
Vision — Audio 19.43 23.31 24.06
Vision — Text 78.04 26.88 34.88
Audio — Text 27.12 28.83 28.03
Audio — Vision 22.38 2223 28.23
Text — Audio 22.06 18.88 21.20
PandaGPT Text > Vision 22.10 24.96 27.04
Vision — Audio 22.55 22.40 27.99
Vision — Text 33.96 32.67 27.20

C.5 TASK 5: EXTERNAL KNOWLEDGE
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Table 10: TS5 (External) Task Results

Model External Task

Model Task Genre Movie Singer
Audio — Text 83.28 93.00 94.67

Audio — Vision  74.80 89.90 82.67

Gemini 2.5 Pro Text +— Apdio 78.16 94.50 91.95
Text — Vision 85.76 97.99 100.00

Vision — Audio  72.42 92.00 90.00

Vision — Text 88.95 96.45  100.00

Audio — Text 83.78 93.00 69.13

Audio — Vision  63.36 82.41 70.92

Gemini 2.5 Flash Text +— A}ldio 78.56 90.45 76.00
Text — Vision 85.00 97.99 98.67

Vision — Audio  63.96 88.32 71.33

Vision — Text 86.34 98.00 93.71

Audio — Text 83.50 88.00 72.00

Audio — Vision  62.40 86.50 56.00

Gemini 2.0 Flash Text — A.uc.iio 78.46 82.50 50.67
Text — Vision 84.50 98.00 96.67

Vision +— Audio  66.43 79.50 38.00

Vision — Text 87.50 95.00  100.00

Audio +— Text 61.70 78.00 47.33

Audio — Vision  42.90 74.50 40.00

Gemini 1.5 Pro Text — A}l(‘:ﬁO 63.53 84.50 62.67
Text — Vision 82.10 95.50 88.67

Vision — Audio  45.59 74.00 37.33

Vision — Text 87.10 95.00 88.67

Audio — Text 89.50 79.50 80.00

Audio — Vision  61.40 67.50 48.67

Qwen2.5 Omni Text — A}ldio 85.65 70.50 56.00
Text — Vision 74.20 94.50 78.67

Vision — Audio  81.82 60.50 33.33

Vision — Text 79.00 92.50 78.00

Audio — Text 87.54 82.50 80.00

Audio — Vision  61.95 68.00 51.33

Echolnk Text — A.u<.ii0 84.51 73.00 60.67
Text — Vision 717.78 93.00 80.00

Vision — Audio  62.63 64.50 42.67

Vision — Text 79.12 93.50 77.33

Audio — Text 65.60 56.00 41.33

Audio — Vision  45.30 54.50 32.00

Baichuan Omni 1.5 Text — A_u(_iio 25.75 60.00 40.00
Text — Vision 77.00 94.50 77.33

Vision — Audio  27.15 46.50 27.33

Vision — Text 81.20 94.50 74.00

Audio — Text 62.60 26.59 39.38

. Audio — Vision  26.23 23.56 26.72
VideoLLaMA 2 iy Audio 2485 2159 2534
Text — Vision 26.40 28.55 26.09

Vision — Audio  25.67 23.56 24.10

Vision +—> Text 68.27 80.55 82.02

Audio — Text 46.39 40.21 28.87

Audio — Vision  20.62 26.80 24.74

VITA Text +— A_uc_iio 21.89 25.50 25.33
Text — Vision 20.62 31.96 21.65

Vision — Audio  23.23 22.00 22.67

Vision — Text 47.42 81.44 54.64
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Table 10 — continued from previous page
Model External Task
Model Task Genre Movie Singer

Audio — Text 31.83  22.53 30.09
Audio — Vision 2230  29.03 21.40
Text — Audio 26.25 2451 26.71

