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Abstract

Language models (LMs) gradually become
general-purpose interfaces in the interactive
and embodied world, where the understand-
ing of physical concepts is an essential prereq-
uisite. However, it is unclear whether LMs
can understand physical concepts in the human
world. To investigate this, we design a bench-
mark VEC that covers the tasks of (i) Visual
concepts, such as the shape and material of
objects, and (ii) Embodied Concepts, learned
from the interaction with the world such as the
temperature of objects. Our zero (few)-shot
prompting results show that the understanding
of certain visual concepts emerges as scaling up
LMs, but there are still basic concepts to which
the scaling law does not apply. For example,
OPT-175B performs close to humans with a
zero-shot accuracy of 85% on the material con-
cept, yet behaves like random guessing on the
mass concept. Instead, vision-augmented LMs
such as CLIP and BLIP achieve a human-level
understanding of embodied concepts. Analysis
indicates that the rich semantics in visual rep-
resentation can serve as a valuable source of
embodied knowledge. Inspired by this, we pro-
pose a distillation method to transfer embodied
knowledge from VLMs to LMs, achieving per-
formance gain comparable with that by scaling
up parameters of LMs 134×.1

1 Introduction

With the emergent capabilities such as arith-
metic (Brown et al., 2020; Wei et al., 2022) and
multi-step reasoning (Chowdhery et al., 2022)
brought by large-scale pre-training, language mod-
els (LMs) are gradually becoming unified inter-
faces (Hao et al., 2022), capable of instructing em-
bodied robots for high-level tasks such as clean-
ing the spilled coke in interactive and embodied
environments (Ahn et al., 2022). Understanding
physical concepts is an essential prerequisite for

1Our dataset is available at https://github.com/
TobiasLee/VEC.

these tasks, e.g., producing correct instructions for
cleaning the coke requires understanding the visual
characteristics of a coke can, as well as physical
properties such as hardness. However, it still re-
mains unclear whether current LMs can understand
basic physical concepts (Driess et al., 2023).

To answer the question, we first define an evalua-
tion suite of physical concepts covering visual and
embodied concepts. Specifically, visual concepts
examine knowledge that can be gained via visual
perception, including generic visual concepts, such
as color, shape, and material of common objects,
and spatial perception, which focuses on the rela-
tionship between visual stimuli, i.e., relative size
and height of objects. The ability to deal with vi-
sual concepts serves as the basis for understanding
real-world scenes to perform further instruction.
Embodied concepts examine knowledge that re-
quires more interaction and multimodal sensory ex-
perience in the embodied world, including knowl-
edge about the mass, temperature, and hardness of
objects, e.g., ice is colder than water. Understand-
ing embodied concepts is essential for an embod-
ied agent to make correct choices when translating
language into actions (Bisk et al., 2020a). We com-
pose a Visual and Embodied Concepts evaluation
benchmark VEC, with examples shown in Table 1.

With the benchmark, we examine a wide range
of LMs. We cover masked language models and
causal language models in text-only LMs, includ-
ing BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019b), GPT (OPT)-family (Radford et al.,
2019; Zhang et al., 2022b) with parameters rang-
ing from 125M to 175B, LLaMA-1/2 (Touvron
et al., 2023a,b) and Vicuna (Chiang et al., 2023).
Furthermore, as humans understand the world by
learning from multiple modalities, especially using
the visual modality (Bloom, 2002), we are inter-
ested in whether the vision supervision in recent
vision-augmented language models (VLMs) (Chen
et al., 2019; Radford et al., 2021; Wang et al., 2022;

https://github.com/TobiasLee/VEC
https://github.com/TobiasLee/VEC


Concpet Category Instance Label # of Examples

Color h: melon, t1: green, t2: black green 574
Shape h: lemon, t1: triangle, t2: round round 140

Visual Concepts Material h: guitar, t1: wood, t2: glass wood 284
Size h: ant, r: larger than, t: bird false 500
Height h: bottle, r: shorter than, t: truck true 500

Mass h: wooden spoon, r: heavier than, t: toaster false 654
Embodied Concepts Temperature h: ice, r: colder than, t: water true 422

Hardness h: pearl, r: softer than, t: glass true 1,016

Table 1: The illustration of VEC benchmark. We design two forms of probing tasks. The former (Color, Shape and
Material) asks models to make a choice between two tail options given the head object. The latter (Size, Height, and
all embodied concepts) requires LMs to judge whether the relation is valid given the head and the tail.

