
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEAVE ONE EXPERT OUT: ROBUST UNCERTAINTY
QUANTIFICATION VIA INTRINSIC CROSS-VALIDATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Estimating epistemic uncertainty remains an important challenge in modern Deep
Learning (DL). We propose a novel architecture, called Leave one Expert Out
(LEO), which is a form of a mixture-of-experts model with latent-space-distance-
aware router and a null expert, representing prior belief, to which output of the
model collapses if testing datapoint is too different from any of datapoints experts
were trained on. This architecture allows to temporarily drop experts from the
model, and we utilise this property to train the router to leverage the predictions
of remaining experts to make predictions for the datapoints normally assigned to
the expert currently removed from the model. We coin this mechanism intrinsic
cross-validation and show, such a trained router excels at estimating epistemic
uncertainty for both in and out of distribution inputs. We demonstrate state-of-art
performance on uncertainty quantification in regression benchmarks, such as UCI
problems or age prediction on UTK-Face, and CIFAR10 classification benchmark.
We also show the proposed method can achieve superior performance in surrogate-
based black-box optimization.

1 INTRODUCTION

Deep Learning (DL) (Rumelhart et al., 1986; Goodfellow et al., 2016) has achieved spectacular suc-
cess when it comes to the predictive power of models. Beginning with early successes in computer
vision (Krizhevsky et al., 2012), where the models were trained to predict the class of an object in
an image, the field has since advanced rapidly. Today, modern DL models, such as Large Language
Models, can even engage in meaningful conversations with the user by predicting the most likely
next word (token) given a sequence of preceding words. However, while DL models excel at making
a prediction, assessing the certainty of that prediction remains a notoriously difficult problem.

This uncertainty might stem from different sources. Aleatoric uncertainty reflects inherent noise
in the data or labels. For example, the same house might sell for slightly different prices due to
random factors not captured by its features. In general, basic DL models can typically handle this
type of uncertainty if their outputs can be interpreted as probability distributions. For instance, in
classification with softmax outputs, if two identical images exist in the training set, but the first is
labelled as a dog and second as a cat, then training with standard cross-entropy loss will encourage
the model to put roughly half of probability mass on each of the labels. While more sophisticated
techniques exist for modelling aleatoric uncertainty, even simple models provide a basic way to
capture this type of observation noise.

The second source of uncertainty is typically much harder to deal with. It is referred to as epistemic
and arises when the model has not seen enough data during training to make a confident prediction
for a given test data point. We cannot simply train the model to output its estimated epistemic
uncertainty, because all training points are in-distribution (ID) and this uncertainty during training
is essentially zero (or very small and only due to observation noise). As a result, naively trained
models tend to be overconfident and behave unpredictably on inputs far from the training data.
Since epistemic uncertainty reflects a model’s lack of knowledge about new inputs, a proper model
of epistemic uncertainty must, by definition, account for out-of-distribution (OoD) inputs.

At first glance, this problem may seem prohibitively difficult. How can we make sure our epis-
temic uncertainty model performs well on inputs it has never seen? But if we take a step back, and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

consider the classical, non-deep machine learning methods, we will realize that this exact problem
has already been addressed countless times. One of the classical models celebrated for uncertainty
quantification is the Gaussian Process (GP) (Rasmussen & Williams, 2006). GPs have the rather
desirable property that, as the inputs move further away from training data, the model predictions
collapse to the user-specified prior, with the rate of collapse controlled by the length scale hyperpa-
rameter. This hyperparameter can be tuned using cross-validation (Bachoc, 2013), where the model
is repeatedly trained on subsets of the data and evaluated on held-out points. While feasible for
classical models with short training times, repeated retraining is completely impractical for large
deep learning models, requiring plenty of time and compute to retrain.

In recent years, numerous uncertainty quantification methods have been developed for epistemic
uncertainty quantification, including Bayesian neural networks (Mackay, 1992; Neal, 2012), mean-
field variational inference (Blundell et al., 2015), Monte Carlo Dropout (Gal & Ghahramani, 2016),
ensembles Lakshminarayanan et al. (2017); Wen et al. (2020); Dusenberry et al. (2020) and single-
model approaches (Tagasovska & Lopez-Paz, 2019; Van Amersfoort et al., 2020; Liu et al., 2020;
Van Amersfoort et al., 2021). However, in these approaches, the training process typically does
not explicitly encourage the model to outputs high uncertainty in OoD cases. Instead, they rely
on the assumption that the model will naturally behave differently on OoD inputs, which does not
necessarily need to hold in practice.

In this work, we propose a novel approach for epistemic uncertainty quantification called Leave-
one-Expert-Out (LEO). LEO introduces supervised OoD signals during training by simulating OoD
scenarios using only partitioned training data, without requiring actual held-out OoD examples. The
intuition is that this enables the model to transfer its OoD detection capability to test time. LEO
is a variant of a mixture-of-experts neural network, where each expert is trained on a subset of the
training data, and OoD scenarios are simulated by randomly dropping some experts during training.

Unlike some methods that set a fixed threshold to reject model outputs for OoD inputs, we treat
all unseen inputs as “partially” OoD. To handle this, we include a “null” (prior) expert, outputting
a vague distribution suitable for OoD cases. Predictions from this expert and the other experts are
then weighted by a distance-aware router, which computes weights based on the distance between
the test input and the training data in the latent space. To train this router, we introduce a novel
mechanism called “intrinsic cross-validation”, which involves learning to make accurate predictions
for data assigned to a given expert, with that expert removed from the model. This forces the router
to learn how much to rely on the remaining experts’ predictions and when to defer to the null expert,
mimicking the desirable property of a GP.

In our architecture, experts can share the feature extractor and differ only in the final layer, resulting
in a negligible increase in model size. Through extensive experiments, we show that LEO obtains
superb performance on both regression and classifications tasks requiring uncertainty quantification,
for both in- and out-of-distribution data, as well as sequential decision making, often completely
outperforming existing methods.

2 METHODOLOGY

This section presents the core mechanism of LEO. The training and inference procedures are sum-
marised in Algorithms 1, 2 and 3. We consider a supervised learning problem where, given a point
x ∈ X , the goal is to predict the target y ∈ Y . We assume that we are given a training dataset
D = {(xi, yi,)ni=1}, where xi ∈ X are inputs and yi ∈ Y are labels. The set Y could, for instance,
be R for regression or [C] for C-class classification. We aim to devise an architecture that

(i) produces epistemic uncertainty estimates that grow as the input moves further away from
the training distribution;

(ii) enables efficient cross-validation of the uncertainty estimates.

To fulfill these requirements, we propose to use a mixture-of-experts style architecture, described
below. Before training, we assign every data point in the training set a type t ∈ T , with each type
handled by a specific expert. We discuss how to partition the training set into different types in
Subsection B.1. Let E ⊂ T be the set of all data point types in the training data. We propose to
use a shared feature extractor f : X → Z ⊂ Rdz parameterised by ψ and implement each expert

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for t ∈ E as a linear head1 operating on the latent representation z = f(x;ψ). As such, each expert
is a single-layer network ht : Z → Rdy , where dy = 1 for regression and dy = C for C-class
classification. Each expert is trained only on data points of its own type and the feature extractor is
trained on all the data. That is, we learn {θt}t∈E , ψ by minimizing the following loss function:

J experts(D; {θt}t∈E ;ψ) =
1

n

∑
t∈E

∑
{i: ti=t}

L(ht(f(xi;ψ); θt), yi),

where L(·, ·) : Rdy × Y → R is a task-specific loss function. We use Mean Squared Error for
regression and Cross-Entropy for classification. Note that, although the feature extractor technically
sees all the data points, the predictions made by each expert can vary significantly if each expert
only sees data from a particular subregion of X . We expand on this in Subsection B.1.

