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ABSTRACT

We introduce a new data–structure problem—Dynamic ℓp-Lewis Weight Projec-
tion Maintenance—that asks us to maintain the projection

P (W ) =W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p

under a stream of diagonal weight updates and to support fast matrix–vector prod-
ucts with P (W ). This setting strictly generalizes the

√
WA projection, which

is at the heart of state-of-the-art linear programming and interior point methods,
and it captures a wide range of algorithms that rely on leverage scores or Lewis
weights for sampling and preconditioning. We provide a deterministic projection-
maintenance data structure with sublinear amortized updates. Moreover, we ex-
tend it to the differential privacy setting.

1 INTRODUCTION

Projection maintenance is one of the most important data structure problems in modern convex
optimization, serving as a critical component in achieving the best-known runtime guarantees for
many cutting-edge algorithms (Lee et al., 2019; Jiang et al., 2020b;a; Cohen et al., 2021b; Huang
et al., 2022). We first recall the definition of classical Dynamic Projection Maintenance Problem.

Definition 1.1 (Dynamic Projection Maintenance (Cohen et al., 2021b)). Given a matrix B ∈
Rm×n, the goal is to design a data structure to maintain the projection matrix P (B) :=
B(B⊤B)−1B⊤ and support the fast multiplication of P (B) · h for any query h ∈ Rn with the
following operations:

• INIT(B ∈ Rm×n): The data structure takes the matrix B as input, and does some prepro-
cessing and compute an initial projection.

• UPDATE(Bnew ∈ Rm×n): The data structure receives some low-rank or sparse update
Bnew and updates B by B +Bnew.

• QUERY(h ∈ Rn): The data structure receives a vector h and approximately computes the
matrix-vector product of updated projection matrix P (B) and an online vector h.

For example, in linear programming (Cohen et al., 2021b), we take B =
√
WA, where A is the

constraint matrix and W is a diagonal matrix representing slack variables. In each iteration, W
undergoes relatively small perturbations. The goal of the data structure is to efficiently approximate

√
WA(A⊤WA)−1A⊤

√
Wh

for an online vector h ∈ Rn.

In this work, we consider a specific projection maintenance problem with B = W 1/2−1/pA which
generalizes the above problem. We need to maintain the projection and compute an approxima-
tion of matrix-vector product between the projection matrix and any online vector h ∈ Rn. We
call this problem, for maintaining such kind of matrices, the Dynamic ℓp-Lewis Weight Projection
Maintenance. Formally, it is defined as follows.
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Definition 1.2 (Dynamic ℓp-Lewis Weight Projection Maintenance). Given p > 0, a matrix A ∈
Rm×n and a diagonal matrix W ∈ Rm×m with nonnegative entries, the goal is to design a data
structure to maintain the projection matrix

P (W ) :=W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p

and support the fast multiplication of P (W ) ·h for any query h ∈ Rn with the following operations:

• INIT(A ∈ Rm×n,W ∈ Rm×m): The data structure takes a matrix A ∈ Rm×n and a diag-
onal matrix W ∈ Rm×m with nonnegative entries as input, and does some preprocessing
and compute an initial projection.

• UPDATE(W new ∈ Rm×m): The data structure receives some low-rank or sparse update
W new and updates W by W +W new.

• QUERY(h ∈ Rn): The data structure receives a vector h and approximately computes the
matrix-vector product of updated projection matrix P (W ) and an online vector h.

This problem is fundamental to the design of efficient algorithms in settings where leverage scores
or Lewis weights determine adaptive sampling (Cohen & Peng, 2015; Parulekar et al., 2021; Brand
et al., 2021a; Woodruff & Yasuda, 2023) or preconditioning (Durfee et al., 2018; Yang et al., 2018;
Kyng et al., 2019).

Roadmap. In Section 2, we review relevant literature related to our study. In Section 3, we present
serveral useful tools and provide the main result. In Section 4, we state the main result of this paper.
In Section 5, we provide technical overview of our study. In Section 6, we draw our conclusion.

2 RELATED WORK

2.1 LINEAR PROGRAMMING AND SEMIDEFINITE PROGRAMMING

Linear programming is a cornerstone of optimization and theoretical computer science. Dantzig’s
Simplex algorithm (Dantzig, 1951) remains a practical workhorse despite its exponential worst-case
complexity. The Ellipsoid Method later gave the first polynomial-time guarantee for linear pro-
gramming, although it is typically slower in practice than Simplex. A decisive breakthrough came
with Karmarkar’s interior-point method (Karmarkar, 1984), which combines polynomial running
time with strong empirical performance and has sparked extensive work on ever-faster interior-point
techniques for a broad range of optimization problems (Vaidya, 1987; Renegar, 1988; Vaidya, 1989;
Daitch & Spielman, 2008; Lee & Sidford, 2013; 2014; 2019; Cohen et al., 2021a; Lee et al., 2019;
Brand, 2020; Brand et al., 2020; Jiang et al., 2021; Song & Yu, 2021; Gu & Song, 2022).

Beyond their algorithmic importance, linear programming and semidefinite programming are ubiq-
uitous in machine-learning theory. They underpin efficient formulations for empirical risk mini-
mization (Lee et al., 2019; Song et al., 2022b; Qin et al., 2023), support vector machines (Gu et al.,
2023; Gao et al., 2023a), and numerous other learning problems, providing both rigorous guarantees
and scalable implementations.

2.2 SKETCHING

Sketching—compressing data with random linear maps—has become a workhorse across modern
optimization and numerical linear algebra. It powers cutting-edge algorithms for linear program-
ming (Jiang et al., 2021; Song & Yu, 2021), empirical risk minimization (Lee et al., 2019; Qin et al.,
2023), and semidefinite programming (Jiang et al., 2020a; Huang et al., 2022; Song et al., 2023c).
In randomized numerical linear algebra it accelerates a wide range of matrix tasks and decompo-
sitions (Clarkson & Woodruff, 2017; Nelson & Nguyên, 2013; Boutsidis et al., 2016; Razenshteyn
et al., 2016; Song et al., 2017; Xiao et al., 2018; Song et al., 2019; Lee et al., 2019; Jiang et al.,
2021; Song & Yu, 2021; Brand et al., 2021b; Hu et al., 2022; Song et al., 2022a; Gu & Song, 2022).
Most applications employ oblivious sketches—data-independent projections—for dimensionality
reduction (Clarkson & Woodruff, 2017; Nelson & Nguyên, 2013). For approximate John-ellipsoid
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computation, Chen et al.(Cohen et al., 2019) rely exclusively on sketching, suggesting room for fur-
ther acceleration, while Mahabadi et al.(Makarychev et al., 2022) tackle a tougher streaming variant
for convex polytopes; their method, however, is not yet optimal in our computational model.