Madureira, 2021) could also facilitate the under-
standing ability of embodied concepts. CLIP (Rad-
ford et al., 2021) and BLIP (Li et al., 2022a) are
chosen as representatives of VLMs for evaluation,
due to their promising performance and the abil-
ity to deal with textual-only inputs. To eliminate
the effects of training corpus (Tan and Bansal,
2020), we train BERT, OPT, and CLIP on the
same caption dataset with a similar Transformer
model (Vaswani et al., 2017) from scratch for a
fair evaluation. Furthermore, as previous studies
have shown that prompting methods that fit the pre-
training paradigm could better elicit the knowledge
learned from LMs (Petroni et al., 2019; Schick
and Schütze, 2021a; Brown et al., 2020), we adopt
pre-trained-objective style promoting methods to
narrow the gap between probing and pre-training.

Our zero (few)-shot results on the VEC bench-
mark show that: (i) Moderate-sized LMs such as
BERT and RoBERTa exhibit a random-level under-
standing of both visual and embodied concepts. (ii)
A decent visual understanding of specific concepts
emerges as LMs scale up, while they still struggle
to understand the embodied knowledge with perfor-
mance slightly better than random guessing. (iii)
Image-grounded caption text-only pre-training, in-
struction tuning, and visual supervision could pro-
vide performance gain regarding visual concepts,
yet only the last one enhances the understanding of
embodied knowledge of LMs.

We further investigate the source of embodied
knowledge in VLMs. A case study demonstrates
that embodied knowledge in the VLM of CLIP
is potentially rooted in the rich semantics of im-
age representations. We thus devise a knowledge
distillation method to transfer the learned embod-
ied knowledge in VLMs into LMs, resulting in an

average accuracy gain of 3.38, comparable to the
4.46 gain achieved by scaling the model parameters
134x. Nevertheless, the improved LMs still exhibit
great gaps with humans, indicating great potential
for further advancements.

2 VEC Benchmark

Our VEC benchmark aims to evaluate the under-
standing of physical concepts of LMs. Inspired by
the world scope definitions by Bisk et al. (2020a),
we divide physical knowledge into visual knowl-
edge and embodied knowledge. The former are
visual properties that can be acquired via visual
perception, while the latter focus on knowledge
that requires multimodal sensory interaction.

2.1 Visual Concepts

Perception is necessary for language learning be-
cause it forms the basis for many of our semantic
axioms (Bisk et al., 2020a). Among the various
types of perception, visual concepts model a vast-
ness of experiences in the world that cannot be
stated by text alone (Harnad, 1990). In this work,
we consider evaluating the visual understanding
ability of LMs by examining their performance
on various visual concepts. Specifically, we com-
bine the recently proposed visual knowledge prob-
ing datasets, including Spatial Commonsense (Liu
et al., 2022a) and ViComTe (Zhang et al., 2022a).
The combined dataset requires not only understand-
ing various generic visual concepts including color,
shape, and material, but also understanding the re-
lationship between common objects, such as size
and height. For generic visual concepts, i.e., color,
shape, and material identification, we define an an-
swer selection game: selecting a correct value from
two options for the attribute given an object. For



example, given a head object banana, the model
should pick the ground-truth tail answer yellow in-
stead of an alternative option such as black. For vi-
sual relationships, i.e., size and height understand-
ing, we define a comparison game: LMs need to
perform a comparison between different objects.
For example, given a head entity ant and a tail
entity bird, the LM is asked to compare the size
of two objects and makes a prediction between the
correct relation smaller and the false one larger.

