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ABSTRACT

Transformer-based architectures have dominated many machine learning areas in
recent years. In this paper, we propose a simple yet highly effective robust attention
mechanism to robustify any transformer-based architectures. Our algorithm can be
implemented with only 4 lines of code and be plugged into any given transformer as
a plug-and-play layer to enhance its robustness without additional training or fine-
tuning. Comprehensive experiments and ablation studies show that the proposed
ProTransformer significantly improves the robustness across various prediction
tasks, attack mechanisms, backbone architectures, and data domains.

1 INTRODUCTION

In recent years, attention mechanisms and transformer-based architectures have drawn signifi-
cant attention across many domains in machine learning, such as natural language processing
(NLP) (Vaswani et al., 2017; Lin et al., [2022), computer vision (Dosovitskiy et al.,|[2020; Liu et al.,
2021b)), and graph learning (Velickovi€ et al., 2018 |Yun et al.,2019). In particular, transformers have
demonstrated superior capabilities to learn and model complex relations in data through powerful and
universal attention mechanisms, and they have dominated many popular NLP tasks such as topic clas-
sification, sentiment analysis, textual entailment, machine translation, dialogue generation, etc (Lin
et al., |2022). Despite their success in NLP and beyond, many recent studies have demonstrated
that transformers are highly vulnerable to adversarial attacks such that even small modifications to
the input can easily fool the model (Gao et al., 2018}, [Li et al.| 2018; [Ren et al.,[2019). However,
most research on transformer architectures focuses on accuracy and efficiency, largely ignoring their
security and robustness.
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Figure 1: Various attack mechanisms on language models. Figure 2: ProTransformer.

With the increasing popularity of Large Language Models (LLMs) (Touvron et al., 2023} |Chiang
et al.,2023)), the robustness and security concerns of their backbone transformer architectures become
particularly of interest. It has been shown that malicious attackers can invade the language models
through various approaches as shown in Figure [T} The attacker can modify the input content in
text attacks (Jin et al.l |2020a) or the prompt template in prompt attacks to mislead the model
predictions (Zhu et al.|[2024). Moreover, by adding adversarial suffixes, the jailbreaking attack (Wei
et al., 2023)) can prompt a LLM to generate toxic and illegal content which could lead to catastrophic
legal and ethical impacts such as malicious speech or privacy leaks. Given the broad applications of
transformers and their vulnerabilities under attacks, it is imperative to design a universal and effective
strategy to enhance the robustness of transformers.
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Some research has been conducted to improve the robustness of transformers from various perspec-
tives. Empirical defenses, such as data augmentation (Si et al., [2021) and adversarial training (Zhu
et al.} [2020; |L1 & Qiul, 2021; |Wang et al., 2021; Dong et al., 2021} |Zhou et al., 2021)), attempt to
robustify models by exposing them to a wider range of adversaries during training. On the other hand,
several certifiable defenses (Huang et al.,[2019; |J1a et al.,2019; |Ye et al.,|2020; [Zeng et al.,2023)) have
been proposed to guarantee the model robustness regardless of the attacks. However, these defense
requires excessive computation costs for training, inference, or both, which limits their application
in large-scale problems such as LLMs. In addition to these architecture-agnostic defenses, there
are also several works proposing to enhance the robustness of transformers architecture (L1 et al.}
20205 Liu et al., |2021a; [Yang et al., 2022} Han et al.,|2023). However, these approaches either require
substantial computations or rely on specific domain knowledge, which hinders their extensions to
larger models or broader application domains.

In this paper, given the limitations of existing works and the enormous training cost of transformers,
we aim to robustify transformer architectures via a plug-and-play paradigm without additional training
or fine-tuning. Our proposed ProAttention implemented by only 4 lines of code (Algorithm[3) can be
readily plugged into any given transformers to convert them as our ProTransformer with significantly
stronger robustness as shown in Figure[2] Specifically, our contributions can be summarized as follows:

* We establish an intriguing connection between the attention mechanism in transformers and the
weighted least square estimator, which provides theoretical interpretation and numerical simulation
to reveal its vulnerability against adversarial attacks.

* From our new perspective, we propose robust estimators for attention mechanisms with various
penalties that inherit rigorous robustness advantages in robust statistics. We also propose a novel
and efficient Newton-IRLS algorithm to approximate the non-convex and non-smooth robust
estimator with theoretical convergence guarantees.

* Our derived algorithm can be simply implemented by only 4 lines of code as shown in Algorithm 3]
It can be plugged into any given transformer as a plug-and-play layer to enhance its robustness
against attacks without additional training or fine-tuning as shown in Figure 2]

* Our comprehensive experiments and ablation studies demonstrate that the proposed ProTransformer
is effective, efficient, and generalizable. It significantly improves the robustness of transformers
across various machine learning tasks, attack mechanisms, and backbone architectures.

2 PROTRANSFORMER

In this section, we interpret the self-attention mechanism in transformers as the weighted least square
estimator and propose robust alternatives. An efficient Newton-IRLS algorithm is proposed to be
unrolled as the plug-and-play robust attention layer to robustify any transformer architecture. The
detailed derivation can be found in Appendix B}

Robust estimators for Attention Mechanism. The attention mechanism is essentially token-wise
weighted sum, which can be interpreted as the weighted least square estimator. Motivated by
advancements in robust statistics (Bloomfield & Steiger, |1983; [Huber, |1973; Zhang, [2010), we
propose the robust weighted sum estimators as follows:

N
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{wv;}je[n) are the collection of token value vectors and {a; } ;¢ are the weights on these tokens. p
is the penalty function such as /5 and ¢, losses, as well as the Huber loss ps and MCP function p.,.

Newton-IRLS algorithm. To solve the non-convex and non-smooth estimator in Eq. (I, we propose
a novel Newton Iteratively Reweighted Least Squares (Newton-IRLS) algorithm as follows:
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rem[F2]in Appendix [F}] We leave the detailed motivation and algorithm design in Appendix [Fand
theoretical proof in Appendix
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Plug-and-Play robust attention layer. In the previous paragraphs, we formulate the token-wise
Newton-IRLS approach for notation simplicity. Here, we will present the corresponding matrix
version for the entire attention layer, which can be implemented efficiently.

Let Z(F) = {zgk) }ien) be the estimator for token i at the k-th iteration. Subsequently, the pairwise

distance D) = {|jv; — z§’“)||}i,j€[N] between Z(*) and V = {v;};c[n] can be simply and
efficiently computed using the torch.cdist function in PyTorch. Following this, the weight
W) = {wgf)}z’,je[N] can be calculated element-wise based on D(¥). Then the next step Z**+1) is

updated as a reweighted matrix multiplication (W®*) © A) - V.

Therefore, the proposed algorithm can be pack-
aged as a robust attention module, which can Algorithm 1 ProAttention (MCP)
be readily plugged into the transformers as a |~ 1o vy 4 paiiwiee o
Plug-and-Play Robust Attention (ProAttention) 2w - torch.clip(1/D-1/gamma, min=0)
layer without additional training or fine-tuning 3W = normalize(W « &, p=1, dim="1)
as shown in Figure 2] The implementation of roxeh matmul (W, V) 7 tpdate
ProAttention using MCP penalty in PyTorch is

shown in Algorithm[I] The complete pseudocode for other penalties is presented in in Appendix [A]
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3 EXPERIMENT ON LANGUAGE MODELING

In this section, we evaluate the effectiveness of the proposed Plug-and-play Robust Transformers (Pro-
Transformers) under classic text attacks on pre-trained language models, and two prompting-based
attacks (prompt attack and jailbreak attack) in the context of LLMs. We also provide comprehensive
ablation studies. Following (Li et al.,[2021), we use 3 metrics to evaluate the model performance: (1)
Clean accuracy (Clean% ), accuracy under attack (AUA %) and attack success rate (ASR%). The
complete experimental setting information can be found in Appendix

3.1 CLASSIC TEXT ATTACKS ON LANGUAGE MODELS
Table 1: The results of topic classification on AGNEWS.

Textfooler TextBugger DeepWordBug PWWS
Model Clean% 1 Aua% 1 ASR% | Aua% 1 ASR% | Aua% 1 ASR% | Aua% T ASR% |
ALBERT 93.0 20.6 779 26.1 71.9 389 58.2 359 61.4
Pro-ALBERT (MCP) (Ours) 93.8 48.9 47.3 41.8 55.3 59.5 35.9 63.1 32.0
DistilBERT 93.5 132 85.9 33.6 63.4 30.0 67.9 36.5 61.0
Pro-DistilBERT (MCP) (Ours)  93.9 29.3 68.5 48.7 47.9 34.3 63.1 50.5 45.6
RoBERTa 934 13.0 86.1 325 64.5 41.2 559 34.0 63.6
Pro-RoBERTa (MCP) (Ours) 93.7 24.4 73.7 343 62.8 455 51.5 39.4 57.5
BERT 94.2 19.7 78.9 31.7 67.5 375 59.8 43.1 53.8
+ FreeLB 94.2 38.0 59.5 42.8 55.5 56.1 40.9 57.0 39.9
+PGD 94.1 36.8 61.7 40.5 57.1 47.6 49.7 48.7 48.6
+ MixADA 94.3 35.6 62.4 354 62.9 38.2 50.5 46.8 50.4
+ TA-VAT 9.4 36.2 61.8 39.2 58.2 49.5 48.1 47.0 50.7
+ AT 94.1 42.1 54.8 56.1 394 424 54.1 62.6 32,5
Pro-BERT (/1) (Ours) 94.2 238 74.5 438 53.0 48.7 47.8 46.5 50.1
Pro-BERT (Huber) (Ours) 94.2 24.2 74.0 437 52.9 46.0 50.5 48.4 479
Pro-BERT (MCP) (Ours) 93.2 39.2 577 48.3 485 51.8 43.8 56.2 39.2

Pro-BERT (MCP) + AT (Ours) 94:0 56.8 38.9 60.7 35.1 61.0 34.1 68.8 25.7

Performance analysis. To demonstrate the effectiveness of the proposed ProTransformer, we com-
pare the robustness of our methods with several popular defenses in three classical tasks: topic
classification, sentiment analysis, and textual entailment. The experimental results of topic classifica-
tion (AGNEWS) are presented in Table[T] and we provide the results of sentiment analysis (IMDB)
and textual entailment (RTE) in Appendix [M.I|and [M.2]due to the space limit. From the experiment
results, we can make the following observations:

* ProAttention is a highly effective plug-in module that significantly and consistently enhances the
robustness of various transformer backbones across multiple adversarial attacks. Taking AGNEWS
as the instance, when combined with our ProAttention (MCP), under the attacks {Textfooler,
TextBugger, DeepWordBug, PWWS}: (1) ALBERT is improved by {28.3%, 15.7%, 20.6%,
27.2%} (2) DistilBERT is improved by {16.1%, 15.1%, 4.3%, 14.0%} (3) RoBERTa is improved
by {11.4%, 1.8%, 4.3%, 5.4%} (4) BERT is improved by {19.5%, 16.6%, 14.3%, 13.1%}.
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* Our method, Pro-BERT (MCP) + AT, exhibits best robustness among all the baselines. By
simply plugging in ProAttention (MCP) module without fine-tuning, our Pro-BERT can achieve
comparable robustness to most adversarial training-based methods which require substantial
computational time and resources. Furthermore, our framework is orthogonal to most existing
defenses, allowing for combined use with them to further enhance robustness. For instance, when
combined with AT technique, our Pro-BERT (MCP) + AT can further improve BERT + AT by
{14.7%, 4.6%, 18.6%, 6.2%} under {TextFooler, TextBugger, DeepWordBug, PWWS}.

Ablation Study. To further validate the effectiveness of our ProTransformer, we provide comprehen-
sive ablation studies on Convergence, Adversarial fine-tuning, Attack constraints, Different penalties,
Different backbones, and Running time in Appendix

3.2 ADVERSARIAL PROMPTING ATTACKS ON LLMS

In the context of prompt-based generative Al, the adversarial attacks mechanisms on LLMs become
more enriched and sophisticated. In this section, we will evaluate the robustness of our proposed
ProTransformer under two popular attacks: prompt attack and jailbreak.

3.2.1 PROMPT ATTACK ge
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Figure 3: Prompt attack of T5.

3.2.2 JAILBREAK ATTACK

For jailbreaking, we select GCG (Zou et al.| [2023)) method to conduct suffix-injection attacks to
evaluate the resilience of models comprehensively. The detailed results and analysis are available in

Appendix[D.3.7]
The comparison of our Pro-Vicuna and backbone Vicuna under adaptive jailbreak is presented in
Table[5] We can find that our Pro-Vicuna can significantly improve Vicuna by an average of 10.4%
across various numbers of attack queries.

Table 2: ASRs under adaptive jailbreak.

Num of Queries 12 13 14 15 16 17 18 19 20
Vicuna 61.4 652 71.5 75.8 78.7 82.6 84.1 86.5 87.4
Pro-Vicuna (Huber) 50.7 55.9 60.8 64.3 67.4 70.5 74.0 77.7 78.6

4 EXPERIMENT BEYOND LANGUAGE MODELING

Beyond language domain, as shown in Figure 2] our ProAttention is a fundamental module which can
reinforce any attention-based models across various domains or modalities. We integrate ProAttention
into vision models and graph learning models to further validate the effectiveness and generalization
of our approach in Appendix

5 CONCLUSION

In this paper, we delve into the robustness and security of the popular transformer-based architectures.
We revisit the vulnerability of attention mechanisms with theoretical understanding and simulations.
We propose an interpretable robust attention layer to robustify any transformer architecture via a plug-
and-play paradigm. Our proposed ProAttention is an effective, efficient, and universal framework that
can significantly enhance the robustness of transformers across various tasks, architectures, attacks,
and domains with only 4 lines of code but without additional training or fine-tuning. We are excited
about the future of the proposed ProTransformer architecture and hope to see its full potential with
training or fine-tuning on large models in the future.
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A PSEUDOCODE OF PLUG-AND-PLAY ROBUST ATTENTION (PROATTENTION)

Here, we provide the complete pseudocode of our ProAttention including various penalties cases in
Algorithm[2] The core itertions are show in the for loop in the code. Our ProAttention is easy to

implement by only replacing the vanilla attention module with our ProAttention.