2.3 DIFFERENTIAL PRIVACY

Introduced by (Dwork et al., 2006), differential privacy (DP) has become the gold standard for rig-
orous data protection. An extensive body of work now retrofits classical algorithms, data structures,
and machine-learning pipelines with provable DP guarantees (Esfandiari et al., 2022; Andoni et al.,
2023; Cherapanamjeri et al., 2023; Cohen-Addad et al., 2022; Dong et al., 2024; Farhadi et al., 2022;
Gopi et al., 2023; Li et al., 2022; Gopi et al., 2022; Huang & Yi, 2021; Jung et al., 2019; Li & Li,
2024; Epasto et al., 2024; Chen et al., 2022; Beimel et al., 2022; Narayanan, 2022; 2023; Fan & Li,
2022; Fan et al., 2024; Li & Li, 2023; Eliáš et al., 2020; Yu et al., 2024; Liang et al., 2024; Gu et al.,
2024; Song et al., 2023b; Qin et al., 2022; Song et al., 2023a; Galli et al., 2024; Chen et al., 2024;
Romijnders et al., 2024; Qi et al., 2024; Ke et al., 2025; Hu et al., 2024; Liu et al., 2024). Beyond in-
tegrating privacy into existing methods, researchers are refining the fundamental DP building blocks
themselves. Enhanced variants of the Gaussian, Exponential, and Laplace mechanisms now deliver
tighter accuracy–privacy trade-offs than the classical formulations (Dwork et al., 2014). A prime
example is the truncated Laplace mechanism of Gopi et al. (Geng et al., 2020), which currently
achieves the smallest known error for any (ϵ, δ)-DP distribution.

3 PRELIMINARY

Fact 3.1 ((Woodbury, 1950)). The Woodbury matrix identity is
(M + UCV )−1 =M−1 −M−1U(C−1 + VM−1U)−1VM−1.

Let S ⊂ [n] denote the set of coordinates that is changed by more than a constant factor and r = |S|.
Using the identity above, we have that

Mwnew =Mw − (Mw)S(∆
−1
S,S + (Mw)S,S)

−1((Mw)S)
⊤,

where ∆ = diag(wnew−w), (Mw)S ∈ Rn×r is the r columns from S ofMw and (Mw)S,S ,∆S,S ∈
Rr×r are the r rows and columns from S of Mw and ∆.
Fact 3.2. We have

• Let A ∈ Rn×n, then we have ∥A∥F ≤
√
n∥A∥.

• Let A ∈ Rn×n, then we have ∥A∥ ≤ ∥A∥F

• For two vectors a, b ∈ Rn, then we have |ab⊤| ≤ ∥a∥2 · ∥b∥2
Definition 3.3 (Differential Privacy, (Dwork et al., 2014)). For ϵ > 0, δ ≥ 0, a randomized function
A is (ϵ, δ)-differentially private ((ϵ, δ)-DP) if for any two neighboring datasets X ∼ X ′, and any
possible outcome of the algorithm S ⊂ in Range(A), Pr[A(X) ∈ S] ≤ eϵ Pr[A(X ′) ∈ S] + δ.
Lemma 3.4 (Truncated Laplace Mechanism, (Dwork et al., 2014; Geng et al., 2020; Andoni et al.,
2023)). Let Lap(λ) denote the Laplace distribution with parameter λ with PDF Pr[Z = z] =
1
2λe

−|z|/λ. Let BL := (∆/ϵ) log(1 + eϵ−1
2δ ). Let TLap(∆, ϵ, δ) denote the Truncated Laplace

distribution with PDF proportional to e−|z|/λ on the region [−BL, BL]. Given a numeric function
f that takes a dataset X as the input, and has sensitivity ∆, the mechanism output f(X)+Z where
Z ∼ Lap(∆/ϵ) is (ϵ, 0)-DP. In addition, if Z ∼ TLap(∆, ϵ, δ), then f(X) + Z is (ϵ, δ)-DP.
Definition 3.5 (Dataset, (Gao et al., 2023b)). Fix η > 0, α > 0. We say our dataset X ∈ Rn×d is
(α, η)-good if XX⊤ ⪰ η · In and for all i ∈ [d], ∥X∗,i∥2 ≤ α.
Definition 3.6 (β-close neighbor dataset, (Gao et al., 2023b)). Let B > 0 be a constant. Let n be
the number of data points. Let dataset D = {(xi, yi)}ni=1, where xi ∈ Rd and ∥xi∥2 ≤ B for any
i ∈ [n]. We define D′ as a neighbor dataset with one data point replacement of D. Without loss of
generality, we have ′D = {(xi, yi)}n−1

i=1 ∪ {(x′n, yn)}.Namely, we have D and D′ only differ in the
n-th item.

Additionally, we assume that xn and x′n are β-close. Namely, we have
∥xn − x′n∥2 ≤ β.
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Lemma 3.7 (Post-Processing Lemma for DP, (Dwork et al., 2014)). Let M := N|χ| → R be a
randomized algorithm that is (ϵ, δ)-differentially private. Let f : R→ R′ be an arbitrarily random
mapping. Then is f ◦M : N|χ| → R′ (ϵ, δ)-differentially private.
Theorem 3.8 (Empirical covariance estimator for Gaussian (Vershynin, 2018)). Let Σ ∈ Rd×d be
PSD, X1, · · · , Xn ∼ N (0,Σ) be i.i.d and Σ̃ = 1

n

∑n
i=1XiX

⊤
i . Then with probability 1 − γ, it

holds that ∥Σ−1/2Σ̃Σ−1/2 − I∥F ≤ ρ for some ρ = O(
√

d2+log(1/γ)
n + d2+log(1/γ)

n ).

Lemma 3.9 (Composition lemma for DP, (Dwork et al., 2014)). LetM := N|χ| → R be an (ϵi, δi)-
DP algorithm for i ∈ [k]. If M[k] → Πn

i=1Ri satisfies M[k](x) = (M1(x), · · · ,Mk(x)), then
M[k] is (

∑k
i=1 ϵi,

∑k
i=1 δi)-DP.

Lemma 3.10 (Lemma C.15 in (Song & Yu, 2021)). Let xnew = x+δ̃x and snew = s+δ̃s. Letw = x
s

and wnew = xnew

snew . Then we have
∑n

i=1(E[lnwnew
i ] − lnwi)

2 ≤ 64ϵ2,
∑n

i=1(Var[lnw
new
i ])2 ≤

1000ϵ2.

4 MAIN RESULT

The goal of this section is to prove the following theorem:

Algorithm 1 Projection Maintenance Data Structure

1: datastructure MAINTAINPROJECTION
2:
3: members
4: w ∈ Rn

5: v, ṽ ∈ Rn

6: A ∈ Rd×n

7: M ∈ Rn×n

8: Q ∈ Rn×nbL

9: R1,∗, R2,∗, · · · , RL,∗ ∈ Rnb×n

10: l ∈ N+, L ∈ N+

11: ϵmp ∈ (0, 1/4)
12: a ∈ (0, α]
13: end members
14:
15: procedure INITIALIZE(A,w, ϵmp, a)
16: w ← w, v ← w, ϵmp ← ϵmp, A← A, a← a

17: M ← A⊤(AV 1−2/pA⊤)−1A

18: Choosing R1,∗, R2,∗, · · · , RL,∗ ∈ Rnb×n to be sketching matrices
19: R← [R∗,1, R∗,2, · · · , R∗,L]

20: Q←MV 1/2−1/pR⊤

21: l← 1
22: end procedure
23:
24: end datastructure

Theorem 4.1 (Projection maintenance). Given a full rank matrix A ∈ Rd×n with n ≥ d and a
tolerance parameter 0 < ϵmp < 1/4. Given any positive number a such that a ≤ α where α is
the dual exponent of matrix multiplication. Let R1,∗, · · · , RL,∗ ∈ Rnb×n denote a list of sketching
matrices, where b ∈ [0, 1]. There is a deterministic data structure (Algorithm 1) that approximately
maintains the projection matrices

W 1/2−1/pA⊤(AW 1−2/pA⊤)−1AW 1/2−1/p

for positive diagonal matrices W through the following two operations:

1. UPDATE(w): Output a vector ṽ such that for all i ∈ [n],

(1− ϵmp)ṽi
1/2−1/p ≤ w1/2−1/p

i ≤ (1 + ϵmp)ṽi
1/2−1/p.

