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ABSTRACT

We introduce a new data—structure problem—Dynamic {,,-Lewis Weight Projec-
tion Maintenance—that asks us to maintain the projection

P(W) = WY21/2 A(ATW=2/p )~L AT 1/2=1/p

under a stream of diagonal weight updates and to support fast matrix—vector prod-
ucts with P(W). This setting strictly generalizes the /T A projection, which
is at the heart of state-of-the-art linear programming and interior point methods,
and it captures a wide range of algorithms that rely on leverage scores or Lewis
weights for sampling and preconditioning. We provide a deterministic projection-
maintenance data structure with sublinear amortized updates. Moreover, we ex-
tend it to the differential privacy setting.

1 INTRODUCTION

Projection maintenance is one of the most important data structure problems in modern convex
optimization, serving as a critical component in achieving the best-known runtime guarantees for
many cutting-edge algorithms (Lee et al, |2019; Jiang et al., 2020bja}; |(Cohen et al.| [2021b} Huang
et al.,[2022)). We first recall the definition of classical Dynamic Projection Maintenance Problem.

Definition 1.1 (Dynamic Projection Maintenance (Cohen et al.) 2021b)). Given a matrix B €
R™*" the goal is to design a data structure to maintain the projection matrix P(B) :=
B(BTB)™'BT and support the fast multiplication of P(B) - h for any query h € R™ with the
following operations:

o INIT(B € R™*"™): The data structure takes the matrix B as input, and does some prepro-
cessing and compute an initial projection.

» UPDATE(B™"Y € R™*™): The data structure receives some low-rank or sparse update
B and updates B by B + B™°V,

* QUERY(h € R™): The data structure receives a vector h and approximately computes the
matrix-vector product of updated projection matrix P(B) and an online vector h.

For example, in linear programming (Cohen et al., 2021b), we take B = W A, where A is the
constraint matrix and W is a diagonal matrix representing slack variables. In each iteration, W
undergoes relatively small perturbations. The goal of the data structure is to efficiently approximate

VIWAATWA) T ATVWh

for an online vector h € R".

In this work, we consider a specific projection maintenance problem with B = W'/2-1/? A which
generalizes the above problem. We need to maintain the projection and compute an approxima-
tion of matrix-vector product between the projection matrix and any online vector h € R™. We
call this problem, for maintaining such kind of matrices, the Dynamic £,-Lewis Weight Projection
Maintenance. Formally, it is defined as follows.
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Definition 1.2 (Dynamic ¢,-Lewis Weight Projection Maintenance). Given p > 0, a matrix A €
R™*™ and a diagonal matrix W € R™*"™ with nonnegative entries, the goal is to design a data
structure to maintain the projection matrix

P(W) = W1/2—1/pA(ATW1—2/pA)71ATW1/271/p
and support the fast multiplication of P(W) - h for any query h € R™ with the following operations:

o INIT(A € R™*™ W € R™*™): The data structure takes a matrix A € R™*" and a diag-
onal matrix W € R™*™ with nonnegative entries as input, and does some preprocessing
and compute an initial projection.

o UPDATE(W™®W € R™*™): The data structure receives some low-rank or sparse update
WY and updates W by W + WHeW,

* QUERY(h € R™): The data structure receives a vector h and approximately computes the
matrix-vector product of updated projection matrix P(W') and an online vector h.

This problem is fundamental to the design of efficient algorithms in settings where leverage scores
or Lewis weights determine adaptive sampling (Cohen & Peng, [2015}; [Parulekar et al.| 2021} Brand
et al.,|2021a; |Woodruff & Yasuda, |2023)) or preconditioning (Durfee et al., 2018 Yang et al., 2018;
Kyng et al., [2019).

Roadmap. In Section2] we review relevant literature related to our study. In Section[3] we present
serveral useful tools and provide the main result. In Section4] we state the main result of this paper.
In Section[5] we provide technical overview of our study. In Section[6] we draw our conclusion.

2 RELATED WORK

2.1 LINEAR PROGRAMMING AND SEMIDEFINITE PROGRAMMING

Linear programming is a cornerstone of optimization and theoretical computer science. Dantzig’s
Simplex algorithm (Dantzig,|1951) remains a practical workhorse despite its exponential worst-case
complexity. The Ellipsoid Method later gave the first polynomial-time guarantee for linear pro-
gramming, although it is typically slower in practice than Simplex. A decisive breakthrough came
with Karmarkar’s interior-point method (Karmarkar, [1984), which combines polynomial running
time with strong empirical performance and has sparked extensive work on ever-faster interior-point
techniques for a broad range of optimization problems (Vaidyal |1987;|[Renegar, |1988; [Vaidya, 1989
Daitch & Spielman, 2008; Lee & Sidford, [2013f 2014;2019; |(Cohen et al., 2021a; Lee et al., 2019;
Brand| 2020; Brand et al., 2020; Jiang et al., 2021; Song & Yul,|2021};|Gu & Song| [2022)).

Beyond their algorithmic importance, linear programming and semidefinite programming are ubiq-
uitous in machine-learning theory. They underpin efficient formulations for empirical risk mini-
mization (Lee et al.,|2019; Song et al., 2022b; |Qin et al., |2023)), support vector machines (Gu et al.,
2023};|Gao et al.L[2023a), and numerous other learning problems, providing both rigorous guarantees
and scalable implementations.

2.2 SKETCHING

Sketching—compressing data with random linear maps—has become a workhorse across modern
optimization and numerical linear algebra. It powers cutting-edge algorithms for linear program-
ming (Jiang et al.,2021};Song & Yu,2021)), empirical risk minimization (Lee et al.||[2019;|Qin et al.,
2023)), and semidefinite programming (Jiang et al.l [2020aj |Huang et al.l 2022} Song et al., 2023c).
In randomized numerical linear algebra it accelerates a wide range of matrix tasks and decompo-
sitions (Clarkson & Woodruff, 2017; Nelson & Nguyén), 2013} |Boutsidis et al., 2016} |Razenshteyn
et al., 20165 Song et al., 2017} |Xiao et al., 2018}, [Song et al.l 2019; |[Lee et al., 2019; Jiang et al.,
2021;Song & Yu, [2021}|Brand et al., 2021bj; Hu et al., 2022} Song et al.,|2022a;|Gu & Song, [2022)).
Most applications employ oblivious sketches—data-independent projections—for dimensionality
reduction (Clarkson & Woodruff] 2017; Nelson & Nguyén, 2013). For approximate John-ellipsoid
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computation, Chen et al.(Cohen et al.|[2019) rely exclusively on sketching, suggesting room for fur-
ther acceleration, while Mahabadi et al.(Makarychev et al., [2022)) tackle a tougher streaming variant
for convex polytopes; their method, however, is not yet optimal in our computational model.

