

000 001 LEAVE ONE EXPERT OUT: ROBUST UNCERTAINTY 002 QUANTIFICATION VIA INTRINSIC CROSS-VALIDATION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Estimating epistemic uncertainty remains an important challenge in modern Deep
012 Learning (DL). We propose a novel architecture, called Leave one Expert Out
013 (LEO), which is a form of a mixture-of-experts model with latent-space-distance-
014 aware router and a null expert, representing prior belief, to which output of the
015 model collapses if testing datapoint is too different from any of datapoints experts
016 were trained on. This architecture allows to temporarily drop experts from the
017 model, and we utilise this property to train the router to leverage the predictions
018 of remaining experts to make predictions for the datapoints normally assigned to
019 the expert currently removed from the model. We coin this mechanism *intrinsic*
020 *cross-validation* and show, such a trained router excels at estimating epistemic
021 uncertainty for both in and out of distribution inputs. We demonstrate state-of-art
022 performance on uncertainty quantification in regression benchmarks, such as UCI
023 problems or age prediction on UTK-Face, and CIFAR-10 classification bench-
024 mark. We also show the proposed method can achieve superior performance in
025 surrogate-based black-box optimization.

026 1 INTRODUCTION

029 Deep Learning (DL) (Rumelhart et al., 1986; Goodfellow et al., 2016) has achieved spectacular suc-
030 cess when it comes to the predictive power of models. Beginning with early successes in computer
031 vision (Krizhevsky et al., 2012), where the models were trained to predict the class of an object in
032 an image, the field has since advanced rapidly. Today, modern DL models, such as Large Language
033 Models, can even engage in meaningful conversations with the user by predicting the most likely
034 next word (token) given a sequence of preceding words. However, while DL models excel at making
035 a prediction, assessing the certainty of that prediction remains a notoriously difficult problem.

036 This uncertainty might stem from different sources. Aleatoric uncertainty reflects inherent noise
037 in the data or labels. For example, the same house might sell for slightly different prices due to
038 random factors not captured by its features. In general, basic DL models can typically handle this
039 type of uncertainty if their outputs can be interpreted as probability distributions. For instance, in
040 classification with softmax outputs, if two identical images exist in the training set, but the first is
041 labelled as a dog and second as a cat, then training with standard cross-entropy loss will encourage
042 the model to put roughly half of probability mass on each of the labels. While more sophisticated
043 techniques exist for modelling aleatoric uncertainty, even simple models provide a basic way to
044 capture this type of observation noise.

045 The second source of uncertainty is typically much harder to deal with. It is referred to as epistemic
046 and arises when the model has not seen enough data during training to make a confident prediction
047 for a given test data point. We cannot simply train the model to output its estimated epistemic
048 uncertainty, because all training points are in-distribution (ID) and this uncertainty during training
049 is essentially zero (or very small and only due to observation noise). As a result, naively trained
050 models tend to be overconfident and behave unpredictably on inputs far from the training data.
051 Since epistemic uncertainty reflects a model’s lack of knowledge about new inputs, a proper model
052 of epistemic uncertainty must, by definition, account for out-of-distribution (OoD) inputs.

053 At first glance, this problem may seem prohibitively difficult. How can we make sure our epis-
054 temic uncertainty model performs well on inputs it has never seen? But if we take a step back, and

054 consider the classical, non-deep machine learning methods, we will realize that this exact problem
 055 has already been addressed countless times. One of the classical models celebrated for uncertainty
 056 quantification is the Gaussian Process (GP) (Rasmussen & Williams, 2006). GPs have the rather
 057 desirable property that, as the inputs move further away from training data, the model predictions
 058 collapse to the user-specified prior, with the rate of collapse controlled by the length scale hyperpa-
 059 rameter. This hyperparameter can be tuned using cross-validation (Bachoc, 2013), where the model
 060 is repeatedly trained on subsets of the data and evaluated on held-out points. While feasible for
 061 classical models with short training times, repeated retraining is completely impractical for large
 062 deep learning models, requiring plenty of time and compute to retrain.

063 In recent years, numerous uncertainty quantification methods have been developed for epistemic
 064 uncertainty quantification, including Bayesian neural networks (Mackay, 1992; Neal, 2012), mean-
 065 field variational inference (Blundell et al., 2015), Monte Carlo Dropout (Gal & Ghahramani, 2016),
 066 ensembles Lakshminarayanan et al. (2017); Wen et al. (2020); Dusenberry et al. (2020) and single-
 067 model approaches (Tagasovska & Lopez-Paz, 2019; Van Amersfoort et al., 2020; Liu et al., 2020;
 068 Van Amersfoort et al., 2021). However, in these approaches, the training process typically does
 069 not explicitly encourage the model to outputs high uncertainty in OoD cases. Instead, they rely
 070 on the assumption that the model will naturally behave differently on OoD inputs, which does not
 071 necessarily need to hold in practice.

072 In this work, we propose a novel approach for epistemic uncertainty quantification called Leave-
 073 one-Expert-Out (LEO). LEO introduces supervised OoD signals during training by simulating OoD
 074 scenarios using only partitioned training data, without requiring actual held-out OoD examples. The
 075 intuition is that this enables the model to transfer its OoD detection capability to test time. LEO
 076 is a variant of a mixture-of-experts neural network, where each expert is trained on a subset of the
 077 training data, and OoD scenarios are simulated by randomly dropping some experts during training.

078 Unlike some methods that set a fixed threshold to reject model outputs for OoD inputs, we treat
 079 all unseen inputs as “partially” OoD. To handle this, we include a “null” (prior) expert, outputting
 080 a vague distribution suitable for OoD cases. Predictions from this expert and the other experts are
 081 then weighted by a distance-aware router, which computes weights based on the distance between
 082 the test input and the training data in the latent space. To train this router, we introduce a novel
 083 mechanism called “intrinsic cross-validation”, which involves learning to make accurate predictions
 084 for data assigned to a given expert, *with that expert removed from the model*. This forces the router
 085 to learn how much to rely on the remaining experts’ predictions and when to defer to the null expert,
 086 mimicking the desirable property of a GP.

087 In our architecture, experts can share the feature extractor and differ only in the final layer, resulting
 088 in a negligible increase in model size. Through extensive experiments, we show that LEO obtains
 089 superb performance on both regression and classifications tasks requiring uncertainty quantification,
 090 for both in- and out-of-distribution data, as well as sequential decision making, **often completely
 091 outperforming existing methods and consistently matches or outperforms state of art performance.**

092 2 METHODOLOGY

093 This section presents the core mechanism of LEO. The training and inference procedures are sum-
 094 marised in Algorithms 1, 2 and 3. We consider a supervised learning problem where, given a point
 095 $x \in \mathcal{X}$, the goal is to predict the target $y \in \mathcal{Y}$. We assume that we are given a training dataset
 096 $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, where $x_i \in \mathcal{X}$ are inputs and $y_i \in \mathcal{Y}$ are labels. The set \mathcal{Y} could, for instance,
 097 be \mathbb{R} for regression or $[C]$ for C -class classification. We aim to devise an architecture that
 098

100 (i) produces epistemic uncertainty estimates that grow as the input moves further away from
 101 the training distribution;
 102 (ii) enables efficient cross-validation of the uncertainty estimates.

103 To fulfill these requirements, we propose to use a mixture-of-experts style architecture, described
 104 below. Before training, we assign every data point in the training set a type $t \in \mathcal{T}$, with each type
 105 handled by a specific expert. We discuss how to partition the training set into different types in
 106 Subsection B.1. Let $\mathcal{E} \subseteq \mathcal{T}$ be the set of all data point types in the training data. We propose to
 107 use a shared feature extractor $f : \mathcal{X} \rightarrow \mathcal{Z} \subset \mathbb{R}^{d_z}$ parameterised by ψ and implement each expert

108 for $t \in \mathcal{E}$ as a linear head¹ operating on the latent representation $z = f(x; \psi)$. As such, each expert
 109 is a single-layer network $h_t : \mathcal{Z} \rightarrow \mathbb{R}^{d_y}$, where $d_y = 1$ for regression and $d_y = C$ for C -class
 110 classification. Each expert is trained only on data points of its own type and the feature extractor is
 111 trained on all the data. That is, we learn $\{\theta_t\}_{t \in \mathcal{E}}, \psi$ by minimizing the following loss function:
 112

$$113 \quad \mathcal{J}^{\text{experts}}(\mathcal{D}; \{\theta_t\}_{t \in \mathcal{E}}; \psi) = \frac{1}{n} \sum_{t \in \mathcal{E}} \sum_{\{i: t_i=t\}} \mathcal{L}(h_t(f(x_i; \psi); \theta_t), y_i),$$

116 where $\mathcal{L}(\cdot, \cdot) : \mathbb{R}^{d_y} \times \mathcal{Y} \rightarrow \mathbb{R}$ is a task-specific loss function. We use Mean Squared Error for
 117 regression and Cross-Entropy for classification. Note that, although the feature extractor technically
 118 sees all the data points, the predictions made by each expert can vary significantly if each expert
 119 only sees data from a particular subregion of \mathcal{X} . We expand on this in Subsection B.1.

120 When given a new data point unseen during training, we do not know a priori which expert will
 121 handle it best. Hence, during inference, which expert to invoke is decided by a router $p_\phi(t|x; \mathcal{E})$
 122 parameterised by ϕ . We thus make the prediction for a new point by marginalizing the type variable:
 123

$$124 \quad p_\phi(y|x; \mathcal{E}) = p_0(y)p_\phi(t \notin \mathcal{E}|x; \mathcal{E}) + \sum_{t \in \mathcal{E}} p(y|x, t)p_\phi(t|x; \mathcal{E}), \quad (1)$$

126 where p_0 is a prior distribution associated with an additional out-of-distribution (OoD) type. The
 127 notation $t \notin \mathcal{E}$ is thus shorthand for this OoD type, i.e., the case where none of the experts associated
 128 with the types \mathcal{E} is expected to provide an accurate prediction. The resulting prediction can be
 129 interpreted as a weighted mixture of the experts' in-distribution predictions and the prior distribution
 130 p_0 , where the weight assigned to p_0 reflects the model's estimated probability of the input being
 131 OoD. This prior can be specified by the user if they have domain knowledge about the distribution
 132 of y . In our experiments, we simply resort to a uniform distribution over all classes in the case of
 133 classification and a zero-mean, unit-variance gaussian in the case of regression (and we assume that
 134 the training data is standardized). For the predictive distribution $p(y|x, t)$ in Equation 1, we use the
 135 predictive softmax $p(y|x, t) = \text{softmax}(h_t(z; \theta_t))$ in classification and the delta function centered
 136 on the expert's prediction $p(y|x, t) = \delta(y = h_t(z; \theta_t))$ in regression. As such, the uncertainty in
 137 this model mainly arises when $p_\phi(t \notin \mathcal{E}|x; \mathcal{E})$ is high, in which case the vague prior dominates.

138 In the case of classification, the final predictive distribution $p_\phi(y|x; \mathcal{E})$ is just a mixture of categorical
 139 distributions, which is a categorical distribution itself that can be easily computed. In regression,
 140 given the prior $p_0(y|x) = \mathcal{N}(y; \mu_0(x), \sigma_0^2(x))$, then $p_\phi(y|x; \mathcal{E})$ is a mixture of a Gaussian and delta
 141 functions, which we approximate with a single Gaussian by moment-matching, i.e., $p_\phi(y|x; \mathcal{E}) \approx$
 142 $\mathcal{N}(y; \mu_\phi(x; \mathcal{E}), \sigma_\phi^2(x; \mathcal{E}))$, where

$$143 \quad \mu_\phi(x; \mathcal{E}) = \mu_0(x)p_\phi(t \notin \mathcal{E}|x; \mathcal{E}) + \sum_{t \in \mathcal{E}} h_t(f(x; \psi); \theta_t)p_\phi(t|x; \mathcal{E}),$$

$$145 \quad \sigma_\phi^2(x; \mathcal{E}) = (\sigma_0^2(x) + (\mu_0(x) - \mu_\phi(x; \mathcal{E}))^2)p_\phi(t \notin \mathcal{E}|x; \mathcal{E}) + \sum_{t \in \mathcal{E}} (h_t(f(x; \psi); \theta_t) - \mu_\phi(x; \mathcal{E}))^2 p_\phi(t|x; \mathcal{E}).$$

147 We now proceed to describe the mechanism behind the operation of the router.

150 2.1 DISTANCE-AWARE ROUTER

152 The router, which models the type probabilities $p_\phi(t|x; \mathcal{E})$ and $p_\phi(t \notin \mathcal{E}|x; \mathcal{E})$, operates on the latent
 153 embeddings given by the feature extractor $f(x; \psi)$ and is parametrised by $\phi = (\bigcup_{t \in \mathcal{E}} \phi_t) \cup \phi_0$,
 154 where ϕ_t is a set of parameters specified below for each t , and $\phi_0 \in \mathbb{R}$ is a learnable constant. To
 155 fulfill the requirement (i) outlined in the beginning of the section, we want the router to be distance-
 156 aware in the latent space, i.e., to guarantee that a data point with latent embeddings z vastly different
 157 than ones seen during training will make the router output a high OoD probability $p_\phi(t \notin \mathcal{E}|x; \mathcal{E})$
 158 and make the predictive distribution collapse to the prior p_0 . To achieve this property, we propose
 159 that the router should learn a projection matrix M_t for each expert for $t \in \mathcal{E}$ and assign a score
 160 inversely proportional to the L2 distance between the projected embeddings $z^T M_t$ and the centroid

161 ¹In principle, each expert head could be much deeper than a single layer. However, we found empirically
 that a single layer was sufficient, so we chose it for simplicity and to reduce memory and computational costs.