4
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2. QUERY(h): Output Ṽ 1/2−1/pA⊤(AṼ 1−2/pA⊤)−1AṼ 1/2−1/p(R⊤)∗,lRl,∗h for the ṽ out-
putted by the last call to UPDATE.

The data structure takes n2dω−2 time to initialize and each call of QUERY(h) takes time n1+b+o(1)+
n1+a+o(1).

Furthermore, if the initial vector w(0) and the (random) update sequence w(1), · · · , w(T ) ∈ Rn

satisfies
n∑

i=1

(
(1/2− 1/p) · (E[lnw(k+1)

i ]− lnw
(k)
i )

)2 ≤ C2
1 and

n∑
i=1

Var[(1/2− 1/p) lnw
(k+1)
i ])2 ≤ C2

2

with the expectation and variance is conditional onw(k)
i for all k = 0, 1, · · · , T−1. Then, the amor-

tized expected time1 per call of UPDATE(w) is (C1/ϵmp + C2ϵ
2
mp) · (nω−1/2+o(1) + n2−a/2+o(1)).

Proof. The theorem holds by combining Lemma 4.3, Lemma 4.4 and Lemma 4.5.

Remark 4.2. For our linear program algorithm, we have C1 = O(1/ log n), C2 = O(1/ log n)
and ϵmp = Θ(1). See Lemma 3.10.

To verify the correctness of our updates, we have the following lemma:

Lemma 4.3 (Correctness of the algorithm, informal version of Lemma C.1). The output of
UPDATE(w) in Algorithm 2 satisfies

M = A⊤(AV 1−2/pA⊤)−1A, Q =MV 1/2−1/pR⊤

The output of QUERY(h) in Algorithm 3 satisfies

ps = P̃ (R⊤)∗,lRl,∗h

px = (I − P̃ )(R⊤)∗,lRl,∗h,

where P̃ = V 1/2−1/pA⊤(AṼ 1−2/pA⊤)−1AṼ 1/2−1/p, and Ṽ is outputted by UPDATE(w).

Above lemma verifies our algorithm. Now we consider the running time of the projection mainte-
nance, which consists of Initialization time, update time and query time, as discussed below.

4.1 INITIALIZATION TIME, UPDATE TIME

To formalize the amortized runtime proof, we first analyze the initialization time (Lemma 4.4),
update time (Lemma 4.5), and query time (Lemma 4.6) of our projection maintenance data-structure.

Lemma 4.4 (Initialization time). The initialization time of data-structure MAINTAINPROJECTION
(Algorithm 1) is O(n2dω−2).

Proof. Given a matrix A ∈ Rd×n and diagonal matrix V ∈ Rn×n, computing A⊤(AV A⊤)−1A
takes O(n2dω−2).

Lemma 4.5 (Update time). The update time of data-structure MAINTAINPROJECTION (Algo-
rithm 2) is O(rgrn

2+o(1)) where r is the number of indices we updated in v.

Proof. The proof is identical to (Cohen et al., 2021b; Lee et al., 2019). We omit the details here.

4.2 QUERY TIME

Lemma 4.6 (Query time, informal version of Lemma C.2). The query time of data-structure MAIN-
TAINPROJECTION (Algorithm 1) is O(n1+b+o(1) + n1+a+o(1)).

1If the input is deterministic, so is the output and the runtime.
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Algorithm 2 Update

1: datastructure MAINTAINPROJECTION
2:
3: procedure UPDATE(w)
4: yi ← lnwi − ln vi,∀i ∈ [n]
5: r ← the number of indices i such that |yi| ≥ ϵmp/2.
6: if r < na then
7: vnew ← v
8: Mnew ←M
9: l← l + 1

10: else
11: Let π : [n]→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|
12: while 1.5 · r < n and |yπ([1.5·r])| ≥ (1− 1/ log n)|yπ(r)| do
13: r ← min(⌈1.5 · r⌉, n)
14: end while

15: vnewπ(i) ←
{
wπ(i) i ∈ {1, 2, · · · , r}
vπ(i) i ∈ {r + 1, · · · , n}

16: ∆← diag(vnew − v)
17: Γ← diag((vnew)1/2−1/p − v1/2−1/p)
18: Let S ← π([r]) be the first r indices in the permutation.
19: Let MS ∈ Rn×r be the r columns from S of M .
20: Let MS,S ,∆S,S ∈ Rr×r be the r rows and columns from S of M and ∆.
21: Mnew ←M −M∗,S · (∆−1

S,S +MS,S)
−1 · (M∗,S)

⊤

22: Re-generate R
23: Qnew ← Q+ (Mnew · Γ) ·R⊤ + (Mnew −M) · V 1/2−1/p ·R⊤

24: l← 1
25: end if
26: v ← vnew

27: M ←Mnew

28: Q← Qnew

29: ṽi ←
{
vi if | lnwi − ln vi| < ϵmp/2

wi otherwise
30: return ṽ
31: end procedure
32:
33: end datastructure

Algorithm 3 Query

1: datastructure MAINTAINPROJECTION
2:
3: procedure QUERY(h)
4: Let S̃ be the indices i such that | lnwi − ln vi| ≥ ϵmp/2.
5: ∆̃← Ṽ 1−2/p − V 1−2/p

6: Γ̃← Ṽ 1/2−1/p − V 1/2−1/p

7: pm ← Ṽ 1/2−1/p · (M∗,S̃) · (∆̃
−1

S̃,S̃
+MS̃,S̃)

−1 · (QS̃,l +MS̃,∗ · Γ̃ · (R
⊤)∗,l) ·Rl,∗ · h

8: ps ← Ṽ 1/2−1/p · (Q∗,l +M · Γ̃ · (R⊤)∗,l) ·Rl,∗ · h− pm
9: px ← (R⊤)∗,l ·Rl,∗ · h− ps

10: return (px, ps)
11: end procedure
12:
13: end datastructure

6
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5 TECHNICAL OVERVIEW

In this section, we present technical overview of our study. In Section 5.1, we introduce the key
parameters for privacy analysis. In Section 5.2, we analyze the DP guarantees for W 1/2−1/pA,
while Section 5.3 investigates its utility guarantees. In Section 5.4, we present DP guarantees for
A⊤W 1/2−1/p. In Section 5.5, we present utility guarantees for A⊤W 1/2−1/p. In Section 5.6, we
provide DP guarantees for (A⊤W 1−2/pA)−1. In Section 5.7, we provide utility guarantees for
(A⊤W 1−2/pA)−1.

5.1 KEY CONCEPTS

Definition 5.1 (Definition of M , (Gao et al., 2023b), see Definition 5.1 of (Gu et al., 2025) as an
example). LetM : (Rn)d → Rn×n be a (randomized) algorithm that given a dataset of d points in
Rn outputs a PSD matrix. Let Y,Y ′ ∈ (Rn)d. Then, we define

M := ∥M(Y)1/2M(Y
′
)−1M(Y)1/2 − I∥F .