2.3 DIFFERENTIAL PRIVACY

Introduced by (Dwork et al., 20006), differential privacy (DP) has become the gold standard for rig-
orous data protection. An extensive body of work now retrofits classical algorithms, data structures,
and machine-learning pipelines with provable DP guarantees (Esfandiari et al.l 2022 |/Andoni et al.,
2023} |Cherapanamjeri et al.,[2023];|Cohen-Addad et al.,|2022;|Dong et al.| [2024; Farhadi et al., 2022
Gopi et al., [2023} [Li et al., 2022; |Gopi et al., [2022; Huang & Y1, 2021; Jung et al., 2019} [Li & Li}
2024; Epasto et al., [2024} [(Chen et al.| [2022; |Beimel et al., [2022; [Narayanan), 2022; 2023; [Fan & Li,
2022 |Fan et al., 2024; |Li & Li, [2023; [ELias et al.|[2020; | Yu et al., 2024} Liang et al., 2024} |Gu et al.,
2024} |Song et al.l [2023b; |Qin et al., 2022; |Song et al.|, 2023a; |Galli et al., 2024} |Chen et al.| 2024;
Romijnders et al.,|2024;|Q1 et al., [2024} [Ke et al.| [2025; Hu et al., [2024; Liu et al.||2024)). Beyond in-
tegrating privacy into existing methods, researchers are refining the fundamental DP building blocks
themselves. Enhanced variants of the Gaussian, Exponential, and Laplace mechanisms now deliver
tighter accuracy—privacy trade-offs than the classical formulations (Dwork et al., 2014). A prime
example is the truncated Laplace mechanism of Gopi et al. (Geng et al.l 2020), which currently
achieves the smallest known error for any (¢, §)-DP distribution.

3 PRELIMINARY

Fact 3.1 ((Woodbury, [1950)). The Woodbury matrix identity is
(M+UuCcV)yt=M"t-MtUuCr+vMTtU) TtV

Let S C [n] denote the set of coordinates that is changed by more than a constant factor and r = |S)|.
Using the identity above, we have that

Mnew = My, — (M) s(A5k + (My)s,8) " (M)s) T

where A = diag(w"*V —w), (My)s € R"*" is the v columns from S of M, and (My,)s. s, Ag,s €
R"™" are the r rows and columns from S of M,, and A.

Fact 3.2. We have
o Let A € R™ ", then we have || A||r < /n|All.
o Let A € R™"*", then we have | A|| < ||A|lr

s For two vectors a,b € R", then we have |ab™| < ||a||2 - ||]|2

Definition 3.3 (Differential Privacy, (Dwork et al.|[2014))). Fore > 0,0 > 0, a randomized function
A is (e, 0)-differentially private ((,8)-DP) if for any two neighboring datasets X ~ X', and any
possible outcome of the algorithm S C in Range(A), Pr[A(X) € S] < e Pr[A(X’) € S] + 0.
Lemma 3.4 (Truncated Laplace Mechanism, (Dwork et al., [2014; |Geng et al., [2020; |/Andoni et al.,
2023)). Let Lap(\) denote the Laplace distribution with parameter \ with PDF Pr|Z = z] =
5y € . Let by, := €)log(l + L), Let ap(A,e€, enote the lruncated Laplace
e~ lZ/A " Let B AJe)log(l + <551). Let TLap(A,€,6) d he T d Lapl
distribution with PDF proportional to e~ ?l/* on the region [ B, BL]. Given a numeric function
f that takes a dataset X as the input, and has sensitivity A, the mechanism output f(X) + Z where
Z ~ Lap(A/e) is (¢,0)-DP. In addition, if Z ~ TLap(A,¢,d), then f(X) + Z is (¢,5)-DP.
Definition 3.5 (Dataset, (Gao et al., [2023b)). Fixn > 0, > 0. We say our dataset X € R7x4 jg
(a,n)-good if XX T = n- I, and for all i € [d], || X.ill2 < a

Definition 3.6 (5-close neighbor dataset, (Gao et al., 2023b)). Let B > 0 be a constant. Let n be
the number of data points. Let dataset D = {(z;,v;)}I_,, where z; € R? and ||z;|2 < B for any
i € [n]. We define D’ as a neighbor dataset with one data point replacement of D. Without loss of
generality, we have "D = {(x;,y;)}1=}' U {(2', yn)}.Namely, we have D and D’ only differ in the
n-th item.

Additionally, we assume that x,, and x;L are B-close. Namely, we have

llzn — x’/VLHQ <g.
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Lemma 3.7 (Post-Processing Lemma for DP, (Dwork et al., 2014)). Let M := NIXI = R be a
randomized algorithm that is (e, §)-differentially private. Let f : R — R’ be an arbitrarily random
mapping. Then is f o M : NIXI — R’ (¢, §)-differentially private.

Theorem 3.8 (Empirical covariance estimator for Gaussian (Vershynin, [2018))). Let > € Ra%d pe
PSD, X1, ,Xn ~ N(0,%) be iid and ¥ = LS Xi X, Then with probability 1 — v, it

holds that |S /25512 — [||p < p for some p = O(y/ dZHOS(l/’Y) + dzHOf(l/'Y)).

Lemma 3.9 (Composition lemma for DP, (Dwork et al., 2014)). Let M := NIX| — R be an (¢;, 6;)-
DP algorithm for i € [k]. If My — TI7_ | R; satisfies My (x) = (Mi(z), --- , My(x)), then
My is (Zf:l €i Zf:l 6;)-DP.

Lemma 3.10 (Lemma C.15 in (Song & Yu,2021)). Let 2" = x40, and s"° = s+6,. Letw =
and w** = L0 Then we have 3 ;_ (E[lnwi*"] — Inw;)? < 64€%, 31 (Var[lnwPe"])?
1000€2.