Algorithm 2 ProAttention in PyTorch style

1 class ProAttention (nn.Module) :

2 def _ init__ (self, K, gamma, delta, penalty):

3 super () .__init__ ()

4 self.K = K

5 self.gamma = gamma

6 self.delta = delta

7 self.penalty = penalty

8

9 def forward(self, A, V):

10 Z = torch.matmul (A, V) # Initialization

11

12 if self.penalty == 'L2':

13 return Z # Origi 1 attention

14

15 for _ in range(self.K):

16 D = torch.cdist (2, V) # Pairwise distance

17

18 if self.penalty == 'L1':

19 W= 1/D

20 elif self.penalty == 'MCP':

21 W = torch.clip(1/D - 1/self.gamma, min=0)
22 elif self.penalty == 'Huber':

23 W = torch.clip(self.delta/D, max=1)

24 elif self.penalty == 'Huber-MCP':

25 W = torch.clip(self.delta/ (self.gamma-self.delta)  (self.gamma/D-1),
26

27 W = torch.nn.functional.normalize (W » A, p=1, dim=-1) # No ion
28 Z = torch.matmul (W, V) # Update

29 return 7

min=0,

max=1)
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B PROTRANSFORMER

In this section, we interpret the self-attention mechanism in transformers as the weighted least square
estimator and propose robust alternatives. An efficient Newton-IRLS algorithm is proposed to be
unrolled as the plug-and-play robust attention layer to robustify any transformer architecture.

B.1 ATTENTION MECHANISM AS WLS ESTIMATOR

In this work, we aim to design a robust transformer architecture without additional training or
fine-tuning. To this end, we first establish a simple but intriguing connection between the attention
mechanism and the weighted least squares (WLS) estimator. Specifically, the classical scaled
dot-product attention can be formulated as:

QK'
Vi,

where Q = {q;}cn), K = {k;j}jen), V = {v;};e[n are the query, key and value matrices,
respectively. A = {a;;}; jen is the attention matrix, and dy, is the dimension of queries and keys.
For every token ¢ € [N], the aggregated output embedding is essentially the weighted sum over the
embedding (value vectors) of input tokens: Z;\;l a; jv;, which can be rewritten as Z;\;l a;jv; by
omitting the index ¢ for simplicity. Therefore, it is natural to interpret the weighted sum as the optimal
solution of the following weighted least squares (WLS) error minimization problem by considering
its first-order optimality condition:

softmax ( ) V := AV 3)

N
argminZaj vy — 2|2 4)

j=1
The square loss ( £ or || - ||? ) in Eq. causes larger residuals to exert a disproportionately

higher influence on the final estimation. In this way, the substantial residuals created by the outliers
tend to dominate the objective to be minimized. As a result, the WLS estimator may excessively
adjust the estimator to accommodate these outliers, leading to a heavily biased representation of the
majority of the data. To better illustrate the estimation bias of WLS estimator, we simulate a mean
estimation problem using synthetic data. The detailed setting of numerical simulation is provided in
the Appendix [L] As shown in Figure[S] as the ratio of outliers grows, the ¢5-based WLS estimator
deviates increasingly from the true mean due to the estimation bias accumulated by the outlying data
points. In the extreme case, even one single outlier can enforce the WLS estimator to be any target
solution by an adversarially chosen outlier.

B.2 ROBUST ESTIMATORS

The analysis and simulated experiments presented above clearly demonstrate that the WLS estimator
suffers from a catastrophic bias effect when facing outliers. Similarly, the attention mechanism, which
essentially operates as the WLS estimator, is highly sensitive to outliers. This perspective provides a
valid explanation of why various attention-based transformer architectures are easily manipulated
and compromised by introducing adversarial noises in the input data.

Our interpretation of the attention mechanism in transformers as WLS estimator provides a rigorous
perspective to design robust alternatives. To dampen the effect of the outliers, multiple robust regres-
sion algorithms have been proposed in robust statistics using least absolute deviations Bloomfield
& Steiger (1983), Huber regression [Huber (1973), and Minimax Concave Penalty (MCP) |[Zhang
(2010). Motivated by these advancements with rigorous robustness guarantees, we propose the robust
weighted sum estimators as follows:

N
argmzinﬁ(z) = Z(L]’ -p(|lv; — =])) ®)
j=1

Special cases of p. Specifically, the square loss p(z) = %zQ recovers the WLS estimator while
p(z) = z results in the Least Absolute Deviation (LAD) estimator. Additionally, we also consider
Huber loss ps(z) and MCP function p.,(z). Moreover, we propose the combination Huber-MCP
function p; ~ () which integrates the advantages of Huber and MCP. We plot these potential penalties
in Figure ] and provide their detailed formulations in Appendix [H]
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penalties p(z).

From Figure[d we can make the following observations: (1) ¢, loss increase quadratically with z,
which is much faster than the linear increase of /1 loss. This suggests that /5 loss is more sensitive to
the residual magnitude than ¢, loss; (2) Huber loss is equivalent to the #5 loss within the range (0, 6),
and it becomes similar to /1 when z > §, which indicates that Huber loss may mitigate the effect of
large noise while keeping decent performance in noiseless scenario; (3) MCP loss becomes constant
when z is large, and this transition can be adjusted by the thresholding parameter ~y. Particularly, when
~y approaches infinity, the penalty p () reduces to the ¢; case; (4) We propose Huber-MCP ps - (2)
as a combination of Huber and MCP which shares their advantages in both low- and high-value
regions.

B.3 NEWTON-IRLS ALGORITHM

The proposed robust estimator in Eq. (5) is non-convex and non-smooth, posing a challenge for
efficient algorithm design. Moreover, the exploding model size of evolving transformers further
necessitates the design of efficient neural network layers. To this end, we propose a novel Newton
Iteratively Reweighted Least Squares (Newton-IRLS) algorithm to approximate the solution of Eq. (3
as follows:

w'®

S(kH1) _ L R M ©)
Q)
2255w
sG] . . .
(k) — M and p’ is the derivative of p. Its convergence is guaranteed by Theo-
rem@m Appendix [F] We leave the detailed motivation and algorithm design in Appendix [Fand

theoretical proof in Appendix [G]

where w;

Interpretability. The Newton-IRLS algorithm in Eq. (6) can be interpreted as a reweighted

(k)

sum, in which the derived w;"" modifies the original attention score a; on the value vector v;. By

choosing different penalty functions p on the residuals |lv; — 2|, we obtain various reweighting
schemes (w( )) as follows: (1) ¢5 loss: w(k) =1; (2) 41 loss: w( ) = m, (3) Huber loss:

wj( ) W] (4) MCP loss: w(k) = max [ ; (5) Huber-MCP loss:

v

k
wj( ) = max [mln{ 5 (m—l),l] ,0]

Specifically, /5 loss can recover the vanilla attention since the weights are 1. With /1 loss, the weight
is inversely proportional to |[v; — 2(*)||, which up-weights the inliers and down-weights the outliers.
Huber loss behaves as the /5 loss when ||v; — z(®)|| < § and resembles ¢; loss for ||v; — zF)|| > 4.
The weight derived by MCP loss enhances the interpretability of the robust estimator by down-
weighting or completely removing the outliers. The weight w; becomes smaller as the distance
|v; — 2(*)|| increases, thereby down-weighting the outlying cases. When this distance exceeds the
threshold ~, the weight becomes 0, totally removing the outliers. In the case of Huber-MCP loss,
the weight combine the advantages of recovering the ¢ loss and largely mitigating the outliers. The
detailed derivation of all the cases can be found in Appendix [H]

= min [1 for==m] ~ 30

Simulation. To better illustrate the robustness of our proposed estimators, we visualize different
estimators under various outlier ratios on the synthetic data as shown in Figure 5] The detailed
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experiment settings are provided in Appendix|[L.2] We can observe that MCP > ¢; > /5 in terms of
estimation robustness, and the robustness becomes increasingly significant as the number of outliers
Srows.

B.4 PLUG-AND-PLAY ROBUST ATTENTION LAYER

In the previous subsection, we formulate the token-wise Newton-IRLS approach for notation simplic-
ity. Here, we will present the corresponding matrix version for the entire attention layer, which can
be implemented efficiently.

Matrix Form. Let Z(*) = {zi(k) }ien) be the estimator for token 4 at the &-th iteration. Subsequently,
the pairwise distance D®) = {|jv; — z||}. jev) between Z(*) and V can be simply and efficiently
computed using the torch.cdist function in PyTorch. Following this, the weight W) =
{wl(]k)}z je[n] can be calculated element-wise based on D). Then the next step Z(*+1) is updated
as a reweighted matrix multiplication (W®*) © A) - V.

Plug-and-Play Robust Attention. Instead of

focusing on interpreting the attention scores Algorithm 3 ProAttention (MCP)
{a;};e[n> we consider the attention scores as
given variables. Therefore, the proposed algo-
rithm can be packaged as a robust attention mod- 3y
ule, which can be readily plugged into the trans- 42
formers as a Plug-and-Play Robust Attention
(ProAttention) layer without additional training or fine-tuning as shown in Figure 2| The imple-
mentation of ProAttention using MCP penalty in PyTorch is shown in Algorithm [3] The complete
pseudocode for other penalties is presented in in Appendix [A]

1D = torch.cdist(z, V) # Pairwise d
torch.clip(1/D-1/gamma, min=0)
normalize (W = A, p=1, dim=-1)
torch.matmul (W, V) # Update

Complexity analysis. Let NV, D, and K represent the length of tokens, the dimension of vectors, and
the steps of the iterations, respectively. The vanilla attention requires 2 - N x N x D basic operations
while our ProAttention needs (1 + 2K) - N x N x D. However, our ProAttention remains efficient,
as the Newton-IRLS method can effectively approximate the solution within only 3 steps (K < 3)
and ProTransformers do not introduce additional computation for training or fine-tuning. We provide
the detailed complexity analysis of various attentions in Appendix [R]

Advantages. Our proposed ProAttention enjoys the following advantages: (1) Simplicity: it is simple
and easy to implement with only 4 core lines of code in Algorithm 3} (2) Efficiency: it is a plug-and-
play layer that can be integrated into any trained transformer without additional training or fine-tuning;
(3) Universility: it is a universal framework that advances the vanilla attention mechanism into a
series of robust derivatives with different penalties. Moreover, it can be applied to any attention-based
model across various modalities and tasks.

In the following sections, we will present comprehensive experiments and studies to validate the
effectiveness of the proposed ProAttention on language modeling in Section [D|as well as computer
vision and graph learning in Section [E]
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C RELATED WORK

In this section, we summarize related works on the attack and defense of transformers focusing on
language domains.

Attacks. Compared to the well-established attack mechanisms in vision domain|Goodfellow et al.
(2014); Madry et al.[(2018)), the text attacks in language domain are highly complicated due to the
natural irregularity of data structure. According to the perturbation units, text attacks can be classified
into character-level |Gao et al.| (2018)); (Gil et al.| (2019), word-level [Papernot et al.|(2016)); Samanta &
Mehta (2017); [Sato et al.|(2018)); Behjati et al.| (2019); |Ren et al.|(2019); Jin et al.| (2020a); |Garg &
Ramakrishnan| (2020), sentence-level Iyyer et al.|(2018]), and multi-level |Liang et al.|(2017); Ebrahimi
et al.| (2018]); [Li et al.| (2018)). These classic text attacks typically generate adversarial examples
through misspellings, synonym replacement, etc. In the era of LLMs, several new types of attacks
have emerged, such as jailbreak attacks Wei et al.| (2023)); [Li et al.| (2023)); Deng et al.| (2023)); ILiu
et al.|(2023b) and prompt injection Branch et al.| (2022)); Zhang & Ippolito| (2023); [Liu et al.| (2023a).
These prompting-based attacks aim to trick models into generating unsafe outputs using adversarially
crafted prompts.

Defenses. There have been some works proposed to defend against adversarial text attacks, which
can be roughly divide into empirical defenses |Si et al.|(2021); Li & Qiuf(2021); Wang et al.|(2021);
Dong et al.| (2021)); Zhou et al.|(2021) and certifiable defenses|Ye et al.| (2020); |Zeng et al.| (2023));
Huang et al.|(2019); Jia et al. (2019). These defenses require excessive computation costs for training,
inference, or both. Nevertheless, all these methods are typically architecture-agnostic, which are
orthogonal to and can be combined with our proposed defenses on the transformer architecture to
further enhance the robustness.

To safeguard the transformers, several endeavors have been made from the transformer architecture
perspective. |[Li et al.| (2020) modify the attention mechanism and position embedding to robustify
text-to-speech transformers. In the crisis detection and recognition task, |Liu et al.[(2021a)) propose
an end-to-end attention-based classifier to enhance robustness. For tabular data, TableFormer Yang
et al.| (2022) adopts structural-aware table-text encodings, and is robust to row and column order
perturbations. However, these architectures are tailored for specific tasks, which require specific
domain knowledge and are hard to generalize across tasks. [Han et al.| (2023) propose a general
framework for self-attention modules via robust kernel density estimation (RKDE). However, this
method introduces excess computation cost and shows relatively limited robustness improvement.
Generally speaking, existing approaches either require substantial computations or rely on specific
domain knowledge, which hinders their extensions to larger models or broader application domains.
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D MAIN EXPERIMENT ON LANGUAGE MODELING

In this section, we evaluate the effectiveness of the proposed Plug-and-play Robust Transformers (Pro-
Transformers) under classic text attacks on pre-trained language models, and two prompting-based
attacks (prompt attack and jailbreak attack) in the context of LLMs. We also provide comprehensive
ablation studies.