162 e_t of the data points of type t in the latent space:
 163

$$164 \quad s_t(z; \phi_t) = \frac{\tau_t}{\frac{1}{d_z} \|z^T M_t - e_t\|_2^2},$$

$$165$$

166 where τ_t is a temperature parameter and $\phi_t = \{M_t, \tau_t\}$. Since the function $\|z^T M_t - e_t\|_2^2$ is
 167 quadratic and always positive, it has a unique minimiser and for any direction $\hat{e} \in \mathbb{R}^{d_z}$, we must
 168 have $s_t(\alpha \hat{e}; \phi_t) \rightarrow 0$ as $\alpha \rightarrow \infty$. The use of such distances was previously introduced in a method
 169 called DUQ (Van Amersfoort et al., 2020), which uses the exponent of the negative distance rather
 170 than the inverse distance. In our experiments, we found the inverse distance to be a much more
 171 stable choice for the router. The scores are then normalised as below to give the type probabilities:
 172

$$173 \quad p_\phi(t|x; \mathcal{E}) = \begin{cases} \frac{s_t(f(x; \psi); \phi_t)}{\phi_0 + \sum_{t' \in \mathcal{E}} s_{t'}(f(x; \psi); \phi_{t'})} & \text{for } t \in \mathcal{E} \\ 174 \quad \frac{\phi_0}{\phi_0 + \sum_{t' \in \mathcal{E}} s_{t'}(f(x; \psi); \phi_{t'})} & \text{for } t \notin \mathcal{E}. \end{cases} \quad (2)$$

$$175$$

$$176$$

177 When the latent embedding z for a given point becomes too distant from the embeddings seen during
 178 training, we have $s_t(\alpha \hat{e}; \phi_t) \rightarrow 0$ for all $t \in \mathcal{E}$, as explained above. In this case, the constant ϕ_0 must
 179 necessarily start to dominate and $p_\phi(t \notin \mathcal{E}|x; \mathcal{E}) \rightarrow 1$. This fulfills the requirement (i) outlined at the
 180 beginning of this section, but requirement (ii) is still not addressed. Indeed, to make the uncertainty
 181 estimate meaningful, it is necessary to determine how fast $p_\phi(t \notin \mathcal{E}|x; \mathcal{E})$ collapses to 1, to make
 182 sure that in-distribution data for which we can still make valid predictions are assigned relatively
 183 small uncertainty and out-of-distribution data for which we cannot hope to make good predictions
 184 are given high uncertainty. In the next subsection, we expand on how to achieve this by leaving an
 185 expert out, a powerful mechanism that the proposed architecture allows us to exploit.
 186

207
 208 Figure 1: (a) Before training, the dataset is partitioned into different types. (b) Training Phase 1:
 209 Each data point is passed through the feature extractor and the type-specific expert to optimise per-
 210 expert MSE losses. Both the feature extractor and experts are updated. (c) Training Phase 2: The
 211 feature extractor and experts are frozen, and only the router is updated. In the top panel, each data
 212 point is passed through all experts, with outputs weighted by the router to compute the likelihood
 213 under the full model. In the bottom panel, the expert corresponding to the data point's type and a
 214 random subset of other experts are dropped, and the remaining experts' weighted outputs are used
 215 to compute the intrinsic cross-validation likelihood. Both likelihoods are obtained from a single
 216 forward pass by using different subsets of experts.

216 2.2 LEAVE-ONE-EXPERT-OUT: INTRINSIC CROSS-VALIDATION
217

218 We are now going to discuss a crucial mechanism of the Leave-one-Expert-Out (LEO) architecture.
219 Note that in Equation 1, we used the notation $p_\phi(y|x; \mathcal{E})$, which means that the final output distribu-
220 tion of the full model depends on the all the known data types \mathcal{E} . Let us consider what will happen
221 if we evaluate this equation with some type t^* removed from \mathcal{E} :

$$222 \quad p_\phi(y|x; \mathcal{E} \setminus t^*) = p_0(y)p_\phi(t \notin \mathcal{E} \setminus t^*|x; \mathcal{E} \setminus t^*) + \sum_{t \in \mathcal{E} \setminus t^*} p(y|x, t)p_\phi(t|x; \mathcal{E} \setminus t^*).$$

225 First of all, the term corresponding to t^* is now omitted entirely and the output $h_{t^*}(y|x)$ of the
226 corresponding expert does not contribute to the final model output. Secondly, the prior $p_0(y)$ is now
227 multiplied by the probability of the data point being of type $t \notin \mathcal{E} \setminus t^*$, as opposed to $t \notin \mathcal{E}$. As
228 such, the model behaves as if none of the data points of type t^* had been seen during training. In
229 other words, when the type t^* is dropped, the set of known data types becomes $\mathcal{E} \setminus t^*$, and all other
230 types are treated as OoD. In this case, $p_\phi(\cdot|x; \mathcal{E} \setminus t^*)$ is defined in a similar way to Equation 2, but
231 with the score function $s_{t^*}(z; \phi_{t^*})$ replaced by ϕ_0 . We train the router by minimising the loss:
232

$$232 \quad \mathcal{J}^{\text{router}}(\mathcal{D}; \phi) = -\left(\log p_\phi(\mathcal{D}) + \log p_\phi(\mathcal{D}_{\text{ICV}})\right),$$

234 where ICV stands for *intrinsic cross-validation*, which we define below. The parameters θ of the
235 experts and the parameters ψ of the feature extractor are kept frozen (detached), so only the param-
236 eters of the router ϕ are updated when $\mathcal{J}^{\text{router}}$ is optimised. We updated centroids e_t in the same
237 way as done in DUQ; see Appendix B.3 for details. In the first term, $p_\phi(\mathcal{D})$ denotes the likelihood
238 of the data under the full model defined in Equation 1 without dropping any of the experts. For
239 completeness, we provide the expression below:
240

$$241 \quad p_\phi(\mathcal{D}) = \prod_{i=1}^n p_\phi(y_i|x_i; \mathcal{E}).$$

243 The role of this term in the loss function is to make sure that the predictions of all experts are
244 meaningfully combined by the router and lead to a sensible data fit. However, this term on its
245 own does not guarantee sensible uncertainty quantification. In fact, if each expert can model its
246 data points perfectly, the optimal solution is just to always collapse the probability on that expert,
247 resulting in no uncertainty quantification. This is remedied by $p_\phi(\mathcal{D}_{\text{ICV}})$ in the second term, which
248 we call the *intrinsic cross-validation* likelihood. It involves making a prediction for each data point
249 i , with the expert for type t_i and some random subsets of other experts dropped from the model, i.e.,
250

$$251 \quad p_\phi(\mathcal{D}_{\text{ICV}}) = \prod_{i=1}^n p_\phi(y_i|x_i; \mathcal{E} \setminus (t_i \cup r(\mathcal{E}))),$$

253 where $r(\mathcal{E})$ is a randomly selected subset of \mathcal{E} . See Figure 1. We describe how exactly this random
254 subset is selected in Subsection B.2. Note that if an expert that is not dropped from the model
255 can extrapolate well to data point types that it did not see during training, the router can achieve a
256 good intrinsic cross-validation likelihood $p_\phi(\mathcal{D}_{\text{ICV}})$ by putting a high probability mass on it, e.g.,
257 by setting its temperature τ_t high. Conversely, if each of the remaining experts makes a wrong
258 prediction, collapsing to the vague prior p_0 will be the optimal solution. As such, the router needs
259 to learn its parameters to find the optimal rate at which the model stops trusting the known experts
260 and collapses to the prior, effectively learning how to estimate its epistemic uncertainty.

261 3 RELATED WORK
262

263 **Epistemic uncertainty and out-of-distribution detection** Ensemble methods (Lakshmi-
264 narayanan et al., 2017; Wen et al., 2020; Dusenberry et al., 2020; Zaidi et al., 2021) are a standard
265 approach for estimating epistemic uncertainty, combining predictions from multiple independently
266 trained models. Monte Carlo Dropout (Gal & Ghahramani, 2016) offers a lightweight alternative by
267 applying dropout at test time and averaging multiple forward passes. While ensembles remain state-
268 of-the-art, they are computationally expensive as both training and inference scale with the number
269 of models. Moreover, theoretical work has questioned whether ensembles truly capture epistemic
uncertainty or primarily reflect randomness in initialization and optimisation (He et al., 2020).

270 Single-model methods require only a single forward pass at test time. Distance-based approaches
 271 such as deterministic uncertainty quantification (DUQ) (Van Amersfoort et al., 2020), spectral-
 272 normalized neural Gaussian processes (SNGP) (Liu et al., 2020), and deterministic uncertainty es-
 273 timation (DUE) (Van Amersfoort et al., 2021) use distance-aware output layers (e.g., RBFs, GPs)
 274 to improve OoD sensitivity together with spectrally normalised (Miyato et al., 2018) or gradient
 275 penalised (Van Amersfoort et al., 2020) feature extractor. Distributional approaches, including evi-
 276 dential deep learning (EDL) (Sensoy et al., 2018; Amini et al., 2020) and Density Regression (DR)
 277 (Bui & Liu, 2024), model predictive distributions directly without requiring sampling. Bayesian
 278 Neural Networks (BNNs) are a broad family of approaches for assesing uncertainty in NNs and
 279 involve methods such as Bayes-by-Backprop (Blundell et al., 2015), Laplace Approximation and
 280 Variational Inference (Wen et al., 2018). However, these approaches typically rely on extensive
 281 sampling and suffer from instabilities. Variational Bayes last layer (VBLL) (Harrison et al., 2024)
 282 is a recent, state-of-the-art BNN approach that applies Bayesian inference only to the final layer,
 283 avoids sampling all-together and enjoying much more stable performance. Although single-model
 284 approaches may not always match ensembles in performance, they provide efficient alternatives suit-
 285 able for large-scale deployment. Epistemic neural networks (“epinets”) (Osband et al., 2023) repre-
 286 sent a related direction by conditioning predictions on an auxiliary epistemic index. In comparison,
 287 LEO modifies the final layer with a mixture-of-experts structure and addresses OoD detection via
 288 training-time OoD simulations.

289 Although this work focuses on supervised learning, OoD detection has also been studied in gener-
 290 ative modeling. Prior work has shown that deep generative models can assign high likelihoods to
 291 OoD data (Nalisnick et al., 2018; Choi et al., 2018; Kirichenko et al., 2020), raising concerns about
 292 using density estimates from generative models for OoD detection. Alternative strategies include
 293 hypothesis testing frameworks (Nalisnick et al., 2019) and training with auxiliary OoD datasets
 294 (Hendrycks et al., 2018). In contrast, LEO does not require a separate OoD dataset and can simulate
 295 OoD situations using training set only via the mechanism of intrinsic cross-validation.

296
 297 **Mixture-of-Experts models** Mixture-of-Experts (MoE) models (Jacobs et al., 1991; Jordan & Ja-
 298 cobs, 1994) divide a prediction task among multiple specialized sub-networks, or experts, with a
 299 gating function that determines how to combine their outputs. Experts can share feature represen-
 300 tations, allowing increased model capacity with minimal additional parameters. LEO builds on this
 301 framework by leveraging the experts to capture epistemic uncertainty and including a “null” expert
 302 to represent lack of confidence.

305 4 EXPERIMENTS

306 We evaluate our algorithm LEO together with baselines on uncertainty quantification in regression
 307 and classification tasks, as well as on Bayesian Optimisation (BO) tasks, where the goal is to sequen-
 308 tially query an unknown black-box function to find points with the highest objective values. In all
 309 tasks, except for BO, we reserve 10% of the training data as a validation set and apply early stopping
 310 based on the validation log-likelihood. We now describe the baselines used in our experiments. We
 311 share our code via an anonymysed link².