IN »ig

4 MAIN RESULT

The goal of this section is to prove the following theorem:

Algorithm 1 Projection Maintenance Data Structure

1: datastructure MAINTAINPROJECTION

2:

3: members

4: w € R™

5: v, € R"

6: Ac Rdxu

7 M e R?*n
8 Qe RrXn°L

9: R17*7R2,*a"' 7RL,* S Rnbxn
10: l S N+, L S N+

11: emp €(0,1/4)

122 a€(0,q]

13: end members

14:

15: procedure INITIALIZE(A, w, €mp, @)

16: W 4= W,V 4 W, €mp < €mp, A — A,a+a

17 M« AT(AVI=2/PAT)=14

18: Choosing Ry, Ro «, -+ ,Rp« € R™ %" to be sketching matrices

19: R+« [R.1,Ri2, -+ Ry 1]
200 Q< MVY2UPRT

21: l+1
22: end procedure
23:

24: end datastructure

Theorem 4.1 (Projection maintenance). Given a full rank matrix A € R¥>™ with n > d and a
tolerance parameter 0 < €y, < 1/4. Given any positive number a such that a < o where o is

. e b . .
the dual exponent of matrix multiplication. Let Ry ., --- ,Rp . € R™ *™ denote a list of sketching
matrices, where b € [0, 1]. There is a deterministic data structure (Algorithm that approximately
maintains the projection matrices

W1/2—1/pAT(AW1—2/pAT)—1AW1/2—1/p
for positive diagonal matrices W through the following two operations:
1. UPDATE(w): Output a vector v such that for all i € [n],

(1-— emp){}vil/2—1/p < wil/2—1/p <+ emp)@yz—up'
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2. QUERY(h): Output ‘71/2_1/”AT(A‘~/1_2/pAT)_1AX~/1/2_1/1’(RT)*’1R1’*hfor the v out-
putted by the last call to UPDATE.

The data structure takes n>d“ =2 time to initialize and each call of QUERY () takes time n*+b+o(1) 4
14+a+o(1)
n .

Furthermore, if the initial vector w(©) and the (random) update sequence w® ... w™) ¢ R™
satisfies

n

ST ((1/2 - 1/p) - (Emw™ V]~ mw™))* < 07 and i\/ar[(lﬂ —1/p)nw* )2 < 2

% %
i=1 i=1

with the expectation and variance is conditional on wgk)for allk =0,1,.-- ,T—1. Then, the amor-
tized expected timper call of UPDATE(w) is (C1 /emp + Ca€lyy) - (nw=1/2to(1) 4 p2—a/2+o(1)),
Proof. The theorem holds by combining Lemma[4.3] Lemma[4.4 and Lemma4.3] O

Remark 4.2. For our linear program algorithm, we have C1 = O(1/logn), C2 = O(1/logn)
and emp = O(1). See Lemma

To verify the correctness of our updates, we have the following lemma:

Lemma 4.3 (Correctness of the algorithm, informal version of Lemma |C.1). The output of
UPDATE(w) in Algorithm 2] satisfies

M = AT(AV172/pAT)71A’ Q — MVl/Qfl/pRT
The output of QUERY (h) in Algorithm 3| satisfies

bs = ﬁ(RT)*,lRl,*h
Pz = (I - ﬁ)(RT)*,lRl,*ha

where P = V1/271/P AT (AVI=2/P AT\=YAVY/2=1/2 and V is outputted by UPDATE (w).

Above lemma verifies our algorithm. Now we consider the running time of the projection mainte-
nance, which consists of Initialization time, update time and query time, as discussed below.

4.1 INITIALIZATION TIME, UPDATE TIME

To formalize the amortized runtime proof, we first analyze the initialization time (Lemma @,
update time (Lemmaf4.5), and query time (Lemmaf4.6)) of our projection maintenance data-structure.

Lemma 4.4 (Initialization time). The initialization time of data-structure MAINTAINPROJECTION
(Algorithm is O(n?dv=2).

Proof. Given a matrix A € R?*™ and diagonal matrix V' € R"*", computing AT (AVAT)"1A
takes O(n?dv=2). O

Lemma 4.5 (Update time). The update time of data-structure MAINTAINPROJECTION (Algo-
rithmEI) is O(rgrn2+°(1)) where r is the number of indices we updated in v.

Proof. The proof is identical to (Cohen et al.,|2021bj Lee et al.|[2019). We omit the details here. [

4.2 QUERY TIME

Lemma 4.6 (Query time, informal version of Lemma[C.2). The query time of data-structure MAIN-
TAINPROJECTION (Algorithml[l) is O(n'+0+o(h) 4 pItato())

'If the input is deterministic, so is the output and the runtime.
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Algorithm 2 Update
1: datastructure MAINTAINPROJECTION
2:
3: procedure UPDATE(w)
4 yi < lnw; —Inwv;, Vi € [n]
5: r < the number of indices ¢ such that |y;| > €y,p/2.
6 if 7 < n® then
7 VMV v
8: MY «— M
9: l<—1+1
10: else
11: Let 7 : [n] — [n] be a sorting permutation such that |y ;)| > [y (i11)|
12: while 1.5 -7 < nand |y (1.5.,)| > (1 — 1/logn)|y (| do
13: r < min([1.5-r],n)
14: end while
15: vReY ¢ {wﬂz) 1€L2, 0}
Ve (d) tef{r+1,---,n}
16: A « diag(v™®Y — v)
17: I « diag((ve)V/2-1/p — y1/2-1/p)
18: Let S < m([r]) be the first r indices in the permutation.
19: Let Mg € R™*" be the r columns from S of M.
20: Let Mg g,Ag,s € R™" be the r rows and columns from S of M and A.
21: MY~ M — M, s (Agy+Mss)™' - (M.s)7
22: Re-generate R
23- Qnew(_Q_F(Mnew.r)'RT_'_(Mnew_M)_V1/271/p.RT
24: [+1
25: end if
26: v oW
27: M + M™ev
28: Q + Qv
50. ,@_(_{vi 1f|lnw~i71nvi|<emp/2
w; otherwise
30: return v
31: end procedure
32:
33: end datastructure
Algorithm 3 Query
1: datastructure MAINTAINPROJECTION
2:
3: procedure QUERY(h)
4: Let S be the indices 4 such that | lnw; — Inv;| > €y,p/2.
s A yl-e_yi-z
6: [« Vi/2-1/p _y1/2-1/p
7 D < V1/271/p (M*’g) . (Ag’lg + M§7§)—1 . (Q§,l + M§7* .T. (RT)*J) R+ h
8: Ps < V1/271/p : (Q*,l +M-T- (RT)*,Z) ' Rl,* ~h— Pm
9: Pz (RT)*,Z : Rl,* ~h —ps
10: return (p,, ps)
11: end procedure
12:
13: end datastructure
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5 TECHNICAL OVERVIEW