Definition 5.2 (Definition of ∆, (Gao et al., 2023b), see Definition 5.2 of (Gu et al., 2025) as an
example). If we have the following conditions:

• Let ϵ ∈ (0, 1) and δ ∈ (0, 1).

• Let k denote the number of i.i.d. samples g1, g2, · · · , gk from N (0,Σ1) output by Algo-
rithm 4.

We define ∆ := min

{
ϵ√

8k log(1/δ)
, ϵ
8 log(1/δ)

}
.

5.2 DP GUARANTEES FOR W 1/2−1/pA

Lemma 5.3 (Sensitivity of W 1/2−1/pA, informal version of Lemma D.1). If the following condi-
tions hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let J := W 1/2−1/pA denote the data generated by X and J ′ denote the data generated
by neighboring dataset X ′, where W 1/2−1/p ∈ Rm×m and A ∈ Rm×n.

• Let β > 0 be defined as Definition 3.6.

Then, we can show that the sensitivity of J is
√
n · β.

Then, we use the truncated Laplace mechanism (Lemma 3.4) to ensure the DP property of
W 1/2−1/pA.

Lemma 5.4 (DP guarantees for W 1/2−1/pA). If the following conditions hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let ∆J :=
√
n · β denote the sensitivity of J .

• Let J := W 1/2−1/pA denote the data generated by X and J ′ denote the data generated
by neighboring dataset X ′, where W 1/2−1/p ∈ Rm×m and A ∈ Rm×n.

• Let β > 0 be defined as Definition 3.6.

• Let BL = (∆J/ϵJ) log(1 +
exp(ϵJ )−1

2δJ
).

7
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• Let J̃ := J +TLap(∆J , ϵJ , δJ).

Then, we can show that J̃ is (ϵJ , δJ)-DP.

Proof. The proof follows directly from Lemma 3.4.

5.3 UTILITY GUARANTEES FOR W 1/2−1/pA

Lemma 5.5 (Utility guarantees for W 1/2−1/pA, informal version of Lemma E.1). Under the same
conditions in Lemma 5.4, we can show that ∥J̃ − J∥2 ≤

√
n ·BL.

5.4 DP GUARANTEES FOR A⊤W 1/2−1/p

Lemma 5.6 (DP guarantees for A⊤W 1/2−1/p). If the following conditions hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let ∆J :=
√
n · β denote the sensitivity of J .

• Let J⊤ := A⊤W 1/2−1/p denote the data generated by X and J ′⊤ denote the data gener-
ated by neighboring dataset X ′, where W 1/2−1/p ∈ Rm×m and A⊤ ∈ Rn×m.

• Let β > 0 be defined as Definition 3.6.

• Let BL = (∆J/ϵJ) log(1 +
exp(ϵJ )−1

2δJ
).

• Let J̃⊤ := J⊤ +TLap(∆J , ϵJ , δJ).

Then, we can show that J̃⊤ is (ϵJ , δJ)-DP.

Proof. In Lemma 5.4, we prove the differential privacy property of W 1/2−1/pA. By the post-
processing property of differential privacy (Lemma 3.7), the transpose matrix A⊤W 1/2−1/p com-
puted from the privatized matrix W 1/2−1/pA also preserves (ϵJ , δJ)-differentially private.

5.5 UTILITY GUARANTEES FOR A⊤W 1/2−1/p

Lemma 5.7 (Utility guarantees forA⊤W 1/2−1/p, informal version of Lemma E.2). Under the same
conditions in Lemma 5.6,

we can show that ∥J̃⊤ − J⊤∥2 ≤
√
n ·BL.

5.6 DP GUARANTEES FOR (A⊤W 1−2/pA)−1

Lemma 5.8 (DP guarantees for (A⊤W 1−2/pA)−1, Theorem 6.12 in (Gao et al., 2023b), Theorem
5.1 in (Alabi et al., 2023), Lemma 5.4 in (Gu et al., 2025), informal version of Lemma B.1). Under
the same conditions in Lemma B.1, there exists an Algorithm 4 such that

• Part 1. Algorithm 4 is (ϵα, δα)-DP.

• Part 2. Outputs Σ̂ ∈ Sn+ denotes the private version of input Σ, such that with probabilities
at least 1− γ, ∥Σ−1/2Σ̂Σ−1/2 − In∥F ≤ ρ.

• Part 3. (1− ρ)Σ ⪯ Σ̂ ⪯ (1 + ρ)Σ.

By the post-processing property of differential privacy (Lemma 3.7), the inverse Σ̂−1 computed from
the privatized matrix Σ̂ remains (ϵα, δα)-differentially private.
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In Lemma 5.8, Part 1 claims the privacy guarantees of the “Gaussian Sampling Mechanism”, Part
2 establishes the critical properties necessary to ensure the utility of the “Gaussian Sampling Mech-
anism”, and Part 3 presents the ultimate utility outcomes of the algorithm.

Note that in our setting, we use Σ = H , where H is the non-private matrix of interest, and we also
have Σ̂ = H̃ to denote the private version of H .

The quantity M used in Condition 6 is formally analyzed in Section A.1.

Algorithm 4 The Gaussian Sampling Mechanism, (Gao et al., 2023b)

1: procedure ALGORITHM(Σ, k)
2: PSD matrix Σ ∈ Rn×n and parameter k ∈ N
3: Obtain vectors g1, g2, · · · , gk by sampling gi ∼ N (0,Σ), independently for each i ∈ [k]

4: Compute Σ̂ = 1
k

∑k
i=1 gig

⊤
i ▷ Covariance estimate.

5: return Σ̂
6: end procedure

5.7 UTILITY GUARANTEES FOR (A⊤W 1−2/pA)−1

Lemma 5.9 (Utility guarantees for (A⊤W 1−2/pA)−1, informal version of Lemma E.3). Under the
same conditions in Lemma 5.8, with probability 1− γ, we have ∥H−1 − H̃−1∥ ≤ O(ρ·ηmax

η2
min

).

5.8 DP GUARANTEES FOR W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h

Lemma 5.10 (DP guarantees for W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h, informal version
of Lemma D.2). If the following conditions hold:

• Let ϵα, δα ∈ R denote the DP parameter for A⊤W 1−2/pA.

• Let ϵJ , δJ ∈ R denote the DP parameters for W 1/2−1/pA and A⊤W 1/2−1/p.

• Let ϵ = 2ϵJ + ϵα, δ = 2δJ + δα.

• Let H and H̃ be defined as Lemma 5.9.

• Let J and J̃ be defined as Lemma 5.4.

Then, we can show W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h is (ϵ, δ)-DP.

5.9 UTILITY GUARANTEES FOR W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h

Lemma 5.11 (Utility guarantees for W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h, informal ver-
sion of Lemma E.4). Under the same conditions as in Lemma E.4, with probability 1− γ, we have

|JH−1J⊤ · h− J̃H̃−1J̃⊤ · h| ≤ 2σJσh
√
n ·BL + σ2

Jσh ·O(
ρ · ηmax

η2min

).

