
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMIC WEIGHTED PROJECTION MAINTENANCE
WITH ℓp-LEWIS WEIGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a new data–structure problem—Dynamic ℓp-Lewis Weight Projec-
tion Maintenance—that asks us to maintain the projection

P (W) =W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p

under a stream of diagonal weight updates and to support fast matrix–vector prod-
ucts with P (W). This setting strictly generalizes the

√
WA projection, which

is at the heart of state-of-the-art linear programming and interior point methods,
and it captures a wide range of algorithms that rely on leverage scores or Lewis
weights for sampling and preconditioning. We provide a deterministic projection-
maintenance data structure with sublinear amortized updates. Moreover, we ex-
tend it to the differential privacy setting.

1 INTRODUCTION

Projection maintenance is one of the most important data structure problems in modern convex
optimization, serving as a critical component in achieving the best-known runtime guarantees for
many cutting-edge algorithms (Lee et al., 2019; Jiang et al., 2020b;a; Cohen et al., 2021b; Huang
et al., 2022). We first recall the definition of classical Dynamic Projection Maintenance Problem.

Definition 1.1 (Dynamic Projection Maintenance (Cohen et al., 2021b)). Given a matrix B ∈
Rm×n, the goal is to design a data structure to maintain the projection matrix P (B) :=
B(B⊤B)−1B⊤ and support the fast multiplication of P (B) · h for any query h ∈ Rn with the
following operations:

• INIT(B ∈ Rm×n): The data structure takes the matrix B as input, and does some prepro-
cessing and compute an initial projection.

• UPDATE(Bnew ∈ Rm×n): The data structure receives some low-rank or sparse update
Bnew and updates B by B +Bnew.

• QUERY(h ∈ Rn): The data structure receives a vector h and approximately computes the
matrix-vector product of updated projection matrix P (B) and an online vector h.

For example, in linear programming (Cohen et al., 2021b), we take B =
√
WA, where A is the

constraint matrix and W is a diagonal matrix representing slack variables. In each iteration, W
undergoes relatively small perturbations. The goal of the data structure is to efficiently approximate

√
WA(A⊤WA)−1A⊤

√
Wh

for an online vector h ∈ Rn.

In this work, we consider a specific projection maintenance problem with B = W 1/2−1/pA which
generalizes the above problem. We need to maintain the projection and compute an approxima-
tion of matrix-vector product between the projection matrix and any online vector h ∈ Rn. We
call this problem, for maintaining such kind of matrices, the Dynamic ℓp-Lewis Weight Projection
Maintenance. Formally, it is defined as follows.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Definition 1.2 (Dynamic ℓp-Lewis Weight Projection Maintenance). Given p > 0, a matrix A ∈
Rm×n and a diagonal matrix W ∈ Rm×m with nonnegative entries, the goal is to design a data
structure to maintain the projection matrix

P (W) :=W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p

and support the fast multiplication of P (W) ·h for any query h ∈ Rn with the following operations:

• INIT(A ∈ Rm×n,W ∈ Rm×m): The data structure takes a matrix A ∈ Rm×n and a diag-
onal matrix W ∈ Rm×m with nonnegative entries as input, and does some preprocessing
and compute an initial projection.

• UPDATE(W new ∈ Rm×m): The data structure receives some low-rank or sparse update
W new and updates W by W +W new.

• QUERY(h ∈ Rn): The data structure receives a vector h and approximately computes the
matrix-vector product of updated projection matrix P (W) and an online vector h.

This problem is fundamental to the design of efficient algorithms in settings where leverage scores
or Lewis weights determine adaptive sampling (Cohen & Peng, 2015; Parulekar et al., 2021; Brand
et al., 2021a; Woodruff & Yasuda, 2023) or preconditioning (Durfee et al., 2018; Yang et al., 2018;
Kyng et al., 2019).

Roadmap. In Section 2, we review relevant literature related to our study. In Section 3, we present
serveral useful tools and provide the main result. In Section 4, we state the main result of this paper.
In Section 5, we provide technical overview of our study. In Section 6, we draw our conclusion.

2 RELATED WORK

2.1 LINEAR PROGRAMMING AND SEMIDEFINITE PROGRAMMING

Linear programming is a cornerstone of optimization and theoretical computer science. Dantzig’s
Simplex algorithm (Dantzig, 1951) remains a practical workhorse despite its exponential worst-case
complexity. The Ellipsoid Method later gave the first polynomial-time guarantee for linear pro-
gramming, although it is typically slower in practice than Simplex. A decisive breakthrough came
with Karmarkar’s interior-point method (Karmarkar, 1984), which combines polynomial running
time with strong empirical performance and has sparked extensive work on ever-faster interior-point
techniques for a broad range of optimization problems (Vaidya, 1987; Renegar, 1988; Vaidya, 1989;
Daitch & Spielman, 2008; Lee & Sidford, 2013; 2014; 2019; Cohen et al., 2021a; Lee et al., 2019;
Brand, 2020; Brand et al., 2020; Jiang et al., 2021; Song & Yu, 2021; Gu & Song, 2022).

Beyond their algorithmic importance, linear programming and semidefinite programming are ubiq-
uitous in machine-learning theory. They underpin efficient formulations for empirical risk mini-
mization (Lee et al., 2019; Song et al., 2022b; Qin et al., 2023), support vector machines (Gu et al.,
2023; Gao et al., 2023a), and numerous other learning problems, providing both rigorous guarantees
and scalable implementations.

2.2 SKETCHING

Sketching—compressing data with random linear maps—has become a workhorse across modern
optimization and numerical linear algebra. It powers cutting-edge algorithms for linear program-
ming (Jiang et al., 2021; Song & Yu, 2021), empirical risk minimization (Lee et al., 2019; Qin et al.,
2023), and semidefinite programming (Jiang et al., 2020a; Huang et al., 2022; Song et al., 2023c).
In randomized numerical linear algebra it accelerates a wide range of matrix tasks and decompo-
sitions (Clarkson & Woodruff, 2017; Nelson & Nguyên, 2013; Boutsidis et al., 2016; Razenshteyn
et al., 2016; Song et al., 2017; Xiao et al., 2018; Song et al., 2019; Lee et al., 2019; Jiang et al.,
2021; Song & Yu, 2021; Brand et al., 2021b; Hu et al., 2022; Song et al., 2022a; Gu & Song, 2022).
Most applications employ oblivious sketches—data-independent projections—for dimensionality
reduction (Clarkson & Woodruff, 2017; Nelson & Nguyên, 2013). For approximate John-ellipsoid

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

computation, Chen et al.(Cohen et al., 2019) rely exclusively on sketching, suggesting room for fur-
ther acceleration, while Mahabadi et al.(Makarychev et al., 2022) tackle a tougher streaming variant
for convex polytopes; their method, however, is not yet optimal in our computational model.

2.3 DIFFERENTIAL PRIVACY

Introduced by (Dwork et al., 2006), differential privacy (DP) has become the gold standard for rig-
orous data protection. An extensive body of work now retrofits classical algorithms, data structures,
and machine-learning pipelines with provable DP guarantees (Esfandiari et al., 2022; Andoni et al.,
2023; Cherapanamjeri et al., 2023; Cohen-Addad et al., 2022; Dong et al., 2024; Farhadi et al., 2022;
Gopi et al., 2023; Li et al., 2022; Gopi et al., 2022; Huang & Yi, 2021; Jung et al., 2019; Li & Li,
2024; Epasto et al., 2024; Chen et al., 2022; Beimel et al., 2022; Narayanan, 2022; 2023; Fan & Li,
2022; Fan et al., 2024; Li & Li, 2023; Eliáš et al., 2020; Yu et al., 2024; Liang et al., 2024; Gu et al.,
2024; Song et al., 2023b; Qin et al., 2022; Song et al., 2023a; Galli et al., 2024; Chen et al., 2024;
Romijnders et al., 2024; Qi et al., 2024; Ke et al., 2025; Hu et al., 2024; Liu et al., 2024). Beyond in-
tegrating privacy into existing methods, researchers are refining the fundamental DP building blocks
themselves. Enhanced variants of the Gaussian, Exponential, and Laplace mechanisms now deliver
tighter accuracy–privacy trade-offs than the classical formulations (Dwork et al., 2014). A prime
example is the truncated Laplace mechanism of Gopi et al. (Geng et al., 2020), which currently
achieves the smallest known error for any (ϵ, δ)-DP distribution.

3 PRELIMINARY

Fact 3.1 ((Woodbury, 1950)). The Woodbury matrix identity is
(M + UCV)−1 =M−1 −M−1U(C−1 + VM−1U)−1VM−1.