In this section, we present technical overview of our study. In Section we introduce the key
parameters for privacy analysis. In Section we analyze the DP guarantees for W1/2-1/p A,
while Section [5.3]investigates its utility guarantees. In Section[5.4] we present DP guarantees for
ATW?Y/2=1/P In Section we present utility guarantees for A" W1/2=1/P_ In Section we
provide DP guarantees for (ATW1'=2/?A)~!. In Section we provide utility guarantees for
(ATW=2/PA)—1,

5.1 KEY CONCEPTS

Definition 5.1 (Definition of M, (Gao et al.| [2023b), see Definition 5.1 of (Gu et al.| [2025) as an
example). Let M : (R™)? — R"*" be a (randomized) algorithm that given a dataset of d points in
R™ outputs a PSD matrix. Let J,Y' € (R™)%. Then, we define

M = [M)2PMY )T M)~ 1|5

Definition 5.2 (Definition of A, (Gao et al.| [2023b), see Definition 5.2 of (Gu et al.| [2025) as an
example). If we have the following conditions:

e Lete € (0,1) and 6 € (0,1).

e Let k denote the number of i.i.d. samples g1,go,- - , g from N(0,31) output by Algo-
rithmd

We define A := min { Sk log(1/5) " 810g(1/3) }

5.2 DP GUARANTEES FOR W1/2-1/p 4

Lemma 5.3 (Sensitivity of W1/2-1/? A informal version of Lemma [D.1)). If the following condi-
tions hold:

o Let the neighboring dataset X and X' be defined in Definition
e Letejy,05 € R denote the DP parameters for J.

o Let J := W/2-1/P A denote the data generated by X and J' denote the data generated
by neighboring dataset X', where W1/2=1/P ¢ R™*™ gnd A € R™M*",

* Let 3 > 0 be defined as Definition|3.6]
Then, we can show that the sensitivity of J is \/n - 3.

Then, we use the truncated Laplace mechanism (Lemma [3.4) to ensure the DP property of
Wi/z=1/p A,

Lemma 5.4 (DP guarantees for W'/2=1/? A), If the following conditions hold:
o Let the neighboring dataset X and X' be defined in Definition|3.6]
* Letey, b5 € R denote the DP parameters for J.
o Let Ay := \/n - 8 denote the sensitivity of J.

o Let J := W/2=1/P A denote the data generated by X and J' denote the data generated
by neighboring dataset X', where W1/2=1/P ¢ Rm*™ gpnd A € R™*",

Let 8 > 0 be defined as Definition[3.6]

 Let By = (Ay/ey)log(1 + 224ed=1)
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o Let j;: J+ TLap(AJ, €y, (5])
Then, we can show that J is (¢;,8.)-DP.

Proof. The proof follows directly from Lemma[3.4] O

5.3 UTILITY GUARANTEES FOR W1/2-1/P A
Lemma 5.5 (Utility guarantees for W1/2=1/p A informal version of Lemma . Under the same
conditions in Lemma we can show that ||J — J||2 < /n - By.
5.4 DP GUARANTEES FOR A W1/2-1/p
Lemma 5.6 (DP guarantees for AT W'/2=1/P), If the following conditions hold:
e Let the neighboring dataset X and X' be defined in Definition
* Letey, b5 € R denote the DP parameters for J.
o Let Ay := \/n - 8 denote the sensitivity of J.

o Let JT := ATWY2=V? denote the data generated by X and J'T denote the data gener-
ated by neighboring dataset X', where W1/2=1/P ¢ R™*™ gqnd AT € R"*™,

* Let 8 > 0 be defined as Definition[3.6]

+ Lot B = (As/e;)log(1 + SRE=L),

« Let JT := JT + TLap(Ay,es,65).
Then, we can show that J | is (¢;,8,)-DP.

Proof. In Lemma we prove the differential privacy property of W1/2-1/? A, By the post-
processing property of differential privacy (Lemma , the transpose matrix AT W1/2-1/7 com-
puted from the privatized matrix W'/2-1/7 A also preserves (e, d)-differentially private. [

5.5 UTILITY GUARANTEES FOR AT W1/2-1/p

Lemma 5.7 (Utility guarantees for AT W1/2=1/? informal version of LemmalE.2). Under the same
conditions in Lemma

we can show that |J T — J T ||s < \/n- By.

5.6 DP GUARANTEES FOR (ATW!=2/P4)~1

Lemma 5.8 (DP guarantees for (AT W'=2/P A)~1, Theorem 6.12 in (Gao et al., 2023b), Theorem
5.1 1in (Alabi et al.|2023), Lemma 5.4 in (Gu et al., [2025]), informal version of Lemmam. Under
the same conditions in Lemma|[B1] there exists an Algorithm || such that

e Part . Algorithmis (€ay 00 )-DP.

e Part 2. Outputs Y€ St denotes the private version of input ¥, such that with probabilities
atleast 1 —, | 27125212 — I ||p < p.

« Part3. (1-p)T =S < (1+p)%.

By the post-processing property of differential privacy (Lemma @), the inverse £~ computed from
the privatized matrix 3. remains (€., 0o, )-differentially private.
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In Lemma [5.8] Part 1 claims the privacy guarantees of the “Gaussian Sampling Mechanism”, Part
2 establishes the critical properties necessary to ensure the utility of the “Gaussian Sampling Mech-
anism”, and Part 3 presents the ultimate utility outcomes of the algorithm.

Note that in our setting, we use X = H, where H is the non-private matrix of interest, and we also
have ¥ = H to denote the private version of H.

