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Abstract
A principle behind dozens of attribution meth-001
ods is to take the prediction difference between002
before-and-after an input feature (here, a token)003
is removed as its attribution—the individual004
treatment effect in causal inference. A recent005
popular Input Marginalization (IM) method006
(Kim et al., 2020) uses BERT to replace a007
token—i.e. simulating the do(.) operator—008
yielding more plausible counterfactuals. While009
Kim et al. (2020) reported that IM is effective,010
we find this conclusion not convincing as the011
DeletionBERT metric used in their paper is bi-012
ased towards IM. Importantly, this bias should013
exist in many Deletion-based metrics, e.g., In-014
sertion (Arras et al., 2017), Sufficiency, and015
Comprehensiveness (DeYoung et al., 2020)).016
Furthermore, our rigorous evaluation using 6017
metrics and on 3 datasets finds no evidence018
that IM is better than a Leave-One-Out (LOO)019
baseline. We provide two explanations for why020
IM is not better than LOO: (1) deleting a single021
word from the input only marginally reduces022
a classifier’s accuracy; and (2) a highly pre-023
dictable word is always given near-zero attribu-024
tion which may not match its true importance025
to the target classifier.026

1 Introduction027

Feature attribution maps (AMs), i.e. highlights in-028

dicating the importance of each input token w.r.t. a029

classifier’s decision, can help improve human accu-030

racy on downstream tasks including detecting fake031

movie reviews (Lai and Tan, 2019) or identifying032

biases in text classifiers (Liu and Avci, 2019).033

Many Leave-One-Out (LOO) methods compute034

the attribution of an input token by measuring the035

prediction changes after substituting the token em-036

bedding with zeros (Li et al., 2016; Jin et al., 2020)037

or UNK (Kim et al., 2020). That is, deleting or038

replacing features is the underlying principle of at039

least 25 attribution methods (Covert et al., 2020).040

Based on evidence in computer vision (Bansal041

et al., 2020; Zhang et al., 2019), prior works in042

(a) SST – Groundtruth & target class: “positive”

S
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .
0.9793 stepping 0.9760 stone 0.8712 for
0.0050 rolling 0.0048 stones 0.0860 to
0.0021 casting 0.0043 point 0.0059 ,

IM0
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .

IM1
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .

IM2
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .

IM3
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .

(b) e-SNLI – Groundtruth & target class: “contradiction”
P A group of people prepare hot air balloons for takeoff .

0.9997 hot 0.9877 air 0.9628 balloons
0.0001 compressed 0.0102 water 0.0282 balloon
0.0000 open 0.0008 helium 0.0019 engines

H A group of people prepare cars for racing .

IM0 A group of people prepare hot air balloons for takeoff .
A group of people prepare cars for racing .

IM1 A group of people prepare hot air balloons for takeoff .
A group of people prepare cars for racing .

IM2 A group of people prepare hot air balloons for takeoff .
A group of people prepare cars for racing .

IM3 A group of people prepare hot air balloons for takeoff .
A group of people prepare cars for racing .

Figure 1: Color map: negative -1, neutral 0, positive +1.
Many words labeled important by humans such as
“stepping”, “stone” (in SST) or “hot”, “air” (in e-SNLI)
are always given near-zero attribution by IM (because
they are highly predictable by BERT, e.g. 0.9793 for
stepping) regardless of the classifier’s parameters. Even
when randomizing the classifier’s weights three times,
the IM attribution of these words remains unchanged
at near zero (IM1 to IM3). Therefore, when marginal-
izing over the top-k BERT candidates (e.g., “stepping”,
“rolling”, “casting”), the IM attribution for low-entropy
words tends to zero, leading to heatmaps that are biased,
less accurate, and less plausible than LOOempty.

NLP hypothesized that removing a word from an 043

input text forms out-of-distribution (OOD) inputs 044

that yield erroneous AMs (Kim et al., 2020; Har- 045
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becke and Alt, 2020) or AMs inconsistent with046

human’s perception of causality (Hase et al., 2021).047

To generate plausible counterfactuals, two teams048

of researchers (Kim et al., 2020; Harbecke and Alt,049

2020) proposed Input Marginalization (IM), i.e.050

replace a word using BERT (Devlin et al., 2019)051

and compute an average prediction difference by052

marginalizing over all predicted words. Kim et al.053

(2020) claimed that IM yields more accurate AMs054

than the baselines that replace words by UNK or055

zeros but their quantitative results were reported056

for only one1 dataset and one evaluation metric.057

In this paper, we re-assess their claim by, first,058

reproducing their IM results2, and then rigorously059

evaluating the effectiveness of IM on a diverse set060

of three datasets and six metrics. We found that:061

• The DeletionBERT metric in Kim et al. (2020)062

is biased towards IM as both use BERT to re-063

place words (Sec. 4). In contrast, the original064

Deletion metric (Arras et al., 2017) favors the065

LOOempty baseline as both delete words. This066

bias causes the incorrect interpretation that067

IM is better than LOO baselines in Kim et al.068

(2020) and exists in all Deletion variants069

including Insertion (Arras et al., 2017), Suf-070

ficiency, and Comprehensiveness (DeYoung071

et al., 2020).072

• Under ROAR & ROARBERT (Hooker et al.,073

2019), the metrics that correct for the distribu-074

tion shift in Deletion, LOOempty outperforms075

IM (Sec. 5.1). Compared to human annota-076

tions, LOOempty generates more plausible ex-077

planations than IM (Sec. 5.2). Under sanity078

check (Adebayo et al., 2018), IM is worse079

than LOOempty (Sec. 5.3). Overall, we find080

no evidence that IM is better than a simple081

LOOempty baseline on any of the above four082

metrics (which exclude the biased Deletion &083

DeletionBERT).084

• To further test the main idea of IM—whether085

using BERT to generate plausible counterfac-086

tuals improves explainability—we integrate087

BERT into LIME (Ribeiro et al., 2016) but088

find that LIMEBERT only performs similarly089

to the original LIME (Sec. 6).090

We argue that IM is not effective in practice be-091

cause: (1) deleting a single word from an input092

1No quantitative results on SNLI, only SST-2.
2Code and pre-trained models are available at https:

//anonymizedForReview.