Unified IO 2 Text > Vision 3446 2603  20.71
Vision — Audio  25.45 20.57 30.01
Vision — Text  27.90 3459  27.33
Audio > Text 3680 2752 31.40
Audio > Vision 2923 29.09 2540
. Text s Audio 2412 2509 2934
Unified I02XL poiy ) Vision 3441 2457 26.68
Vision — Audio 2651 3255  20.41
Vision — Text ~ 24.86 3576  38.05
Audio > Text  57.68 2271 34.70
Audio > Vision 2683  20.56  24.42
. Text s Audio  47.92 2652  31.43
Unified 02 XXL i1y Vision 5185 2401 42.75
Vision — Audio  25.06 30.57 33.40
Vision — Text 2820 3655  47.36
Audio > Text 2577 2132 2124
Audio — Vision 25.74 24.49 21.42
Text > Audio 2211 2518  20.37
Panda

Text — Vision 24.63 24.64 21.40
Vision — Audio  23.93 24.58 21.29
Vision +—> Text 26.32 21.07 20.39

C.6 EVALUATION COST

We provide a detailed evaluation cost section as a reference of usage. We evaluate on the full version (60k
sample) of XModBench, API-based models we test Gemini 2.5 Pro, we report the foken usage for evaluating
the overall benchmark and each task family . For open-source models we report Qwen2.5-Omni, we report the
evaluation runing time, using with eight 26000 GPUs and each GPU run one process.

Table 11: Evaluation cost estimation for models across the five task families and the full benchmark.

Model | Perc. Spat. Temp. Ling. Knwl. | Total
Gemini 2.5 Pro (Token usage) ‘ 26.0M 13.5M 25.1M 4.3M 14.0M ‘ 82.9M
Qwen?2.5-Omni (Hours) | 63 1.4 1.4 1.4 21 | 127

D INTERLEAVING VISUAL AUDIO INPUT

In the preceding experiments, we showed that omni-language models exhibit varying performance in pairwise
cross-modal reasoning, particularly between vision—text and audio—text tasks. Yet, real-world multimodal sce-
narios are more complex: information from multiple modalities often arrives simultaneously and must be pro-
cessed in an integrated manner. To address this challenge, we extend all tasks in XModBench to an audio—visual
context configuration, where the question stem provides both audio and visual cues, while the candidate space
remains identical to the original text-based setting.

We evaluate this dual-context setup using the Gemini series of models, which represent some of the most
advanced omni-language systems available. The results, presented in Tab. 12, enable a direct comparison with
the pairwise baseline and reveal how models leverage—or fail to leverage—simultaneous multimodal evidence.
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Table 12: Overall performance of Gemini models under the dual-context setting (audio+visual con-
text — text). We compare with pairwise baselines (A — T and V + T), and report the stronger
unimodal baseline max(A — T,V — T).

Setting | Gemini 1.5 Pro | Gemini 2.0 Flash | Gemini 2.5 Pro

AT 52.76 63.71 70.99
V=T 79.92 85.20 88.60
A+V =T 82.53 (+2.61) 79.84 89.76

E HUMAN SURVEY

To evaluate human performance and establish reference baselines, we conducted a user study on a subset of
XModBench. Participants answered multiple-choice questions under different modality configurations, with
Figure 7 showing a screenshot of the interface and example questions. For each subtask, we collected responses
from 10 valid participants per modality configuration.

F TECHINIQAL DETAILS IN TRIPLET DATA COLLECTION AND
PROCESSING.DATA FOR EACH SUBTASK

In this section, we provide detailed descriptions of the data sources are collected, and how each data in each
modality are processed for each subtask in XModBench.