2.2 Embodied Concepts

The embodied concepts refer to physical realities
of objects, e.g., mass, and temperature, which in-
fants could learn by interacting with the environ-
ment (Gopnik et al., 1999). This kind of knowledge
is the basis of intelligence and enables agent mod-
els to explore challenging tasks in physical environ-
ments. We are curious about whether current LMs
can capture embodied knowledge via large-scale
pre-training. In this work, we define embodied
knowledge as the knowledge that requires multi-
modal sensory interaction with the environments
beyond visual perception. We construct embod-
ied knowledge evaluation datasets regarding basic
physical properties including mass, temperature,
and hardness.

Mass Dataset We build the Mass dataset by trans-
forming the Image2Mass dataset curated by Stan-
dley et al. (2017), which annotates 56 common
objects with corresponding weights. The most
light-weight object in the dataset is a red Lego
brick, weighing 0.026 lbs, and the heaviest ob-
ject is a 2.664 lbs drill. Directly asking the LM
for the absolute mass of objects can be challeng-
ing (Wallace et al., 2019). We define the task in
a comparison format. Specifically, each compar-
ison pair contains two objects with a weight gap
greater than 1 lbs. The threshold is set according
to the Weber–Fechner laws (Fechner et al., 1966)
to guarantee that the mass difference is perceivable
for humans. We build 654 triplets such as (hair
dryer, heavier than, red Lego brick) for
evaluation.

Temperature Dataset We design a temperature
probing dataset by collecting the temperature of
22 common objects from Wikipedia.2 For exam-
ple, the ice is 0◦C, and the temperature of water

2https://en.wikipedia.org/wiki/Orders_of_
magnitude_(temperature)

vapor is 100◦C. We convert the object with temper-
ature annotations into pairs, and each pair contains
two objects and the corresponding temperature re-
lation. For example, (ice, colder than, water
vapor). The temperature gap between two ob-
jects must be greater than a difference threshold,
which is loosely set to 10◦C for assurance of ther-
mal perception for human (Jones, 2009). The final
Temperature dataset consists of 422 pairs in total.

Hardness Dataset Hardness is a measure of the
resistance to localized plastic deformation in ma-
terial science. For example, hard metals such as
titanium are harder than soft minerals such as talc.
Humans can perceive the hardness of different ma-
terials in interaction with the environment by us-
ing tactile organs like fingers (Gueorguiev et al.,
2016). To investigate whether LMs capture hard-
ness knowledge, we build a Hardness dataset by
collecting the Mohs hardness scores of 25 objects
from Wikipedia.3 We define the task in a com-
parison format. For example, (talc, softer
than, titanium). Each pair contains two ob-
jects. The gap between two objects is greater than
the threshold for human-level understanding. The
final dataset contains 1, 016 pairs.

3 Prompting Methods

Recent studies have shown that prompting methods
that fit the pre-training paradigm are more effective
than other possible prompting methods (Petroni
et al., 2019; Schick and Schütze, 2021a). Following
these studies, we design specific prompts for LMs
with different objectives.

Prompting Masked Language Models Follow-
ing PET (Schick and Schütze, 2021a,b), we probe
the masked language models by converting knowl-
edge facts into a question-answering form. For
example, a size knowledge fact (coin, smaller
than, table) is converted into a sentence with
a special mask token: Question: is a coin
smaller than a table? Answer: [MASK]. We
also explored other prompts, such as Is a coin
[MASK] than table. However, our experiments
show that a question-answering form can better
induce models to generate answers and avoid the
influence of tokenization of different LMs. Given
masked inputs, the model is asked to predict the
probabilities of the mask token over two choices,

3https://en.wikipedia.org/wiki/Mohs_scale_of_
mineral_hardness
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o1: This is a photo of the water.

o2: This is a photo of a frying oil.

Attribute: This is a photo of a cold object.