The quantity M used in Condition 6 is formally analyzed in Section[A.T]

Algorithm 4 The Gaussian Sampling Mechanism, (Gao et al.,|2023b)

1: procedure ALGORITHM(Y, k)

2 PSD matrix ¥ € R™*" and parameter k € N

3 Obtain vectors g1, ga, - - - , g by sampling g; ~ N(0, X), independently for each i € [k]

4 Compute ¥ = 15" g7 > Covariance estimate.
5 return &

6: end procedure

5.7 UTILITY GUARANTEES FOR (ATW1=2/P 4)~1
Lemma 5.9 (Utility guarantees for (AT W!=2/? A)~1, informal version of Lemma|E.3). Under the

same conditions in Lemma with probability 1 — ~y, we have ||[H™* — H™1|| < O(22ax),

min
5.8 DP GUARANTEES FOR W1/ 2= /P A(ATW=2/P o)=L ATW1/2=1/p .

Lemma 5.10 (DP guarantees for W1/2=1/P A(ATW1=2/» A)=1 ATW/2=1/P . _informal version
of Lemma|D.2). If the following conditions hold:

o Let €y, 04 € R denote the DP parameter for ATW1=2/P A,

e Letey, 85 € R denote the DP parameters for W'/2=1/? A and ATW/2=1/p,
e Lete =265+ €q, 0 =207 + 0q.

« Let H and H be defined as Lemma

e Let J and J be defined as Lemma

Then, we can show W'/2=1/P A(ATW1=2/P A) =L ATW/2=1/P . b is (€, 6)-DP.

5.9 UTILITY GUARANTEES FOR W1/2-1/P A(ATW1 =2/ o)=L ATW /2= 1/p . y

Lemma 5.11 (Utility guarantees for W'/2=1/P A(ATW1=2/P A)~"L ATW/2=1/P . ], informal ver-
sion of Lemma[E.4). Under the same conditions as in Lemma[E-4] with probability 1 — ~, we have

JJH YT h— JHJT - h| < 20,00v/n - Br, + 030y, - O(2—max)

min

6 CONCLUSION

In this work, we introduce Dynamic {,-Lewis Weight Projection Maintenance, which is a novel
data-structure that considers the projection maintenance problem P(B) := B(BTB)™'BT with
B = W1/2-1/P A, that strictly generalizes the B = /W A projection. Our deterministic algorithm
supports fast updates and queries with sublinear amortized time and extends naturally to the dif-
ferential privacy setting with provable utility guarantees. This work not only advances theoretical
tools for linear programming, interior point methods, and leverage-based algorithms, but also opens
avenues for private and efficient optimization in data-sensitive applications.
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Appendix

Roadmap.

* In Section [A] we provide a sensitivity analysis and perturbation bounds for PSD Matrices
in DP guarantees.

* In Section[B] we introduce the Gaussian Sampling Mechanism.

In Section[C| we present a detailed proof of the main result stated in Section 4]

In Section D] we provide detailed proof of DP guarantees introduced in Section [5]

* In Section[E] we give a complete proof of the utility guarantees outlined in Section [3]

A SENSITIVITY AND SPECTRAL PERTURBATION OF PSD MATRIX

A.1 SENSITIVITY OF PSD MATRIX

In this section, we provide more lemmas related to sensitivity.

Lemma A.1 (Lemma D.1 in (Gao et al., 2023b)). If X € R"*¢ and X' € R™*? are neigh-
boring datasets (see Definition and Definition , then (1 — 2aB/m)XXT < X'X'T <
(1+2a8/mXXT.

Proof. Leti € [d] be index that X, ; and X ; are different (See Definition .
We have

d
I T / T
X'X'T = ZX*J.X*J
j=1

_ / T ’ T
- ( Z X*,jX*,j)+X*,iX*,i
jeld\{i}
= ( Z X*,jX:j) + X;,iX*:E
jeld\{i}
= XX - XX+ Xx0,x.]
where the first step is the result of matrix multiplication, the second step is from simple algebra, the

third step follows from Definition [3.6] and the last step comes from simple algebra.

We know that
HX*,Z'X:,i - X;zX;z” = ||X*ZXL - X*,iX*:E —+ X*A,iX*:l; - XiinzH
X X5 = X XS+ X X5 = XXl
S Xoillz - 1K = X ll2 + [ Xus = X2 - 11X 2
<2af (D
where the first step is from adding a new term X, ; X ;TZ the second step follows from the trian-

gle inequality, the third step follows from Fact[3.2] and the last step is due to Definition [3.3] and
Definition[3.6]

Thus, we have X'X'T = XXT — 2ap8I, = (1 — 2aB/9)XXT. Similarly, we have

X'X'T < XXT +2apI, = (1+2a8/7)XXT. O
Lemma A.2 (Lemma D.2 in (Gao et al., 2023b)). If the following conditions hold,

* Let o and 1) be defined in Definition[3.3]
* Let 3 be defined in Definition|[3.6]
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* By Lemma X and X' are neighboring datasets such that
(1—2a8/mXXT < X'X'T < (1+2a8/n)XXT

Then, we have

e FPart 1.
H(XXT)—l/QX/X/T(XXT)—1/2 _ IH < 20‘5/77
e Part 2.
(XX )2 X T (XX T) Y2~ Il < 2V/maB/n
Proof. The proof is straightforward, and we omit the details here. O

Lemma A.3 ( Spectral norm of H — H ). If we have the below conditions,

* Condition 1. If D € R"*? and D' € R"*? are neighboring dataset (see Definition @)

« Condition 2. Let H := ATW?'=2/? A denotes the symmetric positive semi-definite matrix
generated by D.

« Condition 3. Let H denote the private H generated by Algorithm with H as the input.
* Condition 4. Let NyaxLnxn = H = Dmindnxn, fOr some Nmax, Nmin € R.

* Condition 5. Let p = O(/(n2 +log(1/7))/k + (n? + log(1/7))/k).

* Condition 6. Let v € (0, 1).

Then, with probability 1 — ~, we have
||H_H|| Sp'nmax

Proof. By Part 3 of Lemma[5.8] with probability 1 — -y, we have
(1—p)H = H = (1+p)H
which implies

—pH < H —H =< pH 2)

Then, we have
||H - HH S P+ Mmax
O

Lemma A.4 ((Wedin, [1973)), Theorem 1.1 in (Meng & Zheng, [2010)). Given two matrices A, B €
RI1%d2 yirh full column rank, we have

1A — B < max(||AY|%, | BY?) - |4 - B

B GAUSSIAN SAMPLING MECHANISM

In this section, we restate the analysis for “Gaussian Sampling Mechanism”, which guarantees the
privacy of our algorithm and provides potential tools for demonstrating its utility.