When given a new data point unseen during training, we do not know a priori which expert will
handle it best. Hence, during inference, which expert to invoke is decided by a router pϕ(t|x; E)
parameterised by ϕ. We thus make the prediction for a new point by marginalizing the type variable:

pϕ(y|x; E) = p0(y)pϕ(t /∈ E|x; E) +
∑
t∈E

p(y|x, t)pϕ(t|x; E), (1)

where p0 is a prior distribution associated with an additional out-of-distribution (OoD) type. The
notation t /∈ E is thus shorthand for this OoD type, i.e., the case where none of the experts associated
with the types E is expected to provide an accurate prediction. The resulting prediction can be
interpreted as a weighted mixture of the experts’ in-distribution predictions and the prior distribution
p0, where the weight assigned to p0 reflects the model’s estimated probability of the input being
OoD. This prior can be specified by the user if they have domain knowledge about the distribution
of y. In our experiments, we simply resort to a uniform distribution over all classes in the case of
classification and a zero-mean, unit-variance gaussian in the case of regression (and we assume that
the training data is standardized). For the predictive distribution p(y|x, t) in Equation 1, we use the
predictive softmax p(y|x, t) = softmax(ht(z; θt)) in classification and the delta function centered
on the expert’s prediction p(y|x, t) = δ(y = ht(z; θt)) in regression. As such, the uncertainty in
this model mainly arises when pϕ(t /∈ E|x; E) is high, in which case the vague prior dominates.

In the case of classification, the final predictive distribution pϕ(y|x; E) is just a mixture of categorical
distributions, which is a categorical distribution itself that can be easily computed. In regression,
given the prior p0(y|x) = N (y;µ0(x), σ

2
0(x)), then pϕ(y|x; E) is a mixture of a Gaussian and delta

functions, which we approximate with a single Gaussian by moment-matching, i.e., pϕ(y|x; E) ≈
N (y;µϕ(x; E), σ2

ϕ(x; E)), where

µϕ(x; E) = µ0(x)pϕ(t /∈ E|x; E) +
∑
t∈E

ht(f(x;ψ); θt) pϕ(t|x; E),

σ2
ϕ(x; E) =

(
σ2
0(x) + (µ0(x)− µϕ(x; E))2

)
pϕ(t /∈ E|x; E) +

∑
t∈E

(
ht(f(x;ψ); θt)− µϕ(x; E)

)2
pϕ(t|x; E).

We now proceed to describe the mechanism behind the operation of the router.

2.1 DISTANCE-AWARE ROUTER

The router, which models the type probabilities pϕ(t|x; E) and pϕ(t /∈ E|x; E), operates on the latent
embeddings given by the feature extractor f(x;ψ) and is parametrised by ϕ =

(⋃
t∈E ϕt

)
∪ ϕ0,

where ϕt is a set of parameters specified below for each t, and ϕ0 ∈ R is a learnable constant. To
fulfill the requirement (i) outlined in the beginning of the section, we want the router to be distance-
aware in the latent space, i.e., to guarantee that a data point with latent embeddings z vastly different
than ones seen during training will make the router output a high OoD probability pϕ(t /∈ E|x; E)
and make the predictive distribution collapse to the prior p0. To achieve this property, we propose
that the router should learn a projection matrix Mt for each expert for t ∈ E and assign a score
inversely proportional to the L2 distance between the projected embeddings zTMt and the centroid

1In principle, each expert head could be much deeper than a single layer. However, we found empirically
that a single layer was sufficient, so we chose it for simplicity and to reduce memory and computational costs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

et of the data points of type t in the latent space:

st(z;ϕt) =
τt

1
dz
∥zTMt − et∥22

,

where τt is a temperature parameter and ϕt = {Mt, τt}. Since the function ∥zTMt − et∥22 is
quadratic and always positive, it has a unique minimiser and for any direction ê ∈ Rdz , we must
have st(αê;ϕt) → 0 as α → ∞. The use of such distances was previously introduced in a method
called DUQ (Van Amersfoort et al., 2020), which uses the exponent of the negative distance rather
than the inverse distance. In our experiments, we found the inverse distance to be a much more
stable choice for the router. The scores are then normalised as below to give the type probabilities:

pϕ(t|x; E) =


st(f(x;ψ);ϕt)

ϕ0+
∑

t′∈E st′ (f(x;ψ);ϕt′)
for t ∈ E

ϕ0

ϕ0+
∑

t′∈E st′ (f(x;ψ);ϕt′)
for t /∈ E .

(2)

When the latent embedding z for a given point becomes too distant from the embeddings seen during
training, we have st(αê;ϕt)→ 0 for all t ∈ E , as explained above. In this case, the constant ϕ0 must
necessarily start to dominate and pϕ(t /∈ E|x; E)→ 1. This fulfills the requirement (i) outlined at the
beginning of this section, but requirement (ii) is still not addressed. Indeed, to make the uncertainty
estimate meaningful, it is necessary to determine how fast pϕ(t /∈ E|x; E) collapses to 1, to make
sure that in-distribution data for which we can still make valid predictions are assigned relatively
small uncertainty and out-of-distribution data for which we cannot hope to make good predictions
are given high uncertainty. In the next subsection, we expand on how to achieve this by leaving an
expert out, a powerful mechanism that the proposed architecture allows us to exploit.

2.2 LEAVE-ONE-EXPERT-OUT: INTRINSIC CROSS-VALIDATION

We are now going to discuss a crucial mechanism of the Leave-one-Expert-Out (LEO) architecture.
Note that in Equation 1, we used the notation pϕ(y|x; E), which means that the final output distribu-
tion of the full model depends on the all the known data types E . Let us consider what will happen
if we evaluate this equation with some type t⋆ removed from E :

pϕ(y|x; E \ t⋆) = p0(y)pϕ(t /∈ E \ t⋆|x; E \ t⋆) +
∑
t∈E\t⋆

p(y|x, t)pϕ(t|x; E \ t⋆).

First of all, the term corresponding to t⋆ is now omitted entirely and the output ht⋆(y|x) of the
corresponding expert does not contribute to the final model output. Secondly, the prior p0(y) is now
multiplied by the probability of the data point being of type t /∈ E \ t⋆, as opposed to t /∈ E . As
such, the model behaves as if none of the data points of type t⋆ had been seen during training. In
other words, when the type t⋆ is dropped, the set of known data types becomes E \ t⋆, and all other
types are treated as OoD. In this case, pϕ(·|x; E \ t⋆) is defined in a similar way to Equation 2, but
with the score function st⋆(z;ϕt⋆) replaced by ϕ0. We train the router by minimising the loss:

J router(D;ϕ) = −
(
log pϕ(D) + log pϕ(DICV)

)
,

where ICV stands for intrinsic cross-validation, which we define below. The parameters θ of the
experts and the parameters ψ of the feature extractor are kept frozen (detached), so only the param-
eters of the router ϕ are updated when J router is optimised. We updated centroids et in the same
way as done in DUQ; see Appendix B.3 for details. In the first term, pϕ(D) denotes the likelihood
of the data under the full model defined in Equation 1 without dropping any of the experts. For
completeness, we provide the expression below:

pϕ(D) =
n∏
i=1

pϕ(yi|xi; E).