No:  66.3% 
Yes: 13.1%

Perplexity of S2: 69.19

Perplexity of S1 : 87.22

0.64
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BERT

s1: The water is colder than the frying oil.

s2: The water is ho(er than the frying oil.
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Question: Is the water colder than the frying oil?
Answer: [MASK].
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Figure 1: An illustration of prompting methods. For BERT-like models with a masked language head, we convert
the knowledge fact to a question and perform prediction with the head over yes or no. For OPT models, we evaluate
the perplexity of different assertions and take the one with lower perplexity as a valid fact. For CLIP, we devise a
matching-based probing framework.

i.e., yes for confirming the knowledge fact is valid
or no for an unreasonable assertion. We observe
that in specific LMs, the prediction can be biased
toward some answers as investigated by Zhao et al.
(2021). We calibrate the prediction by normalizing
the probabilities according to an estimated prior
following Zhao et al. (2021).

Prompting Causal Language Models Differ-
ent from BERT, there is no special [MASK] to-
ken in causal language models like GPT (Radford
et al., 2019). Therefore, introducing a special to-
ken would result in an inconsistency between pre-
training and evaluation. To remedy this, for each
knowledge fact, we state it in natural sentences ac-
cording to prompting templates and evaluate the
sentence perplexity as the proxy metric. Specif-
ically, for size-property evaluation, we convert it
into a valid knowledge assertion s1 = A coin is
smaller than a table, and an invalid one by
replacing the relation with the antonym adjective
s2 = A coin is larger than a table. The
sentence with lower perplexity is then chosen as
the predicted one. We evaluate the perplexity of
each sentence s = (w0, w1, · · · , wn) as:

PPL(s)=PM(s)−
1
n = n

√√√√ n∏
k=1

1

PM (wk |w0,w1,. . . ,wk−1)

where PM denotes the conditional word probability
of the causal language model to be probed and n
is the number of tokens in s. We compare the
perplexity PPL(s1) and PPL(s2) and choose the
sentence with lower PPL as a more valid assertion
and calculate the prediction accuracy accordingly.

Prompting Vision-augmented Language Models
of CLIP Unlike text-only LMs that support word
predictions, the text encoder in CLIP only has one

sentence representation without any pre-trained lan-
guage heads. To probe the learned knowledge in
VLMs such as CLIP, we design a matching-based
prompting method. In more detail, for the size
fact stated before, we first obtain two object de-
scriptions o1 = a photo of a coin, and o2 =
a photo of a table. These two sentences are
encoded to get the corresponding object vectors via
the CLIP language encoder:

o1,o2 = CLIP(o1),CLIP(o2).

We then derive an attribute sentence a = a photo
of a small object, and encode it to an attribute
adjective vector with the language encoder:

a = CLIP(a).

The prediction is then performed by comparing the
cosine similarity cos(o1,a) and cos(o2,a).4 The
object with higher similarity with the attribute de-
scription is adopted as the answer, i.e., a coin is
smaller than a table, if cos(o1,a) > cos(o2,a).
Otherwise, we assume that the model thinks the
reversed relation holds. We can also adopt the
antonym adjective large for getting the attribute
vectors. The results of the best-performing adjec-
tive words for CLIP are reported and we discuss
the influence of adjective options in § 4.3.

4 Experiments

4.1 Experimental Settings
Models We cover two kinds of LMs, text-only
LMs and visual-augmented LMs. Text-only LMs
include BERT-base/large (Devlin et al., 2019),

4The matching-based prompting also applies to the pooled
embedding of BERT, yet the results exhibit great variance as
shown in Appendix A.



Model (# of Param.) Color Shape Size Height Material Average

BERTYFCC-15M (63M) 56.05±10.36 53.21±1.79 50.34±1.27 50.16±1.30 55.35±4.79 53.02
OPTYFCC-15M(63M) 65.21±15.27 51.25±18.99 50.50±0.77 49.96±1.36 81.41±1.53 59.67
CLIPYFCC-15M (63M) 68.21±7.17 67.21±7.63 62.64±6.01 54.04±7.05 62.92±6.48 63.00