312 **Baselines** For comparison, we selected the strongest existing uncertainty quantification baselines.
 313 These include MC Dropout (Gal & Ghahramani, 2016), Ensemble (Lakshminarayanan et al., 2017),
 314 EDL (Sensoy et al., 2018; Amini et al., 2020), DUE (Van Amersfoort et al., 2021) and VBLL
 315 (Harrison et al., 2024). Additionally, in all regression and BO tasks we compare against Density Re-
 316 gression (Bui & Liu, 2024) and in all classification tasks we compare against DUQ (Van Amersfoort
 317 et al., 2020). We try to make the setup and architectures as similar across baselines as possible; see
 318 Appendix C for details.

319
 320
 321
 322
 323
²<https://anonymous.4open.science/r/leave-one-expert-out-DF01/>

324 Table 1: Results for four UCI benchmarks. Reported values are means over 20 seeds and the values
 325 after \pm denote 95% CIs of the mean estimator. The best methods and all methods that do not
 326 statistically differ w.r.t. two-sided z-test are shown in bold. The second best methods are underlined.
 327

Dataset Metric	kin8nm		naval		power-plant		yacht	
	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)
Density R.	0.18 ± 0.03	0.92 ± 0.00	$\underline{-2.24 \pm 0.05}$	1.00 ± 0.00	-0.09 ± 0.02	0.95 ± 0.00	1.27 ± 1.20	0.99 ± 0.00
Dropout	1.19 ± 0.12	$\underline{0.92 \pm 0.00}$	-1.12 ± 0.02	0.99 ± 0.00	3.13 ± 0.34	0.96 ± 0.00	$\underline{-1.23 \pm 0.27}$	0.98 ± 0.00
DUE	1.95 ± 0.12	0.80 ± 0.01	$\underline{-0.36 \pm 0.30}$	1.00 ± 0.00	1.20 ± 0.09	0.89 ± 0.00	$\underline{-1.49 \pm 0.05}$	1.00 ± 0.00
EDL	0.18 ± 0.03	0.91 ± 0.01	-1.84 ± 0.03	$\underline{1.00 \pm 0.00}$	-0.09 ± 0.04	0.95 ± 0.00	$\underline{-2.07 \pm 0.34}$	0.99 ± 0.00
Ensemble	1.32 ± 0.19	0.93 ± 0.00	$\underline{-2.26 \pm 0.04}$	1.00 ± 0.00	1.72 ± 0.25	0.96 ± 0.00	$\underline{-2.51 \pm 0.33}$	1.00 ± 0.00
VBLL	2.75 ± 1.99	0.89 ± 0.00	-0.53 ± 0.25	0.99 ± 0.00	$\underline{-0.04 \pm 0.04}$	0.95 ± 0.00	0.03 ± 0.93	0.99 ± 0.00
LEO (ours)	0.12 ± 0.01	0.92 ± 0.00	-2.62 ± 0.08	1.00 ± 0.00	-0.04 ± 0.05	0.95 ± 0.00	-2.16 ± 0.23	0.99 ± 0.00

335
 336
 337 Table 2: Results for UCI protein and UTK-Face benchmarks. Reported values are means over 20
 338 seeds in protein and 5 seeds in UTK, with the values following \pm denoting 95% CIs of the mean
 339 estimator. The best-performing methods and those tied via a z-test are shown in bold, while the
 340 second-best methods are underlined. In cells marked with (*), predictive variance was so small that
 341 likelihood computations caused a numerical issue on all seeds.
 342

Dataset Metric	protein				UTK			
	NLL (\downarrow)	R2 (\uparrow)	OOD NLL (\downarrow)	OOD R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	OOD NLL (\downarrow)	OOD R2 (\uparrow)
Density R.	1.01 ± 0.24	0.59 ± 0.01	11.52 ± 2.50	0.39 ± 0.05	1.23 ± 0.11	0.65 ± 0.01	0.49 ± 0.07	0.53 ± 0.04
Dropout	4.17 ± 0.35	0.69 ± 0.00	4.86 ± 0.41	0.53 ± 0.01	N/A(*)	0.75 ± 0.02	N/A(*)	0.55 ± 0.09
DUE	5.11 ± 0.21	0.08 ± 0.01	2.99 ± 0.12	0.14 ± 0.01	1.73 ± 0.22	0.00 ± 0.00	1.24 ± 0.08	-0.70 ± 0.01
EDL	1.07 ± 0.02	0.41 ± 0.01	1.15 ± 0.08	0.44 ± 0.03	2.36 ± 0.24	0.62 ± 0.06	2.27 ± 0.27	0.14 ± 0.38
Ensemble	2.27 ± 0.11	0.68 ± 0.00	1.90 ± 0.21	0.28 ± 0.05	1.10 ± 0.13	0.79 ± 0.01	0.68 ± 0.16	0.60 ± 0.05
VBLL	1.00 ± 0.03	0.59 ± 0.01	2.31 ± 0.36	-0.18 ± 0.14	0.85 ± 0.27	0.82 ± 0.01	0.79 ± 0.32	0.59 ± 0.07
LEO (ours)	0.89 ± 0.04	0.60 ± 0.01	1.19 ± 0.05	0.42 ± 0.02	0.78 ± 0.03	0.74 ± 0.02	0.49 ± 0.09	0.58 ± 0.06

4.1 REGRESSION PROBLEMS

To evaluate performance on regression tasks, we consider ten UCI benchmarks and the UTK-Face dataset, where the goal is to predict age from raw pixels of facial images. For each dataset, we report the negative log-likelihood (NLL, lower is better), and coeff. of determination (R^2 , higher is better) or mean absolute error (MAE, lower is better) as a measure of predictive performance, depending on the task. We detail how OOD evaluation sets were obtained in Appendix D.

Results We present results on five UCI datasets and UTK-Face in Tables ?? and 2, and defer the rest of UCI datasets to Appendix F due to space limitations. Overall, we can see that LEO excels in terms of NLL, achieving the best (or tying for the best) performance across all of the evaluated regression benchmarks. Among the remaining baselines, methods such as EDL, Dropout or VBLL achieve good NLL values on some datasets but underperform on others. In contrast, LEO achieves good NLL values consistently. Regarding predictive performance, LEO may underperform slightly in some cases, but consistently ranks second, whereas the method achieving the highest predictive performance varies across datasets.

367 Table 3: Results for tabular classification tasks. Reported values are means over 100 seeds and the
 368 values after \pm are 95%-confidence intervals of the mean estimator. The best methods and z-test ties
 369 are shown in bold, and the second best methods are underlined.
 370

Dataset Metric	german-credit			bank-marketing		
	Acc. (\uparrow)	NLL ($\times 10^{-4}$) (\downarrow)	ECE ($\times 10^{-2}$) (\downarrow)	Acc. (\uparrow)	NLL ($\times 10^{-4}$) (\downarrow)	ECE ($\times 10^{-2}$) (\downarrow)
Dropout	73.77 ± 0.84	52.98 ± 1.47	10.14 ± 0.63	90.33 ± 0.11	0.46 ± 0.00	1.32 ± 0.08
DUE	69.72 ± 0.81	58.15 ± 0.67	9.70 ± 0.65	88.35 ± 0.10	0.74 ± 0.01	11.32 ± 0.21
DUQ	74.08 ± 0.89	51.31 ± 1.15	9.73 ± 0.57	90.14 ± 0.07	0.51 ± 0.00	2.21 ± 0.07
EDL	73.79 ± 0.83	52.63 ± 1.20	9.90 ± 0.64	90.39 ± 0.08	0.50 ± 0.00	3.34 ± 0.10
Ensemble	74.43 ± 0.90	51.19 ± 1.37	9.54 ± 0.57	90.65 ± 0.09	0.45 ± 0.00	0.93 ± 0.04
VBLL	72.64 ± 1.02	52.75 ± 1.22	9.91 ± 0.56	90.59 ± 0.08	0.46 ± 0.00	1.05 ± 0.07
LEO (ours)	73.99 ± 0.86	51.53 ± 0.88	8.95 ± 0.52	90.53 ± 0.09	0.46 ± 0.00	1.07 ± 0.05

Figure 2: ID vs OoD performance on CIFAR-10 for different methods as measured by NLLLoss (left) and ECE (right). Points are means over 3 seeds and error bars correspond to 95% CIs of the mean estimator. The closer to bottom, left corner, a method is, the better.

4.2 CLASSIFICATION

To evaluate performance on classification tasks, we consider six tabular benchmarks (adult-census-income, bank-marketing, titanic, german-credit, breast-cancer, heart-disease) and CIFAR-10. For each benchmark, we report the negative log-likelihood (NLL, lower is better), the Expected Calibration Error (ECE, lower is better) and accuracy. On tabular benchmarks, we simply use a fully-connected architecture, whereas on CIFAR-10, we use WideResNet 28-10 as the feature extractor. To create an OoD evaluation set for CIFAR-10, we randomly corrupt the evalset images.

Results We present some of the results in Table 3 and Figure 2 and defer the rest to Appendices G and H. We see that LEO is able to obtain the best performance on most datasets and across most metrics, losing only in four cases (out of 18 dataset/metric combinations), in which on two of them (bank-marketing NLL and ECE) loses to Ensemble only and wins among all single-model methods. On CIFAR-10 problems, we see that most methods either excel in- or out-of-distribution, whereas LEO is able to obtain good performance in both simultaneously. This is illustrated in Figure 2, where we plot OoD performance vs ID performance according to NLL and ECE metrics (closer to the bottom-left corner indicates better performance). Ensemble excels in ID performance, but underperforms in OoD, whereas DUQ and EDL exhibit the opposite tendency. LEO, Dropout, DUE and VBLL achieve similar ID performance, but out of these four, LEO achieves the best average OoD performance, placing itself at a desirable point on the Pareto frontier.

In Table 4, we present comparison of inference times, training times and the total size of each of the models. We see LEO is one of the fastest method, having less than 1% memory higher memory footprint compared to smallest model. This is in stark contrast to Dropout, which significantly increases inference time or to Ensemble, which also significantly increases memory footprint. As such, LEO positions itself as a relatively lightweight alternative with a fast inference speed.

Table 4: Avg. inference time (with 95% CIs) and total model memory footprint for each method on CIFAR-10. Best values in bold, second best underlined.

Metric	Baseline	Dropout	DUE	DUQ	EDL	Ensemble	VBLL	LEO (ours)
Infer. time (ms) (↓)	0.06 ± 0.00	0.20 ± 0.00	0.33 ± 0.00	0.06 ± 0.00	0.06 ± 0.00	0.19 ± 0.00	0.07 ± 0.00	0.06 ± 0.00
Model size (MB) (↓)	<u>139.23</u>	139.23	156.72	172.34	<u>139.23</u>	696.13	154.88	<u>140.89</u>
Train. time (min) (↓)	60.80 ± 7.03	146.48 ± 27.77	<u>79.49 ± 0.33</u>	99.02 ± 34.90	126.28 ± 13.89	238.22 ± 0.97	<u>76.52 ± 9.64</u>	66.83 ± 7.27

4.3 BAYESIAN OPTIMISATION

Finally, we also evaluate all models used for regression experiments as surrogates for Bayesian Optimization (BO). In BO, the objective is to efficiently optimize an unknown black-box function by sequentially selecting query points. This is typically achieved by fitting a surrogate model to the observed data and then optimizing an acquisition function that balances exploration and exploitation. Crucially, the surrogate must provide reliable uncertainty estimates to enable this trade-off. Standard neural networks, which often extrapolate linearly outside the training data, tend to assign unrealis-

432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1

486 Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
 487 son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
 488 *Advances in neural information processing systems*, 33:21524–21538, 2020.

489 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
 490 neural network. In *International conference on machine learning*, pp. 1613–1622. PMLR, 2015.

492 Ha Manh Bui and Anqi Liu. Density-regression: Efficient and distance-aware deep regressor for
 493 uncertainty estimation under distribution shifts. In *International Conference on Artificial Intelli-
 494 gence and Statistics*, pp. 2998–3006. PMLR, 2024.

495 Hyunsun Choi, Eric Jang, and Alexander A Alemi. Waic, but why? generative ensembles for robust
 496 anomaly detection. *arXiv preprint arXiv:1810.01392*, 2018.

498 Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine Heller, Balaji
 499 Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian neural nets with rank-1
 500 factors. In *International conference on machine learning*, pp. 2782–2792. PMLR, 2020.