6 CONCLUSION

In this work, we introduce Dynamic ℓp-Lewis Weight Projection Maintenance, which is a novel
data-structure that considers the projection maintenance problem P (B) := B(B⊤B)−1B⊤ with
B = W 1/2−1/pA, that strictly generalizes the B =

√
WA projection. Our deterministic algorithm

supports fast updates and queries with sublinear amortized time and extends naturally to the dif-
ferential privacy setting with provable utility guarantees. This work not only advances theoretical
tools for linear programming, interior point methods, and leverage-based algorithms, but also opens
avenues for private and efficient optimization in data-sensitive applications.
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Appendix
Roadmap.

• In Section A, we provide a sensitivity analysis and perturbation bounds for PSD Matrices
in DP guarantees.

• In Section B, we introduce the Gaussian Sampling Mechanism.

• In Section C, we present a detailed proof of the main result stated in Section 4.

• In Section D, we provide detailed proof of DP guarantees introduced in Section 5.

• In Section E, we give a complete proof of the utility guarantees outlined in Section 5.

A SENSITIVITY AND SPECTRAL PERTURBATION OF PSD MATRIX

A.1 SENSITIVITY OF PSD MATRIX

In this section, we provide more lemmas related to sensitivity.

Lemma A.1 (Lemma D.1 in (Gao et al., 2023b)). If X ∈ Rn×d and X ′ ∈ Rn×d are neigh-
boring datasets (see Definition 3.5 and Definition 3.6), then (1 − 2αβ/η)XX⊤ ⪯ X ′X ′⊤ ⪯
(1 + 2αβ/η)XX⊤.

Proof. Let i ∈ [d] be index that X∗,i and X ′
∗,i are different (See Definition 3.6).

We have

X ′X ′⊤ =

d∑
j=1

X ′
∗,jX

′⊤
∗,j

= (
∑

j∈[d]\{i}

X ′
∗,jX

′⊤
∗,j) +X ′

∗,iX
′⊤
∗,i

= (
∑

j∈[d]\{i}

X∗,jX
⊤
∗,j) +X ′

∗,iX
′⊤
∗,i

= XX⊤ −X∗,iX
⊤
∗,i +X ′

∗,iX
′⊤
∗,i

where the first step is the result of matrix multiplication, the second step is from simple algebra, the
third step follows from Definition 3.6, and the last step comes from simple algebra.

We know that

∥X∗,iX
⊤
∗,i −X ′

∗,iX
′
∗,i∥ = ∥X∗,iX

⊤
∗,i −X∗,iX

′⊤
∗,i +X∗,iX

′⊤
∗,i −X ′

∗,iX
′
∗,i∥

≤ ∥X∗,iX
⊤
∗,i −X∗,iX

′⊤
∗,i∥+ ∥X∗,iX

′⊤
∗,i −X ′

∗,iX
′
∗,i∥

≤ ∥X∗,i∥2 · ∥X∗,i −X ′
∗,i∥2 + ∥X∗,i −X ′

∗,i∥2 · ∥X ′
∗,i∥2

≤ 2αβ (1)

where the first step is from adding a new term X∗,iX
′⊤
∗,i , the second step follows from the trian-

gle inequality, the third step follows from Fact 3.2, and the last step is due to Definition 3.5 and
Definition 3.6.

Thus, we have X ′X ′⊤ ⪰ XX⊤ − 2αβIn ⪰ (1 − 2αβ/η)XX⊤. Similarly, we have
X ′X ′⊤ ⪯ XX⊤ + 2αβIn ⪯ (1 + 2αβ/η)XX⊤.

Lemma A.2 (Lemma D.2 in (Gao et al., 2023b)). If the following conditions hold,

• Let α and η be defined in Definition 3.5.

• Let β be defined in Definition 3.6.
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• By Lemma A.1, X and X ′ are neighboring datasets such that

(1− 2αβ/η)XX⊤ ⪯ X ′X ′⊤ ⪯ (1 + 2αβ/η)XX⊤

Then, we have

• Part 1.

∥(XX⊤)−1/2X ′X ′⊤(XX⊤)−1/2 − I∥ ≤ 2αβ/η

• Part 2.

∥(XX⊤)−1/2X ′X ′⊤(XX⊤)−1/2 − I∥F ≤ 2
√
nαβ/η

Proof. The proof is straightforward, and we omit the details here.

Lemma A.3 ( Spectral norm of H − H̃). If we have the below conditions,

• Condition 1. If D ∈ Rn×d and D′ ∈ Rn×d are neighboring dataset (see Definition 3.6)

• Condition 2. Let H := A⊤W 1−2/pA denotes the symmetric positive semi-definite matrix
generated by D.

• Condition 3. Let H̃ denote the private H generated by Algorithm 4 with H as the input.

• Condition 4. Let ηmaxIn×n ⪰ H ⪰ ηminIn×n, for some ηmax, ηmin ∈ R.

• Condition 5. Let ρ = O(
√
(n2 + log(1/γ))/k + (n2 + log(1/γ))/k).

• Condition 6. Let γ ∈ (0, 1).

Then, with probability 1− γ, we have

∥H − H̃∥ ≤ ρ · ηmax

Proof. By Part 3 of Lemma 5.8, with probability 1− γ, we have

(1− ρ)H ⪯ H̃ ⪯ (1 + ρ)H

which implies

−ρH ⪯ H̃ −H ⪯ ρH (2)

Then, we have

∥H̃ −H∥ ≤ ρ · ηmax

Lemma A.4 ((Wedin, 1973), Theorem 1.1 in (Meng & Zheng, 2010)). Given two matrices A,B ∈
Rd1×d2 with full column rank, we have

∥A† −B†∥ ≲ max(∥A†∥2, ∥B†∥2) · ∥A−B∥.

B GAUSSIAN SAMPLING MECHANISM

In this section, we restate the analysis for “Gaussian Sampling Mechanism”, which guarantees the
privacy of our algorithm and provides potential tools for demonstrating its utility.
Lemma B.1 (DP guarantees for (A⊤WA)−1, Theorem 6.12 in (Gao et al., 2023b), Theorem 5.1 in
(Alabi et al., 2023), Lemma D.1 in (Gu et al., 2025), formal version of Lemma 5.8). If we have the
below conditions,

• Condition 1. Let D and D′ are neighboring dataset (see Definition 3.6).
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• Condition 2. Let H := A⊤W 1−2/pA denotes the symmetric positive semi-definite ma-
trix generated by X , and H ′ denotes the symmetric positive definite matrix generated by
neighboring dataset X ′.

• Condition 3. Let ϵα ∈ (0, 1) and δα ∈ (0, 1) denote the DP parameter for A⊤W 1−2/pA.

• Condition 4. Let Y,Y ′ denote neighboring datasets, which differ by a single data element.

• Condition 5. Let ∆ be defined in Definition 5.2 and ∆ < 1.

• Condition 6. Let M,M be defined in Definition 5.1 and M ≤ ∆.

• Condition 7. Let the input Σ =M(Y).

• Condition 8. Let ρ = O(
√
(n2 + log(1/γ))/k + (n2 + log(1/γ))/k).

• Condition 9. Let k ∈ N.

• Condition 10. Let γ ∈ (0, 1).

• Condition 11. Let ηmaxIn×n ⪰ H ⪰ ηminIn×n, for some ηmax, ηmin ∈ R.

• Condition 12. Let H̃ denote the private H generated by Algorithm 4 with H as the input.

• Condition 13. Let
√
nψ/ηmin < ∆, where ∆ is defined in Definition 5.2.