BERT-base (110M) 49.29±1.60 52.14±4.22 49.94±0.80 50.56±0.59 48.08±2.74 50.00
BERT-large (340M) 49.36±1.88 51.21±5.06 49.26±1.60 49.08±2.34 49.72±0.58 49.73
RoBERTa-base (125M) 49.07±1.62 49.36±3.52 50.32±0.57 49.58±0.49 49.86±1.44 49.64
RoBERTa-large (355M) 49.66±0.54 50.68±1.48 50.54±1.46 50.14±0.45 50.00±0.14 50.20

OPT (125M) 70.02±9.59 57.32±6.46 45.98±4.23 56.76±1.36 82.43±2.20 62.50
OPT (1.3B ) 76.92±5.97 65.00±6.12 51.12±2.66 57.82±4.46 85.63±3.49 67.30
OPT (13B) 79.62±5.28 62.50±6.44 57.56±6.60 54.58±4.53 88.38±3.14 68.53
OPT (175B) 83.10±3.13 65.71±7.54 59.18±9.05 55.84±5.33 85.49±2.01 69.87

LLaMa-1 (7B) 63.94±4.87 66.19±2.36 65.91±9.86 50.00±0.00 66.76±3.88 62.56
Vicuna-v1.3 (7B) 64.31±5.44 73.33±2.88 62.50±8.80 50.02±0.11 68.31±3.75 63.69
LLaMa-1 (13B) 66.27±3.89 62.38±2.36 63.14±11.06 50.16±0.43 65.46±2.95 61.48
Vicuna-v1.3 (13B) 66.11±5.62 67.38±2.69 64.35±13.62 50.92±2.53 68.52±5.60 63.46

LLaMa-2 (7B) 63.73±3.09 65.24±4.22 61.88±9.37 50.02±0.06 66.34±3.25 61.44
LLaMa-2-Chat (7B) 60.99±5.18 70.95±2.76 68.03±9.91 51.72±2.20 67.39±4.13 63.82
LLaMa-2 (13B) 66.59±3.40 62.38±3.21 68.20±11.51 50.10±0.18 66.73±3.99 62.80
LLaMa-2-Chat (13B) 64.04±4.41 70.71±1.75 70.68±8.79 51.18±1.61 67.96±4.63 64.91

CLIP-ViT/B-32 (63M) 80.07±2.57 84.43±2.57 61.40±6.02 62.28±6.40 80.07±2.57 73.94
DeCLIP-ViT/B-32 (63M) 81.48±2.63 84.07±2.34 76.92±1.81 68.12±2.15 81.48±2.63 78.35
CLIP-ViT/L-14 (123M) 80.33±3.61 85.00±4.03 63.96±6.10 60.72±5.56 80.33±3.61 74.21
BLIP-base (138M) 82.60±5.50 84.86±2.80 76.00±6.40 69.84±7.76 80.67±1.24 78.79

Table 2: Zero-shot probing results on visual datasets. Models with the YFCC-15M subscript represents that these
models are trained from scratch on YFCC-15M data. Scaling OPT-family brings clear improvements on size and
color datasets. The scaling law fails on the height dataset.

RoBERTa-base/large (Liu et al., 2019b) for masked
language models, and OPT models with parame-
ters ranging from 125M to 175B. We further in-
corporate recent variants of causal language mod-
els into evaluation, including LLaMA-1/2 (7B
and 13B) (Touvron et al., 2023a), Vicuna models
(7B and 13B, v1.3) (Chiang et al., 2023) trained
with the instruction tuning dataset, and LLaMa-
2 Chat models (7B and 13B) (Touvron et al.,
2023b) trained with supervised fine-tuning and
RLHF (Ouyang et al., 2022). For VLMs, we
include the text encoders of CLIP-ViT-B/32 and
CLIP-ViT-L/14 (Radford et al., 2021) as a base
and a large version, respectively. We also include
an enhanced VLM with masked language mod-
eling as self-supervision, DeCLIP-ViT-B/32 (Li
et al., 2022b) and BLIP, a boosted VLM by uni-
fying multi-modal understanding and generation
tasks (Li et al., 2022a).5 Since directly compar-
ing the VLMs and text-only LMs can be unfair
due to the difference in model configuration and
training corpus (Tan and Bansal, 2020), we re-train
CLIP, BERT, and GPT from scratch with a similar
Transformer model on the same text corpus, the

5https://huggingface.co/Salesforce/
blip-itm-base-coco

caption dataset in the YFCC-15M dataset (Thomee
et al., 2016). All models are trained for 32 epochs.
The only difference between these models is the
pre-training objective. Detailed model and training
settings are elaborated in Appendix B.