501 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
 502 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
 503 PMLR, 2016.

505 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
 506 MIT Press, 2016.

508 James Harrison, John Willes, and Jasper Snoek. Variational bayesian last layers. *arXiv preprint
 509 arXiv:2404.11599*, 2024.

510 Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the neural
 511 tangent kernel. *Advances in neural information processing systems*, 33:1010–1022, 2020.

513 Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
 514 exposure. *arXiv preprint arXiv:1812.04606*, 2018.

515 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 516 local experts. *Neural computation*, 3(1):79–87, 1991.

518 Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
 519 *Neural computation*, 6(2):181–214, 1994.

521 Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect
 522 out-of-distribution data. *Advances in neural information processing systems*, 33:20578–20589,
 523 2020.

524 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 525 tional neural networks. *Advances in neural information processing systems*, 25, 2012.

527 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 528 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
 529 30, 2017.

530 Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshmi-
 531 narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
 532 distance awareness. *Advances in neural information processing systems*, 33:7498–7512, 2020.

533 David John Cameron Mackay. *Bayesian methods for adaptive models*. California Institute of Tech-
 534 nology, 1992.

536 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
 537 for generative adversarial networks. *arXiv preprint arXiv:1802.05957*, 2018.

538 Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
 539 deep generative models know what they don't know? *arXiv preprint arXiv:1810.09136*, 2018.

540 Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detect-
 541 ing out-of-distribution inputs to deep generative models using typicality. *arXiv preprint*
 542 *arXiv:1906.02994*, 2019.

543

544

545 Radford M Neal. *Bayesian learning for neural networks*, volume 118. Springer Science & Business
 546 Media, 2012.

547

548 Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
 549 Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. *Advances in Neural Information
 550 Processing Systems*, 36:2795–2823, 2023.

551

552

553 Carl Edward Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning*.
 554 MIT Press, Cambridge, MA, USA, 2006.

555

556 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
 557 propagating errors. *nature*, 323(6088):533–536, 1986.

559

560 Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classifica-
 561 tion uncertainty. *Advances in neural information processing systems*, 31, 2018.

562

563

564 Natasa Tagasovska and David Lopez-Paz. Single-model uncertainties for deep learning. *Advances
 565 in neural information processing systems*, 32, 2019.

566

567 Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a
 568 single deep deterministic neural network. In *International conference on machine learning*, pp.
 569 9690–9700. PMLR, 2020.

570

571

572 Joost Van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, and Yarin Gal. On feature collapse
 573 and deep kernel learning for single forward pass uncertainty. *arXiv preprint arXiv:2102.11409*,
 574 2021.

575

576 Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient pseudo-
 577 independent weight perturbations on mini-batches. *arXiv preprint arXiv:1803.04386*, 2018.

578

579

580 Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
 581 ensemble and lifelong learning. *arXiv preprint arXiv:2002.06715*, 2020.

582

583

584 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint*
 585 *arXiv:1605.07146*, 2016.

586

587 Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C Holmes, Frank Hutter, and Yee Teh. Neural
 588 ensemble search for uncertainty estimation and dataset shift. *Advances in Neural Information
 589 Processing Systems*, 34:7898–7911, 2021.

590

591

592 Juliusz Ziomek, George Whittle, and Michael A Osborne. Just one layer norm guarantees stable
 593 extrapolation. *arXiv preprint arXiv:2505.14512*, 2025.

594 **A FULL ALGORITHM PSEUDOCODE**
595596 **Algorithm 1** LEO Training
597

598 1: **Input:** Training data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, types $\{t_i\}_{i=1}^n$, parameters ψ , $\{\theta_t\}_{t \in \mathcal{E}}$, $\phi = (\bigcup_{t \in \mathcal{E}} \phi_t) \cup \phi_0$ with $\phi_t = \{M_t, \tau_t\}$, learning rates $\eta_\psi, \eta_\theta, \eta_\phi$, epochs E_1, E_2
599 2: **Output:** Trained parameters $\psi^*, \{\theta_t^*\}_{t \in \mathcal{E}}, \phi^*$
600 3: Initialise $\psi, \{\theta_t\}_{t \in \mathcal{E}}, \phi$
601 4: **Phase 1: Expert Training**
602 5: **for** epoch = 1 to E_1 **do**
603 6: **for** each mini-batch $\mathcal{B} \subset \mathcal{D}$ **do**
604 7: Compute batch loss: $\mathcal{J}^{\text{experts}}(\mathcal{B}; \{\theta_t\}_{t \in \mathcal{E}}; \psi) = \frac{1}{|\mathcal{B}|} \sum_{(x_i, y_i) \in \mathcal{B}} \mathcal{L}(h_{t_i}(f(x_i; \psi); \theta_{t_i}), y_i)$
605 8: Update feature extractor parameters: $\psi \leftarrow \psi - \eta_\psi \nabla_\psi \mathcal{J}^{\text{experts}}$
606 9: Update expert parameters: $\theta_{t_i} \leftarrow \theta_{t_i} - \eta_\theta \nabla_{\theta_{t_i}} \mathcal{J}^{\text{experts}}$
607 10: **end for**
608 11: **end for**
609 12: Freeze ψ and $\{\theta_t\}_{t \in \mathcal{E}}$
610 13: **Phase 2: Router Training**
611 14: **for** epoch = 1 to E_2 **do**
612 15: **for** each mini-batch $\mathcal{B} \subset \mathcal{D}$ **do**
613 16: Sample a subset $r(\mathcal{E})$ of \mathcal{E}
614 17: Compute router loss:
615 18:
$$\mathcal{J}^{\text{router}}(\mathcal{B}; \phi) = -\frac{1}{|\mathcal{B}|} \sum_{(x_i, y_i) \in \mathcal{B}} \left(\log p_\phi(y_i | x_i; \mathcal{E}) + \log p_\phi(y_i | x_i; \mathcal{E} \setminus (t_i \cup r(\mathcal{E}))) \right)$$

616 19: Update router parameters: $\phi \leftarrow \phi - \eta_\phi \nabla_\phi \mathcal{J}^{\text{router}}$
617 20: **end for**
618 21: **end for**
619 22: **return** $\psi^*, \{\theta_t^*\}_{t \in \mathcal{E}}, \phi^*$

623

624 **Algorithm 2** LEO Inference (Regression)
625

626 1: **Input:** New input x , learned parameters $\psi^*, \{\theta_t^*\}_{t \in \mathcal{E}}, \phi^*$, prior mean $\mu_0(\cdot)$, prior variance $\sigma_0^2(\cdot)$
627 2: **Output:** Predictive mean \hat{y} , predictive variance $\hat{\sigma}^2$
628 3: Compute predictive mean:
629 4:
$$\hat{y} = \mu_0(x)p_{\phi^*}(t \notin \mathcal{E} | x; \mathcal{E}) + \sum_{t \in \mathcal{E}} h_t(f(x; \psi^*); \theta_t^*)p_{\phi^*}(t | x; \mathcal{E})$$

630 5: Compute predictive variance:
631 6:
$$\hat{\sigma}^2 = (\sigma_0^2(x) + (\mu_0(x) - \hat{y})^2)p_{\phi^*}(t \notin \mathcal{E} | x; \mathcal{E}) + \sum_{t \in \mathcal{E}} (h_t(f(x; \psi^*); \theta_t^*) - \hat{y})^2 p_{\phi^*}(t | x; \mathcal{E})$$

632 7: **return** $\hat{y}, \hat{\sigma}^2$

637

638 **Algorithm 3** LEO Inference (Classification)
639

640 1: **Input:** New input x , learned parameters $\psi^*, \{\theta_t^*\}_{t \in \mathcal{E}}, \phi^*$, prior distribution over classes $p_0(c)$
641 2: **Output:** Predictive categorical distribution $p(c|x)$
642 3: Compute prediction of each expert $t \in \mathcal{E}$ as $p(\cdot | x; t) = \text{softmax}(h_t(f(x; \psi^*)))$
643 4: Compute predictive probabilities for each class $c \in [C]$:
644 5:
$$p(c|x) = p_0(c)p_{\phi^*}(t \notin \mathcal{E} | x; \mathcal{E}) + \sum_{t \in \mathcal{E}} p(c|x; t)p_{\phi^*}(t | x; \mathcal{E})$$

645 6: **return** $p(c|x)$

648 **B DETAILS ON LEO**
649650 **B.1 PARTITIONING DATA INTO TYPES**
651652 Our training mechanism requires partitioning the training data into types before training, such that
653 each expert sees a distinct distribution of training inputs. At the same time, we also want to create
654 situations where one expert can make accurate predictions for at least some of the points of other
655 types. This ensures that the router learns how much it can trust a given expert when extrapolating,
656 which will then translate into robust uncertainty estimates for the entire model when going beyond
657 its training domain.658 To satisfy these properties, we propose to use the freshly initialised, untrained feature extractor
659 to obtain embeddings for each point i , i.e., $z_i^0 = f(x_i; \psi_0)$, and then use a random projection
660 vector $v \sim \mathcal{N}(0, \mathcal{I}_d)$ to obtain a *type indicator* $g_i = z_i^0 \cdot v$ for each data point. We then sort
661 type indicators (which are just scalars) and split the sorted list into $|\mathcal{E}|$ consecutive chunks of equal
662 length and give each chunk a different type in \mathcal{E} , which is assigned to a dedicated expert. This
663 assignment creates mismatch across experts' training distributions, since even in a freshly initialised
664 network, the embeddings for two data points are correlated and depend on input features in complex
665 and random ways. At the same time, because nearby points in the sorted 1D projection are not
666 guaranteed to be assigned to the same expert, some neighbouring points in the embedding space
667 may be split across experts, allowing partial extrapolation and forcing the router to learn expert
668 reliability.669 **B.2 RANDOM SUBSET SELECTION**
670671 To obtain the random subset of experts to drop for a given data point i , we first sample $u_i \sim U(0, 1)$
672 and then for each expert associated with $t \in \mathcal{E}$, we sample $m_{t,i} \sim U(0, 1)$. We drop the t th expert
673 for the i th data point if $m_{t,i} < u_i$. In this way, we drop experts with uniform probability, but also
674 the average number of experts we drop is uniformly distributed. We do this with the objective of
675 making the model more robust by simulating more diverse OoD scenarios.676 **B.3 UPDATING CENTROIDS**
677678 We utilise the same moving-average-style update rule for the centroids e_t as the one employed in
679 DUQ (Van Amersfoort et al., 2020), i.e., after each mini-batch $\{(x_i, t_i, y_i)\}_{i=1}^{|\mathcal{B}|}$ of size $|\mathcal{B}|$ we update

680
$$N_t := \gamma N_t + (1 - \gamma) n_t, \quad (3)$$

681
$$m_t := \gamma m_t + (1 - \gamma) \frac{1}{n_t} \sum_{\{i: t_i = t\}} f(x_i; \psi)^T M_t, \quad (4)$$

682
$$e_t := \frac{m_t}{N_t}. \quad (5)$$

683 where $n_t = |\{i : t_i = t\}|$. We initialise $N_t = 13$ for all types and initialise m_t with small Gaussian
684 noise $\mathcal{N}(0, 0.05^2)$. We set $\gamma = 0.99$.691 **C DETAILED EXPERIMENTAL SETUP**
692693 For our experiments, we used machines with NVIDIA A40 GPUs with 48 GB of memory.
694695 **C.1 GENERAL**
696697 We try to keep the experimental setup as similar as possible across methods. For this reason, across
698 all experiments, we use 5 models for Ensemble, 5 dropout samples for Dropout, and 5 experts
699 for LEO. We use a dropout rate of 0.3 for the Dropout method. Across all methods, we keep the
700 architecture fixed except for the last layer, which changes depending on the exact method used (e.g.
701 Variational GP in DUE or expert heads and router in LEO). In VBLL, we use the same optimiser
setting as the original authors, namely we use a weight decay of 0.01 and clip max gradient to 1.0

702 across all experiments, and thus use AdamW, while other baselines use Adam. For DUE, we use the
 703 RBF kernel and set the number of inducing points equal to the number of classes in classification and
 704 use 20 inducing points in regression. For baselines requiring a distance-preserving feature extractor
 705 (DUE, DUQ), we apply spectral normalization to the feature extractor and add residual connections
 706 if they are not present by default (e.g. when the feature extractor is just a fully-connected network).
 707 For EDL, performance is highly sensitive to the hyperparameter λ . We tune the λ hyperparameter by
 708 first running 20% of the total training iterations with different values of λ and choosing the one that
 709 produces the best validation likelihood at the end of training. For LEO, we use the same number
 710 of epochs as other methods to train the experts and then the same number of epochs to train the
 711 router (which is much faster, as experts and feature extractor are fixed). In all experiments across all
 712 baselines we use a “patience” mechanism, i.e., if the last epoch achieved the best validation loss, we
 713 extend training until the validation loss stops improving.