D.1 EXPERIMENT SETTING

Tasks and Datasets. For topic classification, we use AG’s News Corpus (AGNEWS) |Zhang et al.
(2015). For sentiment analysis, we utilize two widely-used datasets: Internet Movie Database
(IMDB) Maas et al.| (2011) and Stanford Sentiment Treebank (SST-2) [Socher et al.| (2013)). For
textual entailment, we make use of Recognizing Textual Entailment (RTE) in the General Language
Understanding Evaluation benchmark [Wang et al.| (2019). For jailbreak attack, we select a new
dataset Behaviors introduced in|Zou et al.| (2023)). For the detailed information on these datasets,
please refer to Appendix[l]

Backbone Architectures. For classical pre-trained language models, we choose BERT Devlin
et al|(2018) and its variants including RoBERTa Liu et al.|(2019), ALBERT [Lan et al.| (2020) and
DistilBERT |Sanh et al.|(2019). For large language models (LLMs), we choose TS5 Raffel et al.|(2023),
LLaMA [Touvron et al.| (2023) and Vicuna |Chiang et al.| (2023). For the detailed information on
backbone architectures, please refer to Appendix

Attacks. We not only evaluate several classic text attacks but also include popular prompt attacks and
jailbreak attacks on the LLMs. The three attack mechanisms and their differences are illustrated in
Figureﬂ} For classic text attacks, we evaluate the attacks at various levels, including the character-level
DeepWordBug (Gao et al.[(2018)), word-level PWWS Ren et al.| (2019), TextFooler Jin et al.| (2020a),
and multi-level TextBugger|Li et al.| (2018)). For prompt attacks, we modify the prompt template
according to the aforementioned text attacks following the evaluation setting in PromptBench Zhu
et al. (2024). For jailbreak, we evaluate the suffix attack using Greedy Coordinate Gradient (GCG)
method Zou et al.| (2023) and we test both attacks transferred from surrogate model Vicuna (transfer
attack) and attacks directly targeting the victim models (adaptive attack). Please refer to Appendix [K]
for details on attacks.

Defense Baselines. We include the following defense baselines in our experiments: MixADA [Si
et al.[(2021)), PGD-Adv Madry et al.|(2018)), FreeLLB [Zhu et al.| (2020), TA-VAT [Li & Qiu/ (2021)
and SmoothLLM Robey et al.|(2023). Additionally, we also include the adversarial training (AT),
wherein the augmented perturbations are generated by the attack to be assessed. Details of these
defense methods are provided in Appendix

Evaluation metrics. Following|Li et al.| (2021), we use 3 metrics to evaluate the model performance.
Clean accuracy (Clean%) is the model accuracy on the clean testing data. Accuracy under attack
(AUA %) is the model accuracy on the perturbed data under specific attack. Attack success rate
(ASR %) is the ratio of the number of successfully perturbed cases divided by the number of attempted
texts.

Hyperparameters. For text attack setting, we follow the setting in the TextAttack Morris et al.
(2020) framework. For prompt attack, we follow the setting in PromptBench [Zhu et al.|(2024)). For
GCG-based jailbreak attack, we follow the setting in|Robey et al.|(2023). The detailed attack settings
can be found in Appendix[K] For defense baselines, we follow the settings in their original papers. For
our ProTransformer, we set the default number of ProAttention layers as K = 3 since our algorithm
can efficiently converge within 3 steps. Then we tune the § (default 1) or -y (default 4) in the penalties
to obtain the optimal parameters.

In this section, we evaluate the effectiveness of the proposed Plug-and-play Robust Transformers (Pro-
Transformers) under classic text attacks on pre-trained language models, and two prompting-based
attacks (prompt attack and jailbreak attack) in the context of LLMs. We also provide comprehensive
ablation studies. Following|Li et al|(2021)), we use 3 metrics to evaluate the model performance: (1)
Clean accuracy (Clean %), accuracy under attack (AUA %) and attack success rate (ASR%). The
complete experimental setting information can be found in Appendix [D.1]
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D.2 CLASSIC TEXT ATTACKS ON LANGUAGE MODELS

D.2.1 ADVERSARIAL ROBUSTNESS

Table 3: The results of topic classification on AGNEWS.

Textfooler TextBugger DeepWordBug PWWS
Model Clean% 1 Aua% T ASR% | Aua% T ASR% | Aua% T ASR% | Aua% T ASR% |
ALBERT 93.0 20.6 779 26.1 71.9 38.9 582 35.9 61.4
Pro-ALBERT (MCP) (Ours) 93.8 48.9 47.3 41.8 55.3 59.5 35.9 63.1 32.0
DistilBERT 935 13.2 85.9 33.6 63.4 30.0 67.9 36.5 61.0
Pro-DistilBERT (MCP) (Ours)  93.9 29.3 68.5 48.7 47.9 34.3 63.1 50.5 45.6
RoBERTa 93.4 13.0 86.1 325 64.5 41.2 55.9 34.0 63.6
Pro-RoBERTa (MCP) (Ours) 93.7 24.4 73.7 343 62.8 45.5 51.5 39.4 57.5
BERT 94.2 19.7 78.9 31.7 67.5 37.5 59.8 431 53.8
+ FreeLB 94.2 38.0 59.5 42.8 55.5 56.1 40.9 57.0 39.9
+PGD 94.1 36.8 61.7 40.5 57.1 47.6 49.7 48.7 48.6
+ MixADA 94.3 35.6 62.4 354 62.9 38.2 50.5 46.8 50.4
+ TA-VAT 9.4 36.2 61.8 39.2 58.2 49.5 48.1 47.0 50.7
+ AT 94.1 42.1 54.8 56.1 394 424 54.1 62.6 325
Pro-BERT (/) (Ours) 94.2 23.8 74.5 438 53.0 48.7 47.8 46.5 50.1
Pro-BERT (Huber) (Ours) 94.2 242 74.0 43.7 529 46.0 50.5 48.4 479
Pro-BERT (MCP) (Ours) 93.2 39.2 57.7 48.3 48.5 51.8 43.8 56.2 39.2

Pro-BERT (MCP) + AT (Ours)  94.0 56.8 38.9 60.7 35.1 61.0 34.1 68.8 25.7

To demonstrate the effectiveness of the proposed ProTransformer, we compare the robustness of our
methods with several popular defenses in three classical tasks: topic classification, sentiment analysis,
and textual entailment.

Performance analysis. The experimental results of topic classification (AGNEWS) are presented
in Table EI, and we provide the results of sentiment analysis (IMDB) and textual entailment (RTE)
in Appendix [M.I]and [M.2]due to the space limit. From the experiment results, we can make the
following observations:

* Our ProAttention is a highly effective plug-in module that significantly and consistently enhances
the robustness of various transformer-based backbones across all kinds of adversarial attacks.
Taking AGNEWS as the instance, when combined with our ProAttention (MCP), under the attacks
{Textfooler, TextBugger, DeepWordBug, PWWS}: (1) ALBERT is improved by {28.3%, 15.7%,
20.6%, 27.2%} (2) DistilBERT is improved by {16.1%, 15.1%, 4.3%, 14.0%} (3) RoBERTa
is improved by {11.4%, 1.8%, 4.3%, 5.4%} (4) BERT is improved by {19.5%, 16.6%, 14.3%,
13.1%}.

* Our method, Pro-BERT (MCP) + AT, exhibits best robustness among all the baselines. By
simply plugging in ProAttention (MCP) module without fine-tuning, our Pro-BERT can achieve
comparable robustness to most adversarial training-based methods which require substantial
computational time and resources. Furthermore, our framework is orthogonal to most existing
defenses, allowing for combined use with them to further enhance robustness. For instance, when
combined with AT technique, our Pro-BERT (MCP) + AT can further improve BERT + AT by
{14.7%, 4.6%, 18.6%, 6.2%} under {TextFooler, TextBugger, DeepWordBug, PWWS}.

D.2.2 ABLATION STUDY

x10°

s —0—0—0—0—0—0—3—0—0-8 (]

i -®- IRLS \ -®- ALBERT -
78 W -@- Newton-RLS (Ours) s MM CEED) o 1N ~®@- Pro-ALBERT o EE L
|‘ \ --@- BERT (Attacked) 1 h Bl Huber
70 |y S —®— Pro-BERT(Clean) ‘4 . P
LN S @ ProBERT (Attacked) IS '\ o
265 1 % 2 60 < 60 - < 40
g RN g PSS 5 'Y <
60 1 ‘. 3 i < R0-0-0-0---9 2
\ \ <,
\ N “w g0® T 40 \ 30
55 ! N o Y
\ ® e o’ AN
- o L) 2
o ~ 20
50 &g o-0-o-o-e-o8 0 o® 20 >-e---o
0 2 4 6 8 0 2 4 6 8 10 0.00 0.25 0.50 0.75 . ) e
N ooler ggert 1ordBUE oW WS
Layers Epoch Max Perturbation Percentage TextFOOT rox BUEED o pWordPHE pW
(a) Algorithm Convergence (b) Adversarial Fine-tuning (c) Attack Constraints (d) Different Penalties

Figure 6: Ablation studies.
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Convergence. To validate the advantage of our Newton-IRLS over the first-order method, we conduct
a simulation experiment and plot the loss descent curves in Figure (6] (a). It can be observed that our
Newton-IRLS exhibits efficient convergence as claimed in Section We provide the experiment
details, all the loss descent curves (Figure[0) as well as the visualization of trajectories (Figure[I0))
of the updated vectors in 2D plane in Appendix [L.1]to further demonstrate the effectiveness of our
algorithm.

Adversarial fine-tuning. To get insight into how the models gain more robustness from adversarial
examples, we track the training curves of adversarial fine-tuning under TextFooler in Figure |§| (b),
and put the results of other attacks in Figure[IT]in Appendix[M.3] We can observe that our Pro-BERT
(MCP) is compatible with adversarial fine-tuning technique to further enhance the model resilience.

Attack constraints. In text attack, there are several kinds of attakc constraints including the
maximum percentage of perturbed words, minimum cosine similarity between the replaced synonym
and original word, and minimum sentence similarity threshold between the original sentence and
perturbed sentence. We test the values of these constraints in TextFooler. We present the results under
different perturbation percentages in Figure[6|(c) and other constraint measurements in Appendix [M.4]
From the results, we observe that our Pro-ALBERT (MCP) can significantly outperform the backbone
ALBERT across all ranges of constraints.

Different penalties. Our Newton-IRLS is flexible to be formulated as different robust estimators
with different penalties. From the comparison in Figure [6](d) , it can be observed that our robust
framework can consistently improve the robustness of the backbone BERT (¢2). Specifically, ¢; and
Huber-based defenses are comparable, and MCP-based method exhibits the best performance among
them.

Different backbones. Our method is a universal plug-and-play layer applicable to various attention-
based backbones. The results in Table [3] and the ablation study on different backbones in Ap-
pendix [M.3] (Figure[T3) demonstrate that our ProAttention can improve the robustness over all kinds
of architecture backbones (BERT, RoBERTa, DistilBERT and ALBERT) against various attacks with
significant margins.

Running time. To empirically evaluate the ef- L

fici g P y Table 4: Average running time (ms) on AGNEWS.
ciency of our method, we test the average run-

ning time on AGNEWS using BERT and Pro- BERT PRO-BERT (MCP)

BERT (MCP) equipped with multi—layer (K) RUNNING TIME (MS) 6.14 9.04 11.67 14.34 17.33 19.89 21.87

ProAttention. The results in Table @ show that #LAvERS () \ 12 8 4 5 6

our ProAttention only requires 1-2 times additional inference time of the backbone model yet achieves

significant improvement in robustness without training.

D.3 ADVERSARIAL PROMPTING ATTACKS ON LLMS

In the context of prompt-based generative Al the adversarial attacks mechanisms on LLMs become
more enriched and sophisticated. In this section, we will evaluate the robustness of our proposed
ProTransformer under two popular attacks: prompt attack and jailbreak.

D.3.1 PROMPT ATTACK
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Figure 7: Prompt attack of T5.  Figure 8: Attack success rates (ASRs) under transfer jailbreak.
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As shown in Figure [T} the most significant distinction between prompt attacks and classical text
attacks is that prompt attacks aim to mislead the models by altering the prompt template rather than
the input content. We display the results of T5 in Figure|/|and leave the comprehensive study in
Appendix [N.I] We also present the results on LLaMA in Appendix From the results, we can
make the following observations: (1) For TS, the choice of the penalty would affect the robustness
of defenses. Specifically, Pro-T5 (MCP) exhibits a significant advantage over other methods, and
this advantage becomes even more evident as the number of perturbed words increases. Pro-T5
(¢1) and Pro-T5 (Huber) show a slight improvement over the backbone model T5. (2) For LLaMA,
Huber-MCP and Huber-based methods exhibit better robustness than other methods while preserving
good clean performance. The detailed experiments and discussions can be found in Appendix [N.2]

D.3.2 JAILBREAK ATTACK

In recent years, prompts have played a pivotal role in guiding models to generate desired outputs.
Nevertheless, there exist malicious “jailbreak prompts”, which are intentionally designed to bypass
the built-in safeguards in LLMs, causing the model to produce harmful content that violates the legal
policies. As illustrated in Figure|l] the suffix-injection jailbreaks attempt to append a non-semantic
suffix to the user’s prompt to fool the models. We select GCG method under both transfer and
adaptive attack settings to evaluate the resilience of models comprehensively.

Transfer Jailbreak. In Figure[§] we compare the Attack Success Rates (ASRs) of Vicuna and its
corresponding Pro-Vicuna (Huber) with various § values on Behaviors. In each column, we also
include SmoothLLM [Robey et al.[(2023) with different smoothing extent ¢(%) to further reinforce
the resilience of every single model. The last row of matrix (¢ = 0) stands for the performance
without random smoothing. The additional results of random smoothing with swap, insert and patch
are presented in Appendix [O]

From the results, we can observe that: (1) Our Pro-Vicuna can significantly improve the robustness of
Vicuna. As shown in the last row of Figure with § = 0.1, we successfully reduce the ASR to 1.8%,
which is comparable to the random smoothing defense that requires multiple random perturbations,
inferences and aggregations. (2) Our ProAttention is orthogonal to randomized smoothing defense
and can be combined with it to further improve the robustness.