Then, there exists an Algorithm 4 such that

• Part 1. Algorithm 4 is (ϵα, δα)-DP.

• Part 2. Outputs Σ̂ ∈ Sn+ such that with probabilities at least 1− γ,

∥Σ−1/2Σ̂Σ−1/2 − In∥F ≤ ρ

• Part 3.

(1− ρ)Σ ⪯ Σ̂ ⪯ (1 + ρ)Σ.

C PROOF OF MAIN RESULT

Lemma C.1 (Correctness of the algorithm, formal version of Lemma 4.3). The output of
UPDATE(w) in Algorithm 2 satisfies

M = A⊤(AV 1−2/pA⊤)−1A and

Q =MV 1/2−1/pR⊤

The output of QUERY(h) in Algorithm 3 satisfies

ps = P̃ (R⊤)∗,lRl,∗h

px = (I − P̃ )(R⊤)∗,lRl,∗h,

where P̃ = V 1/2−1/pA⊤(AṼ 1−2/pA⊤)−1AṼ 1/2−1/p, and Ṽ is outputted by UPDATE(w).

Proof. Let S denote the support of ∆.

Thus, by the Woodbury matrix identity (Fact 3.1) and definition of Mnew, we have

A⊤(A(V new)1−2/pA⊤)−1A

= A⊤(A(V +∆)1−2/pA⊤)−1A

= A⊤((AV 1−2/pA⊤)−1 − (AV 1−2/pA⊤)−1A∗,S · (∆−1
S,S + (A⊤)S,∗(AV

1−2/pA⊤)−1A∗,S)
−1
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· (A⊤)S,∗(AV
1−2/pA⊤)−1)A

= A⊤(AV 1−2/pA⊤)−1A−A⊤(AV 1−2/pA⊤)−1A∗,S

· (∆−1
S,S + (A⊤)S,∗(AV

1−2/pA⊤)−1A∗,S)
−1 · (A⊤)S,∗(AV

1−2/pA⊤)−1A

=M −M∗,S(∆
−1
S,S +MS,S)

−1MS,∗

=Mnew.

where the first step follows from the definition of V new = V + ∆, the second step follows from
the Fact 3.1, the third step distributes the terms, the fourth step follows from the definition of M =
A⊤(AV 1−2/pA⊤)−1A, and the last step follows from the definition of Mnew.

Note the output M = Mnew and V = V new, so we have the output satisfying M =
A⊤(AV A⊤)−1A.

As for Q, notice by definition

Qnew = Q+ (Mnew · Γ) ·R⊤ + (Mnew −M) · V 1/2−1/p ·R⊤

=MV 1/2−1/pR⊤ + (Mnew · Γ) ·R⊤ + (Mnew −M) · V 1/2−1/p ·R⊤

=MV 1/2−1/pR⊤ +Mnew((V new)1/2−1/p − V 1/2−1/p)R⊤ + (Mnew −M)V 1/2−1/pR⊤

=Mnew((V new)1/2−1/p − V 1/2−1/p)R⊤ +MnewV 1/2−1/pR⊤

=Mnew(V new)1/2−1/pR⊤

where the first step follows from the definition of Qnew, the second step follows from definition of
Q, the third step follows from the definition of Γ, the fourth step distributes and eliminates the term
MV 1/2−1/pR⊤, and the last step distributes and eliminates the term MnewV 1/2−1/pR⊤.

Again, since the output Q = Qnew, M = Mnew and V = V new, we have the output satisfying
Q =MV 1/2−1/pR⊤.

For QUERY(h) procedure, by definition we have

pm = Ṽ 1/2−1/p · (M∗,S̃) · (∆̃
−1

S̃,S̃
+MS̃,S̃)

−1 · (QS̃,l +MS̃,∗ · Γ̃ · (R
⊤)∗,l) ·Rl,∗ · h

= Ṽ 1/2−1/p · (M∗,S̃) · (∆̃
−1

S̃,S̃
+MS̃,S̃)

−1

· ((MV 1/2−1/pR⊤)S̃,l +MS̃,∗ · (Ṽ
1/2−1/p − V 1/2−1/p) · (R⊤)∗,l) ·Rl,∗ · h

= Ṽ 1/2−1/p · (M∗,S̃) · (∆̃
−1

S̃,S̃
+MS̃,S̃)

−1 ·MS̃,∗ · Ṽ
1/2−1/p · (R⊤)∗,l · h, (3)

where the first step follows from the definition of pm, the second step follows from the definition of
Q and Γ̃, and the third step eliminates the terms.

Thus,

ps = Ṽ 1/2−1/p · (Q∗,l +M · Γ̃ · (R⊤)∗,l) ·Rl,∗ · h− pm
= Ṽ 1/2−1/p · ((MV 1/2−1/pR⊤)∗,l +M · (Ṽ 1/2−1/p − V 1/2−1/p) · (R⊤)∗,l) ·Rl,∗ · h− pm
= Ṽ 1/2−1/p ·M · Ṽ 1/2−1/p · (R⊤)∗,l ·Rl,∗ · h− pm
= Ṽ 1/2−1/p(M −M∗,S̃(∆̃

−1

S̃,S̃
+MS̃,S̃)

−1MS̃,∗)Ṽ
1/2−1/p(R⊤)∗,lRl,∗h, (4)

where the first step follows the definition of ps, the second step follows from the definition of Q and
Γ̃, the third step follows from eliminates the terms, and the last step substitutes pm by Eq. (3).

Note Ṽ only differs from V in entries corresponding to the set S̃, again by the Woodbury matrix
identity (Fact 3.1) and the definition of M , we have

A⊤(AṼ 1−2/pA⊤)−1A

= A⊤(A(V 1−2/p + ∆̃)A⊤)−1A

= A⊤((AV 1−2/pA⊤)−1 − (AV 1−2/pA⊤)−1A∗,S̃
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· (∆̃−1

S̃,S̃
+ (A⊤)S̃,∗(AV

1−2/pA⊤)−1A∗,S̃)
−1 · (A⊤)S̃,∗(AV

1−2/pA⊤)−1)A

= A⊤(AV 1−2/pA⊤)−1A−A⊤(AV 1−2/pA⊤)−1A∗,S̃

· (∆̃−1

S̃,S̃
+ (A⊤)S̃,∗(AV

1−2/pA⊤)−1A∗,S̃)
−1 · (A⊤)S̃,∗(AV

1−2/pA⊤)−1A

=M −M∗,S̃(∆̃
−1

S̃,S̃
+MS̃,S̃)

−1MS̃,∗, (5)

where the first step follows from Ṽ 1−2/p = V 1−2/p+∆̃, the second step follows from Fact 3.1 , the
third step distributes two terms, and the last step follows from the definition of M , which implies

ps = Ṽ 1/2−1/pA⊤(AṼ 1−2/pA⊤)−1AṼ 1/2−1/p(R⊤)∗,lRl,∗h

= P̃ (R⊤)∗,lRl,∗h, (6)

where the first step follows from Eq. (4) and (5), and the second step follows from the definition of
P̃ .

Further,

px = (R⊤)∗,lRl,∗h− ps
= (I − P̃ )(R⊤)∗,lRl,∗h,

where the first step follows from the definition of px, and the second step follows from Eq. (6).

Thus we completes the proof.

Lemma C.2 (Query time, formal version of Lemma 4.6). The query time of data-structure MAIN-
TAINPROJECTION (Algorithm 1) is O(n1+b+o(1) + n1+a+o(1)).