714 C.2 REGRESSION - UCI

715 For each problem and baseline, we use a fully-connected network with three hidden layers of size
 716 256 with relu nonlinearities. We train for a total of 10000 epochs with Adam with the learning rate
 717 set to 0.001. We use full-batch gradient descent. We measure the NLL on the validation set every
 718 100 epochs and select the checkpoint with the lowest value.

721 C.3 REGRESSION - UTK

722 We use freshly initialised ResNet-18, followed by one fully-connected layer. We train for a total of
 723 50 epochs with a batch size of 128 using Adam with a learning rate equal to 0.00001. We measure
 724 the NLL on the validation set after every epoch and select the checkpoint with the lowest value.

727 C.4 CLASSIFICATION - TABULAR

728 For each problem and baseline, we use a full-connected network with two hidden layers of size 256
 729 with relu nonlinearities. We use Adam with a learning rate of 0.01 and full batch gradient descent.
 730 We measure the NLL on the validation set after every epoch and select the checkpoint with the
 731 lowest value.

733 C.5 CLASSIFICATION - CIFAR-10

735 We use freshly initialised WideResNet 28-10 with a dropout rate of 0.3, followed by one fully-
 736 connected layer, outputting logits for each of the ten classes. We use the same data augmentation as
 737 in Zagoruyko & Komodakis (2016). We train for 50 epochs using SGD with momentum equal to
 738 0.9 and weight decay set to 5×10^{-4} . We start with a learning rate of 0.1 and divide it by 5 after 20,
 739 30 and 40 epochs. We use a batch size of 128.

741 C.6 BAYESIAN OPTIMISATION

743 We use the same architecture and training setup as in Regression - UCI. However, since in BO we
 744 need to be extremely sample efficient, we use all the available data points for training and do not
 745 reserve a validation set. Instead, we use weight decay of 0.01 and therefore the AdamW optimiser.
 746 Given the model predicts a mean $\mu(x)$ and variance $\sigma^2(x)$ at a given point x , we select the next
 747 point to query by maximising the UCB acquisition function $\alpha(x) = \mu(x) + \beta\sigma(x)$ and set $\beta = 3$.
 748 We use BoTorch (Balandat et al., 2020) to optimise the acquisition function. We completely retrain
 749 each model after acquiring a new point.

751 D OBTAINING OOD EVALUATION SETS IN REGRESSION TASKS

753 On the UCI benchmarks, eight datasets have only in-distribution evaluation sets, whereas two of
 754 them (protein and wine) have both in- and out-of-distribution evaluation sets. For the wine dataset,
 755 we follow Bui & Liu (2024), using red wines for training and ID evaluation and white wines for
 OoD evaluation. For the protein dataset, we follow Ziomek et al. (2025), using smaller proteins

756 for training and ID evaluation and larger proteins for OoD evaluation. In each case, we simply
 757 use fully-connected architectures. On UTK-Face, to create ID and OoD evaluation sets, we follow
 758 Ziomek et al. (2025), using all images with ethnicity label "Others" as the OoD evaluation set and
 759 all remaining ethnicities as training and ID evaluation sets. We use freshly initialised ResNet-18 as
 760 the backbone model.

764 E OBTAINING OOD EVALUATION SETS IN CIFAR-10

767 To evaluate OoD robustness, we construct a corrupted variant of CIFAR by applying common image
 768 corruptions. For each image, one corruption type is chosen at random. The set of corruption types
 769 includes:

- 771 • **Gaussian noise:** additive pixel-wise Gaussian noise
- 772
- 773
- 774 • **Salt-and-pepper noise:** randomly setting pixels to black or white
- 775
- 776
- 777 • **Gaussian blur:** convolution with a Gaussian kernel
- 778
- 779
- 780 • **Motion blur:** convolution with a horizontal motion
- 781
- 782
- 783 • **Brightness shift:** multiplicative rescaling of pixel intensities by a random factor
- 784
- 785
- 786 • **Contrast reduction:** pixel intensities are shifted toward the per-image mean
- 787
- 788
- 789 • **Pixelation:** downsampling the image followed by nearest-neighbor upsampling.

790 All corrupted images are clipped to the valid pixel range [0, 255].

794 F DETAILED UCI RESULTS

800 Table 5: Results for UCI benchmarks. Reported values are means over 20 seeds and the values after
 801 \pm denote 95% CIs of the mean estimator. The best methods and all methods that do not statistically
 802 differ w.r.t. two-sided z-test are shown in bold. The second best methods are underlined.

803 804 Dataset Metric	805 boston		806 california		807 concrete		808 energy-efficiency	
	809 NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)
Density R.	0.98 ± 0.56	0.81 ± 0.05	0.55 ± 0.05	0.76 ± 0.04	0.64 ± 0.17	0.89 ± 0.01	1.46 ± 0.86	0.98 ± 0.00
Dropout	3.71 ± 0.72	0.87 ± 0.02	3.91 ± 0.26	0.82 ± 0.01	3.06 ± 0.96	0.91 ± 0.01	-0.74 ± 0.20	0.99 ± 0.00
DUE	2.30 ± 0.40	0.54 ± 0.10	2.64 ± 0.14	0.31 ± 0.07	2.08 ± 0.15	0.55 ± 0.09	-0.79 ± 0.17	0.99 ± 0.00
EDL	0.47 ± 0.18	0.86 ± 0.02	0.49 ± 0.05	0.48 ± 0.57	0.36 ± 0.15	0.90 ± 0.01	-0.91 ± 0.10	0.98 ± 0.01
Ensemble	8.26 ± 3.18	0.87 ± 0.02	2.33 ± 0.14	0.77 ± 0.01	4.75 ± 1.32	0.92 ± 0.01	0.37 ± 0.46	0.99 ± 0.00
VBLL	3.23 ± 5.21	0.86 ± 0.02	1.33 ± 0.41	0.71 ± 0.02	4.51 ± 3.83	0.90 ± 0.02	1.74 ± 1.90	0.98 ± 0.00
LEO (ours)	0.35 ± 0.14	0.84 ± 0.02	0.45 ± 0.03	0.79 ± 0.01	0.29 ± 0.12	0.89 ± 0.01	-0.87 ± 0.08	0.98 ± 0.00

810
 811 Table 6: Results for the wine UCI benchmark. The training set and the ID evaluation set correspond
 812 to red wine. Reported values are means over 20 seeds and the values after \pm denote 95% CIs of
 813 the mean estimator. The best methods and all methods that do not statistically differ w.r.t. two-
 814 sided z-test are shown in bold. The second best methods are underlined. In cells marked with (*),
 815 OOD evaluation for Density Regression caused numerical instabilities on 2 out of 20 seeds, omitting
 816 those cases average value reached were 3.23 for OOD NLL and -8.36×10^{-23} for OOD R^2 . In cell
 817 marked with (†), OOD NLL evaluation for EDL caused numerical instabilities on 7 out of 20 seeds,
 818 remaining seeds reached an average OOD NLL equal to 9051.13.

Dataset Metric	wine			
	NLL (↓)	R2 (↑)	OOD NLL (↓)	OOD R2 (↑)
Density R.	1.54 ± 0.06	-4.00 ± 5.51	(*)	(*)
Dropout	<u>10.51 ± 3.19</u>	0.40 ± 0.02	12.04 ± 2.12	0.07 ± 0.04
DUE	4.38 ± 0.25	0.11 ± 0.01	6.12 ± 0.26	<u>-0.01 ± 0.01</u>
EDL	2.76 ± 1.59	<u>0.36 ± 0.02</u>	(†)	<u>-0.04 ± 0.06</u>
Ensemble	5.70 ± 0.79	0.32 ± 0.03	4.95 ± 0.46	-0.27 ± 0.08
VBLL	112.55 ± 105.56	0.29 ± 0.04	136.16 ± 82.00	-0.39 ± 0.10
LEO (ours)	1.23 ± 0.03	<u>0.37 ± 0.02</u>	1.55 ± 0.03	<u>-0.02 ± 0.05</u>

G DETAILED TABULAR CLASSIFICATION RESULTS

830
 831
 832
 833 Table 7: Results for tabular classification tasks. Reported values are means over 100 seeds and the
 834 values after \pm are 95%-confidence intervals of the mean estimator. The best methods and z-test ties
 835 are shown in bold, and the second best methods are underlined.

Dataset Metric	adult			breast-cancer		
	Acc. (↑)	NLL ($\times 10^{-4}$) (↓)	ECE ($\times 10^{-2}$) (↓)	Acc. (↑)	NLL ($\times 10^{-4}$) (↓)	ECE ($\times 10^{-2}$) (↓)
Dropout	85.74 ± 0.09	0.63 ± 0.00	1.08 ± 0.06	96.67 ± 0.46	<u>18.49 ± 3.07</u>	3.54 ± 0.34
DUE	76.22 ± 0.11	0.99 ± 0.01	13.46 ± 0.29	69.75 ± 1.66	80.04 ± 2.42	18.94 ± 1.51
DUQ	84.81 ± 0.10	0.67 ± 0.00	1.82 ± 0.08	96.06 ± 0.49	18.34 ± 2.21	4.21 ± 0.32
EDL	<u>85.50 ± 0.26</u>	0.65 ± 0.00	2.74 ± 0.23	96.70 ± 0.42	17.06 ± 1.90	<u>3.56 ± 0.35</u>
Ensemble	85.78 ± 0.09	0.63 ± 0.00	1.04 ± 0.05	96.71 ± 0.40	18.08 ± 2.74	<u>3.45 ± 0.28</u>
VBLL	85.61 ± 0.10	0.64 ± 0.00	1.12 ± 0.06	96.39 ± 0.51	14.82 ± 1.67	4.18 ± 0.39
LEO (ours)	85.77 ± 0.09	0.63 ± 0.00	<u>1.25 ± 0.07</u>	96.71 ± 0.40	16.66 ± 1.34	4.69 ± 0.30

849
 850
 851
 852
 853 Table 8: Results for tabular classification tasks. Reported values are means over 100 seeds and the
 854 values after \pm are 95%-confidence intervals of the mean estimator. The best methods and z-test ties
 855 are shown in bold, and the second best methods are underlined.

Dataset Metric	heart-disease			titanic		
	Acc. (↑)	NLL ($\times 10^{-4}$) (↓)	ECE ($\times 10^{-2}$) (↓)	Acc. (↑)	NLL ($\times 10^{-4}$) (↓)	ECE ($\times 10^{-2}$) (↓)
Dropout	82.07 ± 1.42	209.74 ± 35.29	15.78 ± 1.04	79.75 ± 0.65	35.48 ± 0.83	7.83 ± 0.42
DUE	74.85 ± 1.96	219.75 ± 3.45	20.44 ± 1.29	62.12 ± 1.34	50.63 ± 0.71	8.33 ± 0.61
DUQ	83.48 ± 1.40	145.89 ± 8.27	14.87 ± 0.80	78.95 ± 0.71	35.40 ± 0.73	7.83 ± 0.41
EDL	82.93 ± 1.45	165.60 ± 13.39	15.22 ± 0.99	79.54 ± 0.68	36.31 ± 0.91	8.08 ± 0.47
Ensemble	81.37 ± 1.52	<u>187.97 ± 33.33</u>	15.15 ± 1.00	79.98 ± 0.69	35.53 ± 0.93	7.64 ± 0.43
VBLL	80.56 ± 1.71	167.01 ± 10.62	15.99 ± 1.08	79.45 ± 0.94	35.96 ± 1.01	8.07 ± 0.45
LEO (ours)	82.81 ± 1.45	153.60 ± 6.56	15.75 ± 0.76	79.43 ± 0.73	35.71 ± 0.76	7.60 ± 0.39

864
865
866
867
868
869
870
871

H FULL CIFAR-10 RESULTS

872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
Table 9: Results for CIFAR-10 benchmarks. Reported values are means over 3 seeds and the values after \pm denote 95% CIs of the mean estimator. The best methods and all methods that do not statistically differ w.r.t. two-sided z-test are shown in bold. The second best methods are underlined.