has only a marginal effect to classification accu- 093

racy (Sec. 7.1); and (2) given a perfect, masked 094

language model G, IM would be still unfaithful 095

because highly predictable words according to G, 096

e.g. “hot”, “air” in Fig.1, are always assigned near- 097

zero attribution in IM regardless of how impor- 098

tant they are to the classifier (Sec. 7.2). To our 099

knowledge, our work is the first to question the 100

commonly-assumed effectiveness of IM in NLP. 101

2 Methods and Related Work 102

Let f : Rn×d → [0, 1] be a text classifier that maps 103

a sequence x of n token embeddings, each of size 104

d, onto a confidence score of an output label. An at- 105

tribution function A takes three inputs—a sequence 106

x, the model f , and a set of hyperparameters H— 107

and outputs a vector a = A(f,x,H) ∈ [−1, 1]n. 108

Here, the explanation a associates each input token 109

xi to a scalar ai ∈ [−1, 1], indicating how much xi 110

contributes for or against the target label. 111

Leave-One-Out (LOO) is a well-known method 112

(Li et al., 2016) for estimating the attribution ai 113

by computing the confidence-score change after a 114

token xi is left out of the input x, creating a shorter 115

sequence x−i: 116

ai = f(x)− f(x−i) (1) 117

This “prediction difference” (Robnik-Šikonja and 118

Kononenko, 2008) is widely used as attribution in 119

LOO methods (a.k.a “occlusion”) in both NLP (Jin 120

et al., 2020) and Computer Vision (CV). 121

Under Pearl (2009) causal framework, the attri- 122

bution ai in Eq. 1 relies on a single, unrealistic 123

counterfactual x−i and thus is a biased estimate of 124

the individual treatment effect (ITE): 125

ITE = f(x)− E[f(x) | do(T = 0)] (2) 126

where the binary treatment T , here, is to keep or 127

“realistically remove” the token xi (i.e. T = 1 or 0) 128

in the input x, prior to the computation of f(x). 129

Removal techniques In CV, earlier attribution 130

methods erase a feature by replacing it with (a) ze- 131

ros (Zeiler and Fergus, 2014; Ribeiro et al., 2016); 132

(b) random noise (Dabkowski and Gal, 2017; Lund- 133

berg and Lee, 2017); or (c) blurred versions of the 134

original content (Fong et al., 2019). Yet, these hand- 135

designed perturbation methods produce unrealistic 136

counterfactuals that make AMs more unstable and 137

less accurate (Bansal et al., 2020). 138
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Recent works proposed to simulate the do(T =139

0) operator using an image inpainter. How-140

ever, they either generate unnatural counterfactuals141

(Chang et al., 2019; Goyal et al., 2019) or only a142

single, plausible counterfactual per example (Agar-143

wal and Nguyen, 2020).144

Input marginalization (IM) In the parallel145

world of NLP, IM offers the closest estimate of146

the ITE. They compute the expectation term in147

Eq. 2 by marginalizing over many plausible textual148

counterfactuals generated by BERT:149

E[f(x) | do(T = 0)]150

=
∑
x̃i∈V

p(x̃i|x−i) · f(x−i, x̃i) (3)151

where x̃i is a token suggested by BERT (e.g., “hot”,152

“compressed”, or “open” in Fig. 1) with a likelihood153

of p(x̃i|x−i) to replace the masked token xi. V is154

the BERT vocabulary of 30,522 tokens. f(x−i, x̃i)155

is the classification probability when token xi in156

the original input is replaced with x̃i.157

IM attribution is in the log space:158

aIM = log-odds(f(x))159

− log-odds(E[f(x) | do(T = 0)]) (4)160

161 where log-odds(p) = log2(p/(1− p)).162

As computing the expectation term (Eq. 3) over163

the full vocabulary of size ∼30K is prohibitively164

slow, the authors only marginalized over the words165

that have a likelihood ≥ 10−5. We are able to166

reproduce the IM results of (Kim et al., 2020) by167

taking only the top-10 words and thus we use this168

setup for all experiments. Note that under BERT,169

the top-10 tokens, on average, already account for170

81%, 90%, and 92% of the probability mass for171

SST-2, e-SNLI, and MultiRC, respectively.172

BERT Like Kim et al. (2020), we use a pre-173

trained BERT “base”, uncased model (Devlin et al.,174

2019), from Huggingface (2020), to fill in a MASK175

token to synthesize plausible counterfactuals.176

LIME We also test our findings of IM by inte-177

grating BERT into LIME, i.e. a more accurate attri-178

bution method (compared to LOO), which masks179

out multiple tokens at once to compute attribution.180

LIME generates a set of randomly masked ver-181

sions of the input, and the attribution of a token182

xi, is effectively the mean classification probability183

over all the masked inputs when xi is not masked184

out. On average, each original LIME counterfac- 185

tual has 50% of tokens taken out, often yielding 186

text with large syntactic and grammatical errors. 187

LIMEBERT We use BERT to replace multiple 188

masked tokens3 in each masked sentence generated 189

by LIME to construct more plausible counterfactu- 190

als. However, for each word, we only use the top-1 191

highest-likelihood token given by BERT instead of 192

marginalizing over multiple tokens because (1) the 193

full marginalization is prohibitively slow; and (2) 194

the top-1 token already carries most of the weight 195

(p ≥ 0.81; see Table 6). 196

3 Experiment framework 197

3.1 Three datasets 198

We select a diverse set of three classification 199

datasets that enable us to (1) compare with the 200

results reported by Kim et al. (2020); and (2) as- 201

sess AMs on six evaluation metrics (described in 202

Sec. 3.3). These three tasks span from sentiment 203

analysis (SST-2), natural language inference (e- 204

SNLI) to question answering (MultiRC), covering 205

a wide range of sequence length (∼20, 24, and 206

299 tokens per example, respectively). SST-2 and 207

e-SNLI were the two datasets where Kim et al. 208

(2020) found IM to be superior to LOO baselines. 209

SST Stanford Sentiment Treebank (Socher et al., 210

2013) is a dataset of ∼12K RottenTomato movie- 211

review sentences, which contain human-annotated 212

sentiment annotations for phrases. Each phrase 213

and sentence in SST is assigned a sentiment score 214

∈ [0, 1] (0 = negative, 0.5 = neutral, 1 = positive). 215

SST-2 has ∼70K SST examples (including both 216

phrases and sentences) where the regression scores 217

per example were binarized to form a binary classi- 218

fication task (Socher et al., 2013). 219

e-SNLI A 3-way classification task of detect- 220

ing whether the relation between a premise and 221

a hypothesis is entailment, neutral or contradiction 222

(Bowman et al., 2015). e-SNLI has 569K instances 223

of (input, label, explanation) where the explana- 224

tions are crowd-sourced (Camburu et al., 2018). 225

MultiRC Multi-sentence Reading Comprehen- 226

sion (Khashabi et al., 2018) is a multiple-choice 227

question-answering task that provides multiple in- 228

put sentences as well as a question and asks the 229

3We find replacing all tokens at once or one at a time to
produce similar LIMEBERT results.
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model to select one or multiple correct answer sen-230