Adaptive Jailbreak. Although our Pro-Vicuna
has demonstrated significant effectiveness un-
der transfer attack (black-box), it is still un-
clear whether our method can be resilient under

white-box attacks which adaptively target the NUM\?::S;J: - 611%4 61';2 7114.‘5 7:8 7];7 8]2?6 Sfl 816?5 8?.)4
specific victim models. The comparison of our  Pro-Vicuna (HuBER) 50.7 55.9 60.8 64.3 67.4 70.5 74.0 77.7 78.6
Pro-Vicuna and backbone Vicuna under adap-

tive jailbreak is presented in Table[5|and the additional experiment results are available in Appendix[O]
Our Pro-Vicuna can improve Vicuna by an average of 10.4% across various numbers of attack queries.
We don’t include SmoothLLLM in adaptive attacks since it introduces non-differentiable operators that
preclude the gradient-based GCG attack on it.

Table 5: Attack success rates (ASRs) under adap-
tive jailbreak.
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E EXPERIMENT BEYOND LANGUAGE MODELING

In previous section, we have provided comprehensive experiments to validate the effectiveness of
our ProTransformer in the (large) language models. In fact, as shown in Figure 2] our ProAttention
is a fundamental module which can reinforce any attention-based models across various domains
or modalities. In this section, we will integrate ProAttention into vision models and graph learning
models to further validate the effectiveness and generalization of our approach.

E.1 IMAGE CLASSIFICATION

In vision domain, we conduct two attacks (FGSM and PGD) on several vision transformers including
ViT, BeiT, ConviT, DeiT and Swin. We perform the experiments on CIFAR-10 across budgets
{ 2é5, %5, % }, and present the results of PGD in Table |§I and additional experiments in Appendix

From the results, we can observe that our Pro-ViT (MCP) can outperform other baselines with a signif-
icant margin, indicating that MCP loss show excellent capability to mitigate the effect of the outliers.
Significantly, Pro-ViT (MCP) can outperform the second best model by {31.93%, 44.92%, 35.64%}

under different budgets.
Table 6: Adversarial robustness on CIFAR-10 (PGD).

MODEL\BUDGET 0 (CLEAN) 1/255 4/255 8/255
DEIT 97.91 38.98 0.44 0.0
CONVIT 98.70 41.75 1.83 0.0
BEIT 97.87 6.81 0.0 0.0
SWIN 98.30 14.89 0.02 0.01

VIT 98.74 34.61 1.83 0.26

PrO-VIT (MCP) (OURS) 98.40 77.39 48.11 33.40

E.2 GRAPH REPRESENTATION LEARNING

Besides the language and vision domains, we also validate the effectiveness of our method in the
graph domain. We conduct the semi-supervised node classification task and leverage PGD adaptive
attack to evaluate the robustness of models. We show the experiment results of Cora-ML and Citeseer,
averaged over 5 different random splits, in Table[7]and Table[30](in Appendix [Q), respectively. The
ablation studies on the layers and ~ in MCP are presented in Table[31] Please refer to Appendix [Q]for
more detailed results and studies. From the results, we can conclude that our Pro-GAT significantly
outperforms the backbone GAT and exhibits strong robustness across various budgets while keeping
good clean accuracy.

Table 7: Semi-supervised node classification on Cora-ML.

MODEL \ BUDGET 0% 10% 20% 30% 40%
GCN 85.0 £04 69.6 +05 60.9 +07 54.2 +06 48.4 +05
GNNGUARD 83.1+07 70.2 +10 63.1 +1.1 57.5+16 51.0+12
RGCN 85.7 +£04 69.1 +04 59.8 £07 52.8 +0.7 46.1 +0.7
GRAND 86.1 +0.7 70.7 £0.7 61.6 £0.7 56.7 +0.8 51.9 09

PROGNN 85.6+05 71.0 £05 63.0 £07 56.8 +0.7 51.3 +o0s6
JACCARD-GCN  83.7 +0.7 68.3 +07 60.0 +1.1 54.0 +1.7 49.1 +24
SOFTMEDIAN 85.0£07 75.5 +09 69.5+05 62.8 +08 58.1 +0.7
GAT 83.5+05 71.2 £12 65.0 £09 60.5 +09 56.7 £0.9
PRO-GAT (OURS) 84.6 +08 75.5+08 72.1 £0.4 69.0 +0.7 66.5 +1.2
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F THE DERIVATION AND CONVERGENCE GUARANTEE OF NEWTON-IRLS
ALGORITHM

Despite of several robustness implications introduced by the penalties, the proposed robust estimator
in Eq. (3) is non-convex and non-smooth, posing a significant challenge for designing an efficient
algorithm to solve it. There have been several optimization algorithms designed for this type of
problems, such as the Alternating Direction Multiplier Method (ADMM) |Glowinski & Marroco
(1975)); (Gabay & Mercier|(1976)), Iteratively Reweighted Least Squares (IRLS) algorithm [Daubechies
et al.| (2008), Newton-type approaches (Fan & Li, 2001;Zhang, 2010), and coordinate descent algo-
rithms [Breheny & Huang| (2011). However, these algorithms typically require excessive computation
and memory space, and they are incompatible with back-propagation in training deep learning models.
Therefore, it is infeasible to directly incorporate these algorithms into the transformer architectures.

To this end, we propose an efficient Newton iterative reweighted least square (Newton-IRLS) algo-
rithm to tackle this intractable problem. We first design a localized upper bound for the original
objective and then optimize the upper bound with a second-order Newton method with rigorous
theoretical loss descent guarantee. The precise statements are presented as follows and the detailed
proof are provided in Appendix

Localized upper bound. Instead of directly optimizing the original loss function £(z), we optimize
a convex localized upper bound at the current iteration z(¥) as follows:
Lemma F.1 (Localized Upper Bound). Suppose the loss objective is defined as in Eq. (), where

p o sqri(+) is any non-convex function. For any fixed point 2(F) | there exists a convex localized upper
bound as:

N
£(z) =Y a5 0 - o; — 22 + C(=1), )
=1
o (J|lv; —z*) . . . .
where wj(-k) = M and p' is the first derivative of p. Particularly, the constant C(z(*))
J

guarantees the equality of L and L at 2, i.e., L(z®) = £L(z®),
Proof. Please refer to Appendix [G.1} O

As C(z®)) is treated as a constant during the optimization at the current step, the upper bound in
Eq. (7) becomes convex and can be efficiently optimized.

Newton-IRLS iteration. After obtaining the convex upper bound in Eq. (7)), it is easy to employ the
convex optimization algorithm to solve it. Typically, we use the first-order gradient descent or the
second-order Newton method to optimize the objective. In most of the cases, second-order methods
converge faster than the first-order ones, but require substantial computations due to the calculations
of Hessian matrix, matrix inversion and multiplication. However, due to the uniqueness of our L
in Eq. (7), we can derive a concise closed-form iteration using the second-order Newton method as
follows:

k
>, 05w v,

k
Zj“j'wa(‘)

Proof. Please refer to Appendix [G.3] O

R -1 o
2D = (0) [v%(z(k))] VE(zW) = ®)

Theorem F.2 (Convergence guarantee). Suppose the loss objective L(z) is defined as in Eq. (5) and
its corresponding convex localized upper bound is in Eq.[7] Then, through the iteration in Eq. (S)), the
following inequality holds:

£(z0D) < £(z0D) < £(2) = £(2),

that is, optimizing upper bound L can guarantee the rigorous descent of L.

Proof. Please refer to Appendix O
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G PROOF OF NEWTON-IRLS ALGORITHM

G.1 PROOF OF LOCALIZED UPPER BOUND (LEMMA [F. 1))

Proof. Define ¢(z) := p(/z) as a non-convex function, then for fixed point zg,

d(2) < ¢(20) + ¢'(20)(2 — 20) = ¢'(20) - 2 + C(20)

where the first inequality holds with equality at z = zp and

1 p'(v/70)
& (20) = p'(V7) - _ )
(20) = p'( )2\/522% NG
By replacemnet as z = ||v; — z||? and 2z = ||v; — 2(®)||2, then
P (llv; = 2™

R . L 2 (k)2
plllo; = 21) < Fn =g 1oy = 21 + (o = 21?)

k
= w; oy = 2| + C(lo; = 20),

and the first inequality holds with equality at z = 2(%), Sum up the items on both sides with weights
{a;} je[N]» We obtain

N
> aipllv; — =)

L(z) =
j=1
N N
k
<> agwl o = 22+ Y a - Ol - 2P
=1 =1 ®
N
k
=Y a5 0P oy — 2l + Cu (=)
j=1
= L(z)
and the equality holds at z = z(%):
L(z®)) = £(z™). (10)
O

After obtaining the convex upper bound lj(z), it becomes feasible to employ convex optimization
algorithms to optimize this objective.

G.2 PROOF OF RIGOROUS LOSS DESCENT GUARANTEE (THEOREM [F.2))

Proof. Since z(**1) is obtained from optimize the convex localized upper bound £ at z(*), then
we have £(z(*+1)) < £(z*®)). According to the upper bound in Eq. (9) and localized equality in
Eq. (10), it is not hard to get the following inequality:

L(z*HD) < £(z0HD) < £(200) = £(zP).

Therefore, optimizing the localized upper bound L can guarantee the rigorous descent of L.

G.3 PROOF OF NEWTON-IRLS ALGORITHM AND SPECIAL CASES

Newton-IRLS. We first derive the formulations of gradient and Hessain matirx of L as follows:

N
VE(Z(k)) = Z aj; - wj(k) . 2(Z(k) - U'L)
j=1
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N
=>4
=1

Then, the gradient descent (GD) (7 is the stepsize) is
Lk+1) — (k) _ n- v/j(z(k))

N

j=1
and the Newton Iteration is
21 = () [VQ,C(ZW)]_ vﬁ(z<k>) (11)
N
=20 — (N a w201 Zaj ) 9(2®) — ;) (12)

k
§jaj~w](-)-vj
k
§jaj-w§)

In convex optimization, it has been well-established that second-order methods converge much faster
than first-order approaches, but they require substantial computation in calculating or approximating
the inverse Hessian matrix. However, due to the uniqueness of our L in Eq. l| we can derive a
concise closed-form iteration using the second-order Newton method as in Eq. (I3). Compared to the
first-order gradient descent (GD) iteration, our Newton-IRLS algorithm enjoys several advantages as
follows:

13)

* Fast convergence: Newton method converges at a quadratic rate, which is significantly faster
than the linear convergence of gradient descent (GD). The comparative analysis of them can
be found in Figure @ (a) in ablation studies;

¢ Interpretable formulation: The resulted form in Eq. (8]) employs a normalized reweighted
sum, which can be interpreted as robust estimator by down-weighting the outliers, as
discussed in the following paragraph;

* Efficient computation: The Hessian Vzﬁ(z(k)) can be easily computed as a closed-form
diagonal matrix, facilitating the matrix inversion and multiplication in the Newton’s iteration.

H SPECIAL CASES OF NEWTON-IRLS

Our Newton-IRLS is a general framework which can be derived as different reweighting schemes
with different penalties:

* Square Loss ({2):

w _ Plv;—=z®]) 1

g 2v; —2®] 2’

N
*— c . .
z = E aj ’Uj.
j=1

e Absolute Loss (¢1):

p(z) = z,
w _ Pl —=z®) 1
! 20lv; —2®] 2l — 2B
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* Minimax Concave Penalty (MCP)|Zhang| (2010):

e Huber loss:

¢ Huber-MCP:

py(2) = {

_ Al —zM]) 1
2]lv; — 2]

ps(z) = {

w P lv;—z®]) 1

J

2wy — 2|

= —Inax

2

SSIRN
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I DATASET INFORMATION

I.1

LANGUAGE DOMAIN

* AG’s News Corpus (AGNEWS) Zhang et al| (2015): It is a collection of more than 1
million news articles. News articles have been gathered from more than 2000 news sources
by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news
search engine which has been running since July, 2004. The dataset is provided by the
academic comunity for research purposes in data mining (clustering, classification, etc),
information retrieval (ranking, search, etc), xml, data compression, data streaming, and any
other non-commercial activity. The AG’s news topic classification dataset is constructed
by choosing 4 largest classes from the original corpus. Each class contains 30,000 training
samples and 1,900 testing samples. The total number of training samples is 120,000 and
testing 7,600.

* Internet Movie Database (IMDB) Maas et al.| (2011): IMDB dataset having 50K movie
reviews for natural language processing or Text analytics. This is a dataset for binary
sentiment classification containing substantially more data than previous benchmark datasets.
We provide a set of 25,000 highly polar movie reviews for training and 25,000 for testing.
So, predict the number of positive and negative reviews using either classification or deep
learning algorithms.

 Stanford Sentiment Treebank (SST-2)|Socher et al.|(2013): It is a corpus with fully labeled
parse trees that allows for a complete analysis of the compositional effects of sentiment in
language. The corpus consists of 11,855 single sentences extracted from movie reviews. It
was parsed with the Stanford parser and includes a total of 215,154 unique phrases from
those parse trees, each annotated by 3 human judges. Binary classification experiments on
full sentences (negative or somewhat negative vs somewhat positive or positive with neutral
sentences discarded) refer to the dataset as SST-2 or SST binary.

¢ Recognizing Textual Entailment (RTE): It comes from a series of annual textual entailment
challenges. The authors of the benchmark combined the data from RTE1 |Dagan et al.| (2010),
RTE2 Bar-Haim et al.| (2014)), RTE3 |Giampiccolo et al.[(2007), and RTES Bentivogli et al.
(2009). Examples are constructed based on news and Wikipedia text. The authors of the
benchmark convert all datasets to a two-class split, where for three-class datasets they
collapse neutral and contradiction into not entailment, for consistency.

¢ Behaviors: It is a new dataset introduced in [Zou et al.| (2023)) for robustness evaluation of
jailbreaking attack. The dataset includes 520 goal prompts and corresponding targets, it is
available in https://github.com/llm-attacks/lim-attacks/blob/main/data/advbench/.

1.2 BEYOND LANGUAGE DOMAIN

¢ CIFARI10 Krizhevsky et al.[(2009): The CIFAR-10 dataset is a well-known dataset used in
the field of computer vision. It consists of 60,000 32x32 color images in 10 different classes,
with 6,000 images per class. The dataset is divided into two parts: 50,000 training images
and 10,000 test images. The 10 different classes represent airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks. Each image is labeled with one of these 10 categories.