Dataset Metric	ID			OOD		
	Acc (\uparrow)	NLLLoss ($\times 10^{-3}$) (\downarrow)	ECE ($\times 10^{-3}$) (\downarrow)	Acc (\uparrow)	NLLLoss ($\times 10^{-3}$) (\downarrow)	ECE ($\times 10^{-3}$) (\downarrow)
Dropout	94.44 \pm 0.47	1.43 \pm 0.02	17.27 \pm 6.17	44.79 \pm 1.17	21.46 \pm 4.74	297.47 \pm 62.55
DUE	<u>94.54 \pm 0.16</u>	1.54 \pm 0.03	16.33 \pm 2.23	44.52 \pm 1.43	18.65 \pm 1.21	360.31 \pm 43.37
DUQ	93.75 \pm 0.39	3.04 \pm 0.02	176.79 \pm 11.24	<u>44.14 \pm 1.23</u>	14.28 \pm 0.27	216.90 \pm 40.33
EDL	93.99 \pm 0.40	2.15 \pm 0.06	57.54 \pm 0.83	42.72 \pm 1.38	15.83 \pm 0.60	276.30 \pm 21.73
Ensemble	95.44 \pm 0.08	<u>1.09 \pm 0.01</u>	6.42 \pm 2.35	45.58 \pm 0.35	19.76 \pm 0.34	318.27 \pm 16.13
VBLL	<u>94.72 \pm 0.54</u>	<u>1.42 \pm 0.07</u>	20.73 \pm 2.29	44.23 \pm 1.50	19.34 \pm 0.81	335.49 \pm 24.44
LEO (ours)	94.17 \pm 0.50	1.48 \pm 0.04	16.88 \pm 2.43	44.18 \pm 0.12	16.95 \pm 1.76	294.20 \pm 40.77

918 I ABLATIONS ON NUMBER OF EXPERTS

921 Table 10: Ablations results for UCI benchmarks. We compare a version of LEO with 5 experts that
922 we used throughout experiments to versions of LEO with 2,3 and 10 experts. Reported values are
923 means over 20 seeds and the values after \pm denote 95% CIs of the mean estimator. The best methods
924 and all methods that do not statistically differ w.r.t. two-sided z-test are shown in bold. The second
925 best methods are underlined. See Table 6 for explanation of (\star) and (\dagger) symbols.

Dataset Metric	boston		california		concrete		energy-efficiency	
	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)
Density R.	0.99 \pm 0.53	0.81 \pm 0.04	0.55 \pm 0.05	0.76 \pm 0.04	0.62 \pm 0.16	0.89 \pm 0.01	1.96 \pm 1.28	0.98 \pm 0.00
Dropout	3.75 \pm 0.69	0.87 \pm 0.02	3.90 \pm 0.25	0.82 \pm 0.01	2.95 \pm 0.93	0.91 \pm 0.01	<u>0.75 \pm 0.19</u>	0.99 \pm 0.00
DUE	2.28 \pm 0.38	0.55 \pm 0.10	2.65 \pm 0.13	0.31 \pm 0.07	2.07 \pm 0.15	0.55 \pm 0.09	-0.80 \pm 0.17	0.99 \pm 0.00
EDL	0.46 \pm 0.17	0.86 \pm 0.02	0.49 \pm 0.05	0.51 \pm 0.53	<u>0.36 \pm 0.14</u>	0.90 \pm 0.01	<u>0.91 \pm 0.09</u>	0.98 \pm 0.01
Ensemble	8.02 \pm 3.06	0.87 \pm 0.02	2.33 \pm 0.13	0.77 \pm 0.01	4.66 \pm 1.26	0.92 \pm 0.01	0.34 \pm 0.44	0.99 \pm 0.00
VBLL	3.09 \pm 4.97	0.87 \pm 0.02	1.31 \pm 0.39	0.71 \pm 0.02	4.31 \pm 3.67	0.90 \pm 0.02	1.75 \pm 1.81	0.98 \pm 0.00
LEO (ours) (2 experts)	0.29 \pm 0.06	0.83 \pm 0.02	0.47 \pm 0.02	0.79 \pm 0.01	0.28 \pm 0.12	0.90 \pm 0.01	-0.84 \pm 0.08	0.98 \pm 0.00
LEO (ours) (3 experts)	0.30 \pm 0.07	0.84 \pm 0.02	0.47 \pm 0.02	0.79 \pm 0.01	0.31 \pm 0.14	0.90 \pm 0.01	-0.78 \pm 0.13	0.98 \pm 0.00
LEO (ours) (5 experts)	0.37 \pm 0.16	0.84 \pm 0.02	0.46 \pm 0.03	0.79 \pm 0.01	0.23 \pm 0.08	0.89 \pm 0.01	-0.86 \pm 0.08	0.98 \pm 0.00
LEO (ours) (10 experts)	0.28 \pm 0.06	0.83 \pm 0.02	0.43 \pm 0.02	0.79 \pm 0.01	0.25 \pm 0.09	0.89 \pm 0.01	-0.63 \pm 0.10	0.97 \pm 0.00
Dataset Metric	kin8nm		naval		power-plant		yacht	
	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)
Density R.	0.19 \pm 0.03	0.92 \pm 0.00	-2.24 \pm 0.05	1.00 \pm 0.00	-0.09 \pm 0.02	0.95 \pm 0.00	1.17 \pm 1.15	0.99 \pm 0.00
Dropout	1.18 \pm 0.12	0.92 \pm 0.00	-1.12 \pm 0.02	0.99 \pm 0.00	3.10 \pm 0.33	0.95 \pm 0.00	-1.20 \pm 0.26	0.98 \pm 0.01
DUE	1.96 \pm 0.12	0.79 \pm 0.02	-0.42 \pm 0.31	1.00 \pm 0.00	1.19 \pm 0.09	0.89 \pm 0.00	-1.49 \pm 0.05	1.00 \pm 0.00
EDL	0.18 \pm 0.03	0.91 \pm 0.01	-1.84 \pm 0.02	1.00 \pm 0.00	-0.09 \pm 0.03	0.95 \pm 0.00	-2.08 \pm 0.33	0.99 \pm 0.00
Ensemble	1.29 \pm 0.19	0.93 \pm 0.00	-2.27 \pm 0.04	1.00 \pm 0.00	1.68 \pm 0.24	0.96 \pm 0.00	-2.52 \pm 0.31	1.00 \pm 0.00
VBLL	2.64 \pm 1.91	0.89 \pm 0.00	-0.54 \pm 0.24	0.99 \pm 0.00	-0.04 \pm 0.03	0.95 \pm 0.00	0.06 \pm 0.89	0.99 \pm 0.00
LEO (ours) (2 experts)	0.16 \pm 0.02	0.92 \pm 0.00	-2.58 \pm 0.08	1.00 \pm 0.00	-0.00 \pm 0.04	0.95 \pm 0.00	-2.15 \pm 0.28	1.00 \pm 0.00
LEO (ours) (3 experts)	0.16 \pm 0.01	0.92 \pm 0.00	-2.46 \pm 0.07	1.00 \pm 0.00	-0.05 \pm 0.03	0.95 \pm 0.00	-1.89 \pm 0.59	1.00 \pm 0.00
LEO (ours) (5 experts)	0.14 \pm 0.01	0.92 \pm 0.00	-2.58 \pm 0.08	1.00 \pm 0.00	-0.06 \pm 0.03	0.95 \pm 0.00	-2.22 \pm 0.17	0.99 \pm 0.00
LEO (ours) (10 experts)	0.11 \pm 0.01	0.92 \pm 0.00	-2.64 \pm 0.08	1.00 \pm 0.00	-0.05 \pm 0.05	0.95 \pm 0.00	-1.66 \pm 0.28	0.99 \pm 0.00
Dataset Metric	protein		wine					
	NLL (\downarrow)	R2 (\uparrow)	OOD NLL (\downarrow)	OOD R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	OOD NLL (\downarrow)	OOD R2 (\uparrow)
Density R.	1.00 \pm 0.23	(*)	11.64 \pm 2.38	0.39 \pm 0.05	1.54 \pm 0.06	-3.83 \pm 5.25	3.27 \pm 0.46	(*)
Dropout	4.38 \pm 0.53	0.69 \pm 0.00	4.82 \pm 0.39	0.54 \pm 0.01	10.52 \pm 3.03	0.40 \pm 0.02	12.15 \pm 2.03	0.07 \pm 0.04
DUE	5.12 \pm 0.20	0.08 \pm 0.01	2.99 \pm 0.11	0.14 \pm 0.01	4.35 \pm 0.25	0.11 \pm 0.01	6.10 \pm 0.25	-0.01 \pm 0.01
EDL	1.07 \pm 0.02	0.41 \pm 0.01	1.16 \pm 0.07	0.44 \pm 0.03	2.70 \pm 1.51	0.36 \pm 0.02	(*)	-0.04 \pm 0.06
Ensemble	2.27 \pm 0.11	0.68 \pm 0.00	1.89 \pm 0.20	0.27 \pm 0.04	5.66 \pm 0.76	0.32 \pm 0.03	4.90 \pm 0.46	-0.28 \pm 0.08
VBLL	1.02 \pm 0.04	0.59 \pm 0.01	2.46 \pm 0.45	-0.20 \pm 0.14	107.26 \pm 100.94	0.29 \pm 0.04	129.77 \pm 78.99	-0.39 \pm 0.10
LEO (ours) (2 experts)	0.95 \pm 0.04	0.61 \pm 0.00	1.17 \pm 0.04	0.44 \pm 0.02	1.26 \pm 0.02	0.33 \pm 0.01	1.54 \pm 0.02	0.02 \pm 0.04
LEO (ours) (3 experts)	0.91 \pm 0.04	0.61 \pm 0.01	1.16 \pm 0.04	0.43 \pm 0.02	1.24 \pm 0.03	0.35 \pm 0.02	1.53 \pm 0.03	0.03 \pm 0.04
LEO (ours) (5 experts)	0.89 \pm 0.03	0.60 \pm 0.00	1.16 \pm 0.05	0.44 \pm 0.02	1.23 \pm 0.03	0.37 \pm 0.02	1.56 \pm 0.03	-0.03 \pm 0.04
LEO (ours) (10 experts)	0.86 \pm 0.05	0.59 \pm 0.01	1.16 \pm 0.04	0.39 \pm 0.03	1.20 \pm 0.03	0.40 \pm 0.02	1.55 \pm 0.02	-0.03 \pm 0.04

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **J ABLATION ON TYPE ASSIGNMENT**
973974
975 Table 11: Ablations results for UCI benchmarks. We compare different ways of assigning ex-
976 pert types. "Original" refers to the method we use throughout other experiments described in B.1.
977 "KMeans" refers to a variation of that method, where instead of constructing histogram we conduct
978 Kmeans clustering and "Random" is just a purely random type assignment. Reported values are
979 means over 20 seeds and the values after \pm denote 95% CIs of the mean estimator. The best meth-
980 ods and all methods that do not statistically differ w.r.t. two-sided z-test are shown in bold. The
981 second best methods are underlined. See Table 6 for explanation of (\star) and (\dagger) symbols.
982

Dataset Metric	boston		california		concrete		energy-efficiency	
	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)
Density R.	0.99 \pm 0.53	0.81 \pm 0.04	0.55 \pm 0.05	0.76 \pm 0.04	0.62 \pm 0.16	0.89 \pm 0.01	1.96 \pm 1.28	0.98 \pm 0.00
Dropout	3.75 \pm 0.69	0.87 \pm 0.02	3.90 \pm 0.25	0.82 \pm 0.01	2.95 \pm 0.93	0.91 \pm 0.01	-0.75 \pm 0.19	0.99 \pm 0.00
DUE	2.28 \pm 0.38	0.55 \pm 0.10	2.65 \pm 0.13	0.31 \pm 0.07	2.07 \pm 0.15	0.55 \pm 0.09	-0.80 \pm 0.17	0.99 \pm 0.00
EDL	0.46 \pm 0.17	0.86 \pm 0.02	0.49 \pm 0.05	0.51 \pm 0.53	0.36 \pm 0.14	0.90 \pm 0.01	-0.91 \pm 0.09	0.98 \pm 0.01
Ensemble	8.02 \pm 3.06	0.87 \pm 0.02	2.33 \pm 0.13	0.77 \pm 0.01	4.66 \pm 1.26	0.92 \pm 0.01	0.34 \pm 0.44	0.99 \pm 0.00
VBLL	3.09 \pm 4.97	0.87 \pm 0.02	1.31 \pm 0.39	0.71 \pm 0.02	4.31 \pm 3.67	0.90 \pm 0.02	1.75 \pm 1.81	0.98 \pm 0.00
LEO (Original)	0.37 \pm 0.16	0.84 \pm 0.02	0.46 \pm 0.03	0.79 \pm 0.01	0.23 \pm 0.08	0.89 \pm 0.01	-0.86 \pm 0.08	0.98 \pm 0.00
LEO (KMeans)	0.27 \pm 0.08	0.83 \pm 0.02	0.47 \pm 0.02	0.78 \pm 0.01	0.26 \pm 0.10	0.89 \pm 0.01	-0.69 \pm 0.13	0.97 \pm 0.01
LEO (Random)	0.24 \pm 0.05	0.84 \pm 0.02	0.45 \pm 0.02	0.79 \pm 0.01	0.22 \pm 0.08	0.89 \pm 0.01	-0.81 \pm 0.08	0.98 \pm 0.00