F.1 PERCEPTUAL RECOGNITION

General Categories. We utilize the VGGSound Source (VGG-SS) dataset(Chen et al., 2021; Kim et al.,
2024), a large-scale video benchmark designed for sound source localization, which provides video-level an-
notations across diverse sound activities. The dataset covers 200 categories with approximately 5,000 video
clips, where sound sources are annotated with bounding boxes to ensure clear visibility in each clip. For our
benchmark, we extract a 2-second segment corresponding to the loudest audio channel as the audio input, and
randomly sample a single frame from the same clip as the visual input. The activity class name serves as the tex-
tual description. To construct multiple-choice questions, four additional activity labels are randomly sampled
as distractors, resulting in four candidate answers per instance. We then use Gemini 2.5-flash lite to(Comanici
et al., 2025) filter if each instance if the audio and video frame is clear to be hear and the image frame and audio
are all match the category name.

Fine-grained Categories. This subtask uses the same pool of video clips as the General Categories setting.
The difference lies in reorganizing the activity classes into eight fine-grained clusters: Animal sounds, Musical
instruments, Human activities, Transportation, Tools and utilities, Urban sounds, Human speech, and Natural
sounds. For each instance, we select the target activity along with four distractor activities sampled from the
same fine-grained cluster. This ensures that all answer choices belong to the same semantic domain, making
the recognition task more challenging and diagnostic within a coherent category group.

Figure 7: Sample question of human survey
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Natural Environment. We draw data from the Landscapes dataset( , ), which consists of
ambient audio—video clips capturing natural outdoor scenes. Following the same selection protocol as in the
General Categories task, we extract a 2-second segment from the dominant audio channel as the audio input,
and randomly sample one frame from the corresponding video as the visual input. The dataset’s categorical
labels are used as the textual descriptions.

Instruments. Instrument data is collected from the Solos dataset( s ), which contains
recordings of 13 distinct instruments: violin, viola, cello, double bass, flute, oboe, clarinet, bassoon, saxophone,
trumpet, horn, trombone, and tuba. We use the video frames as the visual modality, the isolated performance
recordings as the audio modality, and the instrument names as textual labels.

Instrument Composition. We employ the URMP dataset( , ), a multimodal corpus designed
for music performance analysis, which provides video and audio recordings of ensemble performances. For
this subtask, we leverage clips containing multiple instruments playing together, using the mixture audio as
input, sampled video frames as the visual modality, and instrument combination labels as text.

F.2 SPATIAL REASONING

2D Horizontal Arrangement. This subtask is derived from the URMP dataset( , ), which
contains multi-instrument ensemble recordings with annotated left-to-right spatial positions of each performer
and independent audio channels per instrument. We construct multiple-choice questions by generating three
distractor options through random shuffling of instrument order along the horizontal axis. For the visual modal-
ity, cropped player images are concatenated into a composite frame that preserves their spatial arrangement.
For the audio modality, stereo spatialization is synthesized by assigning distinct azimuth values to each shuffled
configuration and adjusting the relative channel balance using a panning algorithm (e.g., vector-base amplitude
panning( , )). This design ensures that listeners can clearly perceive the relative horizontal positions
of the instruments.

3D Localization. This subtask builds on the STARSS23 dataset( , ), which provides
panoramic video with time-stamped annotations of sound source depth, azimuth, and activity. For the vi-
sual modality, we annotate sound sources with bounding boxes and generate alternative views by rotating the
camera perspective to +90°, 180°, and —90° (positive defined as left). The corresponding videos are cre-
ated through spatial cropping of frames. For the audio modality, we utilize the four-channel microphone array
(MIC) recordings and simulate azimuthal rotation by first encoding the array signals into first-order Ambisonics
(FOA), applying a 2D rotation matrix to the X—Y components, and decoding back into microphone signals with
loudness normalization. To further enhance perceptual realism, each spatial microphone 51gnal is additionally
processed with head-related transfer functions (HRTFs) in the SOFA format( s R R
).

3D Movements. This subtask is based on the Urbansas dataset( R ), which provides street-
view traffic videos with detailed audio annotations indicating vehicle types and the presence of off-screen
sounds. Each clip includes labels specifying the vehicle category, whether the sound source is visible in the
video, and its temporal activity. We curate video segments from this dataset and highlight the target vehicle by
overlaying a red bounding box to establish clear audio—visual correspondence.