¢ Cora-ML Sen et al.| (2008): The Cora dataset is a widely-used benchmark dataset in the
field of graph-based tasks. It consists of 2708 scientific publications classified into one of
seven classes. The citation network consists of 5429 links. Each publication in the dataset is
described by a 0/1-valued word vector indicating the absence/presence of the corresponding
word from the dictionary. The dictionary consists of 1433 unique words. Working with the
Cora dataset presents challenges typical of real-world graph data, such as handling sparse
and high-dimensional feature vectors, and dealing with the complex structure of the graph.

* Citeseer Giles et al.[(1998): The CiteSeer dataset is another popular dataset in the graph
field. It consists of 3312 scientific publications classified into one of six classes. The citation
network consists of 4732 links. Each publication in the dataset is described by a 0/1-valued
word vector indicating the absence/presence of the corresponding word from the dictionary.
The dictionary consists of 3703 unique words.
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J  DEFENSE BASELINES AND BACKBONE ARCHITECTURES

J.1 DEFENSE BASELINES

Language Domain:

PGD-Adv|Madry et al.|(2018): The Projected Gradient Descent (PGD) method stands as
the most prevalent attack strategy in the field of computer vision. It is primarily utilized
for crafting adversarial examples in the context of adversarial training. The defense in this
paper is adapted directly from PGD-adv in computer vision, extending its application to
language modeling.

MixADA |Si et al.| (2021): The search space for adversarial examples in language models
is typically vast due to their discrete nature. To enhance the robustness of these models,
MixADA integrates adversarial training (Goodfellow et al.|(2014) with mixup data augmen-
tation |Zhang et al.| (2018), thereby expanding the range of adversarial examples covered.
Specifically, mixup generates synthetic training examples by linearly blending pairs of inputs
and their corresponding labels. This approach enables the model to learn from a broader
and more effective set of adversarial examples during training.

FreeLB Zhu et al.| (2020): Different from attacks that directly change the words in the
sentence, FreeLB adds adversarial perturbations to word embeddings and minimizes the
resultant adversarial loss around input samples. To expedite the process of adversarial
training, FreeLB implements a single descent step on the parameters concurrently with each
of the K ascent steps applied to the perturbation, which utilizes the average of accumulated
gradients over the K steps. This efficiency has established FreeLLB as a popular defense
method in the field of NLP.

TA-VAT |Li & Qiu| (2021): TA-VAT is another virtual adversarial training method that
generates gradient-based perturbations on the embedding space. To create fine-grained
perturbations, TA-VAT employs a token-level accumulated perturbation vocabulary. This
vocabulary serves to better initialize the perturbations. Additionally, TA-VAT utilizes a
token-level normalization ball, which effectively constrains these perturbations in a relevant
and precise manner.

Adversarial Training (AT): Adversarial training is adaptive to the attack to be evaluated.
Take the Textfooler as the instance, at every epoch, we generate 1000 perturbations from the
Textfooler and add them into the training dataset to reinforce the training of models. We
utilize the TextAttack Morris et al.| (2020) platform the conduct this adversarial training.

SmoothLLLM [Robey et al.[(2023)): Motivated by finding that the adversarial-prompting
jailbreak is sensitive to the random character-level changes, SmoothLLM is designed by
firstly perturbing multiple copies of the given prompt and then aggregating all the outputs.

Beyond Language Domain:

Graph Convolutional Network (GCN) Kipf & Welling (2017): GCN is motivated by the
localized first-order approximation of spectral graph convolutions. The basic idea is to first
add self-loops to the adjacency matrix and then normalize the matrix.

Graph Attention Network (GAT) |Velickovi€ et al.| (2018): GAT leverages the attention
mechanism to construct masked self-attentional layers. This allows the nodes to reweight
their neighbors via the feature similarity.

GNNGuard Zhang & Zitnik (2020): GNNGuard is a universal reweighting framework that
can be applied to any GNN. It leverages the cosine similarities between nodes’ features to
up-weight the correlated nodes and prune the edges between the dissimilar pairs.

Robust GCN (RGCN) Zhu et al.|(2019): RGCN first models the latent representations as
the Gaussian distributions. Then the weights of different neighborhoods will be assigned
different weights according to their variances when performing the message propagation.

Graph Random Neural Network (GRAND) Feng et al|(2020): The core of GRAND is the
random propagation, wherein the node feature will be partially or entirely dropped out and
then propagated through over the graph. This operation enable the node to be insensitive to
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the specific neighborhood, which prevents the effect of malicious outliers. Additionally, the
random propagation also help to augment the representation for each node, thus improving
the generalization of GNN.

* Property GNN (ProGNN) Jin et al.|(2020b): The core principle of ProGNN is to robustify
the GNNss through enhancing the graph properties of sparsity, low rank and feature smooth-
ness. It provides a graph structure learning framework to learn the clean graph structure and
parameters simultaneously.

* Jaccard-GCN Wu et al| (2019): The basic idea of Jaccard-GCN is to preprocess the
adjacency matrix by first computing the Jaccard coefficients of paired node features and
then dropping the edges where the coefficients are below the threshold.

* SoftMedian Geisler et al.| (2021): SoftMedian is a robust estimator for the message passing
aggregation. It reweights the adjacency weights based to the distances of the hidden
embeddings between the neighbor nodes and the dimension-wise median of the the entire
neighboring representations.

J.2 BACKBONE ARCHITECTURES
Classical language models:

e BERT Devlin et al.| (2018): BERT stands out as one of the most well-known transformer-
based language models. It is pretrained through masked language modeling (MLM), where
it learns to predict words that have been masked, using context for guidance. This pretrained
model is then fine-tuned for a variety of downstream tasks, showcasing its versatility and
effectiveness in diverse applications. In our experiments, we will use BERT-110M.

* RoBERTa Liu et al.| (2019): RoBERTa is developed to overcome certain limitations of
the original BERT model. This is accomplished by implementing key modifications such
as increasing the batch size, extending the training epochs, and employing advanced opti-
mization techniques. As a result of these strategic changes, RoOBERTa has demonstrated
substantial performance improvements over BERT across various NLP benchmarks. In our
experiments, we will use ROBERTa-125M.

* ALBERT Lan et al[(2020): ALBERT is a lite variant of BERT. It is achieved by decoupling
the word embedding from the hidden embedding, significantly cutting down the number
of parameters. To further enhance its efficiency, ALBERT employs cross-layer parameter
sharing, ensuring that all layers use the same parameters. The reductions not only minimize
memory footprint but also improve the efficiency of the model. In our experiments, we will
use ALBERT-12M.

* DistilBERT [Sanh et al.|(2019): DistilBERT is a light version of BERT, maintaining most
of the performance of the original BERT. It is trained with the knowledge distillation
technique Hinton et al.|(2015) to achieve high efficiency. In our experiments, we will use
DistilBERT-66M.

Large Language Models:

e T5Raffel et al.|(2023)): Text-to-Text Transfer Transformer (T5) is a transformer-based neural
network model known for its versatility and power in handling a wide range of NLP tasks.
TS5 simplifies NLP tasks by treating them uniformly as text-generation challenges. The T5
model family offers a range of sizes, from 60 million to 11 billion parameters, catering
to different computational needs. The flexibility has made T5 a popular choice in NLP
research. In our experiments, we will use T5-770M.

* LLaMA [Touvron et al.| (2023): LLaMa, the Large Language Model developed by Meta
Al represents a cutting-edge advancement in language modeling. Trained on publicly
available datasets, LL.aMa is available in various sizes to suit different computational needs.
Notably, LLaMa-13B demonstrates superior performance over GPT-3 in most benchmarks,
highlighting its exceptional effectiveness and capability in NLP tasks. In our experiments,
we will use LLaMA-7B.

* Vicuna Chiang et al.|(2023)): Vicuna is a high-performing, open-source chatbot that im-
presses with capabilities comparable to GPT-4. Fine-tuned from the LLaMa model, it utilizes
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user-shared conversations gathered from Share-GPT for its training. Remarkably, Vicuna
achieves 90% of the performance level of GPT-4, despite having only 13 billion parameters,
showcasing its efficiency and effectiveness. In our experiments, we will use Vicuna-7B.

Vision Models:

ViT Dosovitskiy et al.|(2020): The Vision Transformer (ViT) is a model in computer vision
that adopts the principles of the Transformer architecture. In ViT, an image is processed
similarly to a sequence of words, or tokens. Specifically, the image is segmented into
fixed-size patches, each of which is then linearly transformed into an embedded representa-
tion. When trained on sufficient data, ViT achieves state-of-the-art performance on image
classification benchmarks, competing with or outperforming leading CNN-based models. In
our experiments, we will use ViT-86M.

Swin Liu et al.| (2021b)): Swin Transformer is a popular variant of ViT, standing out for
its enhanced efficiency and superior performance. It employs a hierarchical architecture,
which not only aligns more closely with the nature of visual data but also boosts effi-
ciency. To effectively capture global contextual information, Swin Transformer incorporates
shifted window-based self-attention, further enhancing its effectiveness in vision-related
applications. In our experiments, we will use Swin-50M.

BEIT Bao et al.| (2022): Due to the success of BERT, BEIT harnesses the concept of masked
language modeling to enhance self-supervised learning in the visual domain. To align with
the words in language models, BEIT first maps the patch in an image into a token with an
autoencoder. In the training process, it masks a portion of these patches, using the remaining
unmasked ones to predict the masked tokens. Subsequently, the model is fine-tuned for
a variety of downstream tasks, demonstrating its adaptability and effectiveness in diverse
applications. In our experiments, we will use BEIT-86M.

DeiT [Touvron et al. (2021): To address the substantial data requirements for training
the Vision Transformer, Data-Efficient Image Transformer (DeiT) employs knowledge
distillation [Hinton et al.| (2015) to train the model. By integrating this approach with
various data augmentation techniques, DeiT successfully attains competitive results in image
classification tasks, even with constrained training data availability. In our experiments, we
will use DeiT-22M.

ConViT d’Ascoli et al.| (2021): ConViT designs a hybrid architecture to leverage the local
processing capabilities of CNNs and the global context understanding of transformers. To
be specific, it replaces the several first self-attention layers with gated-self positional self-
attention layers, allowing the model to adjust between local and global processing. In our
experiments, we will use ConViT-30M.
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K ATTACKS.

K.1 CLASSIC TEXT ATTACK:

For the classic text attacks, we follow the default attack setting in the TextAttack Morris et al.| (2020)
and the detailed information are as follows:

* DeepWordBug Gao et al.{(2018): DeepWordBug is black-box attacks that apply character-
level transformations to the highest-ranked tokens misclassify the text input. It includes
several character transformations including swap, substitution, deletion and insertion. We
hold the maximum difference on edit distance (Levenshtein Edit Distance) to 30 for each
sample. We will greedily modify the works with the word importance ranking.

* PWWS Ren et al.[(2019): The probability weighted word saliency (PWWS) employs a new
word order determined by the word saliency and predicted probability, and then greedily
perform the synonyms substitution.

» TextFooler Jin et al.| (2020a): TextFooler propose a more comprehensive paradigm to
generate adversarial perturbations. It firstly identify the important words and then replace
them with the most semantically and syntacticaly similar synonyms until the prediction is
altered. We set the minimum word embedding cosine similarity as 0.5 and the universal
sentence similarity threshold as 0.840845057.

» TextBugger |Li et al.| (2018)): TextBugger is a framework for creating utility-preserving
adversarial texts against the classification models. It can be employed under both white-box
and black-box settings. Specifically, this attack sorts the words based on Jacobian matrix in
white-box setting and based on specific scoring function in black-box setting. It includes
swap, substitution, deletion and insertion. There are two types of substitutions: Sub-C
(replace characters with visually similar characters) and Sub-W (replace a word with its
top-K (K = 5) nearest neighbors.) The universal sentence threshold is set as 0.8.

K.2 ATTACK IN LLMS

* Prompt attack: we conduct adversarial prompt attacks using the text attacks including
DeepWordBug Gao et al.|(2018), PWWS Ren et al.| (2019), TextFooler |Jin et al.|(2020a)) and
TextBugger|Li et al.| (2018). The evaluation setting follow PromptBench [Zhu et al.| (2024)
which is a unified and comprehensive python library for evaluating LLMs.

* Jailbreak: We employ the Greedy Coordinate Gradient (GCG) Zou et al.| (2023) method
to search for the adversarial prompt suffixes that circumvent the alignment of the language
models. It can be conducted under the transfer attack and direct attack. Specifically, the
transfer attacks firstly attack the surrogate model (e.g., Vicuna) and can apply the perturba-
tions to the victim models. The direct attacks directly apply the GCG method to the victim
models to generate the suffixes, which can be much stronger. The JailbreakKeywords is a
list of words commonly found in messages that abstain from responding to a prompt asking
for inappropriate content. In our experiment, we use the following list: JailbreakKeywords
=["T'm sorry”, ”Sorry”, I apologize”, ”As an”, ”I'm just”, ”I’'m an”, ’I cannot”, "I would
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advise”, ”it’s not appropriate”, ”’As a responsible AI”].

K.3 ATTACKS IN VISION & GRAPH MODELS

* FGSM |Goodfellow et al.|(2014): Fast Gradient Sign Method (FGSM) is a widely used tech-
nique for generating adversarial examples. It crafts perturbations specifically to maximize
errors in the output of neural networks. This is achieved by analyzing the sign (positive
or negative) of each element in the gradient. Due to its one-step process, FGSM is highly
efficient in generating these adversarial examples.

