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ABSTRACT

Estimating epistemic uncertainty remains an important challenge in modern Deep
Learning (DL). We propose a novel architecture, called Leave one Expert Out
(LEO), which is a form of a mixture-of-experts model with latent-space-distance-
aware router and a null expert, representing prior belief, to which output of the
model collapses if testing datapoint is too different from any of datapoints experts
were trained on. This architecture allows to temporarily drop experts from the
model, and we utilise this property to train the router to leverage the predictions
of remaining experts to make predictions for the datapoints normally assigned to
the expert currently removed from the model. We coin this mechanism intrinsic
cross-validation and show, such a trained router excels at estimating epistemic
uncertainty for both in and out of distribution inputs. We demonstrate state-of-art
performance on uncertainty quantification in regression benchmarks, such as UCI
problems or age prediction on UTK-Face, and CIFAR10 classification benchmark.
We also show the proposed method can achieve superior performance in surrogate-
based black-box optimization.

1 INTRODUCTION

Deep Learning (DL) (Rumelhart et al., 1986; Goodfellow et al., 2016) has achieved spectacular suc-
cess when it comes to the predictive power of models. Beginning with early successes in computer
vision (Krizhevsky et al., 2012), where the models were trained to predict the class of an object in
an image, the field has since advanced rapidly. Today, modern DL models, such as Large Language
Models, can even engage in meaningful conversations with the user by predicting the most likely
next word (token) given a sequence of preceding words. However, while DL models excel at making
a prediction, assessing the certainty of that prediction remains a notoriously difficult problem.

This uncertainty might stem from different sources. Aleatoric uncertainty reflects inherent noise
in the data or labels. For example, the same house might sell for slightly different prices due to
random factors not captured by its features. In general, basic DL models can typically handle this
type of uncertainty if their outputs can be interpreted as probability distributions. For instance, in
classification with softmax outputs, if two identical images exist in the training set, but the first is
labelled as a dog and second as a cat, then training with standard cross-entropy loss will encourage
the model to put roughly half of probability mass on each of the labels. While more sophisticated
techniques exist for modelling aleatoric uncertainty, even simple models provide a basic way to
capture this type of observation noise.

The second source of uncertainty is typically much harder to deal with. It is referred to as epistemic
and arises when the model has not seen enough data during training to make a confident prediction
for a given test data point. We cannot simply train the model to output its estimated epistemic
uncertainty, because all training points are in-distribution (ID) and this uncertainty during training
is essentially zero (or very small and only due to observation noise). As a result, naively trained
models tend to be overconfident and behave unpredictably on inputs far from the training data.
Since epistemic uncertainty reflects a model’s lack of knowledge about new inputs, a proper model
of epistemic uncertainty must, by definition, account for out-of-distribution (OoD) inputs.

At first glance, this problem may seem prohibitively difficult. How can we make sure our epis-
temic uncertainty model performs well on inputs it has never seen? But if we take a step back, and
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consider the classical, non-deep machine learning methods, we will realize that this exact problem
has already been addressed countless times. One of the classical models celebrated for uncertainty
quantification is the Gaussian Process (GP) (Rasmussen & Williams, 2006). GPs have the rather
desirable property that, as the inputs move further away from training data, the model predictions
collapse to the user-specified prior, with the rate of collapse controlled by the length scale hyperpa-
rameter. This hyperparameter can be tuned using cross-validation (Bachoc, 2013), where the model
is repeatedly trained on subsets of the data and evaluated on held-out points. While feasible for
classical models with short training times, repeated retraining is completely impractical for large
deep learning models, requiring plenty of time and compute to retrain.

In recent years, numerous uncertainty quantification methods have been developed for epistemic
uncertainty quantification, including Bayesian neural networks (Mackay, 1992; Neal, 2012), mean-
field variational inference (Blundell et al., 2015), Monte Carlo Dropout (Gal & Ghahramani, 2016),
ensembles Lakshminarayanan et al. (2017); Wen et al. (2020); Dusenberry et al. (2020) and single-
model approaches (Tagasovska & Lopez-Paz, 2019; Van Amersfoort et al., 2020; Liu et al., 2020;
Van Amersfoort et al., 2021). However, in these approaches, the training process typically does
not explicitly encourage the model to outputs high uncertainty in OoD cases. Instead, they rely
on the assumption that the model will naturally behave differently on OoD inputs, which does not
necessarily need to hold in practice.

In this work, we propose a novel approach for epistemic uncertainty quantification called Leave-
one-Expert-Out (LEO). LEO introduces supervised OoD signals during training by simulating OoD
scenarios using only partitioned training data, without requiring actual held-out OoD examples. The
intuition is that this enables the model to transfer its OoD detection capability to test time. LEO
is a variant of a mixture-of-experts neural network, where each expert is trained on a subset of the
training data, and OoD scenarios are simulated by randomly dropping some experts during training.

Unlike some methods that set a fixed threshold to reject model outputs for OoD inputs, we treat
all unseen inputs as “partially” OoD. To handle this, we include a “null” (prior) expert, outputting
a vague distribution suitable for OoD cases. Predictions from this expert and the other experts are
then weighted by a distance-aware router, which computes weights based on the distance between
the test input and the training data in the latent space. To train this router, we introduce a novel
mechanism called “intrinsic cross-validation”, which involves learning to make accurate predictions
for data assigned to a given expert, with that expert removed from the model. This forces the router
to learn how much to rely on the remaining experts’ predictions and when to defer to the null expert,
mimicking the desirable property of a GP.

In our architecture, experts can share the feature extractor and differ only in the final layer, resulting
in a negligible increase in model size. Through extensive experiments, we show that LEO obtains
superb performance on both regression and classifications tasks requiring uncertainty quantification,
for both in- and out-of-distribution data, as well as sequential decision making, often completely
outperforming existing methods.

2 METHODOLOGY

This section presents the core mechanism of LEO. The training and inference procedures are sum-
marised in Algorithms 1, 2 and 3. We consider a supervised learning problem where, given a point
x ∈ X , the goal is to predict the target y ∈ Y . We assume that we are given a training dataset
D = {(xi, yi, )ni=1}, where xi ∈ X are inputs and yi ∈ Y are labels. The set Y could, for instance,
be R for regression or [C] for C-class classification. We aim to devise an architecture that

(i) produces epistemic uncertainty estimates that grow as the input moves further away from
the training distribution;

(ii) enables efficient cross-validation of the uncertainty estimates.