tences. MultiRC has ∼6K examples with human-231

annotated highlights at the sentence level.232

3.2 Classifiers233

Following Kim et al. (2020); Harbecke and Alt234

(2020); Hase et al. (2021), we test IM and LOO235

baselines in explaining BERT-based classifiers.236

For each task, we train a classifier by fine-tuning237

the entire model, which consists of a classification238

layer on top of the pre-trained BERT (described in239

Sec. 2). The dev-set top-1 accuracy scores of our240

SST-2, e-SNLI, & MultiRC classifiers are 92.66%,241

90.92%, and 69.10%, respectively. On the SST242

binarized dev-set, which contains only sentences,243

the SST-2-trained classifier’s accuracy is 87.83%.244

Hyperparameters Following the training245

scheme of HuggingFace, we fine-tune all classi-246

fiers for 3 epochs using Adam optimizer (Kingma247

and Ba, 2015) with a learning rate of 0.00002, β1248

= 0.9, β2 = 0.999, ϵ = 10−8. A batch size of 32249

and a max sequence length of 128 are used for250

SST-2 and e-SNLI while these hyperparameters for251

MultiRC are 8 and 512, respectively. Dropout with252

a probability of 0.1 is applied to all layers. Each253

model was trained on an NVIDIA 1080Ti GPU.254

3.3 Six evaluation metrics255

As there are no groundtruth explanations in XAI,256

we use six common metrics to rigorously assess257

IM’s effectiveness. For each classifier, we evaluate258

the AMs generated for all dev-set examples.259

Deletion is similar to “Comprehensiveness” (DeY-260

oung et al., 2020) and is based on the idea that delet-261

ing a token of higher importance from the input262

should cause a larger drop in the output confidence263

score. We take the original input and delete one264

token at a time until 20% of the tokens in the input265

is deleted. A more accurate explanation is expected266

to have a lower Area Under the output-probability267

Curve (AUC) (Arras et al., 2017).268

DeletionBERT a.k.a. AUCrep in Kim et al. (2020),269

is the Deletion metric but where a given token is270

replaced by a BERT top-1 suggestion instead of271

an empty string. DeletionBERT was proposed to272

minimize the OOD-ness of samples (introduced by273

deleting words in the original Deletion metric), i.e.274

akin to integrating BERT into LOO to create IM.275

RemOve And Retrain (ROAR) To avoid a po-276

tential OOD generalization issue caused by the277

Deletion metric, a common alternative is to retrain278

the classifier on these modified inputs (where N% 279

of the highest-attribution words are deleted) and 280

measure its accuracy drop (Hooker et al., 2019). A 281

more faithful attribution method is supposed to lead 282

to a re-trained classifier of lower accuracy as the 283

more important words have been deleted from the 284

training examples. For completeness, we also im- 285

plement ROARBERT, which uses BERT to replace 286

the highest-attribution tokens4 instead of deleting 287

them without replacement. 288

Agreement with human-annotated high- 289

lights To assess the plausibility of AMs to 290

serve as a text-highlighter, a common metric is to 291

compare an AM with the tokens that humans deem 292

indicative of the groundtruth label (Wiegreffe and 293

Marasović, 2021). 294

Because human annotators only label the tokens 295

supportive of a label (e.g. Fig. 2), when compar- 296

ing AMs with human annotations, we zero out the 297

negative values in AMs. Following Zhou et al. 298

(2016), we binarize a resulting AM at an optimal 299

threshold τ in order to compare it with human- 300

annotated highlights under Precision@1. 301

Sanity check (Adebayo et al., 2018) is a well- 302

known metric for testing insensitivity (i.e. bias) of 303

attribution methods w.r.t. model parameters. For 304

ease of interpretation, we compute the % change of 305

per-word attribution values in sign and magnitude 306

as we randomize the classification layer’s weights. 307

A better attribution method is expected to be more 308

sensitive to weight randomization. 309

4 Bias of Deletion metric and its variants 310

In explaining SST-2 classifiers, we successfully 311

reproduce the AUCrep results reported in Kim 312

et al. (2020), i.e. IM outperformed LOOzero and 313

LOOunk, which were implemented by replacing 314

a word with the PAD and UNK token of BERT, 315

respectively (Table 1). However, we hypothesize 316

that DeletionBERT is biased towards IM as both use 317

BERT to replace words, yielding a false sense of 318

IM effectiveness reported in Kim et al. (2020). 319

To test this hypothesis, we add another baseline 320

of LOOempty, which was not included in Kim et al. 321

(2020), i.e. erasing a token from the input without 322

replacement (Eq. 1), mirroring the original Dele- 323

tion metric. To compare with IM, all LOO methods 324

in this paper are also in the log-odds space. 325

Results Interestingly, we find that, under Deletion, 326

4The chance that a sentence remains unchanged after
BERT replacement is low, ≤ 1%.
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on both SST-2 and e-SNLI, IM underperformed327

all three LOO baselines and that LOOempty is the328

highest-performing method (Table 1). In contrast,329

IM is the best method under DeletionBERT. To our330

knowledge, our work is the first to document this331

bias of the Deletion metric widely used in the liter-332

ature (Hase et al., 2021; Wiegreffe and Marasović,333

2021; Arras et al., 2017). This bias, in principle,334

should also exist in other Deletion variants in-335

cluding Insertion (Arras et al., 2017), Sufficiency,336

and Comprehensiveness (DeYoung et al., 2020).337

Task Metrics ↓ IM LOOzero LOOunk LOOempty

SST-2 Deletion 0.4732 0.4374 0.4464 0.4241

DeletionBERT 0.4922 0.4970 0.5047 0.5065

e-SNLI Deletion 0.3912 0.2798 0.3742 0.2506

DeletionBERT 0.2816 0.3240 0.3636 0.3328

Table 1: IM is the best method under DeletionBERT,
as reported in Kim et al. (2020), but the worst under
Deletion. Both metrics measure AUC (lower is better).

5 No evidence that IM is better than LOO338

To avoid the critical bias of Deletion and339

DeletionBERT, we further compare IM and LOO on340

four common metrics that are not Deletion-based.341

5.1 Under ROAR and ROARBERT, IM is342

on-par with or worse than LOOempty343

A lower AUC under Deletion may be the artifact344

of the classifier misbehaving under the distribu-345

tion shift when one or multiple input words are346

deleted. ROAR (Hooker et al., 2019) was designed347

to ameliorate this issue by re-training the classi-348

fier on the modified training-set (where the top349

N% highest-attribution tokens in each example are350

deleted) before evaluating their accuracy.351

To more objectively assess IM, we use ROAR352

and ROARBERT metrics to compare IM vs.353

LOOempty (i.e. the best LOO variant in Table 1).354

Experiment For both IM and LOOempty, we gen-355

erate AMs for every example in the SST-2 train356

and dev sets, and remove N% highest-attribution357

tokens per example to create new train and dev sets.358

We train 5 models on the new training set and eval-359

uate them on the new dev set. We repeat ROAR360

and ROARBERT with N ∈ {10, 20, 30}.5361

5We do not use N ≥ 40 because: (1) according to SST
human annotations, only 37% of the tokens per example are
labeled “important” (Table A2c); and (2) SST-2 examples are
short and may contain as few as 4 tokens per example.