F.3 TEMPORAL REASONING

Event Order. This subtask is derived from 2-second video clips in the VGGSound Source (VGG-SS)
dataset( s ), originally used in the Perceptual Recognition task where each clip is annotated
with an activity class label. For temporal ordering, we randomly sample 3-5 clips from different classes and
generate four candidate event sequences by shuffling their order. Each sequence is represented across three
modalities: (i) a text description (e.g., “Event A — Event B — Event C”), (ii) a concatenated video sequence,
and (iii) a concatenated audio sequence. Multiple-choice questions are formed by selecting one sequence as
the correct answer and presenting the stem in one modality, while the four candidate sequences are given in
another modality.

Repetition Count. Following the setup in( , ), this subtask focuses on counting repeated
events. Visual data is generated from synthetic renderings of repeated object actions, while audio data consists
of temporal patterns with clear repetitions (e.g., sequences of knocks or claps). Text prompts explicitly query
the number of repetitions in either modality.

Repetition Calculation. Also inspired by( , ), this subtask extends beyond direct counting
by requiring simple arithmetic over observed repetitions. Both audio and video are rendered with variable fre-
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quencies of repeated events, while the text prompts encode arithmetic formulations that ask models to compute
totals (e.g., “three knocks plus two knocks”).

F.4 LINGUISTIC UNDERSTANDING

Linguistic Recognition. This subtask targets recognition of textual content across modalities. Images are
collected from OCR-rendered text data( s ), each paired with its ground-truth transcript. Audio is
generated from these transcripts using a TTS system( , ), allowing for cross-modal recognition
between text, vision, and speech.

Translation. This subtask examines cross-lingual translation. Input sequences consist of English text with

multiple-choice options in Chinese. Text data is derived from OCR-rendered images( , ), while

translations are generated using Gemini( , ). Visual inputs are rendered using the OCR dataset

rendering toolkit( , ), and audio is synthesized from both languages with a TTS system( ,
).

Dialogue Emotion. This subtask focuses on multimodal emotion recognition in conversational settings.
Visual data consists of face videos displaying emotional expressions extracted from multi-party dialogue
clips( , ). Each dialogue is paired with transcripts and annotated with cat-
egorical emotlons (anger disgust, fear, sadness, surprise, and joy). We filter clips to lengths between 5-30
seconds. The video data is stripped of original audio but accompanied by transcripts to enable inference of
emotion from dialogue and facial expression. Audio inputs consist of the original speech tracks, and text inputs
are provided as the emotion category names.

F.5 EXTERNAL KNOWLEDGE

Music Genre Classification. This subtask evaluates music genre recognition. We collect audio samples
from the GTZAN dataset( , ), covering multiple musical styles. To complement the audio, we also
collect representative album cover images for each genre category.

Movie Matching. This subtask requires linking multimodal cues to movie identities. We collect a set of
recent films from IMDb. For the visual modality, we use official posters. To prevent trivial text matching
between posters and movie titles, we use written plot summaries from IMDb as the text modality. Audio is
sampled as 30-second clips from publicly available trailers on YouTube.

Singer Identification. This subtask targets cross-modal recognition of popular singers. Images of singers
are collected from the web, while audio consists of short clips (3—5 songs each) sampled from their publicly
available music videos on YouTube. Text inputs include singer names and associated biographical metadata.
We select a diverse set of internationally recognized artists, including American singers Ariana Grande, Bad
Bunny, Billie Eilish, Bruno Mars, Chappell Roan, Harry Styles, and Chinese singers David Tao, Eason Chan,
Faye Wong, G.E.M., and Jay Chou.

G LLM USAGE

We used large language models (LLMs) to assist in the preparation of this paper. Their role was limited to
language editing such as proofreading and rephrasing. All ideas, experiments, and analyses were conceived
and conducted by the authors.
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