To fulfill these requirements, we propose to use a mixture-of-experts style architecture, described
below. Before training, we assign every data point in the training set a type t ∈ T , with each type
handled by a specific expert. We discuss how to partition the training set into different types in
Subsection B.1. Let E ⊂ T be the set of all data point types in the training data. We propose to
use a shared feature extractor f : X → Z ⊂ Rdz parameterised by ψ and implement each expert
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for t ∈ E as a linear head1 operating on the latent representation z = f(x;ψ). As such, each expert
is a single-layer network ht : Z → Rdy , where dy = 1 for regression and dy = C for C-class
classification. Each expert is trained only on data points of its own type and the feature extractor is
trained on all the data. That is, we learn {θt}t∈E , ψ by minimizing the following loss function:

J experts(D; {θt}t∈E ;ψ) =
1

n

∑
t∈E

∑
{i: ti=t}

L(ht(f(xi;ψ); θt), yi),

where L(·, ·) : Rdy × Y → R is a task-specific loss function. We use Mean Squared Error for
regression and Cross-Entropy for classification. Note that, although the feature extractor technically
sees all the data points, the predictions made by each expert can vary significantly if each expert
only sees data from a particular subregion of X . We expand on this in Subsection B.1.

When given a new data point unseen during training, we do not know a priori which expert will
handle it best. Hence, during inference, which expert to invoke is decided by a router pϕ(t|x; E)
parameterised by ϕ. We thus make the prediction for a new point by marginalizing the type variable:

pϕ(y|x; E) = p0(y)pϕ(t /∈ E|x; E) +
∑
t∈E

p(y|x, t)pϕ(t|x; E), (1)

where p0 is a prior distribution associated with an additional out-of-distribution (OoD) type. The
notation t /∈ E is thus shorthand for this OoD type, i.e., the case where none of the experts associated
with the types E is expected to provide an accurate prediction. The resulting prediction can be
interpreted as a weighted mixture of the experts’ in-distribution predictions and the prior distribution
p0, where the weight assigned to p0 reflects the model’s estimated probability of the input being
OoD. This prior can be specified by the user if they have domain knowledge about the distribution
of y. In our experiments, we simply resort to a uniform distribution over all classes in the case of
classification and a zero-mean, unit-variance gaussian in the case of regression (and we assume that
the training data is standardized). For the predictive distribution p(y|x, t) in Equation 1, we use the
predictive softmax p(y|x, t) = softmax(ht(z; θt)) in classification and the delta function centered
on the expert’s prediction p(y|x, t) = δ(y = ht(z; θt)) in regression. As such, the uncertainty in
this model mainly arises when pϕ(t /∈ E|x; E) is high, in which case the vague prior dominates.

In the case of classification, the final predictive distribution pϕ(y|x; E) is just a mixture of categorical
distributions, which is a categorical distribution itself that can be easily computed. In regression,
given the prior p0(y|x) = N (y;µ0(x), σ

2
0(x)), then pϕ(y|x; E) is a mixture of a Gaussian and delta

functions, which we approximate with a single Gaussian by moment-matching, i.e., pϕ(y|x; E) ≈
N (y;µϕ(x; E), σ2

ϕ(x; E)), where

µϕ(x; E) = µ0(x)pϕ(t /∈ E|x; E) +
∑
t∈E

ht(f(x;ψ); θt) pϕ(t|x; E),

σ2
ϕ(x; E) =

(
σ2
0(x) + (µ0(x)− µϕ(x; E))2

)
pϕ(t /∈ E|x; E) +

∑
t∈E

(
ht(f(x;ψ); θt)− µϕ(x; E)

)2
pϕ(t|x; E).

We now proceed to describe the mechanism behind the operation of the router.

2.1 DISTANCE-AWARE ROUTER

The router, which models the type probabilities pϕ(t|x; E) and pϕ(t /∈ E|x; E), operates on the latent
embeddings given by the feature extractor f(x;ψ) and is parametrised by ϕ =

(⋃
t∈E ϕt

)
∪ ϕ0,

where ϕt is a set of parameters specified below for each t, and ϕ0 ∈ R is a learnable constant. To
fulfill the requirement (i) outlined in the beginning of the section, we want the router to be distance-
aware in the latent space, i.e., to guarantee that a data point with latent embeddings z vastly different
than ones seen during training will make the router output a high OoD probability pϕ(t /∈ E|x; E)
and make the predictive distribution collapse to the prior p0. To achieve this property, we propose
that the router should learn a projection matrix Mt for each expert for t ∈ E and assign a score
inversely proportional to the L2 distance between the projected embeddings zTMt and the centroid

1In principle, each expert head could be much deeper than a single layer. However, we found empirically
that a single layer was sufficient, so we chose it for simplicity and to reduce memory and computational costs.
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et of the data points of type t in the latent space:

st(z;ϕt) =
τt

1
dz
∥zTMt − et∥22

,

where τt is a temperature parameter and ϕt = {Mt, τt}. Since the function ∥zTMt − et∥22 is
quadratic and always positive, it has a unique minimiser and for any direction ê ∈ Rdz , we must
have st(αê;ϕt) → 0 as α → ∞. The use of such distances was previously introduced in a method
called DUQ (Van Amersfoort et al., 2020), which uses the exponent of the negative distance rather
than the inverse distance. In our experiments, we found the inverse distance to be a much more
stable choice for the router. The scores are then normalised as below to give the type probabilities:

pϕ(t|x; E) =


st(f(x;ψ);ϕt)

ϕ0+
∑

t′∈E st′ (f(x;ψ);ϕt′ )
for t ∈ E

ϕ0

ϕ0+
∑

t′∈E st′ (f(x;ψ);ϕt′ )
for t /∈ E .

(2)

When the latent embedding z for a given point becomes too distant from the embeddings seen during
training, we have st(αê;ϕt)→ 0 for all t ∈ E , as explained above. In this case, the constant ϕ0 must
necessarily start to dominate and pϕ(t /∈ E|x; E)→ 1. This fulfills the requirement (i) outlined at the
beginning of this section, but requirement (ii) is still not addressed. Indeed, to make the uncertainty
estimate meaningful, it is necessary to determine how fast pϕ(t /∈ E|x; E) collapses to 1, to make
sure that in-distribution data for which we can still make valid predictions are assigned relatively
small uncertainty and out-of-distribution data for which we cannot hope to make good predictions
are given high uncertainty. In the next subsection, we expand on how to achieve this by leaving an
expert out, a powerful mechanism that the proposed architecture allows us to exploit.

2.2 LEAVE-ONE-EXPERT-OUT: INTRINSIC CROSS-VALIDATION

We are now going to discuss a crucial mechanism of the Leave-one-Expert-Out (LEO) architecture.
Note that in Equation 1, we used the notation pϕ(y|x; E), which means that the final output distribu-
tion of the full model depends on the all the known data types E . Let us consider what will happen
if we evaluate this equation with some type t⋆ removed from E :

pϕ(y|x; E \ t⋆) = p0(y)pϕ(t /∈ E \ t⋆|x; E \ t⋆) +
∑
t∈E\t⋆

p(y|x, t)pϕ(t|x; E \ t⋆).