Lemma B.1 (DP guarantees for (ATWA)*l, Theorem 6.12 in (Gao et al.,|2023b)), Theorem 5.1 in
(Alabi et al.} 2023), Lemma D.1 in (Gu et al.| 2025)), formal version of Lemma@. If we have the
below conditions,

» Condition 1. Let D and D’ are neighboring dataset (see Definition[3.6).
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* Condition 2. Let H := ATW'=2/P A denotes the symmetric positive semi-definite ma-
trix generated by X, and H' denotes the symmetric positive definite matrix generated by
neighboring dataset X'

+ Condition 3. Let ¢, € (0,1) and ,, € (0, 1) denote the DP parameter for AT W'=2/P A,
» Condition 4. Let Y, )’ denote neighboring datasets, which differ by a single data element.
* Condition 5. Let A be defined in Definition[5.2]and A < 1.

* Condition 6. Let M, M be defined in Definition[5.1|and M < A.

* Condition 7. Let the input ¥ = M(Y).

« Condition 8. Let p = O(+/(n2 +log(1/7))/k + (n? +log(1/7))/k).
* Condition 9. Let k € N.
* Condition 10. Let v € (0,1).
o Condition 11. Let maxTnxn = H = Nminnxn, fOr S0me Nmax, Tmin € R.
« Condition 12. Let H denote the private H generated by Algorithmwith H as the input.
* Condition 13. Let /Nt /nmin < A, where A is defined in Deﬁnition
Then, there exists an Algorithm] such that
* Fart 1. AlgorithmHis (€q,64)-DP.
* Part 2. Outputs Se S% such that with probabilities at least 1 — v,
IS8 Y2 — Llp < p
e Part 3.
1-pE =T =1+

C PROOF OF MAIN RESULT

Lemma C.1 (Correctness of the algorithm, formal version of Lemma @.3). The output of
UPDATE(w) in Algorithm 2] satisfies

M= AT(AVI=2PAT)"1 A and
Q = MV/2-1UpRT
The output of QUERY (h) in Algorithm 3| satisfies
ps = P(R"). Ry .h
po = (I — P)(R"). Ry b,
where P = V1/271/p AT (AVI=2/P ATY=LAVY2-1/2 and V is outputted by UPDATE(w).
Proof. Let S denote the support of A.
Thus, by the Woodbury matrix identity (Fact[3.1)) and definition of M™%, we have
AT (A(VDew)1=2/p ATy =1 4
=AT(A(V +A)'2/PAT) 1A
— AT((AVI=2/pgT)=1 _ (AV172/pAT)71A*7S i (AE}S i (AT)&*(AV172/pAT)71A*’S)71
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X (AT)S’*(AV1_2/Z)AT)_1)A
— AT(AV172/;DAT)71A o AT(AV172/;DAT)71A*’S

(Agls + (AT)su(AVIT2PATY I A, o) 7h e (AT) g (AVIT2/PAT) 1A
=M — M*,S(AE}S + Mg,s) " Mg,
— MIleW.

where the first step follows from the definition of V"V = V 4 A, the second step follows from
the Fact[3.1] the third step distributes the terms, the fourth step follows from the definition of M =
AT(AV1=2/P AT)=1 A, and the last step follows from the definition of M/ ",

Note the output M = M"" and V = V"W, so we have the output satisfying M =
AT(AVAT)LA.

As for @, notice by definition
QY = Q + (M .T)- R + (M™™ — M) - yi2-1/p  RT
= MVY2-1pRT 4 (M .T) - RT + (M"Y — M) - vi/2=1/p  RT
— MVY2-1UPRT 4 MneW((VneW)l/%l/p _ V1/271/p)RT (MR — M)V1/271/pRT
— MO (Vw21 1/2=1/p) RT L ymewys1/2=1p pT
_ MnCW(VnCW)l/z—l/pRT

where the first step follows from the definition of @™V, the second step follows from definition of
@, the third step follows from the definition of I', the fourth step distributes and eliminates the term
MV*'/2=1/PRT  and the last step distributes and eliminates the term MWV 1/2-1/PRT,

Again, since the output @ = Q"%, M = M"" and V = V"V we have the output satisfying
Q= MV/2-1PRT,

For QUERY (h) procedure, by definition we have
P = V1/271/p (M*g) . (gg,lg + M§7§)—1 ) (Qil + Mg, .T. (R").1) - Riw - h
=V (M, 5) - (A + Mg )™
. ((le/%l/pRT)g?l + Mg, - (VY21 _yi2=1py (RTY, ) - Ry - h
= V2P (M, 5) - (A5 + Mg g) ™t - Mg - V2P (RT). - b (3)

where the first step follows from the definition of p,,, the second step follows from the definition of
@ and I, and the third step eliminates the terms.

Thus,
ps =V VP (Qui+ M -T-(R")st) Ris-h—pm
= V2 e (MVYRYPRTY, o M (V2P 2212y (RTY, ) Ry - ho—
_ ‘71/2—1/]) M - ‘71/2—1/]) . (RT)*l . Rl - h — Pm
— ‘71/2—1/P(M _ M*/g(ﬁg’lg + M§7§)_1M§7*)‘71/2_1/p(RT)*,lRl7*h, (4)

where the first step follows the definition of p;, the second step follows from the definition of Q@ and
T, the third step follows from eliminates the terms, and the last step substitutes p,,, by Eq. (3).

Note V only differs from V' in entries corresponding to the set S, again by the Woodbury matrix
identity (Fact[3.T) and the definition of M, we have

AT(A‘A/'172/pAT)71A
= AT(A(V'YP L A)AT) 1A
_ AT((AV172/pAT)71 _ (AV172/pAT)71A 3

*7
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(A5 + (AN)g (AVITPAT)TIA, )71 (AT)g,, (AVI TP AT) A
= AT(AVI-2/PAT)=14 AT(AVI—Z/pAT)—lA*)g
. (ﬁg’lg + (AT)@*(AV1—2/:DAT)—1A*7§)—1 ) (AT)§7*(AV1—2/pAT)—1A
=M~ M, (A% + Mg ) ' Mg, 5)
where the first step follows from V1-2/p — y1-2/p L A the second step follows from Fact, the
third step distributes two terms, and the last step follows from the definition of M, which implies

ps = ‘71/2_1/1)14.1—(Avl_g/pAT)_1A‘71/2_1/p(RT)* lRl *h
= P(R"). Ry .h, (6)

where the first step follows from Eq. (4) and (@), and the second step follows from the definition of
P.