Results As more tokens are removed (i.e. N in- 362

creases), the mean accuracy of 5 models gradually 363

decreases (Table 2; from 92.66% to ∼67%). Under 364

both ROAR and ROARBERT, the models trained on 365

the new training set derived from LOOempty AMs 366

often obtain lower mean accuracy than those of 367

IM (Table 2a vs. b). At N = 10% under ROAR, 368

LOOempty outperforms IM (Table 2; 74.59 vs. 369

76.22), which is statistically significant (2-sample 370

t-test, p = 0.037). In all other cases, the differ- 371

ence between IM vs. LOOempty is not statistically 372

significant. 373

In sum, under both ROAR and ROARBERT, IM 374

is not more faithful than LOOempty. 375

5.2 LOOempty explanations are better aligned 376

with human annotations than IM 377

To increase our understanding of the differences 378

between LOOempty and IM, here, we compare them 379

against the human highlights for SST, e-SNLI, and 380

MultiRC. While human highlights are not exactly 381

groundtruth explanations, this human-alignment 382

metric is a common proxy for the correctness of 383

AMs in both NLP (Wiegreffe and Marasović, 2021) 384

and computer vision (Zhou et al., 2016). 385

Annotation preprocessing To control for qual- 386

ity, we preprocess the human annotations in each 387

dataset as the following. In SST, where each sen- 388

tence has multiple phrases labeled with a sentiment 389

score ∈ [0, 1] (0.5 being the “neutral” midpoint), 390

we only use the phrases that have high-confidence 391

sentiment scores, i.e. ≤ 0.3 (for “negative”) or 392

≥ 0.7 (for “positive”). Also, we do not use the an- 393

notated phrases that are too long, i.e., longer than 394

50% of the sentence length. 395

Each token in an e-SNLI example are labeled 396

“important” by between 0–3 annotators. To filter 397

out noise, we only use the tokens that are high- 398

lighted by at least two or three annotators (hereafter 399

“L2” and “L3” subsets, respectively). 400

A MultiRC example contains a question and 401

a paragraph where each sentence is labeled 402

“important” or “unimportant” to the groundtruth 403

answer (Fig. A5). We convert these sentence-level 404

highlights into token-level highlights to compare 405

them with the binarized AMs of IM and LOOempty. 406

Experiment We run IM and LOOempty on the 407

BERT-based classifiers on the dev set of SST, e- 408

SNLI, and MultiRC. All AMs generated are bina- 409

rized using a threshold τ ∈ {0.05x | 0 < x < 410

20 and x ∈ N}. We compute the average IoU, pre- 411
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Accuracy in % (lower is better) ROAR ROARBERT

Method N = 0% 10% 20% 30% 10% 20% 30%

(a) LOOempty 92.62 ± 0.30 74.59 ± 0.78 68.94 ± 1.46 67.89 ± 0.79 76.79 ± 0.56 71.95 ± 0.75 67.62 ± 1.16

(b) IM 92.62 ± 0.30 76.22 ± 1.18 70.07 ± 0.69 66.54 ± 1.89 77.36 ± 0.90 71.56 ± 1.55 67.68 ± 0.96

(c) Random 92.62 ± 0.30 89.22 ± 0.53 87.75 ± 0.19 85.62 ± 0.53 89.38 ± 0.47 88.23 ± 0.31 85.21 ± 0.47

(d) t-test p-value N/A 0.0370 0.1740 0.1974 0.2672 0.6312 0.9245

Table 2: Dev-set mean accuracy (%) of 5 models trained on the new SST-2 examples where N% of highest-
attribution words per example are removed (i.e. ROAR) or replaced via BERT (i.e. ROARBERT). On average, under
both metrics, LOOempty (a) is a slightly better, i.e. lower mean accuracy, than IM (b). Notably, LOOempty statistically
significantly outperforms IM under ROAR at N = 10% (2-sample t-test; p = 0.037) (d). Both LOOempty and IM
substantially outperform a random baseline (c) that considers N% random tokens important.

Metric ↑ (a) SST (b) e-SNLI L2 (c) e-SNLI L3 (d) MultiRC

Higher is better IM LOOempty LIME LIMEBERT LIMEBERT_SST IM LOOempty IM LOOempty IM LOOempty

IoU 0.2377 0.2756 0.3193 0.3170 0.3127 0.3316 0.3415 0.2811 0.3411 0.0437 0.0887

precision 0.5129 0.4760 0.4831 0.4629 0.4671 0.4599 0.4867 0.3814 0.4687 0.1784 0.1940

recall 0.5245 0.6077 0.6882 0.7000 0.6886 0.6085 0.6158 0.5699 0.5875 0.0630 0.2876

F1 0.5186 0.5338 0.5677 0.5573 0.5566 0.5239 0.5437 0.4570 0.5214 0.0931 0.2317

Table 3: Compared to IM, LOOempty is substantially more consistent with human annotations over all three datasets.
Note that the gap between LOOempty and IM is ∼3× wider when comparing AMs with the e-SNLI tokens that at
least three annotators label “important” (i.e. L3), compared to L2 (higher is better). LIMEBERT explanations are
slightly less consistent with human highlights than those of LIME (a) despite their counterfactuals are more realistic.

cision, recall, and F1 over pairs of (human binary412

map, binarized AM) and report the results at the413

optimal τ of each explanation method. For both414

LOOempty and IM, τ = 0.1 on SNLI-L2 and 0.05415

on both SST-2 and MultiRC. On SNLI-L3, τ is416

0.40 and 0.45 for LOOempty and IM, respectively.417

SST results We found that LOOempty aligns bet-418

ter with human highlights than IM (Figs. 2 & A7).419

LOOempty outperforms IM in both F1 and IoU420

scores (Table 3a; 0.2756 vs 0.2377) with a notably421

large recall gap (0.6077 vs. 0.5245).422

SST Groundtruth & Prediction: “positive” movie review

Input Mr. Tsai is a very original artist in his medium ,
and What Time Is It There ?