* PGD Madry et al.|(2018)): Projected Gradient Descent (PGD) method is one of the most
prominent attack strategies in computer vision. Unlike FGSM employing a single step, PGD
uses multiple steps to generate adversarial examples. This iterative approach includes a
projection operation, which ensures that the intensity of the attack remains within specified
limits, making PGD a more controlled and effective method for generating adversarial
examples. The steps are ' = 7 and the steps size o = 0.00784.
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* PGD on Graph Xu et al.| (2019): Motivated by PGD Madry et al.| (2018)) in vision domain,
Xu et al.| (2019) propose a first-order method to conduct topology attack on discrete graph
structure. This method firstly solve continuous optimization problem by Projected Gradient
Descent (PGD) method and then utilize the random sampling to get the optimal binary
topology perturbation from the continuous probabilistic matrix.
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L  ALGORITHM CONVERGENCE AND ROBUST ESTIMATION

L.1 CONVERGENCE GUARANTEE

Loss curves. We use generated data to verify the convergence of our proposed algorithm. The batch
size, number of heads, length of inputs and dimension of data are chosenas B = 8§, H =4, N =

64, D = 8, respectively. The v in MCP is set as 4 and § in Huber loss is set as 0.8. The loss curve of

our algorithm with different penalties are shown in Figure[9] We can observe that our algorithm show
a fast convergence and even 2 to 3 steps can well approximate the optimal solution.
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Figure 9: Loss Curve of Algorithms

Trajectory. To further validate the convergence and effectiveness of our algorithm, we use a toy

experiment to visualize the trajectories of updated vector in 2D plane in Figure[T0] We use L, penalty
in our algorithm, the simulated attention matrix and value matrix are as follows:
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A_[Q 0 ol,v_[7 25]. (14)
00 2 25 37

Trajectory

X

x Ground-Truth-1

x Ground-Truth-2

159 x Ground-Truth-3
®  Trajectory-1

@® Trajectory-2
8 ®  Trajectory-3
T T T T T T
0 5 10 15 20 25
Dim 1

Figure 10: Optimization trajectory.

From the figure, we can find that with the mean as the initial position, the updated vector can approach

closely to the ground truth within only 3 steps. This phenomenon further validate the effectiveness
and efficiency of our algorithm.

L.2 ROBUST ESTIMATION

Robust estimation.We firstly generated clean samples {x;}?_; (blue dots) and the outlier samples
n+m
i=n+1

1

(red dots) from 2-dimensional Gaussian distributions, N'((0,0),1) and NV ((8,8),0.5),
respectively. We calculate the mean of clean samples - Z?:l x; as the ground truth of the mean
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estimator. Then we estimate the mean of all the samples by solving arg min, Z?:Jrlm p(z — x;) using
the our method, where p(-) can take different penalties such as 5 penalty || - ||3 and ¢; penalty || - ||2.

In Figure[5] we visualize the generated clean samples and outliers, as well as the ground truth means
and the mean estimators with n(-) = || - ||3 or || - ||2 under different outlier ratios 15% and 45%. The
results show that, with the existence of outliers, the ¢5-based estimator deviates far from the true
mean, while the ¢1-based estimator is more resistant to outliers and MCP-based estimator is the most
robust.
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M ADDITIONAL EXPERIMENTS OF TEXT ATTACKS

M.1 SENTIMENT ANALYSIS: IMDB

We present the results of sentiment analysis on IMDB dataset under various attacks in Table[8] We can
conlude from the results that our methods improve the robustness of the backbones significantly by
simply plugging the ProAttention into the models without additional fintuning or training. Moreover,
our method can be combined with the existing defenses such as Adversarial Training (AT) to further
improve the performance.

Table 8: The results of sentiment analysis on IMDB.

TEXTFOOLER TEXTBUGGER DEEPWORDBUG PWWS
MODEL CLEAN% T AUA% 1T ASR% | AuA%?T ASR%| Aua% 1t ASR%| AuA%?t ASR%]|
ROBERTA 933 23.7 74.6 9.4 89.9 36.5 60.9 19.5 79.1
DISTILBERT 90.9 14.9 83.6 4.3 95.3 18.8 79.3 9.6 89.4
ALBERT 92.8 21.8 76.5 14.1 84.8 36.2 61.0 15.9 82.9
BERT 92.3 11.8 87.2 11.3 87.4 32.8 64.5 26.4 71.5
FREELB 93.0 25.1 73.6 19.9 76.9 40.9 555 42.0 547
PGD 93.2 26.2 69.2 17.4 81.6 32.0 65.8 27.2 69.6
MIixADA 91.9 16.7 82.0 11.8 87.3 33.4 65.8 30.0 67.4
TA-VAT 93.0 28.5 67.6 27.3 68.8 34.7 60.4 35.1 59.8
AT 93.2 33.6 64.3 31.8 66.1 37.7 61.5 28.7 70.3
PRO-BERT (/;) (OURS) 933 24.6 73.6 13.0 86.1 36.0 61.4 32.7 65.0
PRO-BERT (HUBER) (OURS) 93.0 24.8 73.3 13.4 85.6 36.9 60.3 31.5 66.1
PRO-BERT (MCP) (OURS) 93.5 22.1 76.9 44.6 53.2 55.5 41.8 56.3 41.1
PRO-BERT (MCP) + AT (OURS) 93.6 42.0 56.1 55.3 41.0 60.8 39.0 61.0 37.6

M.2 TEXTUAL ENTAILMENT: RTE

In Table 0] we display the results of textual entailment on RTE across different cosine similarities
constraints in TextFooler attack. We select DistilBERT as the backbone model and construct several
MCP-based architectures with different v. We can observe that our method can improve the robustness
acorss different cosine similarities. The performance improvement is more evident under the smaller
cosine similarities, which is equivalent to larger budgets.

In Table[I0] we present the results of textual entailment on RTE across various attacks. The results
exhibit the consistent improvement of our methods over the backbone model.

Table 9: The results of textual entailment on RTE across different cosine similarities in TextFooler .

Cos-SIM 0.5 0.6 0.7 0.8
MODEL CLEAN% AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR%
DISTILBERT 62.5 4.0 93.6 5.1 91.9 7.9 87.3 18.1 71.1
PRO-DISTILBERT-MCP v = 0.2 63.3 6.9 89.5 6.1 90.6 9.4 85.6 18.1 72.4
PRO-DISTILBERT-MCP v = 0.3 62.4 15.2 75.3 16.6 72.9 20.6 66.5 30.7 50.0
PRO-DISTILBERT-MCP v = 0.4 56.0 18.1 67.7 24.6 56.1 28.2 49.7 33.2 40.7
PRO-DISTILBERT-MCP v = 0.5 55.6 15.9 70.1 17.7 66.7 20.2 61.9 28.9 45.6
PRO-DISTILBERT-MCP v = 0.6 53.1 10.8 80.5 12.3 77.9 16.3 70.8 20.2 63.6

Table 10: The results of textual entailment on RTE across different attacks.

ATTACK TEXTFOOLER TEXTBUGGER ~ DEEPWORDBUG PWWS
MODEL CLEAN% AUA% ASR% AuUA% ASR% AuA% ASR% AuA% ASR%
DISTILBERT 62.5 7.9 87.3 3.6 94.2 18.4 70.5 12.3 80.4
PRO-DISTILLBERT-MCP 63.3 28.2 49.7 14.4 74.5 33.6 40.0 24.2 60.6
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M.3 ADVERSARIAL FINE-TUNING ON TOPIC CLASSIFICATION: AGNEWS

Adversarial training techniques are highly effective to enhance the robustness of models via adding
the adversarial examples into the training set. To better capture the robustness enhancement of
adversarial training, we track the adversarial fine-tuning curves and present the detailed results on
AG’s News in Table [IT]and Figure[IT] In the beginning of every epoch, we generate 1000 perturbed
examples using the specific attack and then put them to the original training dataset. From the results,
we can make the following observations: (1) the models show even better robustness during the
process of adversarial training. (2) our method can be combined with adversarial training to further
improve the resilience of the models.

Table 11: Adversarial fine-tuning on AGNEWS.

MODEL CLEAN%  AUA%(TEXTFOOLER) | CLEAN% AUA%(TEXTBUGGER) | CLEAN% AUA%(DEEPWORDBUG) | CLEAN% AUA%(PWWS)
BERT EPOCH-0 94.2 19.7 94.2 31.7 94.2 37.5 94.2 43.1
BERT EPOCH-1 94.4 22.9 94.4 46.8 94.0 39.2 94.5 49.3
BERT EPOCH-2 94.5 28.4 94.2 52.0 94.0 40.2 94.4 54.4
BERT EPOCH-3 94.2 33.0 94.3 52.8 94.4 42.4 94.1 57.3
BERT EPOCH-4 94.6 34.9 94.6 56.1 94.4 41.3 93.8 62.6
BERT EPOCH-5 94.6 40.1 94.4 55.9 94.3 41.4 93.8 59.3
PRO-BERT-MCP EPOCH-0 93.2 37.8 93.2 45.8 93.2 51.8 92.2 55.0
PRO-BERT-MCP EPOCH-1 93.9 40.0 94.1 48.6 93.8 53.4 93.4 57.5
PRO-BERT-MCP EPOCH-2 93.7 429 93.8 48.4 93.7 58.2 93.6 59.9
PRO-BERT-MCP EPOCH-3 93.7 49.0 94.3 55.7 93.0 58.5 93.0 65.2
PRO-BERT-MCP EPOCH-4 93.2 50.8 93.9 56.5 93.5 61.0 93.6 65.1
PRO-BERT-MCP EPOCH-5 93.9 53.0 94.5 60.7 93.0 60.1 93.6 68.8
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Figure 11: Adversarial fine-tuning on AGNEWS.
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M.4 ABLATION STUDY ON ATTACK CONSTRAINTS

We present the ablation study on the maximum perturbation percentage, minimum cosines similarity
and sentence similarity threshold in Figure[T2] Table[T2] Table [[3]and Table[T4] respectively. The
experiments are performed on AGNEWS under TextFooler with the ALBERT as the backbone. The
default values are as follows: sentence similarity threshold is 0.840845057, maximum perturbation
percentage is 1.0, synonym cosine similarity is 0.5. The results show the consistent improvement of

our method over the backbone models.
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Figure 12: Ablation studies on attack constraints.
Table 12: Ablation study on max perturbation percentage.
MAX-PERCENTAGE (p) 0.1 0.2 0.3 0.4
MODEL CLEAN% AUA% ASR% AUA% ASR% AuUA% ASR% AUA% ASR%
ALBERT 93.0 64.7 30.4 49.4 46.9 34.5 62.9 25.7 72.4
PRO-ALBERT-MCP 93.8 67.6 27.2 54.2 41.6 49.7 46.4 48.9 47.3
MAX-PERCENTAGE (p) 0.6 0.8 1.0
MODEL AUA% ASR% AUA% ASR% AuA% ASR%
ALBERT 20.6 77.9 20.6 77.9 20.6 77.9
PRO-ALBERT-MCP 48.9 47.3 48.9 47.3 48.9 47.3
Table 13: Ablation study on minimum synonym cosine similarity.
MIN-COS-SIM 0.3 0.5 0.7 0.9
MODEL CLEAN% AUA% ASR% AUA% ASR% AuUA% ASR% AuA% ASR%
ALBERT 93.0 12.7 86.3 20.6 77.9 40.1 56.9 79.0 15.1

PrRO-ALBERT-MCP 93.8 41.1 55.7 48.9 47.3 61.6 33.6 82.7 10.9

Table 14: Ablation study on universal sentence similarity threshold.

SENTENCE-SIM-THRESHOLD 0.2 0.4 0.6 0.8 0.85
MODEL CLEAN% AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR%
ALBERT 93.0 18.0 80.7 18.0 80.7 18.0 80.7 18.1 80.5 21.9 76.5

PRO-ALBERT-MCP 93.8 47.4 48.9 47.4 48.9 47.4 48.9 47.6 48.7 49.0 47.2

SENTENCE-SIM-THRESHOLD 0.875 0.9 0.925 0.95
MODEL AUA% ASR% AuA% ASR% AuUA% ASR% AuA% ASR%

ALBERT 27.6 70.3 46.6 499 71.2 23.4 90.5 2.7
PrRO-ALBERT-MCP 55.9 39.8 64.8 30.2 79.4 14.4 90.4 2.6
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M.5 ABLATION STUDY ON BACKBONE MODELS

Our proposed ProAttention is a universal framework which can be applied to various attention-based
models. To verify the universality of our methods, we integrate our robust attention module into
various backbones and present the results in Figure [[3] and Table[T5] As seen in the results, our
ProAttention can consistently enhance the robustness over any backbone under various attacks.
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Figure 13: Accuracy under attack of different backbones.

Table 15: The results of different backbones on AGNEWS

TEXTFOOLER TEXTBUGGER DEEPWORDBUG PWWS

MODEL CLEAN% AUA% ASR% #QUERY AUA% ASR% #QUERY AUA% ASR% #QUERY AUA% ASR% #QUERY
BERT 94.2 19.7 78.9 3353 31.7 67.5 176.5 37.5 59.8 103.8 43.1 53.8 353.8
PRO-BERT-MCP 93.2 39.2 57.7 377.4 48.3 48.5 207.7 51.8 43.8 107.9 56.2 39.2 363.2
ROBERTA 93.4 13.0 86.1 301.6 325 64.5 180.3 41.2 55.9 105.4 34.0 63.6 3459
PRO-ROBERTA-MCP 93.7 24.4 73.7 312.6 343 62.8 195.2 45.5 51.5 118.3 39.4 57.5 336.9
DISTILBERT 93.5 13.2 85.9 317.4 33.6 63.4 159.1 30.0 67.9 98.0 36.5 61.0 352.4
PRO-DISTILBERT-MCP 93.9 29.3 68.5 363.3 48.7 47.9 184.2 343 63.1 98.6 50.5 45.6 364.2
ALBERT 93.0 20.6 77.9 315.6 26.1 71.9 150.9 38.9 58.2 101.5 359 61.4 342.8
PRO-ALBERT-MCP 93.8 48.9 47.3 417.8 41.8 55.3 208.2 59.5 35.9 111.8 63.1 32.0 375.2
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M.6 ABLATION STUDY ON HYPERPARAMETERS OF PENALTIES

M.6.1 ABLATION STUDY ON HUBER

For the Huber-based model, we present the ablation study on the § and layers K of Huber loss under
TextFooler in Table[T6|and Figure[T4] The default setting are as follows: § = 0.9 and K = 3, and
we vary the two parameters separately to capture the trend. We can find that the performance is
insensitive to § or layers within an appropriate range.

Table 16: Ablation study on Huber on AGNEWS.