The role of this term in the loss function is to make sure that the predictions of all experts are
meaningfully combined by the router and lead to a sensible data fit. However, this term on its
own does not guarantee sensible uncertainty quantification. In fact, if each expert can model its
data points perfectly, the optimal solution is just to always collapse the probability on that expert,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Before Training (b) Training Phase 1

(c) Training Phase 2

x1

Feature Extractor

Data Partitioning

x2

Feature Extractor

x3

Feature Extractor

Feature Extractor Feature Extractor Feature Extractor

Feature Extractor Feature Extractor Feature Extractor

L(h (f(x1; ψ); θ), y1)

x1 x2 x3

x1 x2 x3

L(h (f(x2; ψ); θ), y2) L(h (f(x3; ψ); θ), y3)

pφ(y1|x1; { , , , }) pφ(y2|x2; { , , , }) pφ(y3|x3; { , , , })

pφ(y1|x1; { , }) pφ(y2|x2; { , , }) pφ(y3|x3; { , })

Figure 1: (a) Before training, the dataset is partitioned into different types. (b) Training Phase 1:
Each data point is passed through the feature extractor and the type-specific expert to optimise per-
expert MSE losses. Both the feature extractor and experts are updated. (c) Training Phase 2: The
feature extractor and experts are frozen, and only the router is updated. In the top panel, each data
point is passed through all experts, with outputs weighted by the router to compute the likelihood
under the full model. In the bottom panel, the expert corresponding to the data point’s type and a
random subset of other experts are dropped, and the remaining experts’ weighted outputs are used
to compute the intrinsic cross-validation likelihood. Both likelihoods are obtained from a single
forward pass by using different subsets of experts.

resulting in no uncertainty quantification. This is remedied by pϕ(DICV) in the second term, which
we call the intrinsic cross-validation likelihood. It involves making a prediction for each data point
i, with the expert for type ti and some random subsets of other experts dropped from the model, i.e.,

pϕ(DICV) =

n∏
i=1

pϕ(yi|xi; E \ (ti ∪ r(E))),

where r(E) is a randomly selected subset of E . See Figure 1. We describe how exactly this random
subset is selected in Subsection B.2. Note that if an expert that is not dropped from the model
can extrapolate well to data point types that it did not see during training, the router can achieve a
good intrinsic cross-validation likelihood pϕ(DICV) by putting a high probability mass on it, e.g.,
by setting its temperature τt high. Conversely, if each of the remaining experts makes a wrong
prediction, collapsing to the vague prior p0 will be the optimal solution. As such, the router needs
to learn its parameters to find the optimal rate at which the model stops trusting the known experts
and collapses to the prior, effectively learning how to estimate its epistemic uncertainty.

3 RELATED WORK

Epistemic uncertainty and out-of-distribution detection Ensemble methods (Lakshmi-
narayanan et al., 2017; Wen et al., 2020; Dusenberry et al., 2020; Zaidi et al., 2021) are a standard
approach for estimating epistemic uncertainty, combining predictions from multiple independently
trained models. Monte Carlo Dropout (Gal & Ghahramani, 2016) offers a lightweight alternative by
applying dropout at test time and averaging multiple forward passes. While ensembles remain state-
of-the-art, they are computationally expensive as both training and inference scale with the number

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of models. Moreover, theoretical work has questioned whether ensembles truly capture epistemic
uncertainty or primarily reflect randomness in initialization and optimisation (He et al., 2020).

Single-model methods require only a single forward pass at test time. Distance-based approaches
such as deterministic uncertainty quantification (DUQ) (Van Amersfoort et al., 2020), spectral-
normalized neural Gaussian processes (SNGP) (Liu et al., 2020), and deterministic uncertainty es-
timation (DUE) (Van Amersfoort et al., 2021) use distance-aware output layers (e.g., RBFs, GPs)
to improve OoD sensitivity together with spectrally normalised (Miyato et al., 2018) or gradient
penalised (Van Amersfoort et al., 2020) feature extractor. Distributional approaches, including evi-
dential deep learning (EDL) (Sensoy et al., 2018; Amini et al., 2020) and Density Regression (DR)
(Bui & Liu, 2024), model predictive distributions directly without requiring sampling. Bayesian
Neural Networks (BNNs) are a broad family of approaches for assesing uncertainty in NNs and
involve methods such as Bayes-by-Backprop (Blundell et al., 2015), Laplace Approximation and
Variational Inference (Wen et al., 2018). However, these approaches typically rely on extensive
sampling and suffer from instabilities. Variational Bayes last layer (VBLL) (Harrison et al., 2024)
is a recent, state-of-the-art BNN approach that applies Bayesian inference only to the final layer,
avoids sampling all-together and enjoying much more stable performance. Although single-model
approaches may not always match ensembles in performance, they provide efficient alternatives suit-
able for large-scale deployment. Epistemic neural networks (“epinets”) (Osband et al., 2023) repre-
sent a related direction by conditioning predictions on an auxiliary epistemic index. In comparison,
LEO modifies the final layer with a mixture-of-experts structure and addresses OoD detection via
training-time OoD simulations.

Although this work focuses on supervised learning, OoD detection has also been studied in gener-
ative modeling. Prior work has shown that deep generative models can assign high likelihoods to
OoD data (Nalisnick et al., 2018; Choi et al., 2018; Kirichenko et al., 2020), raising concerns about
using density estimates from generative models for OoD detection. Alternative strategies include
hypothesis testing frameworks (Nalisnick et al., 2019) and training with auxiliary OoD datasets
(Hendrycks et al., 2018). In contrast, LEO does not require a separate OoD dataset and can simulate
OoD situations using training set only via the mechanism of intrinsic cross-validation.

Mixture-of-Experts models Mixture-of-Experts (MoE) models (Jacobs et al., 1991; Jordan & Ja-
cobs, 1994) divide a prediction task among multiple specialized sub-networks, or experts, with a
gating function that determines how to combine their outputs. Experts can share feature represen-
tations, allowing increased model capacity with minimal additional parameters. LEO builds on this
framework by leveraging the experts to capture epistemic uncertainty and including a “null” expert
to represent lack of confidence.

4 EXPERIMENTS

We evaluate our algorithm LEO together with baselines on uncertainty quantification in regression
and classification tasks, as well as on Bayesian Optimisation (BO) tasks, where the goal is to sequen-
tially query an unknown black-box function to find points with the highest objective values. In all
tasks, except for BO, we set aside 10% of the training data as a validation set and apply early stop-
ping based on the validation log-likelihood. We now describe the baselines used in our experiments.
We share our code via an anonymysed link2.