IM
Mr. Tsai is a very original artist in his medium ,
and What Time Is It There ?
IoU: 0.17, precision: 0.33, recall: 0.25

LOO
Mr. Tsai is a very original artist in his medium ,
and What Time Is It There ?
IoU: 0.80, precision: 0.80, recall: 1.00

Figure 2: LOOempty binarized attribution maps align
better with human highlights than those of IM.

e-SNLI and MultiRC results Similarly, in both423

tasks, LOOempty explanations are more consistent424

with human highlights than IM explanations under 425

all four metrics (see Table 3b–d and qualitative 426

examples in Figs. 3 & A8–A11). 427

Remarkably, in MultiRC where each example is 428

substantially longer (∼299 tokens per example) 429

than those in the other tasks, the recall and F1 430

scores of LOOempty is, respectively, 2× and 4× 431

higher than those of IM (see Table 3). 432

e-SNLI example. Groundtruth & Prediction: “entailment”

P Two men dressed in black practicing martial arts
on a gym floor .

H Two men are doing martial arts .

IM Two men dressed in black practicing martial arts
on a gym floor .
Two men are doing martial arts .
IoU: 0.09, precision: 0.17, recall: 0.16

LOO Two men dressed in black practicing martial arts
on a gym floor .
Two men are doing martial arts .
IoU: 0.50, precision: 0.56, recall: 0.83

Figure 3: LOOempty important words are in a stronger
agreement with human highlights. Each e-SNLI exam-
ple contains a pair of premise (P) and hypothesis (H).
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5.3 IM less sensitive to model randomization433

Adebayo et al. (2018) found that many attribution434

methods can be surprisingly biased, i.e. insensitive435

to even randomization of the classifier’s parame-436

ters. Here, we test the degree of insensitivity of IM437

when the last classification layer of BERT-based438

classifiers is randomly re-initialized. We use three439

SST-2 classifiers and three e-SNLI classifiers.440

Surprisingly, IM is consistently worse than441

LOOempty, i.e. more insensitive to classifier ran-442

domization. That is, on average, the IM attribution443

of a word changes signs (from positive to nega-444

tive or vice versa) less frequently, e.g. 62.27%445

of the time, compared to 71.41% for LOOempty446

on SST-2 (Table 4a). The average change in at-447

tribution magnitude of IM is also ∼1.5× smaller448

than that of LOOempty (Table 4b). For example,449

the IM attribution of “hot”, “air”, “balloon”, and450

“racing” in Fig. 1 remain consistently unchanged451

near-zero even when the classifier is random-452

ized three times because these words are highly453

predictable by BERT from the context (Fig. 1b;454

IM1 to IM3). More in-depth explanations in Sec. 8.455

Criteria Method SST-2 e-SNLI

(a) % tokens
changing sign

LOOempty 71.41 ± 17.12 56.07 ± 21.82

IM 62.27 ± 17.75 49.57 ± 20.35

(b) Average
absolute of
differences

LOOempty 0.46 ± 0.18 0.26 ± 0.14

IM 0.31 ± 0.12 0.16 ± 0.12

Table 4: The percentage (%) of token (a) whose attribu-
tion scores change signs and (b) the average of absolute
differences in attribution magnitude after classifier ran-
domization (higher is better). IM is consistently more
insensitive than LOOempty in both SST-2 and e-SNLI.

6 LIMEBERT attribution maps are not456

more aligned with human annotations457

Sec. 5 shows that replacing a single word by BERT458

(instead of deleting) creates more realistic inputs459

but does not improve AM quality w.r.t. LOO.460

Here, we test whether this conclusion general-461

izes to the case of LIME where multiple words462

are deleted from a sentence. Similar to Sec. 5.2,463

we compare LIME and LIMEBERT AMs with hu-464

man SST annotations (but not the Deletion-derived465

metrics due to their bias described in Sec. 4).466

Experiment We use the default hyperparame-467

ters of the original LIME (Ribeiro, 2021) for both468

LIME and LIMEBERT. The number of counterfac- 469

tual samples was 1,000 per example. 470

Results Although LIMEBERT counterfactuals are 471

more natural, the derived explanations are surpris- 472

ingly less plausible to human than those generated 473

by the original LIME. That is, compared to hu- 474

man annotations in SST, LIMEBERT’s IoU, preci- 475

sion and F1 scores are all slightly worse than those 476

of LIME (Table 3a). Consistent with the IM vs. 477

LOOempty comparison in Sec. 5.2, replacing one or 478

more words (instead of deleting them) using BERT 479

in LIME generates AMs that are similarly or less 480

aligned with humans. In sum, for both LOO and 481

LIME, we find no evidence that using realistic 482

counterfactuals from BERT provides improve- 483

ment in AM quality. 484

To minimize the possibility that the pre-trained 485

BERT is suboptimal in predicting missing words 486

on SST-2, we also finetune BERT using the mask- 487

language modeling objective on SST-2 and repeat 488

the experiment in this section. Yet, interestingly, 489

we find the above conclusion to not change (Ta- 490

ble 3a; LIMEBERT_SST is worse than LIME). 491

7 Why is IM not better than LOOempty? 492

Despite being ≥ 5× more computationally expen- 493

sive6, IM is not better than LOOempty on all four 494

unbiased tested metrics (Sec. 5). We provide two 495

explanations for this surprising finding. 496

7.1 Classification accuracy only drops 497

marginally when a token is removed 498

Prior works argue that feeding unnatural LOO sam- 499

ples into classifiers may yield more unfaithful AMs 500

(Kim et al., 2020; Harbecke and Alt, 2020; Hase 501

et al., 2021); however, our rigorous evaluation us- 502

ing 3 datasets and 6 evaluation metrics did not 503

find any case where IM outperforms LOO (except 504

under the biased DeletionBERT metric). 505

To understand why using more plausible samples 506

did not improve AM explainability, we assess the 507

∆ drop in classification accuracy when a word is 508

deleted (i.e., LOOempty samples; Fig. A12) and the 509

∆ when a word is replaced using BERT (i.e. IM 510

samples). 511

Results Across SST, e-SNLI, and MultiRC, the 512

accuracy scores of classifiers only drop marginally 513

∼1-4% (Table 5) when a single token is deleted. 514

6On a 1080Ti GPU, it took IM ∼15 mins to complete the
full SST dev-set compared to ∼3 mins for LOOempty. These
numbers are ∼105 hrs vs. ∼10.5 hrs on the MultiRC dev-set.
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See Figs. A12 & A13 for qualitative examples that515

removing a single token hardly changes the pre-516

dicted label. Whether a word is removed or re-517

placed by BERT is almost unimportant in tasks518

with long examples such as MultiRC (Table 5;519

1.10% and 0.24%). In sum, we do not find the520

unnaturalness of LOO samples to substantially hurt521

model performance, questioning the need raised in522

(Hase et al., 2021; Harbecke and Alt, 2020; Kim523

et al., 2020) for realistic counterfactuals.524

Drop in accuracy (%) SST e-SNLI MultiRC

(a) LOOempty samples 3.52 4.92 1.10

(b) IM samples 2.20 4.86 0.24

Table 5: The dev-set accuracies on SST, e-SNLI and
MultiRC (87.83%, 90.92%, and 69.10%, respectively)
only drop marginally, here ∼1–4 point when a single
token is removed (a) or replaced using BERT (b).