First of all, the term corresponding to t⋆ is now omitted entirely and the output ht⋆(y|x) of the
corresponding expert does not contribute to the final model output. Secondly, the prior p0(y) is now
multiplied by the probability of the data point being of type t /∈ E \ t⋆, as opposed to t /∈ E . As
such, the model behaves as if none of the data points of type t⋆ had been seen during training. In
other words, when the type t⋆ is dropped, the set of known data types becomes E \ t⋆, and all other
types are treated as OoD. In this case, pϕ(·|x; E \ t⋆) is defined in a similar way to Equation 2, but
with the score function st⋆(z;ϕt⋆) replaced by ϕ0. We train the router by minimising the loss:

J router(D;ϕ) = −
(
log pϕ(D) + log pϕ(DICV)

)
,

where ICV stands for intrinsic cross-validation, which we define below. The parameters θ of the
experts and the parameters ψ of the feature extractor are kept frozen (detached), so only the param-
eters of the router ϕ are updated when J router is optimised. We updated centroids et in the same
way as done in DUQ; see Appendix B.3 for details. In the first term, pϕ(D) denotes the likelihood
of the data under the full model defined in Equation 1 without dropping any of the experts. For
completeness, we provide the expression below:

pϕ(D) =
n∏
i=1

pϕ(yi|xi; E).

The role of this term in the loss function is to make sure that the predictions of all experts are
meaningfully combined by the router and lead to a sensible data fit. However, this term on its
own does not guarantee sensible uncertainty quantification. In fact, if each expert can model its
data points perfectly, the optimal solution is just to always collapse the probability on that expert,
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(a) Before Training (b) Training Phase 1

(c) Training Phase 2 

x1

Feature Extractor

Data Partitioning

x2

Feature Extractor

x3

Feature Extractor

Feature Extractor Feature Extractor Feature Extractor

Feature Extractor Feature Extractor Feature Extractor

L(h   (f(x1; ψ); θ   ), y1)

x1 x2 x3

x1 x2 x3

L(h   (f(x2; ψ); θ   ), y2) L(h   (f(x3; ψ); θ   ), y3)

pφ(y1|x1; {   ,   ,   ,   }) pφ(y2|x2; {   ,   ,   ,   }) pφ(y3|x3; {   ,   ,   ,   })

pφ(y1|x1; {   ,   }) pφ(y2|x2; {   ,    ,    }) pφ(y3|x3; {   ,    })

Figure 1: (a) Before training, the dataset is partitioned into different types. (b) Training Phase 1:
Each data point is passed through the feature extractor and the type-specific expert to optimise per-
expert MSE losses. Both the feature extractor and experts are updated. (c) Training Phase 2: The
feature extractor and experts are frozen, and only the router is updated. In the top panel, each data
point is passed through all experts, with outputs weighted by the router to compute the likelihood
under the full model. In the bottom panel, the expert corresponding to the data point’s type and a
random subset of other experts are dropped, and the remaining experts’ weighted outputs are used
to compute the intrinsic cross-validation likelihood. Both likelihoods are obtained from a single
forward pass by using different subsets of experts.

resulting in no uncertainty quantification. This is remedied by pϕ(DICV) in the second term, which
we call the intrinsic cross-validation likelihood. It involves making a prediction for each data point
i, with the expert for type ti and some random subsets of other experts dropped from the model, i.e.,

pϕ(DICV) =

n∏
i=1

pϕ(yi|xi; E \ (ti ∪ r(E))),

where r(E) is a randomly selected subset of E . See Figure 1. We describe how exactly this random
subset is selected in Subsection B.2. Note that if an expert that is not dropped from the model
can extrapolate well to data point types that it did not see during training, the router can achieve a
good intrinsic cross-validation likelihood pϕ(DICV) by putting a high probability mass on it, e.g.,
by setting its temperature τt high. Conversely, if each of the remaining experts makes a wrong
prediction, collapsing to the vague prior p0 will be the optimal solution. As such, the router needs
to learn its parameters to find the optimal rate at which the model stops trusting the known experts
and collapses to the prior, effectively learning how to estimate its epistemic uncertainty.

3 RELATED WORK

Epistemic uncertainty and out-of-distribution detection Ensemble methods (Lakshmi-
narayanan et al., 2017; Wen et al., 2020; Dusenberry et al., 2020; Zaidi et al., 2021) are a standard
approach for estimating epistemic uncertainty, combining predictions from multiple independently
trained models. Monte Carlo Dropout (Gal & Ghahramani, 2016) offers a lightweight alternative by
applying dropout at test time and averaging multiple forward passes. While ensembles remain state-
of-the-art, they are computationally expensive as both training and inference scale with the number
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of models. Moreover, theoretical work has questioned whether ensembles truly capture epistemic
uncertainty or primarily reflect randomness in initialization and optimisation (He et al., 2020).

Single-model methods require only a single forward pass at test time. Distance-based approaches
such as deterministic uncertainty quantification (DUQ) (Van Amersfoort et al., 2020), spectral-
normalized neural Gaussian processes (SNGP) (Liu et al., 2020), and deterministic uncertainty es-
timation (DUE) (Van Amersfoort et al., 2021) use distance-aware output layers (e.g., RBFs, GPs)
to improve OoD sensitivity together with spectrally normalised (Miyato et al., 2018) or gradient
penalised (Van Amersfoort et al., 2020) feature extractor. Distributional approaches, including evi-
dential deep learning (EDL) (Sensoy et al., 2018; Amini et al., 2020) and Density Regression (DR)
(Bui & Liu, 2024), model predictive distributions directly without requiring sampling. Bayesian
Neural Networks (BNNs) are a broad family of approaches for assesing uncertainty in NNs and
involve methods such as Bayes-by-Backprop (Blundell et al., 2015), Laplace Approximation and
Variational Inference (Wen et al., 2018). However, these approaches typically rely on extensive
sampling and suffer from instabilities. Variational Bayes last layer (VBLL) (Harrison et al., 2024)
is a recent, state-of-the-art BNN approach that applies Bayesian inference only to the final layer,
avoids sampling all-together and enjoying much more stable performance. Although single-model
approaches may not always match ensembles in performance, they provide efficient alternatives suit-
able for large-scale deployment. Epistemic neural networks (“epinets”) (Osband et al., 2023) repre-
sent a related direction by conditioning predictions on an auxiliary epistemic index. In comparison,
LEO modifies the final layer with a mixture-of-experts structure and addresses OoD detection via
training-time OoD simulations.