Dataset Metric	kin8nm		naval		power-plant		yacht	
	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)
Density R.	0.19 \pm 0.03	0.92 \pm 0.00	-2.24 \pm 0.05	1.00 \pm 0.00	-0.09 \pm 0.02	0.95 \pm 0.00	1.17 \pm 1.15	0.99 \pm 0.00
Dropout	1.18 \pm 0.12	0.92 \pm 0.00	-1.12 \pm 0.02	0.99 \pm 0.00	3.10 \pm 0.33	0.95 \pm 0.00	-1.20 \pm 0.26	0.98 \pm 0.01
DUE	1.96 \pm 0.12	0.79 \pm 0.02	-0.42 \pm 0.31	1.00 \pm 0.00	1.19 \pm 0.09	0.89 \pm 0.00	-1.49 \pm 0.05	1.00 \pm 0.00
EDL	0.18 \pm 0.03	0.91 \pm 0.01	-1.84 \pm 0.02	1.00 \pm 0.00	-0.09 \pm 0.03	0.95 \pm 0.00	-2.08 \pm 0.33	0.99 \pm 0.00
Ensemble	1.29 \pm 0.19	0.93 \pm 0.00	-2.27 \pm 0.04	1.00 \pm 0.00	1.68 \pm 0.24	0.96 \pm 0.00	-2.52 \pm 0.31	1.00 \pm 0.00
VBLL	2.64 \pm 1.91	0.89 \pm 0.00	-0.54 \pm 0.24	0.99 \pm 0.00	-0.04 \pm 0.03	0.95 \pm 0.00	0.06 \pm 0.89	0.99 \pm 0.00
LEO (Original)	0.14 \pm 0.01	0.92 \pm 0.00	-2.58 \pm 0.08	1.00 \pm 0.00	-0.06 \pm 0.03	0.95 \pm 0.00	-2.22 \pm 0.17	0.99 \pm 0.00
LEO (KMeans)	0.12 \pm 0.01	0.92 \pm 0.00	-0.93 \pm 0.40	0.88 \pm 0.07	-0.04 \pm 0.04	0.95 \pm 0.00	-1.99 \pm 0.20	0.99 \pm 0.00
LEO (Random)	0.12 \pm 0.02	0.93 \pm 0.00	-2.55 \pm 0.06	1.00 \pm 0.00	-0.07 \pm 0.04	0.95 \pm 0.00	-1.37 \pm 1.25	0.99 \pm 0.00

Dataset Metric	NLL (\downarrow)	R2 (\uparrow)	protein		wine			
			OOD NLL (\downarrow)	OOD R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	OOD NLL (\downarrow)	OOD R2 (\uparrow)
Density R.	1.00 \pm 0.23	(*)	11.64 \pm 2.38	0.39 \pm 0.05	1.54 \pm 0.06	-3.83 \pm 5.25	3.27 \pm 0.46	(*)
Dropout	4.38 \pm 0.53	0.69 \pm 0.00	4.82 \pm 0.39	0.54 \pm 0.01	10.52 \pm 3.03	0.40 \pm 0.02	12.15 \pm 2.03	0.07 \pm 0.04
DUE	5.12 \pm 0.20	0.08 \pm 0.01	2.99 \pm 0.11	0.14 \pm 0.01	4.35 \pm 0.25	0.11 \pm 0.01	6.10 \pm 0.25	-0.01 \pm 0.01
EDL	1.07 \pm 0.02	0.41 \pm 0.01	1.16 \pm 0.07	0.44 \pm 0.03	2.70 \pm 1.51	0.36 \pm 0.02	(†)	-0.04 \pm 0.06
Ensemble	2.27 \pm 0.11	0.68 \pm 0.00	1.89 \pm 0.20	0.27 \pm 0.04	5.66 \pm 0.76	0.32 \pm 0.03	4.90 \pm 0.46	-0.28 \pm 0.08
VBLL	1.02 \pm 0.04	0.59 \pm 0.01	2.46 \pm 0.45	-0.20 \pm 0.14	107.26 \pm 100.94	0.29 \pm 0.04	129.77 \pm 78.99	-0.39 \pm 0.10
LEO (Original)	0.89 \pm 0.03	0.60 \pm 0.00	1.16 \pm 0.05	0.44 \pm 0.02	1.23 \pm 0.03	0.37 \pm 0.02	1.56 \pm 0.03	-0.03 \pm 0.04
LEO (KMeans)	1.00 \pm 0.05	0.52 \pm 0.02	1.16 \pm 0.08	0.42 \pm 0.02	1.23 \pm 0.02	0.36 \pm 0.02	1.54 \pm 0.03	0.01 \pm 0.05
LEO (Random)	0.89 \pm 0.03	0.61 \pm 0.01	1.09 \pm 0.04	0.47 \pm 0.02	1.23 \pm 0.03	0.37 \pm 0.02	1.56 \pm 0.02	-0.01 \pm 0.03

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029 **K ILLUSTRATION OF THE EFFECT OF DATA PARTITIONING ON LEO**
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 4: Illustration of the effect of data partitioning on the resulting data fit on a toy problem. Dots indicate training points, and the color indicates which expert they were assigned to. On this toy problem we use two experts and assign datapoints to them using the strategy described in B.1 in the left column and using purely random assignment in the right column. First two rows show the learned model prediction with one expert expert dropped from the model, and the last row shows the resulting full model prediction. As one can easily see, the purely random strategy does not introduce any mismatch between experts' distributions and thus their model fits are nearly identical, which results in poor calibration and is reflected in lack of uncertainty in the middle region $[0, 0.6]$.

1080 **L ABLATION ON LEO COMPONENTS**
1081

1082 Table 12: Ablations results for UCI benchmarks. We compare standard LEO to different versions
1083 of LEO with some of its components altered/removed. "Original" refers to standard LEO. "Joint
1084 Training" refers to the version where we train experts and router jointly and the gradient from router
1085 flows to feature extractor and affects its weights. "no ICV" refers to LEO with router trained without
1086 $p(\mathcal{D}_{ICV})$ loss term. "no null expert" refers to version of LEO without the null expert. "RBF
1087 distance" refers to version of LEO, where the inverse of L2 distance in the router Equation 2 is replaced
1088 with RBF distance (exponent of negative L2 distance). Reported values are means over 20 seeds and
1089 the values after \pm denote 95% CIs of the mean estimator. The best methods and all methods that
1090 do not statistically differ w.r.t. two-sided z-test are shown in bold. The second best methods are
1091 underlined. See Table 6 for explanation of (\star) and (\dagger) symbols.
1092

1093

Dataset Metric	boston		california		concrete		energy-efficiency	
	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)
Density R.	0.99 \pm 0.53	0.81 \pm 0.04	0.55 \pm 0.05	0.76 \pm 0.04	0.62 \pm 0.16	0.89 \pm 0.01	1.96 \pm 1.28	0.98 \pm 0.00
Dropout	3.75 \pm 0.69	0.87 \pm 0.02	3.90 \pm 0.25	0.82 \pm 0.01	2.95 \pm 0.93	0.91 \pm 0.01	-0.75 \pm 0.19	0.99 \pm 0.00
DUE	2.28 \pm 0.38	0.55 \pm 0.10	2.65 \pm 0.13	0.31 \pm 0.07	2.07 \pm 0.15	0.55 \pm 0.09	-0.80 \pm 0.17	0.99 \pm 0.00
EDL	0.46 \pm 0.17	0.86 \pm 0.02	<u>0.49 \pm 0.05</u>	0.51 \pm 0.53	0.36 \pm 0.14	<u>0.90 \pm 0.01</u>	-0.91 \pm 0.09	0.98 \pm 0.01
Ensemble	8.02 \pm 3.06	0.87 \pm 0.02	2.33 \pm 0.13	0.77 \pm 0.01	4.66 \pm 1.26	0.92 \pm 0.01	0.34 \pm 0.44	0.99 \pm 0.00
VBLL	3.09 \pm 4.97	0.87 \pm 0.02	1.31 \pm 0.39	0.71 \pm 0.02	4.31 \pm 3.67	0.90 \pm 0.02	1.75 \pm 1.81	0.98 \pm 0.00
LEO (Original)	0.37 \pm 0.16	0.84 \pm 0.02	0.46 \pm 0.03	0.79 \pm 0.01	0.23 \pm 0.08	0.89 \pm 0.01	-0.86 \pm 0.08	0.98 \pm 0.00
LEO (Joint Training)	1.84 \pm 0.44	0.81 \pm 0.03	<u>0.51 \pm 0.03</u>	0.78 \pm 0.01	0.85 \pm 0.25	0.88 \pm 0.02	-0.53 \pm 0.09	0.98 \pm 0.00
LEO (no ICV)	0.45 \pm 0.24	0.84 \pm 0.02	0.45 \pm 0.02	0.79 \pm 0.01	0.26 \pm 0.11	0.89 \pm 0.01	-0.82 \pm 0.07	0.98 \pm 0.00
LEO (no null expert)	1.16 \pm 0.33	<u>0.84 \pm 0.03</u>	9.43 \pm 2.82	0.68 \pm 0.19	0.75 \pm 0.31	0.89 \pm 0.01	-0.62 \pm 0.16	0.97 \pm 0.00
LEO (RBF distance)	0.34 \pm 0.04	0.85 \pm 0.02	0.56 \pm 0.01	0.78 \pm 0.01	0.34 \pm 0.02	0.89 \pm 0.01	-0.05 \pm 0.03	0.97 \pm 0.00
<hr/>								
Dataset Metric	kin8nm		naval		power-plant		yacht	
	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)
Density R.	0.19 \pm 0.03	0.92 \pm 0.00	-2.24 \pm 0.05	1.00 \pm 0.00	-0.09 \pm 0.02	0.95 \pm 0.00	1.17 \pm 1.15	0.99 \pm 0.00
Dropout	1.18 \pm 0.12	<u>0.92 \pm 0.00</u>	-1.12 \pm 0.02	<u>0.99 \pm 0.00</u>	3.10 \pm 0.33	0.95 \pm 0.00	-1.20 \pm 0.26	0.98 \pm 0.01
DUE	1.96 \pm 0.12	0.79 \pm 0.02	-0.42 \pm 0.31	1.00 \pm 0.00	1.19 \pm 0.09	0.89 \pm 0.00	-1.49 \pm 0.05	1.00 \pm 0.00
EDL	0.18 \pm 0.03	0.91 \pm 0.01	-1.84 \pm 0.02	1.00 \pm 0.00	-0.09 \pm 0.03	0.95 \pm 0.00	-2.08 \pm 0.33	0.99 \pm 0.00
Ensemble	1.29 \pm 0.19	0.93 \pm 0.00	-2.27 \pm 0.04	1.00 \pm 0.00	1.68 \pm 0.24	0.96 \pm 0.00	-2.52 \pm 0.31	1.00 \pm 0.00
VBLL	2.64 \pm 1.91	0.89 \pm 0.00	-0.54 \pm 0.24	<u>0.99 \pm 0.00</u>	<u>-0.04 \pm 0.03</u>	0.95 \pm 0.00	0.06 \pm 0.89	0.99 \pm 0.00
LEO (Original)	0.14 \pm 0.01	0.92 \pm 0.00	-2.58 \pm 0.08	1.00 \pm 0.00	-0.06 \pm 0.03	0.95 \pm 0.00	-2.22 \pm 0.17	0.99 \pm 0.00
LEO (Joint Training)	0.31 \pm 0.02	0.90 \pm 0.00	-0.90 \pm 0.05	0.98 \pm 0.00	-0.01 \pm 0.04	0.94 \pm 0.00	-1.66 \pm 0.21	0.99 \pm 0.00
LEO (no ICV)	0.14 \pm 0.01	0.92 \pm 0.00	-2.51 \pm 0.11	1.00 \pm 0.00	-0.06 \pm 0.03	0.95 \pm 0.00	-1.78 \pm 0.58	0.99 \pm 0.00
LEO (no null expert)	3.69 \pm 0.48	<u>0.92 \pm 0.00</u>	-2.58 \pm 0.09	1.00 \pm 0.00	1.16 \pm 0.58	0.95 \pm 0.00	-1.83 \pm 0.34	0.99 \pm 0.00
LEO (RBF distance)	0.23 \pm 0.01	<u>0.92 \pm 0.00</u>	-0.89 \pm 0.48	0.97 \pm 0.03	0.19 \pm 0.02	0.94 \pm 0.00	-0.27 \pm 0.04	0.97 \pm 0.01
<hr/>								
Dataset Metric	protein				wine			
	NLL (\downarrow)	R2 (\uparrow)	OOD NLL (\downarrow)	OOD R2 (\uparrow)	NLL (\downarrow)	R2 (\uparrow)	OOD NLL (\downarrow)	OOD R2 (\uparrow)
Density R.	1.00 \pm 0.23	(*)	11.64 \pm 2.38	0.39 \pm 0.05	1.54 \pm 0.06	-3.83 \pm 5.25	3.27 \pm 0.46	(*)
Dropout	4.38 \pm 0.53	0.69 \pm 0.00	4.82 \pm 0.39	0.54 \pm 0.01	10.52 \pm 3.03	0.40 \pm 0.02	12.15 \pm 2.03	0.07 \pm 0.04
DUE	5.12 \pm 0.20	0.08 \pm 0.01	2.99 \pm 0.11	0.14 \pm 0.01	4.35 \pm 0.25	0.11 \pm 0.01	6.10 \pm 0.25	-0.01 \pm 0.01
EDL	1.07 \pm 0.02	0.41 \pm 0.01	1.16 \pm 0.07	<u>0.44 \pm 0.03</u>	2.70 \pm 1.51	0.36 \pm 0.02	(†)	-0.04 \pm 0.06
Ensemble	2.27 \pm 0.11	<u>0.68 \pm 0.00</u>	1.89 \pm 0.20	0.27 \pm 0.04	5.66 \pm 0.76	0.32 \pm 0.03	4.90 \pm 0.46	-0.28 \pm 0.08
VBLL	1.02 \pm 0.04	0.59 \pm 0.01	2.46 \pm 0.45	-0.20 \pm 0.14	107.26 \pm 100.94	0.29 \pm 0.04	129.77 \pm 78.99	-0.39 \pm 0.10
LEO (Original)	0.89 \pm 0.03	0.60 \pm 0.00	1.16 \pm 0.05	0.44 \pm 0.02	1.23 \pm 0.03	0.37 \pm 0.02	1.56 \pm 0.03	-0.03 \pm 0.04
LEO (Joint Training)	0.98 \pm 0.05	0.57 \pm 0.01	1.23 \pm 0.10	0.43 \pm 0.03	1.33 \pm 0.03	0.22 \pm 0.04	1.66 \pm 0.13	-0.03 \pm 0.03
LEO (ours) (no ICV)	0.88 \pm 0.03	0.60 \pm 0.00	1.19 \pm 0.04	<u>0.43 \pm 0.02</u>	1.23 \pm 0.03	0.37 \pm 0.02	1.55 \pm 0.02	-0.02 \pm 0.04
LEO (no null expert)	2.57 \pm 0.24	0.58 \pm 0.01	1.69 \pm 0.29	0.31 \pm 0.07	2.38 \pm 0.29	0.37 \pm 0.02	2.17 \pm 0.15	-0.36 \pm 0.17
LEO (RBF distance)	0.90 \pm 0.01	0.60 \pm 0.00	<u>1.22 \pm 0.02</u>	0.35 \pm 0.02	1.16 \pm 0.02	0.40 \pm 0.01	1.53 \pm 0.01	0.02 \pm 0.02