7.2 By design, IM always assigns near-zero525

attribution to high-likelihood words526

regardless of classifiers527

We observe that IM scores a substantially lower528

recall compared to LOOempty (e.g. 0.0630 vs.529

0.2876; Table 3d). That is, IM tends to incor-530

rectly assign too small of attribution to important531

tokens. Here, we test whether this low-recall issue532

is because BERT is highly accurate at predicting a533

single missing word from the remaining text and534

therefore assigns a high likelihood to such words535

in Eq. 3, causing low IM attribution in Eq. 2.536

Experiment For each example in all three537

datasets, we replaced a single word by BERT’s538

top-1 highest-likelihood token and measured its539

likelihood and whether the replacement is the same540

as the original word.541

Results Across SST, e-SNLI, and MultiRC, the542

top-1 BERT token matches exactly the original543

word ∼49, 60, 65% of the time, respectively (Table544

6a). This increasing trend of exact-match frequency545

(from SST, e-SNLI → MultiRC) is consistent with546

the example length in these three datasets, which547

is understandable as a word tends to be more pre-548

dictable given a longer context. Among the to-549

kens that human annotators label “important”, this550

exact-match frequency is similarly high (Table 6b).551

Importantly, the average likelihood score of a top-1552

exact-match token is high, ∼0.81–0.86 (Table 6c).553

See Fig. 1 & Figs. A1–A6 for qualitative examples.554

Our findings are aligned with IM’s low recall. 555

That is, if BERT fills in an exact-match x̃i for an 556

original word xi, the prediction difference for this 557

replacement x̃i will be 0 in Eq. 4. Furthermore, a 558

high likelihood of ∼0.81 for x̃i sets an empirical 559

upper-bound of 0.19 for the attribution of the 560

word xi, which explains the insensitivity of IM to 561

classifier randomization (Fig. 1; IM1 to IM3). 562

% exact-match (uncased) SST e-SNLI MultiRC

(a) over all tokens 48.94 59.43 64.78

(b) over human highlights 41.25 42.74 68.55

(c) Top-1 word’s likelihood 0.8229 0.8146 0.8556

Table 6: Top-1 likelihood scores (c) are the mean likeli-
hood given by BERT for the top-1 predicted words that
exactly match the original words (a).

The analysis here is also consistent with our ad- 563

ditional findings that IM attribution tends to be 564

smaller than that of LOOempty and therefore leads 565

to heatmaps of lower coverage of the words labeled 566

“important” by humans (see Sec. A). 567

8 Discussion and Conclusion 568

Our series of rigorous experiments reveal severe 569

shortcomings of IM in prior work (Kim et al., 2020; 570

Harbecke and Alt, 2020) for explaining a classi- 571

fier’s decisions in NLP at the word level. Consider 572

an example: In the input text, there exists a token xi 573

that is ∼100% predictable by BERT from the con- 574

text, i.e. p(x̃i|x−i) ≈ 1 (see hot, air or balloons 575

in Fig. 1). Then, by applying Equations 3 & 4, the 576

attribution ai ≈ 0, by construction, regardless of 577

how important the token xi is to the classifier. 578

A solution may be to leave such xi token out of 579

the marginalization (Eq. 3), i.e. only marginalizing 580

over the other tokens suggested by BERT. However, 581

these other replacement tokens altogether have a 582

sum likelihood of 0. That is, replacing token xi 583

by zero-probability tokens (i.e. truly implausible) 584

would effectively generate OOD text, which, in 585

turn is not desired (Hase et al., 2021). 586

Another possible fix for IM in NLP might be to 587

operate at the phrase level instead of word level 588

as deleting a set of contiguous words has a larger 589

effect to the classifier predictions. However, in 590

general, using a black-box generative model in the 591

process of explaining the decision of another black- 592

box classifier may be “Double Trouble” in any do- 593

main (Rudin, 2019). 594
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Appendix for: 766

Double Trouble: How to not explain a text classifier’s decisions using 767

counterfactuals synthesized by masked language models? 768

A IM explanations have smaller attribution magnitude per token and lower word 769

coverage 770

To further understand the impact of the fact that BERT tends to not change a to-remove token (Sec. 7.2), 771

here, we quantify the magnitude of attribution given by IM and its coverage of important words in an 772

example. 773

Smaller attribution magnitude Across three datasets, the average absolute values of attribution scores 774

(which are ∈ [−1, 1]) of IM are not higher than that of LOOempty (Table A1). Especially in MultiRC, IM 775

average attribution magnitude is 4.5× lower than that of LOOempty (0.02 vs 0.09). 776

Lower word coverage We define coverage as the average number of highlighted tokens per example 777

(e.g. Fig. 1) after binarizing a heatmap at the method’s optimal threshold. 778

The coverage of LOOempty is much higher than that of IM on SST (40% vs 30%) and MultiRC examples 779

(27% vs 6%), which is consistent with the higher recall of LOOempty (Table A2; a vs. b). For e-SNLI, 780

although IM has higher coverage than LOOempty (14% vs. 10%), the coverage of LOOempty is closer to 781

the human coverage (9%). That is, IM assigns high attribution incorrectly to many words, resulting in a 782

substantially lower precision than LOOempty, according to e-SNLI L3 annotations (Table 3b; 0.3814 vs. 783

0.4687). 784

In sum, chaining our results together, we found BERT to often replace a token xi by an exact-match 785

with a high likelihood (Sec. 7.2), which sets a low empirical upper-bound on attribution values of IM, 786

causing IM explanations to have smaller attribution magnitude. As the result, after binarization, fewer 787

tokens remain highlighted in IM binary maps (e.g. Fig. 3). 788

Method SST e-SNLI MultiRC

LOOempty 0.22 ± 0.27 0.15 ± 0.24 0.09 ± 0.09

IM 0.17 ± 0.27 0.15 ± 0.27 0.02 ± 0.09

Table A1: The average absolute value of attribution scores per token of LOOempty is consistently higher than that of
IM.
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Explanations SST e-SNLI MultiRC

generated by L2 L3

(a) LOOempty 40% 19% 10% 27%

(b) IM 30% 21% 14% 6%

(c) Human 37% 18% 9% 16%

# tokens per example 20 24 299

Table A2: Compared to IM, the coverage of LOOempty is closer to the coverage of human explanations.