Let S ⊂ [n] denote the set of coordinates that is changed by more than a constant factor and r = |S|.
Using the identity above, we have that

Mwnew =Mw − (Mw)S(∆
−1
S,S + (Mw)S,S)

−1((Mw)S)
⊤,

where ∆ = diag(wnew−w), (Mw)S ∈ Rn×r is the r columns from S ofMw and (Mw)S,S ,∆S,S ∈
Rr×r are the r rows and columns from S of Mw and ∆.
Fact 3.2. We have

• Let A ∈ Rn×n, then we have ∥A∥F ≤
√
n∥A∥.

• Let A ∈ Rn×n, then we have ∥A∥ ≤ ∥A∥F

• For two vectors a, b ∈ Rn, then we have |ab⊤| ≤ ∥a∥2 · ∥b∥2
Definition 3.3 (Differential Privacy, (Dwork et al., 2014)). For ϵ > 0, δ ≥ 0, a randomized function
A is (ϵ, δ)-differentially private ((ϵ, δ)-DP) if for any two neighboring datasets X ∼ X ′, and any
possible outcome of the algorithm S ⊂ in Range(A), Pr[A(X) ∈ S] ≤ eϵ Pr[A(X ′) ∈ S] + δ.
Lemma 3.4 (Truncated Laplace Mechanism, (Dwork et al., 2014; Geng et al., 2020; Andoni et al.,
2023)). Let Lap(λ) denote the Laplace distribution with parameter λ with PDF Pr[Z = z] =
1
2λe

−|z|/λ. Let BL := (∆/ϵ) log(1 + eϵ−1
2δ). Let TLap(∆, ϵ, δ) denote the Truncated Laplace

distribution with PDF proportional to e−|z|/λ on the region [−BL, BL]. Given a numeric function
f that takes a dataset X as the input, and has sensitivity ∆, the mechanism output f(X)+Z where
Z ∼ Lap(∆/ϵ) is (ϵ, 0)-DP. In addition, if Z ∼ TLap(∆, ϵ, δ), then f(X) + Z is (ϵ, δ)-DP.
Definition 3.5 (Dataset, (Gao et al., 2023b)). Fix η > 0, α > 0. We say our dataset X ∈ Rn×d is
(α, η)-good if XX⊤ ⪰ η · In and for all i ∈ [d], ∥X∗,i∥2 ≤ α.
Definition 3.6 (β-close neighbor dataset, (Gao et al., 2023b)). Let B > 0 be a constant. Let n be
the number of data points. Let dataset D = {(xi, yi)}ni=1, where xi ∈ Rd and ∥xi∥2 ≤ B for any
i ∈ [n]. We define D′ as a neighbor dataset with one data point replacement of D. Without loss of
generality, we have ′D = {(xi, yi)}n−1

i=1 ∪ {(x′n, yn)}.Namely, we have D and D′ only differ in the
n-th item.

Additionally, we assume that xn and x′n are β-close. Namely, we have
∥xn − x′n∥2 ≤ β.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Lemma 3.7 (Post-Processing Lemma for DP, (Dwork et al., 2014)). Let M := N|χ| → R be a
randomized algorithm that is (ϵ, δ)-differentially private. Let f : R→ R′ be an arbitrarily random
mapping. Then is f ◦M : N|χ| → R′ (ϵ, δ)-differentially private.
Theorem 3.8 (Empirical covariance estimator for Gaussian (Vershynin, 2018)). Let Σ ∈ Rd×d be
PSD, X1, · · · , Xn ∼ N (0,Σ) be i.i.d and Σ̃ = 1

n

∑n
i=1XiX

⊤
i . Then with probability 1 − γ, it

holds that ∥Σ−1/2Σ̃Σ−1/2 − I∥F ≤ ρ for some ρ = O(
√

d2+log(1/γ)
n + d2+log(1/γ)

n).

Lemma 3.9 (Composition lemma for DP, (Dwork et al., 2014)). LetM := N|χ| → R be an (ϵi, δi)-
DP algorithm for i ∈ [k]. If M[k] → Πn

i=1Ri satisfies M[k](x) = (M1(x), · · · ,Mk(x)), then
M[k] is (

∑k
i=1 ϵi,

∑k
i=1 δi)-DP.

Lemma 3.10 (Lemma C.15 in (Song & Yu, 2021)). Let xnew = x+δ̃x and snew = s+δ̃s. Letw = x
s

and wnew = xnew

snew . Then we have
∑n

i=1(E[lnwnew
i] − lnwi)

2 ≤ 64ϵ2,
∑n

i=1(Var[lnw
new
i])2 ≤

1000ϵ2.

4 MAIN RESULT

The goal of this section is to prove the following theorem:

Algorithm 1 Projection Maintenance Data Structure

1: datastructure MAINTAINPROJECTION
2:
3: members
4: w ∈ Rn

5: v, ṽ ∈ Rn

6: A ∈ Rd×n

7: M ∈ Rn×n

8: Q ∈ Rn×nbL

9: R1,∗, R2,∗, · · · , RL,∗ ∈ Rnb×n

10: l ∈ N+, L ∈ N+

11: ϵmp ∈ (0, 1/4)
12: a ∈ (0, α]
13: end members
14:
15: procedure INITIALIZE(A,w, ϵmp, a)
16: w ← w, v ← w, ϵmp ← ϵmp, A← A, a← a

17: M ← A⊤(AV 1−2/pA⊤)−1A

18: Choosing R1,∗, R2,∗, · · · , RL,∗ ∈ Rnb×n to be sketching matrices
19: R← [R∗,1, R∗,2, · · · , R∗,L]

20: Q←MV 1/2−1/pR⊤

21: l← 1
22: end procedure
23:
24: end datastructure

Theorem 4.1 (Projection maintenance). Given a full rank matrix A ∈ Rd×n with n ≥ d and a
tolerance parameter 0 < ϵmp < 1/4. Given any positive number a such that a ≤ α where α is
the dual exponent of matrix multiplication. Let R1,∗, · · · , RL,∗ ∈ Rnb×n denote a list of sketching
matrices, where b ∈ [0, 1]. There is a deterministic data structure (Algorithm 1) that approximately
maintains the projection matrices

W 1/2−1/pA⊤(AW 1−2/pA⊤)−1AW 1/2−1/p

for positive diagonal matrices W through the following two operations:

1. UPDATE(w): Output a vector ṽ such that for all i ∈ [n],

(1− ϵmp)ṽi
1/2−1/p ≤ w1/2−1/p

i ≤ (1 + ϵmp)ṽi
1/2−1/p.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2. QUERY(h): Output Ṽ 1/2−1/pA⊤(AṼ 1−2/pA⊤)−1AṼ 1/2−1/p(R⊤)∗,lRl,∗h for the ṽ out-
putted by the last call to UPDATE.

The data structure takes n2dω−2 time to initialize and each call of QUERY(h) takes time n1+b+o(1)+
n1+a+o(1).

Furthermore, if the initial vector w(0) and the (random) update sequence w(1), · · · , w(T) ∈ Rn

satisfies
n∑

i=1

(
(1/2− 1/p) · (E[lnw(k+1)

i]− lnw
(k)
i)

)2 ≤ C2
1 and

n∑
i=1

Var[(1/2− 1/p) lnw
(k+1)
i])2 ≤ C2

2

with the expectation and variance is conditional onw(k)
i for all k = 0, 1, · · · , T−1. Then, the amor-

tized expected time1 per call of UPDATE(w) is (C1/ϵmp + C2ϵ
2
mp) · (nω−1/2+o(1) + n2−a/2+o(1)).

Proof. The theorem holds by combining Lemma 4.3, Lemma 4.4 and Lemma 4.5.

Remark 4.2. For our linear program algorithm, we have C1 = O(1/ log n), C2 = O(1/ log n)
and ϵmp = Θ(1). See Lemma 3.10.

To verify the correctness of our updates, we have the following lemma:

Lemma 4.3 (Correctness of the algorithm, informal version of Lemma C.1). The output of
UPDATE(w) in Algorithm 2 satisfies

M = A⊤(AV 1−2/pA⊤)−1A, Q =MV 1/2−1/pR⊤

The output of QUERY(h) in Algorithm 3 satisfies

ps = P̃ (R⊤)∗,lRl,∗h

px = (I − P̃)(R⊤)∗,lRl,∗h,

where P̃ = V 1/2−1/pA⊤(AṼ 1−2/pA⊤)−1AṼ 1/2−1/p, and Ṽ is outputted by UPDATE(w).

Above lemma verifies our algorithm. Now we consider the running time of the projection mainte-
nance, which consists of Initialization time, update time and query time, as discussed below.

4.1 INITIALIZATION TIME, UPDATE TIME

To formalize the amortized runtime proof, we first analyze the initialization time (Lemma 4.4),
update time (Lemma 4.5), and query time (Lemma 4.6) of our projection maintenance data-structure.

Lemma 4.4 (Initialization time). The initialization time of data-structure MAINTAINPROJECTION
(Algorithm 1) is O(n2dω−2).