Further,
Pz =(R") Rih — ps
= (I = P)(R").iRi b,
where the first step follows from the definition of p,., and the second step follows from Eq. (6).
Thus we completes the proof. O

Lemma C.2 (Query time, formal version of Lemma.6). The query time of data-structure MAIN-
TAINPROJECTION (Algorithm|[l) is O(n!+0+o() 4 plFato(l)),

Proof. Notice by the algorithm we have |§ | < n° Thus, Tisa sparse diagonal matrix with at most
n® non-zero elements. The running time mainly comes from three parts.

Part 1. Computing p,,,:

b

» Compute R, . - h: matrix-vector multiplication between matrix of size n” x n and vector

of size n x 1, this takes n'1? time.

 Compute (R "), (R .h): matrix-vector multiplication between matrix of size n x n® and
vector of size n® x 1, this takes nt*? time.

* Compute I (RIT* R; . h): matrix-vector multiplication between sparse diagonal matrix with
at most n® non-zero elements and vector of size n x 1, this takes n® time.

* Compute Mg _ - (leT*h): matrix-vector multiplication between matrix of size at most
n® x n and sparse vector with at most n® non-zero elements, this takes n2¢ time.

* Compute Qg ,-(R; .h): matrix-vector multiplication between matrix of size at most n® x n®

and vector of size n? x 1, this takes n%*? time.

* Compute (ﬁglg + Mg g)‘lz inverse of matrix of size at most n® x n®, this takes n?“ time.

» Compute (ﬁglg + Mg}g)fl 1@z, + Mg,*f(RT)*’l)Rl’*h]: matrix-vector multiplication

between matrix of size at most n® x n® and vector of size at most n® x 1, this takes n2¢
time.

* Compute yi/2=1/p. (M, 3): matrix-matrix multiplication between diagonal matrix of size
n x n and matrix of size at most n X n?, this takes n'? time.
71/2—1 A-—1 -1 ST . .
+ Compute [V'1/ /pM*’g] . [(A§§ + Mgz 5) " (Qg, + Mg T'(R"). )R h]: matrix-

vector multiplication between matrix of size at most n x n® and vector of size at most
n? x 1, this takes n' T time.
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To conclude, we can compute p,,, in O(n'+? + n® 4 nl+a) time.

Part 2. Computing ps:

* Compute R; ..h and leT* Ry .h in same way as in calculating p,,: take n'™? and O(n!+b+
n®) time respectively.

« Compute V1/2-1/7 . ), ;: matrix-matrix multiplication between diagonal matrix of size
n x n and matrix of size n x n?, takes n'*? time.

« Compute [V1/2-1/pQ, ] - [R;..h]: matrix-vector multiplication between matrix of size
n x n® and vector of size n® x 1, takes n'*? time.

» Compute M - [leT* R; .h]: matrix-vector multiplication between matrix of size n x n and
sparse vector with at most n® non-zero elements, takes O(n!%) time.

* Compute Vi/2=1/p. [M leT* R, .h]: matrix-vector multiplication between diagonal matrix
of size n X n and vector of size n x 1, takes n time.

To conclude, we can compute p in O(n!*+* + n!+4) time.

Part 3. Computing p,:
e Compute RIT* R, ..h in same way as in calculating p,,: take O(n“’b) time.
Thus, the overall running time is
O(n'*a 4 pltd + 0o,
Finally, we note that w < 3 — o < 3 — a (see (Cohen et al., 2021b)) and hence a - w < a(3 — a)

<
(1 + a). Therefore, the final running time it takes is O (b!+0+o(1) 4 pltato(l)), O

D PROOF OF DIFFERENTIAL PRIVACY GUARANTEES

Lemma D.1 (Sensitivity of W1/2-1/7 A, formal version of Lemmal[5.3). If the following conditions
hold:

o Let the neighboring dataset X and X' be defined in Definition
* Letey, 05 € R denote the DP parameters for J.

o Let J := W2-1/P A denote the data generated by X and J' denote the data generated
by neighboring dataset X', where W/2=1/P ¢ R™*™ gpnd A € R™*",

Let 8 > 0 be defined as Definition 3.6

Then, we can show that the sensitivity of J is \/n - 3.
Proof. Without loss of generality, we use x,,, € R™ and z/, € R™ to denote the different items in
X and X'. According to the definition of the neighboring dataset, we have
[2m — 2, ll2 < B.
Then, we have
1T =Tl = llzm — 21y
SV lom = a2
= \/ﬁ : 57

where the first step follows from ||u — v||; < v/n|ju — v||2 for any u,v € R™, and the second step
follows from ||, — 2/,]|2 < 5. O
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Lemma D.2 (DP guarantees for W1/2=1/P A(ATW1=2/P A)=* ATW1/2-1/P . b, formal version of
Lemmal[5.10). If the following conditions hold:

o Let €y, 00 € R denote the DP parameter for ATW1=2/P A,

e Letey,05 € R denote the DP parameters for W/2=1/P A gnd ATW/2-1/p,

o Lete =2¢5 + €,.

* Let§ =205 + dq.

e Let H and H be defined as Lemma

e Let J and J be defined as Lemma
Then, we can show W1/2=1/P A(ATW1=2/» A) =L ATWY/2=1/P . b is (¢, §)-DP.
Proof. Since we have

o ATW'=2/P Ais (eq, 04 )-DP.

« W/2=YPAis (e;,8;)-DP.

o ATWY2=1/Pis (e;,6;)-DP.

e e=2€c5+¢€4,0 =207+ dq.

By Lemma we have W1/2=1/P A(ATW1=2/P A)=1 ATW/2-1/P is (¢, §)-DP.

Next, by the post-processing property of differential privacy (Lemma [3.7), we conclude that
W/2=1p A(ATW=2/P A)=Y ATW/2=1/P . his also (e, §)-DP.

Thus, we complete the proof. O

E PROOF OF UTILITY GUARANTEES

Lemma E.1 (Utility guarantees for W'/2-1/P A, formal version of . If the following conditions
hold:

e Let the neighboring dataset X and X' be defined in Deﬁnition
e Let ey, 05 € R denote the DP parameters for J.
o Let Ay := \/n - B8 denote the sensitivity of J.

o Let J := WY2=1/P A denote the data generated by X, where W/2=1/P ¢ R™*™ gnd
A e Rmx™,

e Let By, = (AJ/GJ) log(l + %)
. Letj:: J+TLap(A],€J,(5]).