Although this work focuses on supervised learning, OoD detection has also been studied in gener-
ative modeling. Prior work has shown that deep generative models can assign high likelihoods to
OoD data (Nalisnick et al., 2018; Choi et al., 2018; Kirichenko et al., 2020), raising concerns about
using density estimates from generative models for OoD detection. Alternative strategies include
hypothesis testing frameworks (Nalisnick et al., 2019) and training with auxiliary OoD datasets
(Hendrycks et al., 2018). In contrast, LEO does not require a separate OoD dataset and can simulate
OoD situations using training set only via the mechanism of intrinsic cross-validation.

Mixture-of-Experts models Mixture-of-Experts (MoE) models (Jacobs et al., 1991; Jordan & Ja-
cobs, 1994) divide a prediction task among multiple specialized sub-networks, or experts, with a
gating function that determines how to combine their outputs. Experts can share feature represen-
tations, allowing increased model capacity with minimal additional parameters. LEO builds on this
framework by leveraging the experts to capture epistemic uncertainty and including a “null” expert
to represent lack of confidence.

4 EXPERIMENTS

We evaluate our algorithm LEO together with baselines on uncertainty quantification in regression
and classification tasks, as well as on Bayesian Optimisation (BO) tasks, where the goal is to sequen-
tially query an unknown black-box function to find points with the highest objective values. In all
tasks, except for BO, we set aside 10% of the training data as a validation set and apply early stop-
ping based on the validation log-likelihood. We now describe the baselines used in our experiments.
We share our code via an anonymysed link2.

Baselines For comparison, we selected the strongest existing uncertainty quantification baselines.
These include MC Dropout (Gal & Ghahramani, 2016), Ensemble (Lakshminarayanan et al., 2017),
EDL (Sensoy et al., 2018; Amini et al., 2020), DUE (Van Amersfoort et al., 2021) and VBLL
(Harrison et al., 2024). Additionally, in all regression and BO tasks we compare against Density Re-
gression (Bui & Liu, 2024) and in all classification tasks we compare against DUQ (Van Amersfoort
et al., 2020). We try to make the setup and architectures as similar across baselines as possible; see
Appendix C for details.

2https://anonymous.4open.science/r/leave-one-expert-out-DF01/
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Table 1: Results for four UCI benchmarks. Reported values are means over 20 seeds and the values
after ± denote 95% CIs of the mean estimator. The best methods and all methods that do not
statistically differ w.r.t. two-sided z-test are shown in bold. The second best methods are underlined.

Dataset kin8nm naval power-plant yacht
Metric NLL (↓) R2 (↑) NLL (↓) R2 (↑) NLL (↓) R2 (↑) NLL (↓) R2 (↑)

Density R. 0.18 ± 0.03 0.92 ± 0.00 -2.24 ± 0.05 1.00 ± 0.00 -0.09 ± 0.02 0.95 ± 0.00 1.27 ± 1.20 0.99 ± 0.00
Dropout 1.19 ± 0.12 0.92 ± 0.00 -1.12 ± 0.02 0.99 ± 0.00 3.13 ± 0.34 0.96 ± 0.00 -1.23 ± 0.27 0.98 ± 0.00

DUE 1.95 ± 0.12 0.80 ± 0.01 -0.36 ± 0.30 1.00 ± 0.00 1.20 ± 0.09 0.89 ± 0.00 -1.49 ± 0.05 1.00 ± 0.00
EDL 0.18 ± 0.03 0.91 ± 0.01 -1.84 ± 0.03 1.00 ± 0.00 -0.09 ± 0.04 0.95 ± 0.00 -2.07 ± 0.34 0.99 ± 0.00

Ensemble 1.32 ± 0.19 0.93 ± 0.00 -2.26 ± 0.04 1.00 ± 0.00 1.72 ± 0.25 0.96 ± 0.00 -2.51 ± 0.33 1.00 ± 0.00
VBLL 2.75 ± 1.99 0.89 ± 0.00 -0.53 ± 0.25 0.99 ± 0.00 -0.04 ± 0.04 0.95 ± 0.00 0.03 ± 0.93 0.99 ± 0.00

LEO (ours) 0.12 ± 0.01 0.92 ± 0.00 -2.62 ± 0.08 1.00 ± 0.00 -0.04 ± 0.05 0.95 ± 0.00 -2.16 ± 0.23 0.99 ± 0.00

Table 2: Results for UCI protein and UTK-Face benchmarks. Reported values are means over 20
seeds in protein and 5 seeds in UTK, with the values following ± denoting 95% CIs of the mean
estimator. The best-performing methods and those tied via a z-test are shown in bold, while the
second-best methods are underlined. In cells marked with (*), predictive variance was so small that
likelihood computations caused a numerical issue on all seeds.

Dataset protein UTK
Metric NLL (↓) R2 (↑) OOD NLL (↓) OOD R2 (↑) NLL (↓) R2 (↑) OOD NLL (↓) OOD R2 (↑)

Density R. 1.01 ± 0.24 0.59 ± 0.01 11.52 ± 2.50 0.39 ± 0.05 1.23 ± 0.11 0.65 ± 0.01 0.49 ± 0.07 0.53 ± 0.04
Dropout 4.17 ± 0.35 0.69 ± 0.00 4.86 ± 0.41 0.53 ± 0.01 N/A(*) 0.75 ± 0.02 N/A(*) 0.55 ± 0.09

DUE 5.11 ± 0.21 0.08 ± 0.01 2.99 ± 0.12 0.14 ± 0.01 1.73 ± 0.22 0.00 ± 0.00 1.24 ± 0.08 -0.70 ± 0.01
EDL 1.07 ± 0.02 0.41 ± 0.01 1.15 ± 0.08 0.44 ± 0.03 2.36 ± 0.24 0.62 ± 0.06 2.27 ± 0.27 0.14 ± 0.38

Ensemble 2.27 ± 0.11 0.68 ± 0.00 1.90 ± 0.21 0.28 ± 0.05 1.10 ± 0.13 0.79 ± 0.01 0.68 ± 0.16 0.60 ± 0.05
VBLL 1.00 ± 0.03 0.59 ± 0.01 2.31 ± 0.36 -0.18 ± 0.14 0.85 ± 0.27 0.82 ± 0.01 0.79 ± 0.32 0.59 ± 0.07

LEO (ours) 0.89 ± 0.04 0.60 ± 0.01 1.19 ± 0.05 0.42 ± 0.02 0.78 ± 0.03 0.74 ± 0.02 0.49 ± 0.09 0.58 ± 0.06

4.1 REGRESSION PROBLEMS

To evaluate performance on regression tasks, we consider ten UCI benchmarks and the UTK-Face
dataset, where the goal is to predict age from raw pixels of facial images. For each dataset, we report
the negative log-likelihood (NLL, lower is better), and coeff. of determination (R2, higher is better)
or mean absolute error (MAE, lower is better) as a measure of predictive performance, depending
on the task. We detail how OOD evaluation sets were obtained in Appendix D.