SST example. Groundtruth: “positive”
S may not have generated many sparks , but with his affection for Astoria and its people he has given his tale a warm glow .

S1 may not have generated many sparks , but with his affection for Astoria and its people he has given his tale a warm glow .
0.9494 he 0.9105 given 0.9632 a
0.0103 it 0.0285 lent 0.0270 its
0.0066 , 0.0143 gave 0.0033 another

Figure A1: BERT often correctly predicts the masked tokens (denoted in red, green, blue rectangles) and assigns a
high likelihood to the tokens that are labeled important by humans in the SST “positive” example. In each panel,
we show the top-3 tokens suggested by BERT and their associated likelihoods.

SST example. Groundtruth: “negative”
S Villeneuve spends too much time wallowing in Bibi ’s generic angst ( there are a lot of shots of her gazing out windows ) .

S1 Villeneuve spends too much time wallowing in Bibi ’s generic angst ( there are a lot of shots of her gazing out windows ) .
0.9987 much 0.9976 time 0.9675 in
0.0011 little 0.0005 money 0.0066 with
0.0001 some 0.0003 space 0.0062 on

Figure A2: BERT often correctly predicts the masked tokens (denoted in red, green, blue rectangles) and assigns a
high likelihood to the tokens that are labeled important by humans in the SST “negative” example. In each panel,
we show the top-3 tokens suggested by BERT and their associated likelihoods.
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e-SNLI example. Groundtruth: “entailment”
P The two farmers are working on a piece of John Deere equipment .
H John Deere equipment is being worked on by two farmers

P1 The two farmers are working on a piece of John Deere equipment
H1 John Deere equipment is being worked on by two farmers

0.9995 john 0.9877 equipment 0.9711 john
0.0000 johnny 0.0057 machinery 0.0243 the
0.0000 henry 0.0024 hardware 0.0005 a

Figure A3: BERT often correctly predicts the masked tokens (denoted in red, green, blue rectangles) and assigns
a high likelihood to the tokens that are labeled important by humans in the e-SNLI “entailment” example which
contains a pair of premise (P) and hypothesis (H). In each panel, we show the top-3 tokens suggested by BERT and
their associated likelihoods.

e-SNLI example. Groundtruth: “neutral”
P A man uses a projector to give a presentation .
H A man is giving a presentation in front of a large crowd .

P1 A man uses a projector to give a presentation .
H1 A man is giving a presentation in front of a large crowd .

1.0000 front 0.9999 of 0.9993 a
0.0000 view 0.0000 to 0.0005 the
0.0000 presence 0.0000 with 0.0001 another

Figure A4: BERT often correctly predicts the masked tokens (denoted in red, green, blue rectangles) and assigns a
high likelihood to the tokens that are labeled important by humans in the e-SNLI “neutral” example which contains
a pair of premise (P) and hypothesis (H). In each panel, we show the top-3 tokens suggested by BERT and their
associated likelihoods.

MultiRC example. Groundtruth & Prediction: “True” (confidence: 0.98)
P What causes a change in motion ? The application of a force . Any time an object changes motion , a force has been

applied . In what ways can this happen ? Force can cause an object at rest to start moving . Forces can cause objects to
speed up or slow down . Forces can cause a moving object to stop . Forces can also cause a change in direc-
tion . In short , forces cause changes in motion . The moving object may change its speed , its direction , or both .
We know that changes in motion require a force . We know that the size of the force determines the change in
motion . How much an objects motion changes when a force is applied depends on two things . It depends on the
strength of the force . It also depends on the objects mass . Think about some simple tasks you may regularly do . You
may pick up a baseball . This requires only a very small force .

Q What factors cause changes in motion of a moving object ?
A The object ’s speed , direction , or both speed and direction

P1 What causes a change in motion ? The application of a force . Any time an object changes motion , a force has been
applied . In what ways can this happen ? Force can cause an object at rest to start moving . Forces can cause objects to
speed up or slow down . Forces can cause a moving object to stop . Forces can also cause a change in direction . In
short , forces cause changes in motion . The moving object may change its speed , its direction , or both . We know
that changes in motion require a force . We know that the size of the force determines the change in motion . How
much an objects motion changes when a force is applied depends on two things . It depends on the strength of the
force . It also depends on the objects mass . Think about some simple tasks you may regularly do . You may pick up a
baseball . This requires only a very small force .
0.9927 moving 0.9891 change 0.9995 or
0.0023 moved 0.0033 alter 0.0004 and
0.0016 stationary 0.0018 affect 0.0000 etc

Q1 John Deere equipment is being worked on by two farmers
A1 The object ’s speed , direction , or both speed and direction

Figure A5: BERT often correctly predicts the masked tokens (denoted in red, green, blue rectangles) and assigns a
high likelihood to the tokens that are labeled important by humans in the MultiRC “True” example which contains
a triplet of paragraph (P), question (Q) and answer (A). In each panel, we show the top-3 tokens suggested by BERT
and their associated likelihoods.
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MultiRC example. Groundtruth & Prediction: “False” (confidence: 0.74)
P There have been many organisms that have lived in Earths past . Only a tiny number of them became fos-

sils . Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth .
Fossils provide evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in
younger rocks look like animals and plants that are living today . Fossils in older rocks are less like living organisms .
Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can even tell us if the water was
shallow or deep . Fossils can even provide clues to ancient climates .

Q What are three things scientists learn from fossils ?
A Who lived in prehistoric times

P1 There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still
, scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide
evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look
like animals and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell us
about where the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep .
Fossils can even provide clues to ancient climates .
0.9984 life 0.9982 earth 0.9980 time
0.0004 living 0.0007 mars 0.0007 millennia
0.0002 things 0.0002 land 0.0003 history

Q1 What are three things scientists learn from fossils ?
A1 Who lived in prehistoric times

Figure A6: BERT often correctly predicts the masked tokens (denoted in red, green, blue rectangles) and assigns a
high likelihood to the tokens that are labeled important by humans in the MultiRC “False” example which contains
a triplet of paragraph (P), question (Q) and answer (A). In each panel, we show the top-3 tokens suggested by BERT
and their associated likelihoods.

SST example. Groundtruth & Prediction: “negative” (confidence: 1.00)
S For starters , the story is just too slim .

SIM For starters , the story is just too slim .
IoU: 0.33, precision: 0.50, recall: 0.50

SLOO For starters , the story is just too slim .
IoU: 0.75, precision: 1.00, recall: 0.75

Figure A7: The set of explanatory words given by LOOempty covers 75% of human highlights with higher precision
and IoU in the SST “negative” example while there are a half of tokens given by IM are in correlation with human
explanations.

e-SNLI example. Groundtruth & Prediction: “contradiction” (confidence: 1.00)
P Two men are cooking food together on the corner of the street .
H The two men are running in a race .