Baselines For comparison, we selected the strongest existing uncertainty quantification baselines.
These include MC Dropout (Gal & Ghahramani, 2016), Ensemble (Lakshminarayanan et al., 2017),
EDL (Sensoy et al., 2018; Amini et al., 2020), DUE (Van Amersfoort et al., 2021) and VBLL
(Harrison et al., 2024). Additionally, in all regression and BO tasks we compare against Density Re-
gression (Bui & Liu, 2024) and in all classification tasks we compare against DUQ (Van Amersfoort
et al., 2020). We try to make the setup and architectures as similar across baselines as possible; see
Appendix C for details.

2https://anonymous.4open.science/r/leave-one-expert-out-DF01/

6

https://anonymous.4open.science/r/leave-one-expert-out-DF01/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results for four UCI benchmarks. Reported values are means over 20 seeds and the values
after ± denote 95% CIs of the mean estimator. The best methods and all methods that do not
statistically differ w.r.t. two-sided z-test are shown in bold. The second best methods are underlined.

Dataset kin8nm naval power-plant yacht
Metric NLL (↓) R2 (↑) NLL (↓) R2 (↑) NLL (↓) R2 (↑) NLL (↓) R2 (↑)

Density R. 0.18 ± 0.03 0.92 ± 0.00 -2.24 ± 0.05 1.00 ± 0.00 -0.09 ± 0.02 0.95 ± 0.00 1.27 ± 1.20 0.99 ± 0.00
Dropout 1.19 ± 0.12 0.92 ± 0.00 -1.12 ± 0.02 0.99 ± 0.00 3.13 ± 0.34 0.96 ± 0.00 -1.23 ± 0.27 0.98 ± 0.00

DUE 1.95 ± 0.12 0.80 ± 0.01 -0.36 ± 0.30 1.00 ± 0.00 1.20 ± 0.09 0.89 ± 0.00 -1.49 ± 0.05 1.00 ± 0.00
EDL 0.18 ± 0.03 0.91 ± 0.01 -1.84 ± 0.03 1.00 ± 0.00 -0.09 ± 0.04 0.95 ± 0.00 -2.07 ± 0.34 0.99 ± 0.00

Ensemble 1.32 ± 0.19 0.93 ± 0.00 -2.26 ± 0.04 1.00 ± 0.00 1.72 ± 0.25 0.96 ± 0.00 -2.51 ± 0.33 1.00 ± 0.00
VBLL 2.75 ± 1.99 0.89 ± 0.00 -0.53 ± 0.25 0.99 ± 0.00 -0.04 ± 0.04 0.95 ± 0.00 0.03 ± 0.93 0.99 ± 0.00

LEO (ours) 0.12 ± 0.01 0.92 ± 0.00 -2.62 ± 0.08 1.00 ± 0.00 -0.04 ± 0.05 0.95 ± 0.00 -2.16 ± 0.23 0.99 ± 0.00

Table 2: Results for UCI protein and UTK-Face benchmarks. Reported values are means over 20
seeds in protein and 5 seeds in UTK, with the values following ± denoting 95% CIs of the mean
estimator. The best-performing methods and those tied via a z-test are shown in bold, while the
second-best methods are underlined. In cells marked with (*), predictive variance was so small that
likelihood computations caused a numerical issue on all seeds.

Dataset protein UTK
Metric NLL (↓) R2 (↑) OOD NLL (↓) OOD R2 (↑) NLL (↓) R2 (↑) OOD NLL (↓) OOD R2 (↑)

Density R. 1.01 ± 0.24 0.59 ± 0.01 11.52 ± 2.50 0.39 ± 0.05 1.23 ± 0.11 0.65 ± 0.01 0.49 ± 0.07 0.53 ± 0.04
Dropout 4.17 ± 0.35 0.69 ± 0.00 4.86 ± 0.41 0.53 ± 0.01 N/A(*) 0.75 ± 0.02 N/A(*) 0.55 ± 0.09

DUE 5.11 ± 0.21 0.08 ± 0.01 2.99 ± 0.12 0.14 ± 0.01 1.73 ± 0.22 0.00 ± 0.00 1.24 ± 0.08 -0.70 ± 0.01
EDL 1.07 ± 0.02 0.41 ± 0.01 1.15 ± 0.08 0.44 ± 0.03 2.36 ± 0.24 0.62 ± 0.06 2.27 ± 0.27 0.14 ± 0.38

Ensemble 2.27 ± 0.11 0.68 ± 0.00 1.90 ± 0.21 0.28 ± 0.05 1.10 ± 0.13 0.79 ± 0.01 0.68 ± 0.16 0.60 ± 0.05
VBLL 1.00 ± 0.03 0.59 ± 0.01 2.31 ± 0.36 -0.18 ± 0.14 0.85 ± 0.27 0.82 ± 0.01 0.79 ± 0.32 0.59 ± 0.07

LEO (ours) 0.89 ± 0.04 0.60 ± 0.01 1.19 ± 0.05 0.42 ± 0.02 0.78 ± 0.03 0.74 ± 0.02 0.49 ± 0.09 0.58 ± 0.06

4.1 REGRESSION PROBLEMS

To evaluate performance on regression tasks, we consider ten UCI benchmarks and the UTK-Face
dataset, where the goal is to predict age from raw pixels of facial images. For each dataset, we report
the negative log-likelihood (NLL, lower is better), and coeff. of determination (R2, higher is better)
or mean absolute error (MAE, lower is better) as a measure of predictive performance, depending
on the task. We detail how OOD evaluation sets were obtained in Appendix D.

Results We present results on five UCI datasets and UTK-Face in Tables 4 and 2, and defer the
rest of UCI datasets to Appendix F due to space limitations. Overall, we can see that LEO excels
in terms of NLL, achieving the best (or tying for the best) performance across all of the evaluated
regression benchmarks. Among the remaining baselines, methods such as EDL, Dropout or VBLL
achieve good NLL values on some datasets but underperform on others. In contrast, LEO achieves
good NLL values consistently. Regarding predictive performance, LEO may underperform slightly
in some cases, but consistently ranks second, whereas the method achieving the highest predictive
performance varies across datasets.

Table 3: Results for tabular classification tasks. Reported values are means over 100 seeds and the
values after ± are 95%-confidence intervals of the mean estimator. The best methods and z-test ties
are shown in bold, and the second best methods are underlined.

Dataset german-credit bank-marketing
Metric Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓) Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓)

Dropout 73.77 ± 0.84 52.98 ± 1.47 10.14 ± 0.63 90.33 ± 0.11 0.46 ± 0.00 1.32 ± 0.08
DUE 69.72 ± 0.81 58.15 ± 0.67 9.70 ± 0.65 88.35 ± 0.10 0.74 ± 0.01 11.32 ± 0.21
DUQ 74.08 ± 0.89 51.31 ± 1.15 9.73 ± 0.57 90.14 ± 0.07 0.51 ± 0.00 2.21 ± 0.07
EDL 73.79 ± 0.83 52.63 ± 1.20 9.90 ± 0.64 90.39 ± 0.08 0.50 ± 0.00 3.34 ± 0.10

Ensemble 74.43 ± 0.90 51.19 ± 1.37 9.54 ± 0.57 90.65 ± 0.09 0.45 ± 0.00 0.93 ± 0.04
VBLL 72.64 ± 1.02 52.75 ± 1.22 9.91 ± 0.56 90.59 ± 0.08 0.46 ± 0.00 1.05 ± 0.07

LEO (ours) 73.99 ± 0.86 51.53 ± 0.88 8.95 ± 0.52 90.53 ± 0.09 0.46 ± 0.00 1.07 ± 0.05

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.00100 0.00125 0.00150 0.00175 0.00200 0.00225 0.00250 0.00275 0.00300
ID NLLLoss

0.014

0.015

0.016

0.017

0.018

0.019

0.020

0.021

OO
D

NL
LL

os
s

Dropout

DUE

DUQ

EDL

Ensemble

LEO (ours)

VBLL

NLLLoss

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
ID MultiClassECE

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

OO
D

M
ul

tiC
la

ss
EC

E

Dropout

DUE

DUQ

EDL

Ensemble

LEO (ours)

VBLL

MultiClassECE

Figure 2: ID vs OoD performance on CIFAR-10 for different methods as measured by NLLLoss
(left) and ECE (right). Points are means over 3 seeds and error bars correspond to 95% CIs of the
mean estimator. The closer to bottom, left corner, a method is, the better.