Results We present results on five UCI datasets and UTK-Face in Tables 4 and 2, and defer the
rest of UCI datasets to Appendix F due to space limitations. Overall, we can see that LEO excels
in terms of NLL, achieving the best (or tying for the best) performance across all of the evaluated
regression benchmarks. Among the remaining baselines, methods such as EDL, Dropout or VBLL
achieve good NLL values on some datasets but underperform on others. In contrast, LEO achieves
good NLL values consistently. Regarding predictive performance, LEO may underperform slightly
in some cases, but consistently ranks second, whereas the method achieving the highest predictive
performance varies across datasets.

Table 3: Results for tabular classification tasks. Reported values are means over 100 seeds and the
values after ± are 95%-confidence intervals of the mean estimator. The best methods and z-test ties
are shown in bold, and the second best methods are underlined.

Dataset german-credit bank-marketing
Metric Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓) Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓)

Dropout 73.77 ± 0.84 52.98 ± 1.47 10.14 ± 0.63 90.33 ± 0.11 0.46 ± 0.00 1.32 ± 0.08
DUE 69.72 ± 0.81 58.15 ± 0.67 9.70 ± 0.65 88.35 ± 0.10 0.74 ± 0.01 11.32 ± 0.21
DUQ 74.08 ± 0.89 51.31 ± 1.15 9.73 ± 0.57 90.14 ± 0.07 0.51 ± 0.00 2.21 ± 0.07
EDL 73.79 ± 0.83 52.63 ± 1.20 9.90 ± 0.64 90.39 ± 0.08 0.50 ± 0.00 3.34 ± 0.10

Ensemble 74.43 ± 0.90 51.19 ± 1.37 9.54 ± 0.57 90.65 ± 0.09 0.45 ± 0.00 0.93 ± 0.04
VBLL 72.64 ± 1.02 52.75 ± 1.22 9.91 ± 0.56 90.59 ± 0.08 0.46 ± 0.00 1.05 ± 0.07

LEO (ours) 73.99 ± 0.86 51.53 ± 0.88 8.95 ± 0.52 90.53 ± 0.09 0.46 ± 0.00 1.07 ± 0.05
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Figure 2: ID vs OoD performance on CIFAR-10 for different methods as measured by NLLLoss
(left) and ECE (right). Points are means over 3 seeds and error bars correspond to 95% CIs of the
mean estimator. The closer to bottom, left corner, a method is, the better.

4.2 CLASSIFICATION

To evaluate performance on classification tasks, we consider six tabular benchmarks (adult-census-
income, bank-marketing, titanic, german-credit, breast-cancer, heart-disease) and CIFAR-10. For
each benchmark, we report the negative log-likelihood (NLL, lower is better), the Expected Cali-
bration Error (ECE, lower is better) and accuracy. On tabular benchmarks, we simply use a fully-
connected architecture, whereas on CIFAR-10, we use WideResNet 28-10 as the feature extractor.
To create an OoD evaluation set for CIFAR-10, we randomly corrupt the evalset images.

Results We present some of the results in Table 3 and Figure 2 and defer the rest to Appendices G
and H. We see that LEO is able to obtain the best performance on most datasets and across most
metrics, losing only in four cases (out of 18 dataset/metric combinations), in which on two of them
(bank-marketing NLL and ECE) loses to Ensemble only and wins among all single-model methods.
On CIFAR-10 problems, we see that most methods either excel in- or out-of-distribution, whereas
LEO is able to obtain good performance in both simultaneously. This is illustrated in Figure 2,
where we plot OoD performance vs ID performance according to NLL and ECE metrics (closer
to the bottom-left corner indicates better performance). Ensemble excels in ID performance, but
underperforms in OoD, whereas DUQ and EDL exhibit the opposite tendency. LEO, Dropout, DUE
and VBLL achieve similar ID performance, but out of these four, LEO achieves the best average
OoD performance, placing itself at a desirable point on the Pareto frontier.

In Table 4, we present comparison of inference times, training times and the total size of each of
the models. We see LEO is one of the fastest method, having less than 1% memory higher memory
footprint compared to smallest model. This is in stark contrast to Dropout, which significantly
increases inference time or to Ensemble, which also significantly increases memory footprint. As
such, LEO positions itself as a relatively lightweight alternative with a fast inference speed.

Table 4: Avg. inference time (with 95% CIs) and total model memory footprint for each method on
CIFAR10. Best values in bold, second best underlined.

Metric Dropout DUE DUQ EDL Ensemble VBLL LEO (ours)

Infer. time (ms) (↓) 0.20 ± 0.00 0.33 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.19 ± 0.00 0.07 ± 0.00 0.06 ± 0.00
Model size (MB) (↓) 139.23 156.72 172.34 139.23 696.13 154.88 140.89

4.3 BAYESIAN OPTIMISATION

Finally, we also evaluate all models used for regression experiments as surrogates for Bayesian Op-
timization (BO). In BO, the objective is to efficiently optimize an unknown black-box function by
sequentially selecting query points. This is typically achieved by fitting a surrogate model to the ob-
served data and then optimizing an acquisition function that balances exploration and exploitation.
Crucially, the surrogate must provide reliable uncertainty estimates to enable this trade-off. Standard
neural networks, which often extrapolate linearly outside the training data, tend to assign unrealis-
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tically high values near the boundaries, leading the optimizer to waste queries there. By contrast,
LEO defaults to a standard normal predictive distribution in extrapolation, preventing boundary re-
gions from appearing artificially attractive. This property makes LEO particularly well-suited as a
surrogate in BO.
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Figure 3: The best function achieved by a given optimisation step on Bayesian Optimisation tasks.
Solid lines correspond to mean values over 8 seeds and shaded areas are 95% CI of the mean esti-
mator. The objective is maximisation, thus higher values are better.

As a benchmark optimisation function, we use the popular Ackley function. We consider two prob-
lem settings with 2 and 10 dimensions, initialising the optimisation with 20 and 5000 latin hypercube
samples, respectively. We use the UCB acquisition criterion with an exploration bonus of β = 3. For
the 2-dimensional function, we also compare against GP, but not for the 10-dimensional cases, as
fitting GP to 5000 points is infeasible. For GP, we use an RBF kernel with hyperparameters selected
by optimising marginal likelihood. Optimisation curves over 50 steps are shown in Figure 3. On the
2-dimensional problem, we can see that an optimiser equipped with LEO quickly catches up with
GP and even slightly outperforms it toward the end. On the 10-dimensional problem, after the first
10 steps, the optimiser using LEO clearly distinguishes itself, achieving much higher values than the
other methods and maintaining the lead until the very end. These results highlight the potential of
LEO for applications in sequential decision-making.