PIM Two men are cooking food together on the corner of the street .
HIM The two men are running in a race .

IoU: 0.25, precision: 0.33, recall: 0.50

PLOO Two men are cooking food together on the corner of the street .
HLOO The two men are running in a race .

IoU: 0.50, precision: 0.50, recall: 1.00

Figure A8: The set of explanatory words given by LOOempty covers all highlights (higher precision and IoU) that
are important to human in the e-SNLI “contradiction” example which contains a pair of premise (P) and hypothesis
(H) while there are a half of tokens given by IM are in correlation with human explanations.
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e-SNLI example. Groundtruth & Prediction: “neutral” (confidence: 1.00)
P Woman in a dress standing in front of a line of a clothing line , with clothes hanging on the line .
H Her dress is dark blue .

PIM Woman in a dress standing in front of a line of a clothing line , with clothes hanging on the line .
HIM Her dress is dark blue .

IoU: 0.00, precision: 0.00, recall: 0.00

PLOO Woman in a dress standing in front of a line of a clothing line , with clothes hanging on the line .
HLOO Her dress is dark blue .

IoU: 0.33, precision: 0.33, recall: 1.00

Figure A9: The set of explanatory words given by LOOempty covers all highlights (higher precision and IoU) that
are important to human in the e-SNLI “neutral” example which contains a pair of premise (P) and hypothesis (H)
while there are none tokens given by IM are in correlation with human explanations.

MultiRC example. Groundtruth & Prediction: “True” (confidence: 0.90)
P There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still ,

scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide evidence
about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look like animals
and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell us about where
the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep . Fossils can even
provide clues to ancient climates .

Q What happened to some organisms that lived in Earth ’s past ?
A They became fossils . Others did not become fossils

PIM There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still ,
scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide evidence
about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look like animals
and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell us about where
the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep . Fossils can even
provide clues to ancient climates .

QIM What happened to some organisms that lived in Earth ’s past ?
AIM They became fossils . Others did not become fossils

IoU: 0.16, precision: 0.50, recall: 0.19

PLOO There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still
, scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide
evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look like
animals and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell us about
where the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep . Fossils
can even provide clues to ancient climates .

QLOO What happened to some organisms that lived in Earth ’s past ?
ALOO They became fossils . Others did not become fossils

IoU: 0.56, precision: 0.57, recall: 0.95

Figure A10: The set of explanatory words given by LOOempty covers 95% of human highlights with higher precision
and IoU in the MultiRC “True” example which contains a triplet of paragraph (P), question (Q) and answer (A)
while there are only few tokens given by IM are in correlation with human explanations.
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MultiRC example. Groundtruth & Prediction: “False” (confidence: 0.99)
P There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still

, scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide
evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look
like animals and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell
us about where the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep .
Fossils can even provide clues to ancient climates .

Q What is a major difference between younger fossils and older fossils ?
A Older rocks are rougher and thicker than younger fossils

PIM There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still
, scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide
evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look like
animals and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell us about
where the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep . Fossils
can even provide clues to ancient climates .

QIM What is a major difference between younger fossils and older fossils ?
AIM Older rocks are rougher and thicker than younger fossils

IoU: 0.06, precision: 0.18, recall: 0.08

PLOO There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still
, scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide
evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look
like animals and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell
us about where the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep
. Fossils can even provide clues to ancient climates .

QLOO What is a major difference between younger fossils and older fossils ?
ALOO Older rocks are rougher and thicker than younger fossils

IoU: 0.22, precision: 0.25, recall: 0.67

Figure A11: The set of explanatory words given by LOOempty covers two thirds of human highlights with higher
precision and IoU in the MultiRC “False” example which contains a triplet of paragraph (P), question (Q) and
answer (A) while there are two tokens given by IM are in correlation with human explanations.

SST example. Groundtruth & Prediction: “positive”
S Enormously entertaining for moviegoers of any age .

S1 Enormously entertaining for moviegoers of any age .
S2 Enormously entertaining for moviegoers of any age .
S3 Enormously entertaining for moviegoers of any age .
S4 Enormously entertaining for moviegoers of any age .
S5 Enormously entertaining for moviegoers of any age .
S6 Enormously entertaining for moviegoers of any age .
S7 Enormously entertaining for moviegoers of any age .

Figure A12: When a word is removed, the predicted labels of all resulting sentences (S1 to S7) are still “positive”
with a confidence score of 1.0.
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e-SNLI example. Groundtruth: “entailment” Prediction
P Two women having drinks and smoking cigarettes at the bar . entailment

(0.99)H Two women are at a bar .

P1 Two women having drinks and smoking cigarettes at the bar . entailment
(0.98)H1 Two women are at a bar .

P2 Two women having drinks and smoking cigarettes at the bar . neutral
(0.93)H2 Two women are at a bar .

P3 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H3 Two women are at a bar .

P4 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H5 Two women are at a bar .

P5 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H5 Two women are at a bar .

P6 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H6 Two women are at a bar .

P7 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H7 Two women are at a bar .

P8 Two women having drinks and smoking cigarettes at the bar . entailment
(0.98)H8 Two women are at a bar .

P9 Two women having drinks and smoking cigarettes at the bar . entailment
(0.98)H9 Two women are at a bar .

P10 Two women having drinks and smoking cigarettes at the bar . entailment
(0.97)H10 Two women are at a bar .

P11 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H11 Two women are at a bar .

P12 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H12 Two women are at a bar .

P13 Two women having drinks and smoking cigarettes at the bar . entailment
(0.98)H13 Two women are at a bar .

P14 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H14 Two women are at a bar .

P15 Two women having drinks and smoking cigarettes at the bar . entailment
(0.84)H15 Two women are at a bar .

P16 Two women having drinks and smoking cigarettes at the bar . entailment
(0.97)H16 Two women are at a bar .

P17 Two women having drinks and smoking cigarettes at the bar . entailment
(0.54)H17 Two women are at a bar .

P18 Two women having drinks and smoking cigarettes at the bar . entailment
(0.95)H18 Two women are at a bar .

Figure A13: The removal of each token in both premise and hypothesis in e-SNLI example which contains a pair of
premise (P) and hypothesis (H) infrequently change the prediction. Specifically, only the example of (P2, H2)
shifted its prediction to “neutral” while the remaining partially-removed examples do not change their original
prediction with high confidence score in parentheses.
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