Proof. Notice by the algorithm we have |S̃| ≤ na. Thus, Γ̃ is a sparse diagonal matrix with at most
na non-zero elements. The running time mainly comes from three parts.

Part 1. Computing pm:

• Compute Rl,∗ · h: matrix-vector multiplication between matrix of size nb × n and vector
of size n× 1, this takes n1+b time.

• Compute (R⊤)∗,l ·(Rl,∗h): matrix-vector multiplication between matrix of size n×nb and
vector of size nb × 1, this takes n1+b time.

• Compute Γ̃·(R⊤
l,∗Rl,∗h): matrix-vector multiplication between sparse diagonal matrix with

at most na non-zero elements and vector of size n× 1, this takes na time.

• Compute MS̃,∗ · (Γ̃R
⊤
l,∗h): matrix-vector multiplication between matrix of size at most

na × n and sparse vector with at most na non-zero elements, this takes n2a time.

• ComputeQS̃,l·(Rl,∗h): matrix-vector multiplication between matrix of size at most na×nb

and vector of size nb × 1, this takes na+b time.

• Compute (∆̃−1

S̃,S̃
+MS̃,S̃)

−1: inverse of matrix of size at most na×na, this takes naω time.

• Compute (∆̃−1

S̃,S̃
+MS̃,S̃)

−1 · [(QS̃,l+MS̃,∗Γ̃(R
⊤)∗,l)Rl,∗h]: matrix-vector multiplication

between matrix of size at most na × na and vector of size at most na × 1, this takes n2a
time.

• Compute Ṽ 1/2−1/p · (M∗,S̃): matrix-matrix multiplication between diagonal matrix of size
n× n and matrix of size at most n× na, this takes n1+a time.

• Compute [Ṽ 1/2−1/pM∗,S̃ ] · [(∆̃
−1

S̃,S̃
+ MS̃,S̃)

−1(QS̃,l + MS̃,∗Γ̃(R
⊤)∗,l)Rl,∗h]: matrix-

vector multiplication between matrix of size at most n × na and vector of size at most
na × 1, this takes n1+a time.
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To conclude, we can compute pm in O(n1+b + naω + n1+a) time.

Part 2. Computing ps:

• ComputeRl,∗h and Γ̃R⊤
l,∗Rl,∗h in same way as in calculating pm: take n1+b andO(n1+b+

na) time respectively.

• Compute Ṽ 1/2−1/p · Q∗,l: matrix-matrix multiplication between diagonal matrix of size
n× n and matrix of size n× nb, takes n1+b time.

• Compute [Ṽ 1/2−1/pQ∗,l] · [Rl,∗h]: matrix-vector multiplication between matrix of size
n× nb and vector of size nb × 1, takes n1+b time.

• Compute M · [Γ̃R⊤
l,∗Rl,∗h]: matrix-vector multiplication between matrix of size n×n and

sparse vector with at most na non-zero elements, takes O(n1+a) time.

• Compute Ṽ 1/2−1/p·[M Γ̃R⊤
l,∗Rl,∗h]: matrix-vector multiplication between diagonal matrix

of size n× n and vector of size n× 1, takes n time.

To conclude, we can compute ps in O(n1+b + n1+a) time.

Part 3. Computing px:

• Compute R⊤
l,∗Rl,∗h in same way as in calculating pm: take O(n1+b) time.

Thus, the overall running time is

O(n1+a + n1+b + naω).

Finally, we note that ω ≤ 3− α ≤ 3− a (see (Cohen et al., 2021b)) and hence a · ω ≤ a(3− a) ≤
(1 + a). Therefore, the final running time it takes is O(b1+b+o(1) + n1+a+o(1)).

D PROOF OF DIFFERENTIAL PRIVACY GUARANTEES

Lemma D.1 (Sensitivity of W 1/2−1/pA, formal version of Lemma 5.3). If the following conditions
hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let J := W 1/2−1/pA denote the data generated by X and J ′ denote the data generated
by neighboring dataset X ′, where W 1/2−1/p ∈ Rm×m and A ∈ Rm×n.

• Let β > 0 be defined as Definition 3.6.

Then, we can show that the sensitivity of J is
√
n · β.

Proof. Without loss of generality, we use xm ∈ Rn and x′m ∈ Rn to denote the different items in
X and X ′. According to the definition of the neighboring dataset, we have

∥xm − x′m∥2 ≤ β.

Then, we have

∥J − J ′∥1 = ∥xm − x′m∥1
≤
√
n · ∥xm − x′m∥2

=
√
n · β,

where the first step follows from ∥u − v∥1 ≤
√
n∥u − v∥2 for any u, v ∈ Rn, and the second step

follows from ∥xm − x′m∥2 ≤ β.
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Lemma D.2 (DP guarantees for W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h, formal version of
Lemma 5.10). If the following conditions hold:

• Let ϵα, δα ∈ R denote the DP parameter for A⊤W 1−2/pA.

• Let ϵJ , δJ ∈ R denote the DP parameters for W 1/2−1/pA and A⊤W 1/2−1/p.

• Let ϵ = 2ϵJ + ϵα.

• Let δ = 2δJ + δα.

• Let H and H̃ be defined as Lemma 5.9.

• Let J and J̃ be defined as Lemma 5.4.

Then, we can show W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h is (ϵ, δ)-DP.

Proof. Since we have

• A⊤W 1−2/pA is (ϵα, δα)-DP.

• W 1/2−1/pA is (ϵJ , δJ)-DP.

• A⊤W 1/2−1/p is (ϵJ , δJ)-DP.

• ϵ = 2ϵJ + ϵα, δ = 2δJ + δα.

By Lemma 3.9, we have W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p is (ϵ, δ)-DP.

Next, by the post-processing property of differential privacy (Lemma 3.7), we conclude that
W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h is also (ϵ, δ)-DP.

Thus, we complete the proof.

E PROOF OF UTILITY GUARANTEES

Lemma E.1 (Utility guarantees for W 1/2−1/pA, formal version of 5.5). If the following conditions
hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let ∆J :=
√
n · β denote the sensitivity of J .

• Let J := W 1/2−1/pA denote the data generated by X , where W 1/2−1/p ∈ Rm×m and
A ∈ Rm×n.

• Let BL = (∆J/ϵJ) log(1 +
exp(ϵJ )−1

2δJ
).

• Let J̃ := J +TLap(∆J , ϵJ , δJ).

Then, we can show that

∥J̃ − J∥2 ≤
√
n ·BL.

Proof. For i ∈ [m], j ∈ [n], let J(i, j), J ′(i, j) ∈ R denote the (i, j)-th entry of J and J ′, respec-
tively. Let Ji ∈ Rn denotes the i-th column of J .

By the definition of J̃ , we have

J̃(i, j) = J(i, j) + TLAP(∆J , ϵJ , δJ)
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Recall that we haveBL = (∆J/ϵJ) log(1+
eϵJ−1
2δJ

). By the definition of truncated Laplace, we have

|TLAP(∆J , ϵJ , δJ)| ≤ BL.

Combining the above two equations, for i ∈ [m], we have

∥J̃ − J∥2 ≤
√
n ·BL.

Thus, we complete the proof.