4.2 CLASSIFICATION

To evaluate performance on classification tasks, we consider six tabular benchmarks (adult-census-
income, bank-marketing, titanic, german-credit, breast-cancer, heart-disease) and CIFAR-10. For
each benchmark, we report the negative log-likelihood (NLL, lower is better), the Expected Cali-
bration Error (ECE, lower is better) and accuracy. On tabular benchmarks, we simply use a fully-
connected architecture, whereas on CIFAR-10, we use WideResNet 28-10 as the feature extractor.
To create an OoD evaluation set for CIFAR-10, we randomly corrupt the evalset images.

Results We present some of the results in Table 3 and Figure 2 and defer the rest to Appendices G
and H. We see that LEO is able to obtain the best performance on most datasets and across most
metrics, losing only in four cases (out of 18 dataset/metric combinations), in which on two of them
(bank-marketing NLL and ECE) loses to Ensemble only and wins among all single-model methods.
On CIFAR-10 problems, we see that most methods either excel in- or out-of-distribution, whereas
LEO is able to obtain good performance in both simultaneously. This is illustrated in Figure 2,
where we plot OoD performance vs ID performance according to NLL and ECE metrics (closer
to the bottom-left corner indicates better performance). Ensemble excels in ID performance, but
underperforms in OoD, whereas DUQ and EDL exhibit the opposite tendency. LEO, Dropout, DUE
and VBLL achieve similar ID performance, but out of these four, LEO achieves the best average
OoD performance, placing itself at a desirable point on the Pareto frontier.

In Table 4, we present comparison of inference times, training times and the total size of each of
the models. We see LEO is one of the fastest method, having less than 1% memory higher memory
footprint compared to smallest model. This is in stark contrast to Dropout, which significantly
increases inference time or to Ensemble, which also significantly increases memory footprint. As
such, LEO positions itself as a relatively lightweight alternative with a fast inference speed.

Table 4: Avg. inference time (with 95% CIs) and total model memory footprint for each method on
CIFAR10. Best values in bold, second best underlined.

Metric Dropout DUE DUQ EDL Ensemble VBLL LEO (ours)

Infer. time (ms) (↓) 0.20 ± 0.00 0.33 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.19 ± 0.00 0.07 ± 0.00 0.06 ± 0.00
Model size (MB) (↓) 139.23 156.72 172.34 139.23 696.13 154.88 140.89

4.3 BAYESIAN OPTIMISATION

Finally, we also evaluate all models used for regression experiments as surrogates for Bayesian Op-
timization (BO). In BO, the objective is to efficiently optimize an unknown black-box function by
sequentially selecting query points. This is typically achieved by fitting a surrogate model to the ob-
served data and then optimizing an acquisition function that balances exploration and exploitation.
Crucially, the surrogate must provide reliable uncertainty estimates to enable this trade-off. Standard
neural networks, which often extrapolate linearly outside the training data, tend to assign unrealis-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

tically high values near the boundaries, leading the optimizer to waste queries there. By contrast,
LEO defaults to a standard normal predictive distribution in extrapolation, preventing boundary re-
gions from appearing artificially attractive. This property makes LEO particularly well-suited as a
surrogate in BO.

0 10 20 30 40 50
BO Step

20

15

10

5

0

Be
st

 V
al

ue
 S

o
Fa

r

Ackley Function - 2D

0 10 20 30 40 50
BO Step

Ackley Function - 10D

LEO (ours) GP VBLL Density R. Dropout DUE EDL Ensemble

Figure 3: The best function achieved by a given optimisation step on Bayesian Optimisation tasks.
Solid lines correspond to mean values over 8 seeds and shaded areas are 95% CI of the mean esti-
mator. The objective is maximisation, thus higher values are better.

As a benchmark optimisation function, we use the popular Ackley function. We consider two prob-
lem settings with 2 and 10 dimensions, initialising the optimisation with 20 and 5000 latin hypercube
samples, respectively. We use the UCB acquisition criterion with an exploration bonus of β = 3. For
the 2-dimensional function, we also compare against GP, but not for the 10-dimensional cases, as
fitting GP to 5000 points is infeasible. For GP, we use an RBF kernel with hyperparameters selected
by optimising marginal likelihood. Optimisation curves over 50 steps are shown in Figure 3. On the
2-dimensional problem, we can see that an optimiser equipped with LEO quickly catches up with
GP and even slightly outperforms it toward the end. On the 10-dimensional problem, after the first
10 steps, the optimiser using LEO clearly distinguishes itself, achieving much higher values than the
other methods and maintaining the lead until the very end. These results highlight the potential of
LEO for applications in sequential decision-making.

5 CONCLUSION

We introduced LEO, a mixture-of-experts framework that uses a distance-aware router to provide
reliable epistemic uncertainty estimates. By simulating out-of-distribution scenarios during train-
ing, LEO effectively captures model uncertainty without relying on held-out OoD data. Empirical
results across regression, classification, and Bayesian optimisation tasks show that LEO consistently
outperforms or matches strong baselines, achieving robust performance for both in-distribution and
out-of-distribution inputs. LEO can be applied to standard architectures by replacing only the last
layer with a mixture of single-layer networks, introducing a negligible increase in model size and la-
tency. These results demonstrate that LEO is a practical and scalable approach for uncertainty-aware
deep learning, with promising applications in decision-making and risk-sensitive settings.

REFERENCES

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential regression.
Advances in neural information processing systems, 33:14927–14937, 2020.

François Bachoc. Cross validation and maximum likelihood estimations of hyper-parameters of
gaussian processes with model misspecification. Computational Statistics & Data Analysis, 66:
55–69, 2013.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Ha Manh Bui and Anqi Liu. Density-regression: Efficient and distance-aware deep regressor for
uncertainty estimation under distribution shifts. In International Conference on Artificial Intelli-
gence and Statistics, pp. 2998–3006. PMLR, 2024.

Hyunsun Choi, Eric Jang, and Alexander A Alemi. Waic, but why? generative ensembles for robust
anomaly detection. arXiv preprint arXiv:1810.01392, 2018.

Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine Heller, Balaji
Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian neural nets with rank-1
factors. In International conference on machine learning, pp. 2782–2792. PMLR, 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

James Harrison, John Willes, and Jasper Snoek. Variational bayesian last layers. arXiv preprint
arXiv:2404.11599, 2024.

Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the neural
tangent kernel. Advances in neural information processing systems, 33:1010–1022, 2020.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect
out-of-distribution data. Advances in neural information processing systems, 33:20578–20589,
2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshmi-
narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness. Advances in neural information processing systems, 33:7498–7512, 2020.

David John Cameron Mackay. Bayesian methods for adaptive models. California Institute of Tech-
nology, 1992.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detect-
ing out-of-distribution inputs to deep generative models using typicality. arXiv preprint
arXiv:1906.02994, 2019.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. Advances in Neural Information
Processing Systems, 36:2795–2823, 2023.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, Cambridge, MA, USA, 2006.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classifica-
tion uncertainty. Advances in neural information processing systems, 31, 2018.

Natasa Tagasovska and David Lopez-Paz. Single-model uncertainties for deep learning. Advances
in neural information processing systems, 32, 2019.

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a
single deep deterministic neural network. In International conference on machine learning, pp.
9690–9700. PMLR, 2020.

Joost Van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, and Yarin Gal. On feature collapse
and deep kernel learning for single forward pass uncertainty. arXiv preprint arXiv:2102.11409,
2021.

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient pseudo-
independent weight perturbations on mini-batches. arXiv preprint arXiv:1803.04386, 2018.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C Holmes, Frank Hutter, and Yee Teh. Neural
ensemble search for uncertainty estimation and dataset shift. Advances in Neural Information
Processing Systems, 34:7898–7911, 2021.

Juliusz Ziomek, George Whittle, and Michael A Osborne. Just one layer norm guarantees stable
extrapolation. arXiv preprint arXiv:2505.14512, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A FULL ALGORITHM PSEUDOCODE

Algorithm 1 LEO Training
1: Input: Training data D = {(xi, yi)}ni=1, types {ti}ni=1, parameters ψ, {θt}t∈E , ϕ =

(
⋃
t∈E ϕt) ∪ ϕ0 with ϕt = {Mt, τt}, learning rates ηψ, ηθ, ηϕ, epochs E1, E2

2: Output: Trained parameters ψ∗, {θ∗t }t∈E , ϕ
∗

3: Initialise ψ, {θt}t∈E , ϕ
4: Phase 1: Expert Training
5: for epoch = 1 to E1 do
6: for each mini-batch B ⊂ D do
7: Compute batch loss: J experts(B; {θt}t∈E ;ψ) =

1
|B|

∑
(xi,yi)∈B L(hti(f(xi;ψ); θti), yi)

8: Update feature extractor parameters: ψ ← ψ − ηψ∇ψJ experts

9: Update expert parameters: θti ← θti − ηθ∇θtiJ
experts

10: end for
11: end for
12: Freeze ψ and {θt}t∈E
13: Phase 2: Router Training
14: for epoch = 1 to E2 do
15: for each mini-batch B ⊂ D do
16: Sample a subset r(E) of E
17: Compute router loss:

J router(B;ϕ) = − 1

|B|
∑

(xi,yi)∈B

(
log pϕ(yi|xi; E) + log pϕ(yi|xi; E \ (ti ∪ r(E)))

)
18: Update router parameters: ϕ← ϕ− ηϕ∇ϕJ router

19: end for
20: end for
21: return ψ∗, {θ∗t }t∈E , ϕ

∗

Algorithm 2 LEO Inference (Regression)
1: Input: New input x, learned parameters ψ∗, {θ∗t }t∈E , ϕ∗, prior mean µ0(·), prior variance σ2

0(·)
2: Output: Predictive mean ŷ, predictive variance σ̂2

3: Compute predictive mean:

ŷ = µ0(x)pϕ∗(t /∈ E|x; E) +
∑
t∈E

ht(f(x;ψ
∗); θ∗t)pϕ∗(t|x; E)

4: Compute predictive variance:

σ̂2 = (σ2
0(x) + (µ0(x)− ŷ)2)pϕ∗(t /∈ E|x; E) +

∑
t∈E

(ht(f(x;ψ
∗); θ∗t)− ŷ)2pϕ∗(t|x; E)

5: return ŷ, σ̂2

Algorithm 3 LEO Inference (Classification)
1: Input: New input x, learned parameters ψ∗, {θ∗t }t∈E , ϕ∗, prior distribution over classes p0(c)
2: Output: Predictive categorical distribution p(c|x)
3: Compute prediction of each expert t ∈ E as p(·|x; t) = softmax(ht(f(x;ψ∗)))
4: Compute predictive probabilities for each class c ∈ [C]:

p(c|x) = p0(c)pϕ∗(t /∈ E|x; E) +
∑
t∈E

p(c|x; t)pϕ∗(t|x; E)

5: return p(c|x)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B DETAILS ON LEO

B.1 PARTITIONING DATA INTO TYPES

Our training mechanism requires partitioning the training data into types before training, such that
each expert sees a distinct distribution of training inputs. At the same time, we also want to create
situations where one expert can make accurate predictions for at least some of the points of other
types. This ensures that the router learns how much it can trust a given expert when extrapolating,
which will then translate into robust uncertainty estimates for the entire model when going beyond
its training domain.

To satisfy these properties, we propose to use the freshly initialised, untrained feature extractor
to obtain embeddings for each point i, i.e., z0i = f(xi;ψ0), and then use a random projection
vector v ∼ N (0, Id) to obtain a type indicator gi = z0i · v for each data point. We then sort
type indicators (which are just scalars) and split the sorted list into |E| consecutive chunks of equal
length and give each chunk a different type in E , which is assigned to a dedicated expert. This
assignment creates mismatch across experts’ training distributions, since even in a freshly initialised
network, the embeddings for two data points are correlated and depend on input features in complex
and random ways. At the same time, because nearby points in the sorted 1D projection are not
guaranteed to be assigned to the same expert, some neighbouring points in the embedding space
may be split across experts, allowing partial extrapolation and forcing the router to learn expert
reliability.

B.2 RANDOM SUBSET SELECTION

To obtain the random subset of experts to drop for a given data point i, we first sample ui ∼ U(0, 1)
and then for each expert associated with t ∈ E , we sample mt,i ∼ U(0, 1). We drop the tth expert
for the ith data point if mt,i < ui. In this way, we drop experts with uniform probability, but also
the average number of experts we drop is uniformly distributed. We do this with the objective of
making the model more robust by simulating more diverse OoD scenarios.

B.3 UPDATING CENTROIDS

We utilise the same moving-average-style update rule for the centroids et as the one employed in
DUQ (Van Amersfoort et al., 2020), i.e., after each mini-batch {(xi, ti, yi)}|B|

i=1 of size |B|we update

Nt := γ Nt + (1− γ)nt, (3)

mt := γ mt + (1− γ) 1

nt

∑
{i:ti=t}

f(xi;ψ)
TMt, (4)

et :=
mt

Nt
. (5)

where nt = |{i : ti = t}|. We initialise Nt = 13 for all types and initalise mt with small Gaussian
noise N (0, 0.052). We set γ = 0.99.

C DETAILED EXPERIMENTAL SETUP

For our experiments, we used machines with NVIDIA A40 GPUs with 48 GB of memory.