Proof. Given a matrix A ∈ Rd×n and diagonal matrix V ∈ Rn×n, computing A⊤(AV A⊤)−1A
takes O(n2dω−2).

Lemma 4.5 (Update time). The update time of data-structure MAINTAINPROJECTION (Algo-
rithm 2) is O(rgrn

2+o(1)) where r is the number of indices we updated in v.

Proof. The proof is identical to (Cohen et al., 2021b; Lee et al., 2019). We omit the details here.

4.2 QUERY TIME

Lemma 4.6 (Query time, informal version of Lemma C.2). The query time of data-structure MAIN-
TAINPROJECTION (Algorithm 1) is O(n1+b+o(1) + n1+a+o(1)).

1If the input is deterministic, so is the output and the runtime.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Update

1: datastructure MAINTAINPROJECTION
2:
3: procedure UPDATE(w)
4: yi ← lnwi − ln vi,∀i ∈ [n]
5: r ← the number of indices i such that |yi| ≥ ϵmp/2.
6: if r < na then
7: vnew ← v
8: Mnew ←M
9: l← l + 1

10: else
11: Let π : [n]→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|
12: while 1.5 · r < n and |yπ([1.5·r])| ≥ (1− 1/ log n)|yπ(r)| do
13: r ← min(⌈1.5 · r⌉, n)
14: end while

15: vnewπ(i) ←
{
wπ(i) i ∈ {1, 2, · · · , r}
vπ(i) i ∈ {r + 1, · · · , n}

16: ∆← diag(vnew − v)
17: Γ← diag((vnew)1/2−1/p − v1/2−1/p)
18: Let S ← π([r]) be the first r indices in the permutation.
19: Let MS ∈ Rn×r be the r columns from S of M .
20: Let MS,S ,∆S,S ∈ Rr×r be the r rows and columns from S of M and ∆.
21: Mnew ←M −M∗,S · (∆−1

S,S +MS,S)
−1 · (M∗,S)

⊤

22: Re-generate R
23: Qnew ← Q+ (Mnew · Γ) ·R⊤ + (Mnew −M) · V 1/2−1/p ·R⊤

24: l← 1
25: end if
26: v ← vnew

27: M ←Mnew

28: Q← Qnew

29: ṽi ←
{
vi if | lnwi − ln vi| < ϵmp/2

wi otherwise
30: return ṽ
31: end procedure
32:
33: end datastructure

Algorithm 3 Query

1: datastructure MAINTAINPROJECTION
2:
3: procedure QUERY(h)
4: Let S̃ be the indices i such that | lnwi − ln vi| ≥ ϵmp/2.
5: ∆̃← Ṽ 1−2/p − V 1−2/p

6: Γ̃← Ṽ 1/2−1/p − V 1/2−1/p

7: pm ← Ṽ 1/2−1/p · (M∗,S̃) · (∆̃
−1

S̃,S̃
+MS̃,S̃)

−1 · (QS̃,l +MS̃,∗ · Γ̃ · (R
⊤)∗,l) ·Rl,∗ · h

8: ps ← Ṽ 1/2−1/p · (Q∗,l +M · Γ̃ · (R⊤)∗,l) ·Rl,∗ · h− pm
9: px ← (R⊤)∗,l ·Rl,∗ · h− ps

10: return (px, ps)
11: end procedure
12:
13: end datastructure

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 TECHNICAL OVERVIEW

In this section, we present technical overview of our study. In Section 5.1, we introduce the key
parameters for privacy analysis. In Section 5.2, we analyze the DP guarantees for W 1/2−1/pA,
while Section 5.3 investigates its utility guarantees. In Section 5.4, we present DP guarantees for
A⊤W 1/2−1/p. In Section 5.5, we present utility guarantees for A⊤W 1/2−1/p. In Section 5.6, we
provide DP guarantees for (A⊤W 1−2/pA)−1. In Section 5.7, we provide utility guarantees for
(A⊤W 1−2/pA)−1.

5.1 KEY CONCEPTS

Definition 5.1 (Definition of M , (Gao et al., 2023b), see Definition 5.1 of (Gu et al., 2025) as an
example). LetM : (Rn)d → Rn×n be a (randomized) algorithm that given a dataset of d points in
Rn outputs a PSD matrix. Let Y,Y ′ ∈ (Rn)d. Then, we define

M := ∥M(Y)1/2M(Y
′
)−1M(Y)1/2 − I∥F .

Definition 5.2 (Definition of ∆, (Gao et al., 2023b), see Definition 5.2 of (Gu et al., 2025) as an
example). If we have the following conditions:

• Let ϵ ∈ (0, 1) and δ ∈ (0, 1).

• Let k denote the number of i.i.d. samples g1, g2, · · · , gk from N (0,Σ1) output by Algo-
rithm 4.

We define ∆ := min

{
ϵ√

8k log(1/δ)
, ϵ
8 log(1/δ)

}
.

5.2 DP GUARANTEES FOR W 1/2−1/pA

Lemma 5.3 (Sensitivity of W 1/2−1/pA, informal version of Lemma D.1). If the following condi-
tions hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let J := W 1/2−1/pA denote the data generated by X and J ′ denote the data generated
by neighboring dataset X ′, where W 1/2−1/p ∈ Rm×m and A ∈ Rm×n.

• Let β > 0 be defined as Definition 3.6.

Then, we can show that the sensitivity of J is
√
n · β.

Then, we use the truncated Laplace mechanism (Lemma 3.4) to ensure the DP property of
W 1/2−1/pA.

Lemma 5.4 (DP guarantees for W 1/2−1/pA). If the following conditions hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let ∆J :=
√
n · β denote the sensitivity of J .

• Let J := W 1/2−1/pA denote the data generated by X and J ′ denote the data generated
by neighboring dataset X ′, where W 1/2−1/p ∈ Rm×m and A ∈ Rm×n.

• Let β > 0 be defined as Definition 3.6.

• Let BL = (∆J/ϵJ) log(1 +
exp(ϵJ)−1

2δJ
).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Let J̃ := J +TLap(∆J , ϵJ , δJ).

Then, we can show that J̃ is (ϵJ , δJ)-DP.

Proof. The proof follows directly from Lemma 3.4.

5.3 UTILITY GUARANTEES FOR W 1/2−1/pA

Lemma 5.5 (Utility guarantees for W 1/2−1/pA, informal version of Lemma E.1). Under the same
conditions in Lemma 5.4, we can show that ∥J̃ − J∥2 ≤

√
n ·BL.

5.4 DP GUARANTEES FOR A⊤W 1/2−1/p

Lemma 5.6 (DP guarantees for A⊤W 1/2−1/p). If the following conditions hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let ∆J :=
√
n · β denote the sensitivity of J .

• Let J⊤ := A⊤W 1/2−1/p denote the data generated by X and J ′⊤ denote the data gener-
ated by neighboring dataset X ′, where W 1/2−1/p ∈ Rm×m and A⊤ ∈ Rn×m.

• Let β > 0 be defined as Definition 3.6.

• Let BL = (∆J/ϵJ) log(1 +
exp(ϵJ)−1

2δJ
).

• Let J̃⊤ := J⊤ +TLap(∆J , ϵJ , δJ).

Then, we can show that J̃⊤ is (ϵJ , δJ)-DP.

Proof. In Lemma 5.4, we prove the differential privacy property of W 1/2−1/pA. By the post-
processing property of differential privacy (Lemma 3.7), the transpose matrix A⊤W 1/2−1/p com-
puted from the privatized matrix W 1/2−1/pA also preserves (ϵJ , δJ)-differentially private.

5.5 UTILITY GUARANTEES FOR A⊤W 1/2−1/p

Lemma 5.7 (Utility guarantees forA⊤W 1/2−1/p, informal version of Lemma E.2). Under the same
conditions in Lemma 5.6,

we can show that ∥J̃⊤ − J⊤∥2 ≤
√
n ·BL.

5.6 DP GUARANTEES FOR (A⊤W 1−2/pA)−1

Lemma 5.8 (DP guarantees for (A⊤W 1−2/pA)−1, Theorem 6.12 in (Gao et al., 2023b), Theorem
5.1 in (Alabi et al., 2023), Lemma 5.4 in (Gu et al., 2025), informal version of Lemma B.1). Under
the same conditions in Lemma B.1, there exists an Algorithm 4 such that

• Part 1. Algorithm 4 is (ϵα, δα)-DP.

• Part 2. Outputs Σ̂ ∈ Sn+ denotes the private version of input Σ, such that with probabilities
at least 1− γ, ∥Σ−1/2Σ̂Σ−1/2 − In∥F ≤ ρ.

• Part 3. (1− ρ)Σ ⪯ Σ̂ ⪯ (1 + ρ)Σ.