5 CONCLUSION

We introduced LEO, a mixture-of-experts framework that uses a distance-aware router to provide
reliable epistemic uncertainty estimates. By simulating out-of-distribution scenarios during train-
ing, LEO effectively captures model uncertainty without relying on held-out OoD data. Empirical
results across regression, classification, and Bayesian optimisation tasks show that LEO consistently
outperforms or matches strong baselines, achieving robust performance for both in-distribution and
out-of-distribution inputs. LEO can be applied to standard architectures by replacing only the last
layer with a mixture of single-layer networks, introducing a negligible increase in model size and la-
tency. These results demonstrate that LEO is a practical and scalable approach for uncertainty-aware
deep learning, with promising applications in decision-making and risk-sensitive settings.
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A FULL ALGORITHM PSEUDOCODE

Algorithm 1 LEO Training
1: Input: Training data D = {(xi, yi)}ni=1, types {ti}ni=1, parameters ψ, {θt}t∈E , ϕ =

(
⋃
t∈E ϕt) ∪ ϕ0 with ϕt = {Mt, τt}, learning rates ηψ, ηθ, ηϕ, epochs E1, E2

2: Output: Trained parameters ψ∗, {θ∗t }t∈E , ϕ
∗

3: Initialise ψ, {θt}t∈E , ϕ
4: Phase 1: Expert Training
5: for epoch = 1 to E1 do
6: for each mini-batch B ⊂ D do
7: Compute batch loss: J experts(B; {θt}t∈E ;ψ) =

1
|B|

∑
(xi,yi)∈B L(hti(f(xi;ψ); θti), yi)

8: Update feature extractor parameters: ψ ← ψ − ηψ∇ψJ experts

9: Update expert parameters: θti ← θti − ηθ∇θtiJ
experts

10: end for
11: end for
12: Freeze ψ and {θt}t∈E
13: Phase 2: Router Training
14: for epoch = 1 to E2 do
15: for each mini-batch B ⊂ D do
16: Sample a subset r(E) of E
17: Compute router loss:

J router(B;ϕ) = − 1

|B|
∑

(xi,yi)∈B

(
log pϕ(yi|xi; E) + log pϕ(yi|xi; E \ (ti ∪ r(E)))

)
18: Update router parameters: ϕ← ϕ− ηϕ∇ϕJ router

19: end for
20: end for
21: return ψ∗, {θ∗t }t∈E , ϕ

∗

Algorithm 2 LEO Inference (Regression)
1: Input: New input x, learned parameters ψ∗, {θ∗t }t∈E , ϕ∗, prior mean µ0(·), prior variance σ2

0(·)
2: Output: Predictive mean ŷ, predictive variance σ̂2

3: Compute predictive mean:

ŷ = µ0(x)pϕ∗(t /∈ E|x; E) +
∑
t∈E

ht(f(x;ψ
∗); θ∗t )pϕ∗(t|x; E)

4: Compute predictive variance:

σ̂2 = (σ2
0(x) + (µ0(x)− ŷ)2)pϕ∗(t /∈ E|x; E) +

∑
t∈E

(ht(f(x;ψ
∗); θ∗t )− ŷ)2pϕ∗(t|x; E)

5: return ŷ, σ̂2

Algorithm 3 LEO Inference (Classification)
1: Input: New input x, learned parameters ψ∗, {θ∗t }t∈E , ϕ∗, prior distribution over classes p0(c)
2: Output: Predictive categorical distribution p(c|x)
3: Compute prediction of each expert t ∈ E as p(·|x; t) = softmax(ht(f(x;ψ∗)))
4: Compute predictive probabilities for each class c ∈ [C]:

p(c|x) = p0(c)pϕ∗(t /∈ E|x; E) +
∑
t∈E

p(c|x; t)pϕ∗(t|x; E)

5: return p(c|x)

12
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B DETAILS ON LEO

B.1 PARTITIONING DATA INTO TYPES

Our training mechanism requires partitioning the training data into types before training, such that
each expert sees a distinct distribution of training inputs. At the same time, we also want to create
situations where one expert can make accurate predictions for at least some of the points of other
types. This ensures that the router learns how much it can trust a given expert when extrapolating,
which will then translate into robust uncertainty estimates for the entire model when going beyond
its training domain.

To satisfy these properties, we propose to use the freshly initialised, untrained feature extractor
to obtain embeddings for each point i, i.e., z0i = f(xi;ψ0), and then use a random projection
vector v ∼ N (0, Id) to obtain a type indicator gi = z0i · v for each data point. We then sort
type indicators (which are just scalars) and split the sorted list into |E| consecutive chunks of equal
length and give each chunk a different type in E , which is assigned to a dedicated expert. This
assignment creates mismatch across experts’ training distributions, since even in a freshly initialised
network, the embeddings for two data points are correlated and depend on input features in complex
and random ways. At the same time, because nearby points in the sorted 1D projection are not
guaranteed to be assigned to the same expert, some neighbouring points in the embedding space
may be split across experts, allowing partial extrapolation and forcing the router to learn expert
reliability.

B.2 RANDOM SUBSET SELECTION

To obtain the random subset of experts to drop for a given data point i, we first sample ui ∼ U(0, 1)
and then for each expert associated with t ∈ E , we sample mt,i ∼ U(0, 1). We drop the tth expert
for the ith data point if mt,i < ui. In this way, we drop experts with uniform probability, but also
the average number of experts we drop is uniformly distributed. We do this with the objective of
making the model more robust by simulating more diverse OoD scenarios.

B.3 UPDATING CENTROIDS

We utilise the same moving-average-style update rule for the centroids et as the one employed in
DUQ (Van Amersfoort et al., 2020), i.e., after each mini-batch {(xi, ti, yi)}|B|

i=1 of size |B|we update

Nt := γ Nt + (1− γ)nt, (3)

mt := γ mt + (1− γ) 1

nt

∑
{i:ti=t}

f(xi;ψ)
TMt, (4)

et :=
mt

Nt
. (5)

where nt = |{i : ti = t}|. We initialise Nt = 13 for all types and initalise mt with small Gaussian
noise N (0, 0.052). We set γ = 0.99.

C DETAILED EXPERIMENTAL SETUP

For our experiments, we used machines with NVIDIA A40 GPUs with 48 GB of memory.