C.1 GENERAL

We try to keep the experimental setup as similar as possible across methods. For this reason, across
all experiments, we use 5 models for Ensemble, 5 dropout samples for Dropout, and 5 experts
for LEO. We use a dropout rate of 0.3 for the Dropout method. Across all methods, we keep the
architecture fixed except for the last layer, which changes depending on the exact method used (e.g.
Variational GP in DUE or expert heads and router in LEO). In VBLL, we use the same optimiser
setting as original authors, namely we use a weight decay of 0.01 and clip max gradient to 1.0 across

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

all experiments, and thus use AdamW, if other baselines use Adam. For DUE, we use RBF kernel
and a number of inducing points equal to number of classes in classification and 20 inducing points
in regression. For baselines requiring a distance-preserving feature extractor (DUE, DUQ), we apply
spectral normalization to the feature extractor and add residual connections if they are not present
by default (e.g. when the feature extractor is just a fully-connected network). For EDL, performance
is highly sensitive to the hyperparmeter λ. We tune the λ hyperparameter by first running 20% of
the total training iterations with different values of λ and choosing the one that produces the best
validation likelihood at the end of training. For LEO we use the same number of epochs as other
methods to train the experts and then the same number of epochs to train router (which is much
faster, as experts and feature extractor are fixed). In all experiments across all baselines we use a
”patience” mechanism, that is if the last epoch achieved best validation loss, we extend training until
validation loss stops improving.

C.2 REGRESSION - UCI

For each problem and baseline, we use a fully-connected network with three hidden layers of size
256 with relu nonlinearities. We train for a total of 10000 epochs with Adam with learning rate set to
0.001. We use full-batch gradient descent. We measure the NLL on validation set every 100 epochs
and select the checkpoint with lowest value.

C.3 REGRESSION - UTK

We use freshly initalised ResNet-18, followed by one fully-connected layer. We train for a total of
50 epochs with a batch size 128 using Adam with learning rate equal to 0.00001. We measure the
NLL on validation set after every epoch and select the checkpoint with lowest value.

C.4 CLASSIFICATION - TABULAR

For each problem and baseline, we use a full-connected network with two hidden layers of size 256
with relu nonlinearities. To train we use Adam with a learning rate of 0.01 and we use full batch
gradient descent. We measure the NLL on validation set after every epoch and select the checkpoint
with lowest value.

C.5 CLASSIFICATION - CIFAR10

We use freshly initialised WideResNet 28-10 with dropout rate of 0.3, followed by one fully-
connected layer, outputting logits for each of ten classes. We use same data augmentation as
Zagoruyko & Komodakis (2016). We train for 50 epochs using SGD with momentum equal to
0.9 and weight decay set to 5× 10−4. We start with a learning rate of 0.1 and divide it by 5 after 20,
30 and 40 epochs. We use a batch size of 128.

C.6 BAYESIAN OPTIMISATION

We use the same architecture and training setup as in Regression - UCI, however, since in BO we
need to be extremely sample efficient, we use all availalbe data point for training and do not set aside
validation set. Instead we utilise weight decay of 0.01 and thus we utilise the AdamW optimiser.
Given the model predicts mean µ(x) and variance σ2(x) at a given point x, we select the next point
to query by maximising the UCB acqusition function of α(x) = µ(x) + βσ(x) and set β = 3. We
utilise BoTorch (Balandat et al., 2020) to optimise the acquisition function. We completely retrain
each model after acquiring new point.

D OBTAINING OOD EVALUATION SETS IN REGRESSION TASKS

On the UCI benchmarks, eight datasets have only in-distribution evaluation sets, whereas two of
them (protein and wine) have both in- and out-of-distribution evaluation sets. For the wine dataset,
we follow Bui & Liu (2024), using red wines for training and ID evaluation and white wines for
OoD evaluation. For the protein dataset, we follow Ziomek et al. (2025), using smaller proteins

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

for training and ID evaluation and larger proteins for OoD evaluation. In each case, we simply
use fully-connected architectures. On UTK-Face, to create ID and OoD evaluation sets, we follow
Ziomek et al. (2025), using all images with ethnicity label ”Others” as the OoD evaluation set and
all remaining ethnicities as training and ID evaluation sets. We use freshly initialised ResNet-18 as
the backbone model.

E OBTAINING OOD EVALUATION SETS IN CIFAR10

To evaluate OoD robustness, we construct a corrupted variant of CIFAR by applying common image
corruptions. For each image, one corruption type is chosen at random. The set of corruption types
includes:

• Gaussian noise: additive pixel-wise Gaussian noise

• Salt-and-pepper noise: randomly setting pixels to black or white

• Gaussian blur: convolution with a Gaussian kernel

• Motion blur: convolution with a horizontal motion

• Brightness shift: multiplicative rescaling of pixel intensities by a random factor

• Contrast reduction: pixel intensities are shifted toward the per-image mean

• Pixelation: downsampling the image followed by nearest-neighbor upsampling.

All corrupted images are clipped to the valid pixel range [0, 255].

F DETAILED UCI RESULTS

Table 5: Results for UCI benchmarks. Reported values are means over 20 seeds and the values after
± denote 95% CIs of the mean estimator. The best methods and all methods that do not statistically
differ w.r.t. two-sided z-test are shown in bold. The second best methods are underlined.

Dataset boston california concrete energy-efficiency
Metric NLL (↓) R2 (↑) NLL (↓) R2 (↑) NLL (↓) R2 (↑) NLL (↓) R2 (↑)

Density R. 0.98 ± 0.56 0.81 ± 0.05 0.55 ± 0.05 0.76 ± 0.04 0.64 ± 0.17 0.89 ± 0.01 1.46 ± 0.86 0.98 ± 0.00
Dropout 3.71 ± 0.72 0.87 ± 0.02 3.91 ± 0.26 0.82 ± 0.01 3.06 ± 0.96 0.91 ± 0.01 -0.74 ± 0.20 0.99 ± 0.00

DUE 2.30 ± 0.40 0.54 ± 0.10 2.64 ± 0.14 0.31 ± 0.07 2.08 ± 0.15 0.55 ± 0.09 -0.79 ± 0.17 0.99 ± 0.00
EDL 0.47 ± 0.18 0.86 ± 0.02 0.49 ± 0.05 0.48 ± 0.57 0.36 ± 0.15 0.90 ± 0.01 -0.91 ± 0.10 0.98 ± 0.01

Ensemble 8.26 ± 3.18 0.87 ± 0.02 2.33 ± 0.14 0.77 ± 0.01 4.75 ± 1.32 0.92 ± 0.01 0.37 ± 0.46 0.99 ± 0.00
VBLL 3.23 ± 5.21 0.86 ± 0.02 1.33 ± 0.41 0.71 ± 0.02 4.51 ± 3.83 0.90 ± 0.02 1.74 ± 1.90 0.98 ± 0.00

LEO (ours) 0.35 ± 0.14 0.84 ± 0.02 0.45 ± 0.03 0.79 ± 0.01 0.29 ± 0.12 0.89 ± 0.01 -0.87 ± 0.08 0.98 ± 0.00

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Results for the wine UCI benchmark. The training set and the ID evaluation set correspond
to red wine. Reported values are means over 20 seeds and the values after ± denote 95% CIs of
the mean estimator. The best methods and all methods that do not statistically differ w.r.t. two-
sided z-test are shown in bold. The second best methods are underlined. In cells marked with (*),
OOD evaluation for Density Regression caused numerical instabilities on 2 out of 20 seeds, omitting
those cases average value reached were 3.23 for OOD NLL and −8.36× 1023 for OOD R2. In cell
marked with (†), OOD NLL evaluation for EDL caused numerical instabilities on 7 out of 20 seeds,
remaining seeds reached an average OOD NLL equal to 9051.13.