By the post-processing property of differential privacy (Lemma 3.7), the inverse Σ̂−1 computed from
the privatized matrix Σ̂ remains (ϵα, δα)-differentially private.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

In Lemma 5.8, Part 1 claims the privacy guarantees of the “Gaussian Sampling Mechanism”, Part
2 establishes the critical properties necessary to ensure the utility of the “Gaussian Sampling Mech-
anism”, and Part 3 presents the ultimate utility outcomes of the algorithm.

Note that in our setting, we use Σ = H , where H is the non-private matrix of interest, and we also
have Σ̂ = H̃ to denote the private version of H .

The quantity M used in Condition 6 is formally analyzed in Section A.1.

Algorithm 4 The Gaussian Sampling Mechanism, (Gao et al., 2023b)

1: procedure ALGORITHM(Σ, k)
2: PSD matrix Σ ∈ Rn×n and parameter k ∈ N
3: Obtain vectors g1, g2, · · · , gk by sampling gi ∼ N (0,Σ), independently for each i ∈ [k]

4: Compute Σ̂ = 1
k

∑k
i=1 gig

⊤
i ▷ Covariance estimate.

5: return Σ̂
6: end procedure

5.7 UTILITY GUARANTEES FOR (A⊤W 1−2/pA)−1

Lemma 5.9 (Utility guarantees for (A⊤W 1−2/pA)−1, informal version of Lemma E.3). Under the
same conditions in Lemma 5.8, with probability 1− γ, we have ∥H−1 − H̃−1∥ ≤ O(ρ·ηmax

η2
min

).

5.8 DP GUARANTEES FOR W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h

Lemma 5.10 (DP guarantees for W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h, informal version
of Lemma D.2). If the following conditions hold:

• Let ϵα, δα ∈ R denote the DP parameter for A⊤W 1−2/pA.

• Let ϵJ , δJ ∈ R denote the DP parameters for W 1/2−1/pA and A⊤W 1/2−1/p.

• Let ϵ = 2ϵJ + ϵα, δ = 2δJ + δα.

• Let H and H̃ be defined as Lemma 5.9.

• Let J and J̃ be defined as Lemma 5.4.

Then, we can show W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h is (ϵ, δ)-DP.

5.9 UTILITY GUARANTEES FOR W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h

Lemma 5.11 (Utility guarantees for W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h, informal ver-
sion of Lemma E.4). Under the same conditions as in Lemma E.4, with probability 1− γ, we have

|JH−1J⊤ · h− J̃H̃−1J̃⊤ · h| ≤ 2σJσh
√
n ·BL + σ2

Jσh ·O(
ρ · ηmax

η2min

).

6 CONCLUSION

In this work, we introduce Dynamic ℓp-Lewis Weight Projection Maintenance, which is a novel
data-structure that considers the projection maintenance problem P (B) := B(B⊤B)−1B⊤ with
B = W 1/2−1/pA, that strictly generalizes the B =

√
WA projection. Our deterministic algorithm

supports fast updates and queries with sublinear amortized time and extends naturally to the dif-
ferential privacy setting with provable utility guarantees. This work not only advances theoretical
tools for linear programming, interior point methods, and leverage-based algorithms, but also opens
avenues for private and efficient optimization in data-sensitive applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Daniel Alabi, Pravesh K Kothari, Pranay Tankala, Prayaag Venkat, and Fred Zhang. Privately es-
timating a gaussian: Efficient, robust, and optimal. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pp. 483–496, 2023.

Alexandr Andoni, Piotr Indyk, Sepideh Mahabadi, and Shyam Narayanan. Differentially private
approximate near neighbor counting in high dimensions. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 43544–43562, 2023.

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and Uri
Stemmer. Dynamic algorithms against an adaptive adversary: generic constructions and lower
bounds. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1671–1684, 2022.

Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component analysis in
distributed and streaming models. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pp. 236–249, 2016.

Jan van den Brand. A deterministic linear program solver in current matrix multiplication time.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
259–278. SIAM, 2020.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs
in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 775–788, 2020.

Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song,
and Di Wang. Minimum cost flows, mdps, and ℓ1-regression in nearly linear time for dense
instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 859–869, 2021a.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. In ITCS, 2021b.

E Chen, Yang Cao, and Yifei Ge. A generalized shuffle framework for privacy amplification:
Strengthening privacy guarantees and enhancing utility. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 11267–11275, 2024.

Justin Y Chen, Shyam Narayanan, and Yinzhan Xu. All-pairs shortest path distances with dif-
ferential privacy: Improved algorithms for bounded and unbounded weights. arXiv preprint
arXiv:2204.02335, 2022.

Yeshwanth Cherapanamjeri, Sandeep Silwal, David P Woodruff, Fred Zhang, Qiuyi Zhang, and
Samson Zhou. Robust algorithms on adaptive inputs from bounded adversaries. arXiv preprint
arXiv:2304.07413, 2023.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input spar-
sity time. Journal of the ACM (JACM), 63(6):1–45, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael B Cohen and Richard Peng. Lp row sampling by lewis weights. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pp. 183–192, 2015.

Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm for approxi-
mating the john ellipsoid. In Conference on Learning Theory, pp. 849–873. PMLR, 2019.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021a.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021b.

Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard,
Nikos Parotsidis, and Jakub M Tarnawski. Near-optimal correlation clustering with privacy. Ad-
vances in Neural Information Processing Systems, 35:33702–33715, 2022.

Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via interior
point algorithms. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pp. 451–460, 2008.

George B Dantzig. Maximization of a linear function of variables subject to linear inequalities.
Activity analysis of production and allocation, 13:339–347, 1951.

Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi. Continual observation of joins under
differential privacy. Proceedings of the ACM on Management of Data, 2(3):1–27, 2024.

David Durfee, Kevin A Lai, and Saurabh Sawlani. ℓ1 regression using lewis weights preconditioning
and stochastic gradient descent. In Conference On Learning Theory, pp. 1626–1656. PMLR,
2018.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Marek Eliáš, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially private release
of synthetic graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 560–578. SIAM, 2020.

Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. k-means clustering with
distance-based privacy. Advances in Neural Information Processing Systems, 36, 2024.

Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Tight and robust private mean estima-
tion with few users. In International Conference on Machine Learning, pp. 16383–16412. PMLR,
2022.

Chenglin Fan and Ping Li. Distances release with differential privacy in tree and grid graph. In 2022
IEEE International Symposium on Information Theory (ISIT), pp. 2190–2195. IEEE, 2022.

Chenglin Fan, Ping Li, and Xiaoyun Li. k-median clustering via metric embedding: towards better
initialization with differential privacy. Advances in Neural Information Processing Systems, 36,
2024.

Alireza Farhadi, MohammadTaghi Hajiaghayi, and Elaine Shi. Differentially private densest sub-
graph. In International Conference on Artificial Intelligence and Statistics, pp. 11581–11597.
PMLR, 2022.

Filippo Galli, Catuscia Palamidessi, and Tommaso Cucinotta. Online sensitivity optimization in
differentially private learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12109–12117, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023a.

Yeqi Gao, Zhao Song, Xin Yang, and Yufa Zhou. Differentially private attention computation. arXiv
preprint arXiv:2305.04701, 2023b.

Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility tradeoff
in approximate differential privacy. In International Conference on Artificial Intelligence and
Statistics, pp. 89–99. PMLR, 2020.

Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential mecha-
nism. In Conference on Learning Theory, pp. 1948–1989. PMLR, 2022.

Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, and Kevin Tian. Private convex optimiza-
tion in general norms. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 5068–5089. SIAM, 2023.

Jiuxiang Gu, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mech-
anisms in neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024.

Jiuxiang Gu, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mecha-
nisms in neural tangent kernel regression. In 2025 IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pp. 2342–2356. IEEE, 2025.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

Yuzhou Gu, Zhao Song, and Lichen Zhang. A nearly-linear time algorithm for structured support
vector machines. arXiv preprint arXiv:2307.07735, 2023.

Hang Hu, Zhao Song, Omri Weinstein, and Danyang Zhuo. Training overparametrized neural net-
works in sublinear time. In arXiv preprint arXiv: 2208.04508, 2022.

Jerry Yao-Chieh Hu, Erzhi Liu, Han Liu, Zhao Song, and Lichen Zhang. On differentially private
string distances. arXiv preprint arXiv:2411.05750, 2024.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A
robust ipm framework and efficient implementation. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 233–244. IEEE, 2022.

Ziyue Huang and Ke Yi. Approximate range counting under differential privacy. In 37th Interna-
tional Symposium on Computational Geometry (SoCG 2021). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik, 2021.

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In 2020 IEEE 61st annual symposium on foundations
of computer science (FOCS), pp. 910–918. IEEE, 2020a.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane
method for convex optimization, convex-concave games, and its applications. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 944–953, 2020b.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster lps. In STOC, 2021.

Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe
Shenfeld. A new analysis of differential privacy’s generalization guarantees. arXiv preprint
arXiv:1909.03577, 2019.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the sixteenth annual ACM symposium on Theory of computing, pp. 302–311, 1984.

Yekun Ke, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Dpbloomfilter: Securing
bloom filters with differential privacy. arXiv preprint arXiv:2502.00693, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rasmus Kyng, Richard Peng, Sushant Sachdeva, and Di Wang. Flows in almost linear time via
adaptive preconditioning. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pp. 902–913, 2019.

Yin Tat Lee and Aaron Sidford. Path finding i: Solving linear programs with\˜ o (sqrt (rank)) linear
system solves. arXiv preprint arXiv:1312.6677, 2013.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in o (vrank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pp. 424–433. IEEE, 2014.

Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt (rank) linear system solves. arXiv
preprint arXiv:1910.08033, 2019.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In Conference on Learning Theory, pp. 2140–2157. PMLR, 2019.

Ping Li and Xiaoyun Li. Differential privacy with random projections and sign random projections.
arXiv preprint arXiv:2306.01751, 2023.

Ping Li and Xiaoyun Li. Smooth flipping probability for differential private sign random projection
methods. Advances in Neural Information Processing Systems, 36, 2024.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

Erzhi Liu, Jerry Yao-Chieh Hu, Alex Reneau, Zhao Song, and Han Liu. Differentially private kernel
density estimation. arXiv preprint arXiv:2409.01688, 2024.

Yury Makarychev, Naren Sarayu Manoj, and Max Ovsiankin. Streaming algorithms for ellipsoidal
approximation of convex polytopes. In Conference on Learning Theory, pp. 3070–3093. PMLR,
2022.

Lingsheng Meng and Bing Zheng. The optimal perturbation bounds of the moore–penrose inverse
under the frobenius norm. Linear algebra and its applications, 432(4):956–963, 2010.

Shyam Narayanan. Private high-dimensional hypothesis testing. In Conference on Learning Theory,
pp. 3979–4027. PMLR, 2022.

Shyam Narayanan. Better and simpler lower bounds for differentially private statistical estimation.
arXiv preprint arXiv:2310.06289, 2023.

Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In 2013 ieee 54th annual symposium on foundations of computer science,
pp. 117–126. IEEE, 2013.

Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis weights subsampling.
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
2021.

Tao Qi, Huili Wang, and Yongfeng Huang. Towards the robustness of differentially private federated
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):19911–19919,
Mar. 2024. doi: 10.1609/aaai.v38i18.29967. URL https://ojs.aaai.org/index.php/
AAAI/article/view/29967.

Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. Adore:
Differentially oblivious relational database operators. arXiv preprint arXiv:2212.05176, 2022.

13

https://ojs.aaai.org/index.php/AAAI/article/view/29967
https://ojs.aaai.org/index.php/AAAI/article/view/29967

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm for
projection matrix vector multiplication with application to empirical risk minimization. In Fran-
cisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine
Learning Research, pp. 101–156. PMLR, 25–27 Apr 2023. URL https://proceedings.
mlr.press/v206/qin23a.html.

Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approximations with
provable guarantees. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pp. 250–263, 2016.

James Renegar. A polynomial-time algorithm, based on newton’s method, for linear programming.
Mathematical programming, 40(1):59–93, 1988.

Rob Romijnders, Christos Louizos, Yuki M Asano, and Max Welling. Protect your score: Contact-
tracing with differential privacy guarantees. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 14829–14837, 2024.

Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear programming.
In International Conference on Machine Learning, pp. 9835–9847. PMLR, 2021.

Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with entrywise l1-norm
error. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp.
688–701, 2017.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
SODA. arXiv preprint arXiv:1704.08246, 2019.

Zhao Song, Zhaozhuo Xu, Yuanyuan Yang, and Lichen Zhang. Accelerating frank-wolfe algorithm
using low-dimensional and adaptive data structures. arXiv preprint arXiv:2207.09002, 2022a.

Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product search
data structures. arXiv preprint arXiv:2204.03209, 2022b.

Zhao Song, Yitan Wang, Zheng Yu, and Lichen Zhang. Sketching for first order method: efficient
algorithm for low-bandwidth channel and vulnerability. In International Conference on Machine
Learning, pp. 32365–32417. PMLR, 2023a.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
fast algorithm for dynamic kronecker projection maintenance. In International Conference on
Machine Learning, pp. 32418–32462. PMLR, 2023b.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
Fast algorithm for dynamic kronecker projection maintenance. In ICML, 2023c.

Pravin M Vaidya. An algorithm for linear programming which requires o (((m+ n) n 2+(m+ n) 1.5
n) l) arithmetic operations. In Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pp. 29–38, 1987.

Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th annual
symposium on foundations of computer science, pp. 332–337. IEEE Computer Society, 1989.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Per-Åke Wedin. Perturbation theory for pseudo-inverses. BIT Numerical Mathematics, 13:217–232,
1973.

Max A Woodbury. Inverting modified matrices. Department of Statistics, Princeton University,
1950.

David P Woodruff and Taisuke Yasuda. Online lewis weight sampling. ACM Transactions on
Algorithms, 2023.

14

https://proceedings.mlr.press/v206/qin23a.html
https://proceedings.mlr.press/v206/qin23a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Chang Xiao, Peilin Zhong, and Changxi Zheng. Bourgan: Generative networks with metric embed-
dings. Advances in neural information processing systems, 31, 2018.

Jiyan Yang, Yin-Lam Chow, Christopher Ré, and Michael W Mahoney. Weighted sgd for ℓp regres-
sion with randomized preconditioning. Journal of Machine Learning Research, 18(211):1–43,
2018.

Jiahao Yu, Haozheng Luo, Jerry Yao-Chieh Hu, Wenbo Guo, Han Liu, and Xinyu Xing. En-
hancing jailbreak attack against large language models through silent tokens. arXiv preprint
arXiv:2405.20653, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix
Roadmap.

• In Section A, we provide a sensitivity analysis and perturbation bounds for PSD Matrices
in DP guarantees.

• In Section B, we introduce the Gaussian Sampling Mechanism.

• In Section C, we present a detailed proof of the main result stated in Section 4.

• In Section D, we provide detailed proof of DP guarantees introduced in Section 5.

• In Section E, we give a complete proof of the utility guarantees outlined in Section 5.

A SENSITIVITY AND SPECTRAL PERTURBATION OF PSD MATRIX

A.1 SENSITIVITY OF PSD MATRIX

In this section, we provide more lemmas related to sensitivity.

Lemma A.1 (Lemma D.1 in (Gao et al., 2023b)). If X ∈ Rn×d and X ′ ∈ Rn×d are neigh-
boring datasets (see Definition 3.5 and Definition 3.6), then (1 − 2αβ/η)XX⊤ ⪯ X ′X ′⊤ ⪯
(1 + 2αβ/η)XX⊤.

Proof. Let i ∈ [d] be index that X∗,i and X ′
∗,i are different (See Definition 3.6).

We have

X ′X ′⊤ =

d∑
j=1

X ′
∗,jX

′⊤
∗,j

= (
∑

j∈[d]\{i}

X ′
∗,jX

′⊤
∗,j) +X ′

∗,iX
′⊤
∗,i

= (
∑

j∈[d]\{i}

X∗,jX
⊤
∗,j) +X ′

∗,iX
′⊤
∗,i

= XX⊤ −X∗,iX
⊤
∗,i +X ′

∗,iX
′⊤
∗,i

where the first step is the result of matrix multiplication, the second step is from simple algebra, the
third step follows from Definition 3.6, and the last step comes from simple algebra.

We know that

∥X∗,iX
⊤
∗,i −X ′

∗,iX
′
∗,i∥ = ∥X∗,iX

⊤
∗,i −X∗,iX

′⊤
∗,i +X∗,iX

′⊤
∗,i −X ′

∗,iX
′
∗,i∥

≤ ∥X∗,iX
⊤
∗,i −X∗,iX

′⊤
∗,i∥+ ∥X∗,iX

′⊤
∗,i −X ′

∗,iX
′
∗,i∥

≤ ∥X∗,i∥2 · ∥X∗,i −X ′
∗,i∥2 + ∥X∗,i −X ′

∗,i∥2 · ∥X ′
∗,i∥2

≤ 2αβ (1)

where the first step is from adding a new term X∗,iX
′⊤
∗,i , the second step follows from the trian-

gle inequality, the third step follows from Fact 3.2, and the last step is due to Definition 3.5 and
Definition 3.6.

Thus, we have X ′X ′⊤ ⪰ XX⊤ − 2αβIn ⪰ (1 − 2αβ/η)XX⊤. Similarly, we have
X ′X ′⊤ ⪯ XX⊤ + 2αβIn ⪯ (1 + 2αβ/η)XX⊤.