MODEL CLEAN  ATTACKED
PRO-BERT-HUBER ¢ = 0.6 94.2 23.9
PRO-BERT-HUBER § = 0.7 94.2 23.2
PRO-BERT-HUBER § = 0.8 94.2 23.7
PRO-BERT-HUBER ¢ = 0.9 94.2 24.2
PRO-BERT-HUBER § = 1 94.3 23.0
PRO-BERT-HUBER § = 2 94.1 22.5
PRO-BERT-HUBER § = 3 94.2 21.7
PRO-BERT-HUBER 0 = 4 94.2 20.9
PRO-BERT-HUBER 6 = 5 94.1 20.0
PRO-BERT-HUBER K = 3 94.2 24.2
PRO-BERT-HUBER K =4 94.2 24.0
PRO-BERT-HUBER K =5 94.2 23.7
PRO-BERT-HUBER K = 6 94.0 24.5
PRO-BERT-HUBER K =7 93.9 24.2
PRO-BERT-HUBER K = 8 94.0 25.8
Effect of Delta in Huber Effect of Layers in Huber
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Figure 14: Ablation study on Huber
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M.6.2 ABLATION STUDY ON MCP

We present the ablation study of the ~y and layers K in MCP in Table[T7) & Figure[I5]and Table[T§]
& Figure [T6]. From the figures, it can be concluded that appropriate v is needed to get the best
robustness. Besides, more layers can get a more precise solution for the robust objective, but we need
to consider a good balance between precision and efficiency.

Table 17: Ablation on MCP on AGNEWS.

MODEL CLEAN TEXTFOOLER
PRO-BERT-MCP K =2,v=5 93.3 32.8
PRO-BERT-MCP K =2,v=14 93.7 33.9
PRO-BERT-MCP K =2,v=3 93.7 31.7
PRO-BERT-MCP K =2,y =2 93.1 30.4
PRO-BERT-MCP K =2,y =1 92.9 28.7
PRO-BERT-MCP K =57 =14 93.6 39.2
PRO-BERT-MCP K =4,v=14 93.7 37.2
PRO-BERT-MCP K =3,y =14 93.2 37.8
PRO-BERT-MCP K =2,v=14 93.7 33.9
PRO-BERT-MCP K =1,y=14 93.9 26.8
Effect of Gamma in MCP Effect of Layers in MCP
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80 80
g -@- Clean g -@- Clean
§ 60 —@®- Attacked § 60 =@~ Attacked
< <
40 40 N S — *-——— o-—---- *
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Figure 15: Ablation study on MCP on AGNEWS.
Table 18: Ablation in MCP on IMDB.

MODEL CLEAN TEXTFOOLER TEXTBUGGER DEEPWORDBUG PWWS
PRO-BERT-MCP vy =2.0,K =3 93.9 15.9 19.9 43.7 40.3
PRO-BERT-MCP v =3.0, K =3 93.7 15.1 24.0 53.8 51.1
PRO-BERT-MCP v =4.0,K =3 93.4 16.5 26.6 55.5 50.7
PRO-BERT-MCP v =5.0,K =3 93.9 16.3 29.8 53.9 46.6
PRO-BERT-MCP vy =6.0,K =3 93.3 13.5 23.0 48.1 41.5

PRO-BERT-MCP K =1 93.6 12.4 13.8 40.8 40.2
PRO-BERT-MCP K =2 93.8 12.5 15.7 49.0 47.9
PRO-BERT-MCP K =3 93.4 16.5 29.8 53.9 46.6
PRO-BERT-MCP K =4 93.5 20.4 39.4 60.2 56.3
PRO-BERT-MCP K =5 93.5 22.1 44.6 63.3 56.1
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Effect of Gamma in MCP Effect of Layers in MCP
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Figure 16: Ablation study on MCP on IMDB.

39



Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

N ADDITIONAL EXPERIMENTS ON LLMS

N.1 EXPERIMENTS ON TS5
N.1.1 MAIN RESULT

We compare the backbone model TS with its robust version based on ¢;, MCP and Huber loss in
Figure[T7)and Table[T9] The experiments are conducted on SST2 under TextFooler. As shown in the
figure, Pro-T5 (Huber or ¢;) can slightly improve the robustness of backbone T5. Moreover, Pro-T5
(MCP) significantly outperform other baselines, especially under the large attack budgets.
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S
>
2 60
5 —0- I, (T5)| @xe
3 2 \ “‘.-\-,.
< |*a M W
40 —@- Huber \\. \\O‘ -9
-@- MCP ‘l"_.
0 2 4 6 8 10 12
Num of Perturbed Words

Figure 17: Main results on T5.

Table 19: Accuary (%) under prompt attack on SST2 (TextFooler, T5)

# PERTURBED WORDS 0 (CLEAN) 1 2 3 4 5 6 7 8 9 10 11 12

T5 89.1 89.1 89.1 733 693 634 475 475 43.6 36.6 31.7 29.7 29.7

PrRO-T5(; K =3 90.1 90.1 90.1 67.3 644 545 545 515 465 46.5 40.6 39.6 39.6
PRO-T5S MCP K = 4,7 = 3.0 87.1 87.1 87.1 71.3 693 644 644 644 644 633 633 633 614
PRO-T5 HUBER K = 3,0 =3 95.0 95.0 95.0 64.4 584 564 525 525 525 43.6 337 31.7 317

PRO-T5 HUBER-MCP K = 3,0 = 9,7 =15 89.1 89.1 89.1 624 624 574 554 554 554 554 554 554 545
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N.1.2 ABLATION ON HUBER

We present the ablation study on d in Huber on SST2 in Figure[T8|and Table[20] We fix the number
of layers as 3 and vary the values of § from 3.0 to 9.0. The Huber-based model with § = 4.0 perform
best among all the selected parameters.
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Figure 18: Ablation study on Huber on T5
Table 20: Ablation study in Huber on SST2.

# PERTURBED WORDS 0 (CLEAN) 1 2 3 4 5 6 7 8 9 10 11 12
PRO-T5 HUBER K = 3,0 = 3 95.0 950 95.0 64.4 584 564 525 525 525 43.6 33.7 31.7 31.7
PRO-T5 HUBER K = 3,6 = 4 95.0 95.0 95.0 653 653 653 644 63.4 584 584 505 347 31.7
PRO-T5 HUBER K = 3,6 = 5 92.1 92.1 92.1 663 653 653 604 51.5 50.5 48.5 32.7 27.7 21.7
PRO-T5 HUBER K = 3,6 = 6 93.1 93.1 93.1 69.3 63.4 63.4 347 347 347 317 267 20.8 208
PRO-T5 HUBER K = 3,6 = 7 93.1 93.1 93.1 723 723 644 525 327 327 307 23.8 23.8 238
PRO-T5 HUBER K = 3,6 = 8 93.1 93.1 93.1 752 41.6 41.6 33.7 33.7 30.7 307 27.7 27.7 257
PRO-T5 HUBER K = 3,6 = 9 92.1 92.1 92.1 752 752 43.6 327 327 29.7 297 267 267 26.7
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N.1.3 ABLATION ON MCP OF T5

We present the ablation studies in MCP on SST2 in Figure[T9]and Table 2T} The default settings are
as follows: K = 3 and v = 3.0. We can make the observations as follows: (1) For +, the optimal
value falls into the range of (3,5). (2) For number of layers, the best value can be chosen as 4 or 5.

Figure 19: Ablation study on MCP of T5
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Table 21: Ablation study on MCP on SST2
# PERTURBED WORDS 0 (CLEAN) 1 2 3 4 5 6 7 8 9 10 11 12

PRO-T5 MCP K =3,7=2.0 80.2 80.2 80.2 644 495 495 475 43.6 43.6 32.7 248 21.8 21.8
PRO-T5 MCP K = 3,7 = 3.0 85.1 85.1 85.1 673 653 633 633 633 584 584 584 535 535
PRO-T5 MCP K = 3,7 =4.0 83.1 83.1 83.1 663 624 624 605 605 575 57.6 576 53.6 52.6
PRO-T5 MCP K = 3,7 =5.0 81.2 81.2 81.2 604 604 604 574 574 574 574 564 545 545
PRO-T5 MCP K = 3,7 = 6.0 81.2 81.2 81.2 663 634 535 525 49.5 495 495 495 426 37.6
PRO-TSMCP K =1,7=3.0 77.2 772 77.2 644 584 584 554 535 535 535 525 505 505
PRO-T5 MCP K = 2,7 = 3.0 83.2 83.2 83.2 683 653 653 634 564 545 505 505 505 505
PRO-T5 MCP K = 3,7 = 3.0 85.1 85.1 85.1 67.3 653 633 633 633 584 584 584 535 535
PRO-T5 MCP K =4,7=3.0 87.1 87.1 87.1 713 693 644 644 644 644 633 633 633 614
PRO-T5 MCP K = 5,7 = 3.0 82.2 822 822 733 713 683 683 673 673 673 663 663 54.5
PRO-T5 MCP K = 6,7 = 3.0 85.1 85.1 85.1 703 683 683 634 634 614 554 554 554 535
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N.1.4 ABLATION ON HUBER-MCP

We present the ablation study on Huber-MCP on SST2 in Figure 20|and Table 22] The results show
that Pro-T5 (Huber-MCP) is insensitive to § and get better robustness at v = 14 or 15.
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Figure 20: Ablation studies on Huber-MCP

Table 22: Ablation study on Huber-MCP on SST2

# PERTURBED WORDS 0 (CLEAN) 1 2 3 4 5 6 7 8 9 10 11 12
PRO-T5 HUBER-MCP K = 3,0 = 9,7 = 10 81.2 81.2 81.2 743 743 545 545 505 50.5 475 42.6 426 42.6
PRO-T5 HUBER-MCP K =3, =9,v =11 84.2 842 842 594 544 475 475 465 465 455 43.6 43.6 43.6
PRO-T5 HUBER-MCP K = 3,0 = 9,7 = 12 84.2 84.2 842 554 445 445 445 445 445 43.6 43.6 43.6 43.6
PRO-T5 HUBER-MCP K = 3,0 =9,y =13 85.2 852 852 852 634 554 495 495 495 495 446 446 446
PRrRO-T5 HUBER-MCP K O0=9y=14 86.1 86.1 86.1 822 782 683 683 604 60.4 554 495 495 46.5
PRO-T5 HUBER-MCP K = 3 0=9,7=15 89.1 89.1 89.1 624 624 574 554 554 554 554 554 554 545
PRO-T5 HUBER-MCP K = 3,0 =3,y =14 82.2 82.2 822 644 574 564 485 475 46.5 465 465 465 465
PRO-T5 HUBER-MCP K = 3,0 = 4,'y =14 83.2 83.2 832 564 515 51.5 51.5 51.5 51.5 495 495 465 46.5
PRO-T5 HUBER-MCP K = 3,0 =5,y = 14 84.2 84.2 842 56.4 564 564 495 495 455 455 455 455 445
PRO-T5 HUBER-MCP K = 3,0 = 6,'y =14 84.2 842 842 644 525 525 495 485 46.5 465 44.6 42.6 42.6
PRO-T5 HUBER-MCP K §=Tv=14 83.2 83.2 83.2 624 535 535 51.5 495 495 46.5 465 465 44.6
PRO-T5 HUBER-MCP K =3, =8,y =14 81.2 81.2 812 57.4 535 535 535 475 475 475 475 475 426
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N.2 EXPERIMENTS ON LLAMA

For LLaMA, we can observe an intriguing phenomenon that differs from the T5 case: the ¢; and
MCP-based methods sacrifice too much accuracy while Huber method can keep decent performance
under small budgets. This reason is that in the small range region, ¢; and MCP utilize a linear or
concave functions while Huber can recover the /5 function. Inspired by the characteristics of these
functions, we combine the properties of Huber and MCP, and construct a new function which we
refer to Huber—MCP|I|. The detailed formulation and derived robust attention layers are available in
Appendix[G] As indicated by the following curves, Huber-MCP and Huber-based models exhibits
better robustness than other methods while preserving the good clean performance.

N.2.1 TEXTFOOLER

We present the results of textual entailment on SST2 under TextFooler in Figure 21} We can observe
that /1 and MCP-based methods sacrifice the performance because of the estimation bias. Pro-LLaMA
(Huber-MCP) shows slight improvement over other models.
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Figure 21: LLaMA (Textfooler)

]Empirical penalty selection strategy: For small or medium-sized models such as BERT (110M) and ViT (86M), MCP-based models
exhibit superior robustness while nearly not sacrificing the clean performance. Moreover, MCP-based models are easy to tune with only one
parameter ~y. For large models like LLaMA (7B) and Vicuna (7B), it is necessary to choose Huber and Huber-MCP to recover the original £o
penalty within the low-value region in case of clean performance drop.
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N.2.2 TEXTBUGGER

We present the results of textual entailment on SST2 under TextBugger in Figure In this case,
£1-based model show a catastrophic performance drop while Pro-LLaMA (Huber) outperforms other
baselines with a sinificant margin.
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Figure 22: LLaMA (TextBugger)
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N.2.3 DEEPWORDBUG

We present the results of textual entailment on SST2 under DeepWordBug in Figure 23] The
experiment shows the similar phenomenon that /; and MCP-based models sacrifice too much
performance. Additionally, Pro-LLaMA (Huber-MCP) significantly outperforms other methods.

90

90
-®- LLaMA 4 -0- 6=7
-e- I Y -e- 6=38
% mE 0= MR 80 i -e- 5-9
~ =®- Huber ‘\‘Q\ -@- 6=10
. "y e =
2 . —®- Huber-MCP I A =0- 6=11
§ 70 St g 70 ral
g \oro- -q\ g 1A
< vy . < Y
60 LR e 60 . \
e i\ -e -0 \ ¥
\ (W4 Seo-e \ \
\ \ \
1 .- “o--0 L
50 o P-e-e 50 “8-8~
*:8-8-0 8-8-8-0-9-8-8 So- @ —e= A 0 T nn
0 2 4 6 8 10 0 2 4 6 8 10 12
Num of Perturbed Words

Num of Perturbed Words

(a) Main results on SST2 (DeepWordBug) (b) Ablation study on § in Huber (K = 3)

90

-0~ y=10
-0- y=15
80 \:\ -®- y=20
[} -®- y=30
5 -3 -@- y=40
g 70 ﬂ\
g 1\ o-0-q
] \
< *\\ \
60 \\ \ .\\
\o--0-@ o-o--o _
\ \ ( bl §
k\ \ N
50 1 \\.—-.--..\ =)
Pir-ab o o5 T EF 2B EET EFIE
0 2 4 6 8 10 12

Num of Perturbed Words

(c) Ablation study on ~y in Huber-MCP (6 = 9, L = 3)

Figure 23: LLaMA (DeepWordBug)
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O ADDITIONAL EXPERIMENTS ON JAILBREAK

0.1 TRANSFER JAILBREAK

We provide the results of transfer jailbreak in Table 23] Table 24] and Table[25] As SmoothLLM
exhibits excellent performance to defend the jaibreaking attack, we also combine the random smooth-
ing with the backbone models and our methods to further validate the effectiveness of our method.
As shown in the results, when ¢ = 0 (without random smoothing), by simply plugging our ProAt-
tention into the Vicuna, the robustness can be improved by a significant margin. Our plug-and-play
method can even be comparable to the randomly smoothed models which require multiple operations
including random perturbations, votings and aggregations.