C.1 GENERAL

We try to keep the experimental setup as similar as possible across methods. For this reason, across
all experiments, we use 5 models for Ensemble, 5 dropout samples for Dropout, and 5 experts
for LEO. We use a dropout rate of 0.3 for the Dropout method. Across all methods, we keep the
architecture fixed except for the last layer, which changes depending on the exact method used (e.g.
Variational GP in DUE or expert heads and router in LEO). In VBLL, we use the same optimiser
setting as original authors, namely we use a weight decay of 0.01 and clip max gradient to 1.0 across
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all experiments, and thus use AdamW, if other baselines use Adam. For DUE, we use RBF kernel
and a number of inducing points equal to number of classes in classification and 20 inducing points
in regression. For baselines requiring a distance-preserving feature extractor (DUE, DUQ), we apply
spectral normalization to the feature extractor and add residual connections if they are not present
by default (e.g. when the feature extractor is just a fully-connected network). For EDL, performance
is highly sensitive to the hyperparmeter λ. We tune the λ hyperparameter by first running 20% of
the total training iterations with different values of λ and choosing the one that produces the best
validation likelihood at the end of training. For LEO we use the same number of epochs as other
methods to train the experts and then the same number of epochs to train router (which is much
faster, as experts and feature extractor are fixed). In all experiments across all baselines we use a
”patience” mechanism, that is if the last epoch achieved best validation loss, we extend training until
validation loss stops improving.

C.2 REGRESSION - UCI

For each problem and baseline, we use a fully-connected network with three hidden layers of size
256 with relu nonlinearities. We train for a total of 10000 epochs with Adam with learning rate set to
0.001. We use full-batch gradient descent. We measure the NLL on validation set every 100 epochs
and select the checkpoint with lowest value.

C.3 REGRESSION - UTK

We use freshly initalised ResNet-18, followed by one fully-connected layer. We train for a total of
50 epochs with a batch size 128 using Adam with learning rate equal to 0.00001. We measure the
NLL on validation set after every epoch and select the checkpoint with lowest value.

C.4 CLASSIFICATION - TABULAR

For each problem and baseline, we use a full-connected network with two hidden layers of size 256
with relu nonlinearities. To train we use Adam with a learning rate of 0.01 and we use full batch
gradient descent. We measure the NLL on validation set after every epoch and select the checkpoint
with lowest value.

C.5 CLASSIFICATION - CIFAR10

We use freshly initialised WideResNet 28-10 with dropout rate of 0.3, followed by one fully-
connected layer, outputting logits for each of ten classes. We use same data augmentation as
Zagoruyko & Komodakis (2016). We train for 50 epochs using SGD with momentum equal to
0.9 and weight decay set to 5× 10−4. We start with a learning rate of 0.1 and divide it by 5 after 20,
30 and 40 epochs. We use a batch size of 128.

C.6 BAYESIAN OPTIMISATION

We use the same architecture and training setup as in Regression - UCI, however, since in BO we
need to be extremely sample efficient, we use all availalbe data point for training and do not set aside
validation set. Instead we utilise weight decay of 0.01 and thus we utilise the AdamW optimiser.
Given the model predicts mean µ(x) and variance σ2(x) at a given point x, we select the next point
to query by maximising the UCB acqusition function of α(x) = µ(x) + βσ(x) and set β = 3. We
utilise BoTorch (Balandat et al., 2020) to optimise the acquisition function. We completely retrain
each model after acquiring new point.

D OBTAINING OOD EVALUATION SETS IN REGRESSION TASKS

On the UCI benchmarks, eight datasets have only in-distribution evaluation sets, whereas two of
them (protein and wine) have both in- and out-of-distribution evaluation sets. For the wine dataset,
we follow Bui & Liu (2024), using red wines for training and ID evaluation and white wines for
OoD evaluation. For the protein dataset, we follow Ziomek et al. (2025), using smaller proteins
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for training and ID evaluation and larger proteins for OoD evaluation. In each case, we simply
use fully-connected architectures. On UTK-Face, to create ID and OoD evaluation sets, we follow
Ziomek et al. (2025), using all images with ethnicity label ”Others” as the OoD evaluation set and
all remaining ethnicities as training and ID evaluation sets. We use freshly initialised ResNet-18 as
the backbone model.

E OBTAINING OOD EVALUATION SETS IN CIFAR10

To evaluate OoD robustness, we construct a corrupted variant of CIFAR by applying common image
corruptions. For each image, one corruption type is chosen at random. The set of corruption types
includes:

• Gaussian noise: additive pixel-wise Gaussian noise

• Salt-and-pepper noise: randomly setting pixels to black or white

• Gaussian blur: convolution with a Gaussian kernel

• Motion blur: convolution with a horizontal motion

• Brightness shift: multiplicative rescaling of pixel intensities by a random factor

• Contrast reduction: pixel intensities are shifted toward the per-image mean

• Pixelation: downsampling the image followed by nearest-neighbor upsampling.

All corrupted images are clipped to the valid pixel range [0, 255].

F DETAILED UCI RESULTS

Table 5: Results for UCI benchmarks. Reported values are means over 20 seeds and the values after
± denote 95% CIs of the mean estimator. The best methods and all methods that do not statistically
differ w.r.t. two-sided z-test are shown in bold. The second best methods are underlined.

Dataset boston california concrete energy-efficiency
Metric NLL (↓) R2 (↑) NLL (↓) R2 (↑) NLL (↓) R2 (↑) NLL (↓) R2 (↑)

Density R. 0.98 ± 0.56 0.81 ± 0.05 0.55 ± 0.05 0.76 ± 0.04 0.64 ± 0.17 0.89 ± 0.01 1.46 ± 0.86 0.98 ± 0.00
Dropout 3.71 ± 0.72 0.87 ± 0.02 3.91 ± 0.26 0.82 ± 0.01 3.06 ± 0.96 0.91 ± 0.01 -0.74 ± 0.20 0.99 ± 0.00

DUE 2.30 ± 0.40 0.54 ± 0.10 2.64 ± 0.14 0.31 ± 0.07 2.08 ± 0.15 0.55 ± 0.09 -0.79 ± 0.17 0.99 ± 0.00
EDL 0.47 ± 0.18 0.86 ± 0.02 0.49 ± 0.05 0.48 ± 0.57 0.36 ± 0.15 0.90 ± 0.01 -0.91 ± 0.10 0.98 ± 0.01

Ensemble 8.26 ± 3.18 0.87 ± 0.02 2.33 ± 0.14 0.77 ± 0.01 4.75 ± 1.32 0.92 ± 0.01 0.37 ± 0.46 0.99 ± 0.00
VBLL 3.23 ± 5.21 0.86 ± 0.02 1.33 ± 0.41 0.71 ± 0.02 4.51 ± 3.83 0.90 ± 0.02 1.74 ± 1.90 0.98 ± 0.00

LEO (ours) 0.35 ± 0.14 0.84 ± 0.02 0.45 ± 0.03 0.79 ± 0.01 0.29 ± 0.12 0.89 ± 0.01 -0.87 ± 0.08 0.98 ± 0.00
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Table 6: Results for the wine UCI benchmark. The training set and the ID evaluation set correspond
to red wine. Reported values are means over 20 seeds and the values after ± denote 95% CIs of
the mean estimator. The best methods and all methods that do not statistically differ w.r.t. two-
sided z-test are shown in bold. The second best methods are underlined. In cells marked with (*),
OOD evaluation for Density Regression caused numerical instabilities on 2 out of 20 seeds, omitting
those cases average value reached were 3.23 for OOD NLL and −8.36× 1023 for OOD R2. In cell
marked with (†), OOD NLL evaluation for EDL caused numerical instabilities on 7 out of 20 seeds,
remaining seeds reached an average OOD NLL equal to 9051.13.