Lemma A.2 (Lemma D.2 in (Gao et al., 2023b)). If the following conditions hold,

• Let α and η be defined in Definition 3.5.

• Let β be defined in Definition 3.6.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• By Lemma A.1, X and X ′ are neighboring datasets such that

(1− 2αβ/η)XX⊤ ⪯ X ′X ′⊤ ⪯ (1 + 2αβ/η)XX⊤

Then, we have

• Part 1.

∥(XX⊤)−1/2X ′X ′⊤(XX⊤)−1/2 − I∥ ≤ 2αβ/η

• Part 2.

∥(XX⊤)−1/2X ′X ′⊤(XX⊤)−1/2 − I∥F ≤ 2
√
nαβ/η

Proof. The proof is straightforward, and we omit the details here.

Lemma A.3 (Spectral norm of H − H̃). If we have the below conditions,

• Condition 1. If D ∈ Rn×d and D′ ∈ Rn×d are neighboring dataset (see Definition 3.6)

• Condition 2. Let H := A⊤W 1−2/pA denotes the symmetric positive semi-definite matrix
generated by D.

• Condition 3. Let H̃ denote the private H generated by Algorithm 4 with H as the input.

• Condition 4. Let ηmaxIn×n ⪰ H ⪰ ηminIn×n, for some ηmax, ηmin ∈ R.

• Condition 5. Let ρ = O(
√
(n2 + log(1/γ))/k + (n2 + log(1/γ))/k).

• Condition 6. Let γ ∈ (0, 1).

Then, with probability 1− γ, we have

∥H − H̃∥ ≤ ρ · ηmax

Proof. By Part 3 of Lemma 5.8, with probability 1− γ, we have

(1− ρ)H ⪯ H̃ ⪯ (1 + ρ)H

which implies

−ρH ⪯ H̃ −H ⪯ ρH (2)

Then, we have

∥H̃ −H∥ ≤ ρ · ηmax

Lemma A.4 ((Wedin, 1973), Theorem 1.1 in (Meng & Zheng, 2010)). Given two matrices A,B ∈
Rd1×d2 with full column rank, we have

∥A† −B†∥ ≲ max(∥A†∥2, ∥B†∥2) · ∥A−B∥.

B GAUSSIAN SAMPLING MECHANISM

In this section, we restate the analysis for “Gaussian Sampling Mechanism”, which guarantees the
privacy of our algorithm and provides potential tools for demonstrating its utility.
Lemma B.1 (DP guarantees for (A⊤WA)−1, Theorem 6.12 in (Gao et al., 2023b), Theorem 5.1 in
(Alabi et al., 2023), Lemma D.1 in (Gu et al., 2025), formal version of Lemma 5.8). If we have the
below conditions,

• Condition 1. Let D and D′ are neighboring dataset (see Definition 3.6).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Condition 2. Let H := A⊤W 1−2/pA denotes the symmetric positive semi-definite ma-
trix generated by X , and H ′ denotes the symmetric positive definite matrix generated by
neighboring dataset X ′.

• Condition 3. Let ϵα ∈ (0, 1) and δα ∈ (0, 1) denote the DP parameter for A⊤W 1−2/pA.

• Condition 4. Let Y,Y ′ denote neighboring datasets, which differ by a single data element.

• Condition 5. Let ∆ be defined in Definition 5.2 and ∆ < 1.

• Condition 6. Let M,M be defined in Definition 5.1 and M ≤ ∆.

• Condition 7. Let the input Σ =M(Y).

• Condition 8. Let ρ = O(
√
(n2 + log(1/γ))/k + (n2 + log(1/γ))/k).

• Condition 9. Let k ∈ N.

• Condition 10. Let γ ∈ (0, 1).

• Condition 11. Let ηmaxIn×n ⪰ H ⪰ ηminIn×n, for some ηmax, ηmin ∈ R.

• Condition 12. Let H̃ denote the private H generated by Algorithm 4 with H as the input.

• Condition 13. Let
√
nψ/ηmin < ∆, where ∆ is defined in Definition 5.2.

Then, there exists an Algorithm 4 such that

• Part 1. Algorithm 4 is (ϵα, δα)-DP.

• Part 2. Outputs Σ̂ ∈ Sn+ such that with probabilities at least 1− γ,

∥Σ−1/2Σ̂Σ−1/2 − In∥F ≤ ρ

• Part 3.

(1− ρ)Σ ⪯ Σ̂ ⪯ (1 + ρ)Σ.

C PROOF OF MAIN RESULT

Lemma C.1 (Correctness of the algorithm, formal version of Lemma 4.3). The output of
UPDATE(w) in Algorithm 2 satisfies

M = A⊤(AV 1−2/pA⊤)−1A and

Q =MV 1/2−1/pR⊤

The output of QUERY(h) in Algorithm 3 satisfies

ps = P̃ (R⊤)∗,lRl,∗h

px = (I − P̃)(R⊤)∗,lRl,∗h,

where P̃ = V 1/2−1/pA⊤(AṼ 1−2/pA⊤)−1AṼ 1/2−1/p, and Ṽ is outputted by UPDATE(w).

Proof. Let S denote the support of ∆.

Thus, by the Woodbury matrix identity (Fact 3.1) and definition of Mnew, we have

A⊤(A(V new)1−2/pA⊤)−1A

= A⊤(A(V +∆)1−2/pA⊤)−1A

= A⊤((AV 1−2/pA⊤)−1 − (AV 1−2/pA⊤)−1A∗,S · (∆−1
S,S + (A⊤)S,∗(AV

1−2/pA⊤)−1A∗,S)
−1

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

· (A⊤)S,∗(AV
1−2/pA⊤)−1)A

= A⊤(AV 1−2/pA⊤)−1A−A⊤(AV 1−2/pA⊤)−1A∗,S

· (∆−1
S,S + (A⊤)S,∗(AV

1−2/pA⊤)−1A∗,S)
−1 · (A⊤)S,∗(AV

1−2/pA⊤)−1A

=M −M∗,S(∆
−1
S,S +MS,S)

−1MS,∗

=Mnew.

where the first step follows from the definition of V new = V + ∆, the second step follows from
the Fact 3.1, the third step distributes the terms, the fourth step follows from the definition of M =
A⊤(AV 1−2/pA⊤)−1A, and the last step follows from the definition of Mnew.

Note the output M = Mnew and V = V new, so we have the output satisfying M =
A⊤(AV A⊤)−1A.

As for Q, notice by definition

Qnew = Q+ (Mnew · Γ) ·R⊤ + (Mnew −M) · V 1/2−1/p ·R⊤

=MV 1/2−1/pR⊤ + (Mnew · Γ) ·R⊤ + (Mnew −M) · V 1/2−1/p ·R⊤

=MV 1/2−1/pR⊤ +Mnew((V new)1/2−1/p − V 1/2−1/p)R⊤ + (Mnew −M)V 1/2−1/pR⊤

=Mnew((V new)1/2−1/p − V 1/2−1/p)R⊤ +MnewV 1/2−1/pR⊤

=Mnew(V new)1/2−1/pR⊤

where the first step follows from the definition of Qnew, the second step follows from definition of
Q, the third step follows from the definition of Γ, the fourth step distributes and eliminates the term
MV 1/2−1/pR⊤, and the last step distributes and eliminates the term MnewV 1/2−1/pR⊤.

Again, since the output Q = Qnew, M = Mnew and V = V new, we have the output satisfying
Q =MV 1/2−1/pR⊤.

For QUERY(h) procedure, by definition we have

pm = Ṽ 1/2−1/p · (M∗,S̃) · (∆̃
−1

S̃,S̃
+MS̃,S̃)

−1 · (QS̃,l +MS̃,∗ · Γ̃ · (R
⊤)∗,l) ·Rl,∗ · h

= Ṽ 1/2−1/p · (M∗,S̃) · (∆̃
−1

S̃,S̃
+MS̃,S̃)

−1

· ((MV 1/2−1/pR⊤)S̃,l +MS̃,∗ · (Ṽ
1/2−1/p − V 1/2−1/p) · (R⊤)∗,l) ·Rl,∗ · h

= Ṽ 1/2−1/p · (M∗,S̃) · (∆̃
−1

S̃,S̃
+MS̃,S̃)

−1 ·MS̃,∗ · Ṽ
1/2−1/p · (R⊤)∗,l · h, (3)

where the first step follows from the definition of pm, the second step follows from the definition of
Q and Γ̃, and the third step eliminates the terms.