Dataset wine
Metric NLL (↓) R2 (↑) OOD NLL (↓) OOD R2 (↑)

Density R. 1.54 ± 0.06 -4.00 ± 5.51 (*) (*)
Dropout 10.51 ± 3.19 0.40 ± 0.02 12.04 ± 2.12 0.07 ± 0.04

DUE 4.38 ± 0.25 0.11 ± 0.01 6.12 ± 0.26 -0.01 ± 0.01
EDL 2.76 ± 1.59 0.36 ± 0.02 (†) -0.04 ± 0.06

Ensemble 5.70 ± 0.79 0.32 ± 0.03 4.95 ± 0.46 -0.27 ± 0.08
VBLL 112.55 ± 105.56 0.29 ± 0.04 136.16 ± 82.00 -0.39 ± 0.10

LEO (ours) 1.23 ± 0.03 0.37 ± 0.02 1.55 ± 0.03 -0.02 ± 0.05

G DETAILED TABULAR CLASSIFICATION RESULTS

Table 7: Results for tabular classification tasks. Reported values are means over 100 seeds and the
values after ± are 95%-confidence intervals of the mean estimator. The best methods and z-test ties
are shown in bold, and the second best methods are underlined.

Dataset adult breast-cancer
Metric Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓) Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓)

Dropout 85.74 ± 0.09 0.63 ± 0.00 1.08 ± 0.06 96.67 ± 0.46 18.49 ± 3.07 3.54 ± 0.34
DUE 76.22 ± 0.11 0.99 ± 0.01 13.46 ± 0.29 69.75 ± 1.66 80.04 ± 2.42 18.94 ± 1.51
DUQ 84.81 ± 0.10 0.67 ± 0.00 1.82 ± 0.08 96.06 ± 0.49 18.34 ± 2.21 4.21 ± 0.32
EDL 85.50 ± 0.26 0.65 ± 0.00 2.74 ± 0.23 96.70 ± 0.42 17.06 ± 1.90 3.56 ± 0.35

Ensemble 85.78 ± 0.09 0.63 ± 0.00 1.04 ± 0.05 96.71 ± 0.40 18.08 ± 2.74 3.45 ± 0.28
VBLL 85.61 ± 0.10 0.64 ± 0.00 1.12 ± 0.06 96.39 ± 0.51 14.82 ± 1.67 4.18 ± 0.39

LEO (ours) 85.77 ± 0.09 0.63 ± 0.00 1.25 ± 0.07 96.71 ± 0.40 16.66 ± 1.34 4.69 ± 0.30

Table 8: Results for tabular classification tasks. Reported values are means over 100 seeds and the
values after ± are 95%-confidence intervals of the mean estimator. The best methods and z-test ties
are shown in bold, and the second best methods are underlined.

Dataset heart-disease titanic
Metric Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓) Acc. (↑) NLL (×10−4) (↓) ECE (×10−2) (↓)

Dropout 82.07 ± 1.42 209.74 ± 35.29 15.78 ± 1.04 79.75 ± 0.65 35.48 ± 0.83 7.83 ± 0.42
DUE 74.85 ± 1.96 219.75 ± 3.45 20.44 ± 1.29 62.12 ± 1.34 50.63 ± 0.71 8.33 ± 0.61
DUQ 83.48 ± 1.40 145.89 ± 8.27 14.87 ± 0.80 78.95 ± 0.71 35.40 ± 0.73 7.83 ± 0.41
EDL 82.93 ± 1.45 165.60 ± 13.39 15.22 ± 0.99 79.54 ± 0.68 36.31 ± 0.91 8.08 ± 0.47

Ensemble 81.37 ± 1.52 187.97 ± 33.33 15.15 ± 1.00 79.98 ± 0.69 35.53 ± 0.93 7.64 ± 0.43
VBLL 80.56 ± 1.71 167.01 ± 10.62 15.99 ± 1.08 79.45 ± 0.94 35.96 ± 1.01 8.07 ± 0.45

LEO (ours) 82.81 ± 1.45 153.60 ± 6.56 15.75 ± 0.76 79.43 ± 0.73 35.71 ± 0.76 7.60 ± 0.39

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H FULL CIFAR-10 RESULTS

Table 9: Results for CIFAR10 benchmarks. Reported values are means over 3 seeds and the values
after ± denote 95% CIs of the mean estimator. The best methods and all methods that do not
statistically differ w.r.t. two-sided z-test are shown in bold. The second best methods are underlined.

Dataset ID OOD
Metric Acc (↑) NLLLoss (×10−3) (↓) ECE (×10−3) (↓) Acc (↑) NLLLoss (×10−3) (↓) ECE (×10−3) (↓)

Dropout 94.44 ± 0.47 1.43 ± 0.02 17.27 ± 6.17 44.79 ± 1.17 21.46 ± 4.74 297.47 ± 62.55
DUE 94.54 ± 0.16 1.54 ± 0.03 16.33 ± 2.23 44.52 ± 1.43 18.65 ± 1.21 360.31 ± 43.37
DUQ 93.75 ± 0.39 3.04 ± 0.02 176.79 ± 11.24 44.14 ± 1.23 14.28 ± 0.27 216.90 ± 40.33
EDL 93.99 ± 0.40 2.15 ± 0.06 57.54 ± 0.83 42.72 ± 1.38 15.83 ± 0.60 276.30 ± 21.73

Ensemble 95.44 ± 0.08 1.09 ± 0.01 6.42 ± 2.35 45.58 ± 0.35 19.76 ± 0.34 318.27 ± 16.13
VBLL 94.72 ± 0.54 1.42 ± 0.07 20.73 ± 2.29 44.23 ± 1.50 19.34 ± 0.81 335.49 ± 24.44

LEO (ours) 94.17 ± 0.50 1.48 ± 0.04 16.88 ± 2.43 44.18 ± 0.12 16.95 ± 1.76 294.20 ± 40.77

I LLM USAGE STATEMENT

In preparing this work, we used GPT-5 in three ways: (1) to assist in discovering related literature
by suggesting potentially relevant papers, (2) to provide implementation suggestions during devel-
opment of the experimental code, and (3) improve clarity of writing. All suggested references were
manually checked for correctness and relevance, and all code was reviewed, and verified by the
authors.

17

	Introduction
	Methodology
	Distance-aware router
	Leave-one-Expert-Out: Intrinsic Cross-Validation

	Related work
	Experiments
	Regression Problems
	Classification
	Bayesian Optimisation

	Conclusion
	Full Algorithm Pseudocode
	Details on LEO
	Partitioning data into types
	Random Subset Selection
	Updating Centroids

	Detailed Experimental Setup
	General
	Regression - UCI
	Regression - UTK
	Classification - Tabular
	Classification - CIFAR10
	Bayesian Optimisation

	Obtaining OOD evaluation sets in regression tasks
	Obtaining OOD evaluation sets in CIFAR10
	Detailed UCI results
	Detailed Tabular Classification Results
	Full CIFAR-10 Results
	LLM Usage Statement