Table 23: Vicuna: ASRs of JailBreak with Swap random smoothing on Behaviours.

SMOOTH ¢ 0 1 3 5

VICUNA 91.8 71.8 209 0.9
PRO-VICUNA-HUBER 6 = 0.1 1.8 0.9 09 09
PRO-VICUNA-HUBER 6 = 0.2 8.2 1.8 09 09
PRO-VICUNA-HUBER 6 = 0.3 21.8 2.7 09 09
PRO-VICUNA-HUBER 6 = 0.4 309 21.8 09 0.9
PRO-VICUNA-HUBER 6 = 0.5 36.4 23.6 09 0.9
PRO-VICUNA-HUBER 6 = 0.8 61.8 40.0 0.9 0.9
PRO-VICUNA-HUBER 6 = 1.0 70.0 53.6 11.8 0.9
1.8

1.8

7.3

PRO-VICUNA-HUBER 6 = 1.5 74.5 60.0 16.4
PRO-VICUNA-HUBER 6 = 2.0 82.7 73.6 21.8
PRO-VICUNA-HUBER 6 = 3.0 90.0 74.5 31.8

Table 24: Vicuna: ASRs of JailBreak with Insert random smoothing on Behaviours.

SMOOTH ¢ 0 1 3 5 10 15
VICUNA 91.8 79.1 445 109 45 1.8
PRO-VICUNA-HUBER 6 = 0.1 1.8 0.9 0.9 09 09 09

Table 25: Vicuna: ASRs of JailBreak with Patch random smoothing on Behaviours.

SMOOTH ¢ 0 1 3 5 10 15
VICUNA 91.8 71.8 57.3 39.1 21.8 14.5
PRO-VICUNA-HUBER6=0.1 1.8 09 09 09 09 09

47



Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

0.2 ADAPTIVE JAILBREAK

Besides transfer jailbreak, we also provide the results of adaptive jailbreak in Table 26 and Figure 24]
The results show that our methdod can consistently enhance the backbone model across various
numbers of attack queries.

Table 26: vicuna: ASRs of Adaptive JailBreak on Behaviours

NUM OF ATTACK QUERIES 12 13 14 15 16 17 18 19 20
VICUNA 61.4 652 71.5 758 787 82.6 84.1 86.5 874
PRO-VICUNA (BEST) 50.7 559 60.8 64.3 67.4 70.5 74.0 77.7 78.6
PRO-VICUNA-HUBER 6 = 0.3 60.2 60.2 65.0 70.9 72.8 757 77.7 77.7 78.6
PRO-VICUNA-HUBER 6 = 0.5 60.8 61.8 62.7 66.7 67.6 71.6 784 81.4 824
PRO-VICUNA-HUBER § = 0.7 50.7 55.9 60.8 64.3 67.4 70.5 74.0 79.7 82.4
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Figure 24: Adaptive JailBreak
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P ADDITIONAL EXPERIMENTS ON VIT

P.1 MAIN RESULTS

The main results of FGSM on ViT are presented in Table We can conclude that our Pro-ViT
(MCP) outperforms other methods across various budgets.

Table 27: Adversarial robustness on CIFAR-10 (FGSM)

MODEL \ BUDGET 0 (CLEAN) 8/255 4/255 1/255

VIT 98.74 35.05 39.04 60.43
PrO-VIT-L1 98.46 42.41 46.33 61.99
PRO-VIT-HUBER 98.76 37.47 4193 62.72

PRO-VIT-MCP (OURS) 98.40 54.10 60.38 75.85

P.2 ABLATION STUDY.

The ablation study of PGD and FGSM are provided in Table[28] Table 29)and Figure[25] As shown in
the results, the optimal v of MCP fall into the range of (3,4). The robust estimators with more layers
show the better robustness while slightly sacrifice the clean performance.

Table 28: Ablation: CIFAR-10 (PGD)

MODEL \ BUDGET 0 (CLEAN) 8/255 4/255 1/255
PRO-VIT-HUBER K = 3,0 98.43 0.09 0.82  28.38
PRO-VIT-HUBER K = 3,4 98.56 0.07 1.36 31.04
PRO-VIT-HUBER K = 3, 98.56 0.09 1.57 34.9
PRO-VIT-HUBER K = 3, 98.76 0.15 1.72  34.89
PRO-VIT-HUBER K = 3, 98.75 0.18 1.86 34.98

PRO-VIT-MCP K =1,y=14 98.07 1.03 2.43  26.16
PRO-VIT-MCP K =2,y =4 96.92 2.22  3.85 39.04
PRO-VIT-MCP K =3,y =4 95.79 6.47 12.65 65.15
PRO-VIT-MCP K =4,y =4 94.29 14.64 27.17 74.72
PRO-VIT-MCP K =5,y =4 93.43 23.34 37.56 76.75
PRO-VIT-MCP K = 6,7 =4 92.56 28.94 43.34 77.39
PRO-VIT-MCP K =7,y =4 91.89 31.57 47.01 76.86
PRO-VIT-MCP K =8,y =4 91.36 33.4  47.22 76.16
PRO-VIT-MCP K =9,y =4 90.76 33.17 48.11 75.56
PRO-VIT-MCP K =3,y =2 98.4 2.95 6.19 56.41
PRO-VIT-MCP K =3,y =3 97.97 58 10.83 67.07
PRO-VIT-MCP K =3,y =4 95.79 6.47 12.65 65.15
PRO-VIT-MCP K =3,y =5 92.77 353 7.54 4570
PRO-VIT-MCP K =3,7v =6 94.0 3.54 7.22 37.22

EORORS
[
© ot
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Table 29: Ablation: CIFAR-10 (FGSM)

MODEL \ BUDGET 0 (CLEAN) 8/255 4/255 1/255
PRO-VIT-HUBER K = 3, 98.43 36.23  40.57 58.84
PRO-VIT-HUBER K = 3, 98.56 36.99 40.88 60.54
PRO-VIT-HUBER K = 3, 98.65 37.47 4193 62.72
PRO-VIT-HUBER K = 3, 98.76 36.55 41.02 62.20
PRO-VIT-HUBER K = 3, 98.75 35.75 40.39 61.38

PRO-VIT-MCP K =1,y=4 98.07 3522 38.12 52.82
PRO-VIT-MCP K =2,y =4 96.92 39.84 43.19 55.49
PRO-VIT-MCP K =3,y =4 95.79 47.38 53.6 67.03
PRO-VIT-MCP K =4,y =4 94.29 49.26 5849 72.71
PRO-VIT-MCP K =5,y =4 93.42 49.42 59.03 74.35
PRO-VIT-MCP K =6,y =4 92.56 48.23 59.21 76.01
PRO-VIT-MCP K = 3,7 =2 98.4 47.98 5239 70.59
PRO-VIT-MCP K =3,7=3 97.97 51.64 57.21 73.16
PRO-VIT-MCP K = 3,7 =4 95.79 47.38 53.6 67.03
PRO-VIT-MCP K =3,7y=5 92.77 3537 41.76 52.10
PRO-VIT-MCP K =3,7=6 94.0 37.08 41.42 48.56
PRO-VIT-MCP K =3,y =3 97.97 51.64 57.21 73.16
PRO-VIT-MCP K =4,yv=3 97.76 54.1  59.66 75.30
PRO-VIT-MCP K =5,y =3 97.75 53.29 60.08 75.85
PRO-VIT-MCP K = 6,7 =3 97.74 52.37 60.38 75.70
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Figure 25: Ablation study in MCP
Q ADDITIONAL EXPERIMENTS IN GAT

The main results on Citeseer and the ablation study on Cora-ML are presented in Table [30] and
Table @ From the results, we can make the following conclusions: (1) Our Pro-GAT outperform
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other methods significantly. Under the larger budgets, the outliers introduced by the adversarial attack
will enlarge the bias effect of the estimation. In this scenario, our MCP function can mitigate or
even remove the effect of outlying values in the large-value region. (2) The parameter v provide
an implication for the robustness. For small budget, the models with large v perform well since it
is more similar the original attention. While for large budget, the models with small v offer better
robustness cause it can mitigate the bias introduced by the outliers.

Table 30: Results on Citeseer.

MODEL \ BUDGET 0% 5% 10% 20% 30% 40%
GCN 748+1.2 661+£10 609+08 53.0+1.0 47.0+0.8 41.2+1.1
GNNGUARD 724+£11 656+09 618414 55.6+14 5H51.0+1.3 473+1.3
RGCN 744+£10 660£08 606+£09 525+£08 461£09 402x£1.0
GRAND 748+06 66.6+0.7 61.8+£07 536+11 4744+12 422409
PROGNN 7424+13 656=£11 603+£11 52.7+14 462=£09 408=+£0.6
JACCARD-GCN 748+1.2 663+12 609+12 533+09 465+09 41.1+1.0
SOFTMEDIAN 746+07 68.0£0.7 644+09 59.3+1.1 552£2.0 51.9+21
GAT 73.4+£12 654=£13 604+£14 52.6+25 472£34 41.2+48
PRO-GAT (OURS) 734+11 689+14 660+22 63.0+24 595+£26 57.7+20

Table 31: Ablation study on Cora-ML.

MODEL \ BUDGET 0% (CLEAN) 5% 10% 20% 30% 40%
K=1~v=1.0 84.14+£0.35 7851+£0.39 75.70+£0.45 72.06+0.44 69.00%£0.65 66.34£0.99
K=1~v=20 83.70+0.72 78.46+0.51 7546+0.80 71.21+1.32 6839x1.60 6591+2.17
K=1~vy=30 83.95+0.77 77.93+0.55 74.35+0.63 69.46+1.16 66.31+1.73 62.87+1.54
K=1vy=4.0 84.18+0.64 77.41+£0.64 73.97+£0.74 68.97+£0.98 65.70+1.20 62.70+1.42
K=1,7v=50 83.91+1.17 77.57+0.93 73.88+£1.29 68.98+1.27 6517154 62.40+£1.75
K=1,v=6.0 83.91+£0.79 7745+£0.75 73.56+0.88 68.66+1.21 64.80+1.41 61.94+2.08
K=1~vy=70 84.26 +£0.54 77.77+0.79 74.21+0.67 68.94+0.88 65.20+1.30 62.31+1.69
K=3,v=10 82.75£0.87 77.59+£0.95 75.04+£1.25 7147+1.06 68.70+1.20 66.53 £1.24
K=3v=20 80.88+3.79 75.89£2.88 72.61+239 68.71+2.07 6539+£225 62.29+2.65
K=3,vy=30 83.04+1.04 77.09+1.22 73.82+1.23 69.27+1.45 65.71+1.62 62.62+2.07
K=3,v=4.0 81.84+3.57 76.37+2.62 73.45+2.04 68.63+2.49 65.09+256 62.42+2.33
K=3,7v=50 83.79+£0.75 77.81+£0.85 7458+0.96 69.90+1.05 66.32+1.26 63.33£1.66
K=3,7v=6.0 83.38+1.12 77.17+1.15 74.12+1.28 69.27+1.33 65.59+1.34 62.86+1.75
K=3,vy=70 84.57+0.76 78.47+0.78 75.15+0.84 70.47+0.96 66.91+1.33 63.94+1.33
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R COMPLEXITY ANALYSIS.

Here we will provide a complexity analysis of the vanilla attention, our robust attention, KDE-based
attention and RKDE-based attention. The related notations are Q, K,V € RV*P and A € RV*¥,
The major difference in these methods is how to derive the attention matrix, therefore we will only
count the complexity of attention matrix derivation and context matrix computation.

e Vanilla Attention. The vanilla attention matrix in can be formulated as A =

n
softmax % , which costs about N x N x D. The context matrix computation re-

quires N x N x D, so the total costis 2+ (N x N x D)

* Our ProAttention. For our robust attention, we need to firstly compute the original matrix

A (N x N x D). Then we need to compute weight W (*) based on the pairwise distance
between the V and current estimator Z(*) (N x N x D). Finally we need to update the
estimator by Z**+1) = (A ® W)V (N x N x D). The context matrix is calculated
through the iterations. Therefore, the total cost will be (1 4+ 2K) - N x N x D. As stated
in the ablation study in Section [D.2.2] our Newton-IRLS in ProAttention can converge
efficiently within 3 steps (K < 3). Therefore, our ProAttention is still effeicient.
Kernel Density Estimation (KDE) Attention. For KDE-based attention, the attention
matrix is computed based on the pairwise ditance between the K and Q, which cost
N x N x D. The context matrix computation requires N x N x D, so the total cost is
2-(N x N x D).

* Robust Kernel Density Estimation (RKDE) Attention. For the RKDE-based attention,
we need to perform the following operations. Firstly, we need to compute the basic matrix
ad KDE attention matrix A (N x N x D). Then we need to compute pairwise distance
D% ) for all the key pairs (N x N x D) and update the weight Wﬁf ) based on Wﬁf Y and

Dg) (N x N x N). Similarly, we need calculate the pairwise distance D%{, and update the

weight Wg{, for concatenated key and value, which costs N x N x 2D and N x N x N,
repectively. The context matrix computation requires N x N x D. Therefore, the total cost
willbe (24 3K)- N x Nx D+2K-N x N x N.
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