Thus,

ps = Ṽ 1/2−1/p · (Q∗,l +M · Γ̃ · (R⊤)∗,l) ·Rl,∗ · h− pm
= Ṽ 1/2−1/p · ((MV 1/2−1/pR⊤)∗,l +M · (Ṽ 1/2−1/p − V 1/2−1/p) · (R⊤)∗,l) ·Rl,∗ · h− pm
= Ṽ 1/2−1/p ·M · Ṽ 1/2−1/p · (R⊤)∗,l ·Rl,∗ · h− pm
= Ṽ 1/2−1/p(M −M∗,S̃(∆̃

−1

S̃,S̃
+MS̃,S̃)

−1MS̃,∗)Ṽ
1/2−1/p(R⊤)∗,lRl,∗h, (4)

where the first step follows the definition of ps, the second step follows from the definition of Q and
Γ̃, the third step follows from eliminates the terms, and the last step substitutes pm by Eq. (3).

Note Ṽ only differs from V in entries corresponding to the set S̃, again by the Woodbury matrix
identity (Fact 3.1) and the definition of M , we have

A⊤(AṼ 1−2/pA⊤)−1A

= A⊤(A(V 1−2/p + ∆̃)A⊤)−1A

= A⊤((AV 1−2/pA⊤)−1 − (AV 1−2/pA⊤)−1A∗,S̃

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

· (∆̃−1

S̃,S̃
+ (A⊤)S̃,∗(AV

1−2/pA⊤)−1A∗,S̃)
−1 · (A⊤)S̃,∗(AV

1−2/pA⊤)−1)A

= A⊤(AV 1−2/pA⊤)−1A−A⊤(AV 1−2/pA⊤)−1A∗,S̃

· (∆̃−1

S̃,S̃
+ (A⊤)S̃,∗(AV

1−2/pA⊤)−1A∗,S̃)
−1 · (A⊤)S̃,∗(AV

1−2/pA⊤)−1A

=M −M∗,S̃(∆̃
−1

S̃,S̃
+MS̃,S̃)

−1MS̃,∗, (5)

where the first step follows from Ṽ 1−2/p = V 1−2/p+∆̃, the second step follows from Fact 3.1 , the
third step distributes two terms, and the last step follows from the definition of M , which implies

ps = Ṽ 1/2−1/pA⊤(AṼ 1−2/pA⊤)−1AṼ 1/2−1/p(R⊤)∗,lRl,∗h

= P̃ (R⊤)∗,lRl,∗h, (6)

where the first step follows from Eq. (4) and (5), and the second step follows from the definition of
P̃ .

Further,

px = (R⊤)∗,lRl,∗h− ps
= (I − P̃)(R⊤)∗,lRl,∗h,

where the first step follows from the definition of px, and the second step follows from Eq. (6).

Thus we completes the proof.

Lemma C.2 (Query time, formal version of Lemma 4.6). The query time of data-structure MAIN-
TAINPROJECTION (Algorithm 1) is O(n1+b+o(1) + n1+a+o(1)).

Proof. Notice by the algorithm we have |S̃| ≤ na. Thus, Γ̃ is a sparse diagonal matrix with at most
na non-zero elements. The running time mainly comes from three parts.

Part 1. Computing pm:

• Compute Rl,∗ · h: matrix-vector multiplication between matrix of size nb × n and vector
of size n× 1, this takes n1+b time.

• Compute (R⊤)∗,l ·(Rl,∗h): matrix-vector multiplication between matrix of size n×nb and
vector of size nb × 1, this takes n1+b time.

• Compute Γ̃·(R⊤
l,∗Rl,∗h): matrix-vector multiplication between sparse diagonal matrix with

at most na non-zero elements and vector of size n× 1, this takes na time.

• Compute MS̃,∗ · (Γ̃R
⊤
l,∗h): matrix-vector multiplication between matrix of size at most

na × n and sparse vector with at most na non-zero elements, this takes n2a time.

• ComputeQS̃,l·(Rl,∗h): matrix-vector multiplication between matrix of size at most na×nb

and vector of size nb × 1, this takes na+b time.

• Compute (∆̃−1

S̃,S̃
+MS̃,S̃)

−1: inverse of matrix of size at most na×na, this takes naω time.

• Compute (∆̃−1

S̃,S̃
+MS̃,S̃)

−1 · [(QS̃,l+MS̃,∗Γ̃(R
⊤)∗,l)Rl,∗h]: matrix-vector multiplication

between matrix of size at most na × na and vector of size at most na × 1, this takes n2a
time.

• Compute Ṽ 1/2−1/p · (M∗,S̃): matrix-matrix multiplication between diagonal matrix of size
n× n and matrix of size at most n× na, this takes n1+a time.

• Compute [Ṽ 1/2−1/pM∗,S̃] · [(∆̃
−1

S̃,S̃
+ MS̃,S̃)

−1(QS̃,l + MS̃,∗Γ̃(R
⊤)∗,l)Rl,∗h]: matrix-

vector multiplication between matrix of size at most n × na and vector of size at most
na × 1, this takes n1+a time.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

To conclude, we can compute pm in O(n1+b + naω + n1+a) time.

Part 2. Computing ps:

• ComputeRl,∗h and Γ̃R⊤
l,∗Rl,∗h in same way as in calculating pm: take n1+b andO(n1+b+

na) time respectively.

• Compute Ṽ 1/2−1/p · Q∗,l: matrix-matrix multiplication between diagonal matrix of size
n× n and matrix of size n× nb, takes n1+b time.

• Compute [Ṽ 1/2−1/pQ∗,l] · [Rl,∗h]: matrix-vector multiplication between matrix of size
n× nb and vector of size nb × 1, takes n1+b time.

• Compute M · [Γ̃R⊤
l,∗Rl,∗h]: matrix-vector multiplication between matrix of size n×n and

sparse vector with at most na non-zero elements, takes O(n1+a) time.

• Compute Ṽ 1/2−1/p·[M Γ̃R⊤
l,∗Rl,∗h]: matrix-vector multiplication between diagonal matrix

of size n× n and vector of size n× 1, takes n time.

To conclude, we can compute ps in O(n1+b + n1+a) time.

Part 3. Computing px:

• Compute R⊤
l,∗Rl,∗h in same way as in calculating pm: take O(n1+b) time.

Thus, the overall running time is

O(n1+a + n1+b + naω).

Finally, we note that ω ≤ 3− α ≤ 3− a (see (Cohen et al., 2021b)) and hence a · ω ≤ a(3− a) ≤
(1 + a). Therefore, the final running time it takes is O(b1+b+o(1) + n1+a+o(1)).

D PROOF OF DIFFERENTIAL PRIVACY GUARANTEES

Lemma D.1 (Sensitivity of W 1/2−1/pA, formal version of Lemma 5.3). If the following conditions
hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let J := W 1/2−1/pA denote the data generated by X and J ′ denote the data generated
by neighboring dataset X ′, where W 1/2−1/p ∈ Rm×m and A ∈ Rm×n.

• Let β > 0 be defined as Definition 3.6.

Then, we can show that the sensitivity of J is
√
n · β.

Proof. Without loss of generality, we use xm ∈ Rn and x′m ∈ Rn to denote the different items in
X and X ′. According to the definition of the neighboring dataset, we have

∥xm − x′m∥2 ≤ β.

Then, we have

∥J − J ′∥1 = ∥xm − x′m∥1
≤
√
n · ∥xm − x′m∥2

=
√
n · β,

where the first step follows from ∥u − v∥1 ≤
√
n∥u − v∥2 for any u, v ∈ Rn, and the second step

follows from ∥xm − x′m∥2 ≤ β.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Lemma D.2 (DP guarantees for W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h, formal version of
Lemma 5.10). If the following conditions hold:

• Let ϵα, δα ∈ R denote the DP parameter for A⊤W 1−2/pA.

• Let ϵJ , δJ ∈ R denote the DP parameters for W 1/2−1/pA and A⊤W 1/2−1/p.

• Let ϵ = 2ϵJ + ϵα.

• Let δ = 2δJ + δα.

• Let H and H̃ be defined as Lemma 5.9.

• Let J and J̃ be defined as Lemma 5.4.

Then, we can show W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h is (ϵ, δ)-DP.

Proof. Since we have

• A⊤W 1−2/pA is (ϵα, δα)-DP.

• W 1/2−1/pA is (ϵJ , δJ)-DP.

• A⊤W 1/2−1/p is (ϵJ , δJ)-DP.

• ϵ = 2ϵJ + ϵα, δ = 2δJ + δα.

By Lemma 3.9, we have W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p is (ϵ, δ)-DP.

Next, by the post-processing property of differential privacy (Lemma 3.7), we conclude that
W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h is also (ϵ, δ)-DP.

Thus, we complete the proof.

E PROOF OF UTILITY GUARANTEES

Lemma E.1 (Utility guarantees for W 1/2−1/pA, formal version of 5.5). If the following conditions
hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let ∆J :=
√
n · β denote the sensitivity of J .

• Let J := W 1/2−1/pA denote the data generated by X , where W 1/2−1/p ∈ Rm×m and
A ∈ Rm×n.

• Let BL = (∆J/ϵJ) log(1 +
exp(ϵJ)−1

2δJ
).