1134 M COMPARING LEO TO SHALLOW ENSEMBLES
1135
1136
11371138 Table 13: Ablations results for UCI benchmarks. We compare standard LEO to equivalent Ensemble
1139 models. "LEO (average experts)" refers to version of LEO where the router is completely omitted
1140 and the experts are treated as ensemble members and their output is averaged and the variance of
1141 their prediction becomes the predictive variance. "Shallow Ensemble" refers to an ensemble, where
1142 feature extractor is shared and only heads differ between ensemble members. Reported values are
1143 means over 20 seeds and the values after \pm denote 95% CIs of the mean estimator. The best methods
1144 and all methods that do not statistically differ w.r.t. two-sided z-test are shown in bold. The second
1145 best methods are underlined. See Table 6 for explanation of (\star) and (\dagger) symbols.
1146

Dataset Metric	boston		california		concrete		energy-efficiency	
	NLL (↓)	R2 (↑)	NLL (↓)	R2 (↑)	NLL (↓)	R2 (↑)	NLL (↓)	R2 (↑)
Density R.	<u>0.99 ± 0.53</u>	0.81 ± 0.04	0.55 ± 0.05	0.76 ± 0.04	0.62 ± 0.16	<u>0.89 ± 0.01</u>	1.96 ± 1.28	<u>0.98 ± 0.00</u>
Dropout	3.75 ± 0.69	0.87 ± 0.02	3.90 ± 0.25	<u>0.82 ± 0.01</u>	2.95 ± 0.93	0.91 ± 0.01	-0.75 ± 0.19	0.99 ± 0.00
DUE	2.28 ± 0.38	0.55 ± 0.10	2.65 ± 0.13	0.31 ± 0.07	2.07 ± 0.15	0.55 ± 0.09	-0.80 ± 0.17	0.99 ± 0.00
EDL	0.46 ± 0.17	<u>0.86 ± 0.02</u>	0.49 ± 0.05	0.51 ± 0.53	<u>0.36 ± 0.14</u>	0.90 ± 0.01	-0.91 ± 0.09	0.98 ± 0.01
Ensemble	8.02 ± 3.06	<u>0.87 ± 0.02</u>	2.33 ± 0.13	0.77 ± 0.01	4.66 ± 1.26	0.92 ± 0.01	0.34 ± 0.44	0.99 ± 0.00
VBLL	3.09 ± 4.97	0.87 ± 0.02	1.31 ± 0.39	0.71 ± 0.02	4.31 ± 3.67	0.90 ± 0.02	1.75 ± 1.81	0.98 ± 0.00
LEO	0.37 ± 0.16	0.84 ± 0.02	0.46 ± 0.03	0.79 ± 0.01	0.23 ± 0.08	0.89 ± 0.01	-0.86 ± 0.08	0.98 ± 0.00
LEO (average experts)	0.79 ± 0.26	0.79 ± 0.03	1.05 ± 0.05	0.41 ± 0.26	0.72 ± 0.37	0.85 ± 0.02	-0.23 ± 0.11	0.92 ± 0.04
Shallow Ensemble	678.08 ± 113.27	0.87 ± 0.02	2379.47 ± 200.84	0.77 ± 0.01	691.77 ± 254.03	0.90 ± 0.01	170.36 ± 30.13	0.98 ± 0.00

Dataset Metric	kin8nm		naval		power-plant		yacht	
	NLL (↓)	R2 (↑)	NLL (↓)	R2 (↑)	NLL (↓)	R2 (↑)	NLL (↓)	R2 (↑)
Density R.	0.19 ± 0.03	<u>0.92 ± 0.00</u>	<u>-2.24 ± 0.05</u>	1.00 ± 0.00	-0.09 ± 0.02	0.95 ± 0.00	1.17 ± 1.15	0.99 ± 0.00
Dropout	1.18 ± 0.12	<u>0.92 ± 0.00</u>	-1.12 ± 0.02	0.99 ± 0.00	3.10 ± 0.33	<u>0.95 ± 0.00</u>	-1.20 ± 0.26	0.98 ± 0.01
DUE	1.96 ± 0.12	0.79 ± 0.02	-0.42 ± 0.31	1.00 ± 0.00	1.19 ± 0.09	0.89 ± 0.00	-1.49 ± 0.05	1.00 ± 0.00
EDL	0.18 ± 0.03	0.91 ± 0.01	-1.84 ± 0.02	1.00 ± 0.00	-0.09 ± 0.03	0.95 ± 0.00	-2.08 ± 0.33	0.99 ± 0.00
Ensemble	1.29 ± 0.19	0.93 ± 0.00	<u>-2.27 ± 0.04</u>	1.00 ± 0.00	1.68 ± 0.24	0.96 ± 0.00	<u>-2.52 ± 0.31</u>	1.00 ± 0.00
VBLL	2.64 ± 1.91	0.89 ± 0.00	-0.54 ± 0.24	0.99 ± 0.00	<u>-0.04 ± 0.03</u>	0.95 ± 0.00	0.06 ± 0.89	0.99 ± 0.00
LEO	0.14 ± 0.01	<u>0.92 ± 0.00</u>	-2.58 ± 0.08	1.00 ± 0.00	-0.06 ± 0.03	0.95 ± 0.00	-2.22 ± 0.17	0.99 ± 0.00
LEO (average experts)	0.92 ± 0.07	0.90 ± 0.00	0.75 ± 0.23	0.26 ± 0.32	0.40 ± 0.07	0.91 ± 0.01	-1.17 ± 0.12	0.96 ± 0.01
Shallow Ensemble	341.13 ± 32.74	0.90 ± 0.01	149.92 ± 19.65	1.00 ± 0.00	1410.81 ± 174.55	0.94 ± 0.00	27.52 ± 16.24	1.00 ± 0.00

Dataset Metric	protein-w-ood				wine			
	NLL (↓)	R2 (↑)	OOD NLL (↓)	OOD R2 (↑)	NLL (↓)	R2 (↑)	OOD NLL (↓)	OOD R2 (↑)
Density R.	<u>1.00 ± 0.23</u>	(*)	11.64 ± 2.38	0.39 ± 0.05	<u>1.54 ± 0.06</u>	-3.83 ± 5.25	3.27 ± 0.46	(*)
Dropout	4.38 ± 0.53	0.69 ± 0.00	4.82 ± 0.39	0.54 ± 0.01	10.52 ± 3.03	0.40 ± 0.02	12.15 ± 2.03	0.07 ± 0.04
DUE	5.12 ± 0.20	0.08 ± 0.01	2.99 ± 0.11	0.14 ± 0.01	4.35 ± 0.25	0.11 ± 0.01	6.10 ± 0.25	-0.01 ± 0.01
EDL	1.07 ± 0.02	0.41 ± 0.01	1.16 ± 0.07	0.44 ± 0.03	2.70 ± 1.51	0.36 ± 0.02	(†)	-0.04 ± 0.06
Ensemble	2.27 ± 0.11	0.68 ± 0.00	1.89 ± 0.20	0.27 ± 0.04	5.66 ± 0.76	0.32 ± 0.03	4.90 ± 0.46	-0.28 ± 0.08
VBLL	<u>1.02 ± 0.04</u>	0.59 ± 0.01	2.46 ± 0.45	-0.20 ± 0.14	107.26 ± 100.94	0.29 ± 0.04	129.77 ± 78.99	-0.39 ± 0.10
LEO	0.89 ± 0.03	0.60 ± 0.00	1.16 ± 0.05	0.44 ± 0.02	1.23 ± 0.03	0.37 ± 0.02	1.56 ± 0.03	-0.03 ± 0.04
LEO (average experts)	1.61 ± 0.10	0.28 ± 0.08	1.86 ± 0.12	-1.28 ± 0.91	1.73 ± 0.15	0.29 ± 0.03	1.97 ± 0.10	-0.62 ± 0.25
Shallow Ensemble	5732.27 ± 295.16	0.56 ± 0.02	1269.39 ± 188.26	<u>0.46 ± 0.03</u>	2836.20 ± 487.40	0.33 ± 0.03	1421.99 ± 249.10	-0.39 ± 0.13

1171 N PROBABILITY OF NULL EXPERTS ASSIGNED BY LEO FOR ID AND OOD
1172 EVALUATION SETS
1173
1174
11751176 Table 14: Average probabilities of null expert type assigned by LEO model on different in-
1177 distribution and out-of-distribution evaluation sets.
1178

Dataset	Average $p(t \notin \mathcal{E})$ assigned by LEO on eval set
protein (ID evalset)	0.18
protein (OOD evalset)	0.45
wine (ID evalset)	0.30
wine (OOD evalset)	0.60
CIFAR-10 (ID evalset)	0.0075
CIFAR-10 (OOD evalset)	0.04

1188 **O LLM USAGE STATEMENT**
11891190 In preparing this work, we used GPT-5 in three ways: (1) to assist in discovering related literature
1191 by suggesting potentially relevant papers, (2) to provide implementation suggestions during devel-
1192 opment of the experimental code, and (3) to improve clarity of writing. All suggested references
1193 were manually checked for correctness and relevance, and all code was reviewed, and verified by
1194 the authors.1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241