Then, we can show that

|J = J||2 < v/n- By

Proof. Fori € [m],j € [n], let J(i,5),J'(i,5) € R denote the (4, j)-th entry of J and .J’, respec-
tively. Let J; € R™ denotes the ¢-th column of .J.

By the definition of J. , we have

J(i,j) = J(i,j) + TLAP(A,€5,6,)
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Recall that we have By, = (A /ey)log(1+ 6621;;1 ). By the definition of truncated Laplace, we have
|TLAP(AJ, 6J,6J)| S BL.
Combining the above two equations, for ¢ € [m], we have
1T = Jll2 < V- By
Thus, we complete the proof. O

Lemma E.2 (Utility guarantees for AT W1/2=1/? formal version of Lemma . If the following
conditions hold:

o Let the neighboring dataset X and X' be defined in Deﬁnition
e Letej,05 € R denote the DP parameters for J.
o Let Ay := \/n - B8 denote the sensitivity of J.

o Let JT := ATWY2-1/? denote the data generated by X, where W1/2=1/7 ¢ Rm*™ gnd
AT c RnXm,

e Let j‘l’ =J7 +TLap(A],€J7§]).
* Let By, = (Aj/es)log(1 + 221y

we can show that
|JT —JT s <v/n-Bp.

Proof. From Lemmal5.5] we have
|7 = Jll2 < V- By.
Then,
17T =T e = (T = ) Tl2
=117 = Jll2
<+/n-Bp.

Where the first step follows from the invariance of the norm under transposition, the second step
follows from the norm property || A" ||z = || A]|2, and the third step follows from Lemma

Thus, we complete the proof. O

Lemma E.3 (Utility guarantees for (AT W'=2/P A)~!, formal version of Lemma . If the fol-
lowing conditions hold:

+ Condition 1. If D € R™*? and D’ € R™*? are neighboring dataset (see Definition @)

« Condition 2. Let H := ATW'=2/? A denotes the symmetric positive semi-definite matrix
generated by D.

« Condition 3. Let H denote the private H generated by Algorithm with H as the input.
e Condition 4. Let nyaxLnxn = H = Dmindnxn, fOor some Nmax, Mmin € R.

 Condition 5. Let /n /Nmin < A, where A is defined in Deﬁnition

* Condition 6. Let p = O(+/(n2 +1og(1/7))/k + (n? + log(1/7))/k).

* Condition 7. Let v € (0,1).

Then, with probability 1 — ~y, we have
_ Ir— P Nmax
IH™ = H7Y < O(=—57)

min

23



Under review as a conference paper at ICLR 2026

Proof. We consider the || H~1|| term. We have

IE= = [[(ATW 2P a) (M
_ amax((ATW1—2/pA)—l)
- 1
© omin((ATW1-2/PA))
< nl. ®)

where the 1st step is due to Condition 2, the 2nd step is because of definition of spectral norm, the 3rd
step is due t0 Tpax (A7) = 1/0min(A) holds for any matrix A, the 4th step is from K = Nminlpnscn-

Similarly, we can have

1

IH| < ©)
Mmin
Recall in Lemma[A-3] we have
|H — H|| < p- Nmax (10)
Then, by Lemma[A:4] we have
[H~Y = H| < O(max{|H | |H|*} - ||[H — H)
1 -
< O(T -|[H — H))
p ° nrnax
<O( )
nr2nin
where the st step is because of Lemma[A-4] the 2nd step is due to Eq. (7)) and Eq. (9), the 3rd step
is from Eq. (10). O

Lemma E.4 (Utility guarantees for W1/2= /P A(ATW1=2/P A)=L ATW1/2=1/P . b formal version
of Lemma|S.11). If the following conditions hold:

o If D € R4 and D' € R"*? are neighboring dataset (see Definition @)
e Let H and H be defined as Lemma

e Let J and J be defined as Lemma

o Let oy := ||J||2 denotes the {3 norm of J.
o Let op, := ||h||2 denotes the £ norm of h.
e Letop—1 = ||H!||2 denotes the £ norm of H™".

* Let nmaxlnxn = H = nminIan’ for SOMe Tmax; Tmin € R.
o Let \/nt) /Nmin < A, where A is defined in Deﬁnition

o Let p = O(/(n? +10g(1/7))/k + (n? +1og(1/7))/k).
o Lety € (0,1).

* Let By, € R be defined in Lemma[5.3]
Then, with probability 1 — ~y, we have

THTT b= JHNTT b < 205000/ Br + ooy - 0P ).

min
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Proof. We have
JH'JT - h—JH'J"
—|(JH YJT —JH'JT) A
=(JH YT —JH I+ (JH YT —JH )+ (JH YT —JH'J")) - h)
<(JH ' JT = JH YT+ [JH I —JH I |+ |JH YT = JHJTT|) - |hl2, (11)

where the first step follows from basic algebra, the second step follows from basic algebra, the third
step follows from triangle inequality.

Consider |JH1JT — JH=JT|, we have:
JH'JT —JH'JT|
<\ T = Tl H 2l T2
<opg-105\/n- Br, (12)

where the first step follows from Cauchy-Schwarz inequality, the second step follows from
Lemmal[5.3

Consider [JH1JT — JH=1JT|, we have:
JH'JT —JH'JT|
< | Tl H = H (T2
< o2 O max) (13)

where the first step follows from Cauchy-Schwarz inequality, the second step follows from
Lemma5.0l

Consider [JH~1JT — JHJT|, we have:
JHJT — JH'J 7|
<[ TNl BT = Tl
<op-105Vn- B, (14)

where the first step follows from Cauchy-Schwarz inequality, the second step follows from
Lemmal3.71

Combine the equations above, we have:
|JH'JT -h—JH'JT - h
<(JH YT —JH YT+ |JH I —JH I+ |JH T = JHT)) - A2
< (om-105Vn- By + 03 - O(Z ™) 4 0y -105v/i- Br) - o

min

=20 04\/n - Bp + 030y - O(p';77mw)7
where the first step follows from Eq (TT)), the second step follows from Eq (12), Eq and Eq (14),
the third step follows from basic algebra.

Thus, we complete the proof. O

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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