Dataset wine
Metric NLL (↓) R2 (↑) OOD NLL (↓) OOD R2 (↑)

Density R. 1.54 ± 0.06 -4.00 ± 5.51 (*) (*)
Dropout 10.51 ± 3.19 0.40 ± 0.02 12.04 ± 2.12 0.07 ± 0.04

DUE 4.38 ± 0.25 0.11 ± 0.01 6.12 ± 0.26 -0.01 ± 0.01
EDL 2.76 ± 1.59 0.36 ± 0.02 (†) -0.04 ± 0.06

Ensemble 5.70 ± 0.79 0.32 ± 0.03 4.95 ± 0.46 -0.27 ± 0.08
VBLL 112.55 ± 105.56 0.29 ± 0.04 136.16 ± 82.00 -0.39 ± 0.10

LEO (ours) 1.23 ± 0.03 0.37 ± 0.02 1.55 ± 0.03 -0.02 ± 0.05

G DETAILED TABULAR CLASSIFICATION RESULTS

Table 7: Results for tabular classification tasks. Reported values are means over 100 seeds and the
values after ± are 95%-confidence intervals of the mean estimator. The best methods and z-test ties
are shown in bold, and the second best methods are underlined.

Dataset adult breast-cancer
Metric Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓) Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓)

Dropout 85.74 ± 0.09 0.63 ± 0.00 1.08 ± 0.06 96.67 ± 0.46 18.49 ± 3.07 3.54 ± 0.34
DUE 76.22 ± 0.11 0.99 ± 0.01 13.46 ± 0.29 69.75 ± 1.66 80.04 ± 2.42 18.94 ± 1.51
DUQ 84.81 ± 0.10 0.67 ± 0.00 1.82 ± 0.08 96.06 ± 0.49 18.34 ± 2.21 4.21 ± 0.32
EDL 85.50 ± 0.26 0.65 ± 0.00 2.74 ± 0.23 96.70 ± 0.42 17.06 ± 1.90 3.56 ± 0.35

Ensemble 85.78 ± 0.09 0.63 ± 0.00 1.04 ± 0.05 96.71 ± 0.40 18.08 ± 2.74 3.45 ± 0.28
VBLL 85.61 ± 0.10 0.64 ± 0.00 1.12 ± 0.06 96.39 ± 0.51 14.82 ± 1.67 4.18 ± 0.39

LEO (ours) 85.77 ± 0.09 0.63 ± 0.00 1.25 ± 0.07 96.71 ± 0.40 16.66 ± 1.34 4.69 ± 0.30

Table 8: Results for tabular classification tasks. Reported values are means over 100 seeds and the
values after ± are 95%-confidence intervals of the mean estimator. The best methods and z-test ties
are shown in bold, and the second best methods are underlined.

Dataset heart-disease titanic
Metric Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓) Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓)

Dropout 82.07 ± 1.42 209.74 ± 35.29 15.78 ± 1.04 79.75 ± 0.65 35.48 ± 0.83 7.83 ± 0.42
DUE 74.85 ± 1.96 219.75 ± 3.45 20.44 ± 1.29 62.12 ± 1.34 50.63 ± 0.71 8.33 ± 0.61
DUQ 83.48 ± 1.40 145.89 ± 8.27 14.87 ± 0.80 78.95 ± 0.71 35.40 ± 0.73 7.83 ± 0.41
EDL 82.93 ± 1.45 165.60 ± 13.39 15.22 ± 0.99 79.54 ± 0.68 36.31 ± 0.91 8.08 ± 0.47

Ensemble 81.37 ± 1.52 187.97 ± 33.33 15.15 ± 1.00 79.98 ± 0.69 35.53 ± 0.93 7.64 ± 0.43
VBLL 80.56 ± 1.71 167.01 ± 10.62 15.99 ± 1.08 79.45 ± 0.94 35.96 ± 1.01 8.07 ± 0.45

LEO (ours) 82.81 ± 1.45 153.60 ± 6.56 15.75 ± 0.76 79.43 ± 0.73 35.71 ± 0.76 7.60 ± 0.39
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H FULL CIFAR-10 RESULTS

Table 9: Results for CIFAR10 benchmarks. Reported values are means over 3 seeds and the values
after ± denote 95% CIs of the mean estimator. The best methods and all methods that do not
statistically differ w.r.t. two-sided z-test are shown in bold. The second best methods are underlined.

Dataset ID OOD
Metric Acc (↑) NLLLoss (×10−3) (↓) ECE (×10−3) (↓) Acc (↑) NLLLoss (×10−3) (↓) ECE (×10−3) (↓)

Dropout 94.44 ± 0.47 1.43 ± 0.02 17.27 ± 6.17 44.79 ± 1.17 21.46 ± 4.74 297.47 ± 62.55
DUE 94.54 ± 0.16 1.54 ± 0.03 16.33 ± 2.23 44.52 ± 1.43 18.65 ± 1.21 360.31 ± 43.37
DUQ 93.75 ± 0.39 3.04 ± 0.02 176.79 ± 11.24 44.14 ± 1.23 14.28 ± 0.27 216.90 ± 40.33
EDL 93.99 ± 0.40 2.15 ± 0.06 57.54 ± 0.83 42.72 ± 1.38 15.83 ± 0.60 276.30 ± 21.73

Ensemble 95.44 ± 0.08 1.09 ± 0.01 6.42 ± 2.35 45.58 ± 0.35 19.76 ± 0.34 318.27 ± 16.13
VBLL 94.72 ± 0.54 1.42 ± 0.07 20.73 ± 2.29 44.23 ± 1.50 19.34 ± 0.81 335.49 ± 24.44

LEO (ours) 94.17 ± 0.50 1.48 ± 0.04 16.88 ± 2.43 44.18 ± 0.12 16.95 ± 1.76 294.20 ± 40.77

I LLM USAGE STATEMENT

In preparing this work, we used GPT-5 in three ways: (1) to assist in discovering related literature
by suggesting potentially relevant papers, (2) to provide implementation suggestions during devel-
opment of the experimental code, and (3) improve clarity of writing. All suggested references were
manually checked for correctness and relevance, and all code was reviewed, and verified by the
authors.
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