• Let J̃ := J +TLap(∆J , ϵJ , δJ).

Then, we can show that

∥J̃ − J∥2 ≤
√
n ·BL.

Proof. For i ∈ [m], j ∈ [n], let J(i, j), J ′(i, j) ∈ R denote the (i, j)-th entry of J and J ′, respec-
tively. Let Ji ∈ Rn denotes the i-th column of J .

By the definition of J̃ , we have

J̃(i, j) = J(i, j) + TLAP(∆J , ϵJ , δJ)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Recall that we haveBL = (∆J/ϵJ) log(1+
eϵJ−1
2δJ

). By the definition of truncated Laplace, we have

|TLAP(∆J , ϵJ , δJ)| ≤ BL.

Combining the above two equations, for i ∈ [m], we have

∥J̃ − J∥2 ≤
√
n ·BL.

Thus, we complete the proof.

Lemma E.2 (Utility guarantees for A⊤W 1/2−1/p, formal version of Lemma 5.7). If the following
conditions hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let ∆J :=
√
n · β denote the sensitivity of J .

• Let J⊤ := A⊤W 1/2−1/p denote the data generated by X , where W 1/2−1/p ∈ Rm×m and
A⊤ ∈ Rn×m.

• Let J̃⊤ := J⊤ +TLap(∆J , ϵJ , δJ).

• Let BL = (∆J/ϵJ) log(1 +
exp(ϵJ)−1

2δJ
).

we can show that

∥J̃⊤ − J⊤∥2 ≤
√
n ·BL.

Proof. From Lemma 5.5, we have

∥J̃ − J∥2 ≤
√
n ·BL.

Then,

∥J̃⊤ − J⊤∥2 = ∥(J̃ − J)⊤∥2
= ∥J̃ − J∥2
≤
√
n ·BL.

Where the first step follows from the invariance of the norm under transposition, the second step
follows from the norm property ∥A⊤∥2 = ∥A∥2, and the third step follows from Lemma 5.5.

Thus, we complete the proof.

Lemma E.3 (Utility guarantees for (A⊤W 1−2/pA)−1, formal version of Lemma 5.9). If the fol-
lowing conditions hold:

• Condition 1. If D ∈ Rn×d and D′ ∈ Rn×d are neighboring dataset (see Definition 3.6)

• Condition 2. Let H := A⊤W 1−2/pA denotes the symmetric positive semi-definite matrix
generated by D.

• Condition 3. Let H̃ denote the private H generated by Algorithm 4 with H as the input.

• Condition 4. Let ηmaxIn×n ⪰ H ⪰ ηminIn×n, for some ηmax, ηmin ∈ R.

• Condition 5. Let
√
nψ/ηmin < ∆, where ∆ is defined in Definition 5.2.

• Condition 6. Let ρ = O(
√

(n2 + log(1/γ))/k + (n2 + log(1/γ))/k).

• Condition 7. Let γ ∈ (0, 1).

Then, with probability 1− γ, we have

∥H−1 − H̃−1∥ ≤ O(
ρ · ηmax

η2min

)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. We consider the ∥H−1∥ term. We have

∥H−1∥ = ∥(A⊤W 1−2/pA)−1∥ (7)

= σmax((A
⊤W 1−2/pA)−1)

=
1

σmin((A⊤W 1−2/pA))

≤ 1

ηmin
(8)

where the 1st step is due to Condition 2, the 2nd step is because of definition of spectral norm, the 3rd
step is due to σmax(A

−1) = 1/σmin(A) holds for any matrixA, the 4th step is fromK ⪰ ηminIn×n.

Similarly, we can have

∥H̃−1∥ ≤ 1

ηmin
(9)

Recall in Lemma A.3, we have

∥H − H̃∥ ≤ ρ · ηmax (10)

Then, by Lemma A.4, we have

∥H−1 − H̃−1∥ ≤ O(max{∥H−1∥2, ∥H̃−1∥2} · ∥H − H̃∥)

≤ O(
1

η2min

· ∥H − H̃∥)

≤ O(
ρ · ηmax

η2min

)

where the 1st step is because of Lemma A.4, the 2nd step is due to Eq. (7) and Eq. (9), the 3rd step
is from Eq. (10).

Lemma E.4 (Utility guarantees for W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h, formal version
of Lemma 5.11). If the following conditions hold:

• If D ∈ Rn×d and D′ ∈ Rn×d are neighboring dataset (see Definition 3.6)

• Let H and H̃ be defined as Lemma 5.9.

• Let J and J̃ be defined as Lemma 5.4.

• Let σJ := ∥J∥2 denotes the ℓ2 norm of J .

• Let σh := ∥h∥2 denotes the ℓ2 norm of h.

• Let σH−1 := ∥H−1∥2 denotes the ℓ2 norm of H−1.

• Let ηmaxIn×n ⪰ H ⪰ ηminIn×n, for some ηmax, ηmin ∈ R.

• Let
√
nψ/ηmin < ∆, where ∆ is defined in Definition 5.2.

• Let ρ = O(
√
(n2 + log(1/γ))/k + (n2 + log(1/γ))/k).

• Let γ ∈ (0, 1).

• Let BL ∈ R be defined in Lemma 5.5.

Then, with probability 1− γ, we have

|JH−1J⊤ · h− J̃H̃−1J̃⊤ · h| ≤ 2σJσh
√
n ·BL + σ2

Jσh ·O(
ρ · ηmax

η2min

).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proof. We have

|JH−1J⊤ · h− J̃H̃−1J̃⊤ · h|
= |(JH−1J⊤ − J̃H̃−1J̃⊤) · h|
= |((JH−1J⊤ − J̃H−1J⊤) + (J̃H−1J⊤ − J̃H̃−1J⊤) + (J̃H̃−1J⊤ − J̃H̃−1J̃⊤)) · h|
≤ (|JH−1J⊤ − J̃H−1J⊤|+ |J̃H−1J⊤ − J̃H̃−1J⊤|+ |J̃H̃−1J⊤ − J̃H̃−1J̃⊤|) · ∥h∥2, (11)

where the first step follows from basic algebra, the second step follows from basic algebra, the third
step follows from triangle inequality.

Consider |JH−1J⊤ − J̃H−1J⊤|, we have:

|JH−1J⊤ − J̃H−1J⊤|
≤ ∥J − J̃∥2∥H−1∥2∥J⊤∥2
≤ σH−1σJ

√
n ·BL, (12)

where the first step follows from Cauchy–Schwarz inequality, the second step follows from
Lemma 5.5.

Consider |J̃H−1J⊤ − J̃H̃−1J⊤|, we have:

|J̃H−1J⊤ − J̃H̃−1J⊤|
≤ ∥J̃∥2|H−1 − H̃−1|∥J⊤∥2
≤ σ2

J ·O(
ρ · ηmax

η2min

), (13)

where the first step follows from Cauchy–Schwarz inequality, the second step follows from
Lemma 5.9.

Consider |J̃H̃−1J⊤ − J̃H̃−1J̃⊤|, we have:

|J̃H̃−1J⊤ − J̃H̃−1J̃⊤|
≤ ∥J̃∥2∥H̃−1∥2∥J⊤ − J̃⊤∥2
≤ σH−1σJ

√
n ·BL, (14)

where the first step follows from Cauchy–Schwarz inequality, the second step follows from
Lemma 5.7.

Combine the equations above, we have:

|JH−1J⊤ · h− J̃H̃−1J̃⊤ · h|
≤ (|JH−1J⊤ − J̃H−1J⊤|+ |J̃H−1J⊤ − J̃H̃−1J⊤|+ |J̃H̃−1J⊤ − J̃H̃−1J̃⊤|) · ∥h∥2
≤ (σH−1σJ

√
n ·BL + σ2

J ·O(
ρ · ηmax

η2min

) + σH−1σJ
√
n ·BL) · σh

= 2σJσh
√
n ·BL + σ2

Jσh ·O(
ρ · ηmax

η2min

),

where the first step follows from Eq (11), the second step follows from Eq (12), Eq (13) and Eq (14),
the third step follows from basic algebra.

Thus, we complete the proof.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

25

	Introduction
	Related Work
	Linear Programming and Semidefinite Programming
	Sketching
	Differential Privacy

	Preliminary
	Main Result
	Initialization time, update time
	Query time

	Technical Overview
	Key Concepts
	DP Guarantees for
	Utility Guarantees for
	DP Guarantees for
	Utility Guarantees for
	DP Guarantees for
	Utility Guarantees for
	DP Guarantees for
	Utility Guarantees for

	Conclusion
	Sensitivity and Spectral Perturbation of PSD Matrix
	Sensitivity of PSD Matrix

	Gaussian Sampling Mechanism
	Proof of Main Result
	Proof of Differential Privacy Guarantees
	Proof of Utility Guarantees