Lemma E.2 (Utility guarantees for A⊤W 1/2−1/p, formal version of Lemma 5.7). If the following
conditions hold:

• Let the neighboring dataset X and X ′ be defined in Definition 3.6.

• Let ϵJ , δJ ∈ R denote the DP parameters for J .

• Let ∆J :=
√
n · β denote the sensitivity of J .

• Let J⊤ := A⊤W 1/2−1/p denote the data generated by X , where W 1/2−1/p ∈ Rm×m and
A⊤ ∈ Rn×m.

• Let J̃⊤ := J⊤ +TLap(∆J , ϵJ , δJ).

• Let BL = (∆J/ϵJ) log(1 +
exp(ϵJ )−1

2δJ
).

we can show that

∥J̃⊤ − J⊤∥2 ≤
√
n ·BL.

Proof. From Lemma 5.5, we have

∥J̃ − J∥2 ≤
√
n ·BL.

Then,

∥J̃⊤ − J⊤∥2 = ∥(J̃ − J)⊤∥2
= ∥J̃ − J∥2
≤
√
n ·BL.

Where the first step follows from the invariance of the norm under transposition, the second step
follows from the norm property ∥A⊤∥2 = ∥A∥2, and the third step follows from Lemma 5.5.

Thus, we complete the proof.

Lemma E.3 (Utility guarantees for (A⊤W 1−2/pA)−1, formal version of Lemma 5.9). If the fol-
lowing conditions hold:

• Condition 1. If D ∈ Rn×d and D′ ∈ Rn×d are neighboring dataset (see Definition 3.6)

• Condition 2. Let H := A⊤W 1−2/pA denotes the symmetric positive semi-definite matrix
generated by D.

• Condition 3. Let H̃ denote the private H generated by Algorithm 4 with H as the input.

• Condition 4. Let ηmaxIn×n ⪰ H ⪰ ηminIn×n, for some ηmax, ηmin ∈ R.

• Condition 5. Let
√
nψ/ηmin < ∆, where ∆ is defined in Definition 5.2.

• Condition 6. Let ρ = O(
√

(n2 + log(1/γ))/k + (n2 + log(1/γ))/k).

• Condition 7. Let γ ∈ (0, 1).

Then, with probability 1− γ, we have

∥H−1 − H̃−1∥ ≤ O(
ρ · ηmax

η2min

)
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Proof. We consider the ∥H−1∥ term. We have

∥H−1∥ = ∥(A⊤W 1−2/pA)−1∥ (7)

= σmax((A
⊤W 1−2/pA)−1)

=
1

σmin((A⊤W 1−2/pA))

≤ 1

ηmin
(8)

where the 1st step is due to Condition 2, the 2nd step is because of definition of spectral norm, the 3rd
step is due to σmax(A

−1) = 1/σmin(A) holds for any matrixA, the 4th step is fromK ⪰ ηminIn×n.

Similarly, we can have

∥H̃−1∥ ≤ 1

ηmin
(9)

Recall in Lemma A.3, we have

∥H − H̃∥ ≤ ρ · ηmax (10)

Then, by Lemma A.4, we have

∥H−1 − H̃−1∥ ≤ O(max{∥H−1∥2, ∥H̃−1∥2} · ∥H − H̃∥)

≤ O(
1

η2min

· ∥H − H̃∥)

≤ O(
ρ · ηmax

η2min

)

where the 1st step is because of Lemma A.4, the 2nd step is due to Eq. (7) and Eq. (9), the 3rd step
is from Eq. (10).

Lemma E.4 (Utility guarantees for W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p · h, formal version
of Lemma 5.11). If the following conditions hold:

• If D ∈ Rn×d and D′ ∈ Rn×d are neighboring dataset (see Definition 3.6)

• Let H and H̃ be defined as Lemma 5.9.

• Let J and J̃ be defined as Lemma 5.4.

• Let σJ := ∥J∥2 denotes the ℓ2 norm of J .

• Let σh := ∥h∥2 denotes the ℓ2 norm of h.

• Let σH−1 := ∥H−1∥2 denotes the ℓ2 norm of H−1.

• Let ηmaxIn×n ⪰ H ⪰ ηminIn×n, for some ηmax, ηmin ∈ R.

• Let
√
nψ/ηmin < ∆, where ∆ is defined in Definition 5.2.

• Let ρ = O(
√
(n2 + log(1/γ))/k + (n2 + log(1/γ))/k).

• Let γ ∈ (0, 1).

• Let BL ∈ R be defined in Lemma 5.5.

Then, with probability 1− γ, we have

|JH−1J⊤ · h− J̃H̃−1J̃⊤ · h| ≤ 2σJσh
√
n ·BL + σ2

Jσh ·O(
ρ · ηmax

η2min

).
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Proof. We have

|JH−1J⊤ · h− J̃H̃−1J̃⊤ · h|
= |(JH−1J⊤ − J̃H̃−1J̃⊤) · h|
= |((JH−1J⊤ − J̃H−1J⊤) + (J̃H−1J⊤ − J̃H̃−1J⊤) + (J̃H̃−1J⊤ − J̃H̃−1J̃⊤)) · h|
≤ (|JH−1J⊤ − J̃H−1J⊤|+ |J̃H−1J⊤ − J̃H̃−1J⊤|+ |J̃H̃−1J⊤ − J̃H̃−1J̃⊤|) · ∥h∥2, (11)

where the first step follows from basic algebra, the second step follows from basic algebra, the third
step follows from triangle inequality.

Consider |JH−1J⊤ − J̃H−1J⊤|, we have:

|JH−1J⊤ − J̃H−1J⊤|
≤ ∥J − J̃∥2∥H−1∥2∥J⊤∥2
≤ σH−1σJ

√
n ·BL, (12)

where the first step follows from Cauchy–Schwarz inequality, the second step follows from
Lemma 5.5.

Consider |J̃H−1J⊤ − J̃H̃−1J⊤|, we have:

|J̃H−1J⊤ − J̃H̃−1J⊤|
≤ ∥J̃∥2|H−1 − H̃−1|∥J⊤∥2
≤ σ2

J ·O(
ρ · ηmax

η2min

), (13)

where the first step follows from Cauchy–Schwarz inequality, the second step follows from
Lemma 5.9.

Consider |J̃H̃−1J⊤ − J̃H̃−1J̃⊤|, we have:

|J̃H̃−1J⊤ − J̃H̃−1J̃⊤|
≤ ∥J̃∥2∥H̃−1∥2∥J⊤ − J̃⊤∥2
≤ σH−1σJ

√
n ·BL, (14)

where the first step follows from Cauchy–Schwarz inequality, the second step follows from
Lemma 5.7.

Combine the equations above, we have:

|JH−1J⊤ · h− J̃H̃−1J̃⊤ · h|
≤ (|JH−1J⊤ − J̃H−1J⊤|+ |J̃H−1J⊤ − J̃H̃−1J⊤|+ |J̃H̃−1J⊤ − J̃H̃−1J̃⊤|) · ∥h∥2
≤ (σH−1σJ

√
n ·BL + σ2

J ·O(
ρ · ηmax

η2min

) + σH−1σJ
√
n ·BL) · σh

= 2σJσh
√
n ·BL + σ2

Jσh ·O(
ρ · ηmax

η2min

),

where the first step follows from Eq (11), the second step follows from Eq (12), Eq (13) and Eq (14),
the third step follows from basic algebra.

Thus, we complete the proof.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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