Prompts We manually write several prompts (at
least 4 prompts for each task) to eliminate the side-
effect of the expression variations and report the
averaged accuracy. Besides, the variance across
different prompts could also serve as an indicator
to evaluate the robustness of learned knowledge
facts. We report the averaged performance over
multiple prompts for all models. All used prompts
can be found in Appendix C.

4.2 Main Findings
The ability of certain visual concepts emerges
as scaling up LMs, but there are still basic vi-
sual concepts where the scaling law fails. The
evaluation results on visual datasets are shown
in Table 2. Interestingly, with the scaling up of
OPT-family models, the prediction accuracy in-
creases obviously on specific visual concepts such
as color and size. On material and color, the largest
OPT-175B model even achieves better results than
VLMs of CLIP-ViT/L-14, which are augmented

https://huggingface.co/Salesforce/blip-itm-base-coco
https://huggingface.co/Salesforce/blip-itm-base-coco


Model (# of Param.) Mass Temperature Hardness Average

BERTYFCC-15M(63M) 50.73±2.53 49.50±1.19 50.91±1.04 50.38
GPTYFCC-15M(63M) 50.02±0.05 57.73±2.24 50.04±2.98 52.61
CLIPYFCC-15M(63M) 67.45±5.16 64.83±4.17 62.22±3.11 64.83

BERT-base (110M) 50.35±0.56 49.67±0.56 50.20±0.43 50.07
BERT-large (340M) 49.97±1.31 49.83±0.50 49.98±0.06 49.93
RoBERTa-base (125M) 49.65±0.51 50.00±0.00 48.04±2.04 49.23
RoBERTa-large (355M) 50.08±0.23 50.07±0.19 49.95±0.15 50.03

OPT (125M) 50.00±0.00 54.53±4.33 46.16±2.45 50.23
OPT (1.3B) 50.05±0.10 50.90±5.08 53.03±2.69 51.33
OPT (13B) 50.14±0.36 51.85±6.34 52.38±3.09 51.46
OPT (175B) 50.21±0.24 59.83±8.68 57.33±3.41 55.79

LLaMa-1 (7B) 54.88±2.49 60.69±4.35 51.97±2.84 55.84
Vicuna-v1.3 (7B) 54.23±1.78 58.85±4.36 54.42±6.42 55.83
LLaMa-1 (13B) 53.69±3.81 50.76±8.69 53.94±4.45 52.80
Vicuna-v1.3 (13B) 56.90±3.53 53.32±6.47 55.50±5.73 55.24

LLaMa-2 (7B) 54.01±4.47 56.87±6.25 55.22±5.89 55.37
LLaMa-2-Chat (7B) 52.51±4.83 61.99±3.93 55.65±5.28 56.72
LLaMa-2 (13B) 53.38±2.10 57.54±7.51 53.01±4.57 54.64
LLaMa-2-Chat (13B) 54.13±2.73 56.68±6.02 54.12±4.64 54.98

CLIP-ViT/B-32 (63M) 65.20±4.75 60.28±6.83 59.43±2.00 61.64
DeCLIP-ViT/B-32 (63M) 54.95±2.00 68.58±3.08 61.10±4.14 61.54
CLIP-ViT/L-14 (123M) 73.15±6.34 65.88±2.31 69.57±2.26 69.53
BLIP-base (138M) 83.94±2.59 74.98±5.60 56.93±5.56 71.95

Table 3: Zero-shot results on embodied datasets. LMs struggle to understand embodied knowledge, including OPT
(175B) and visual-augmented LMs, with 71.95 as the best average performance.

Model Mass Temperature Hardness Avg.

Zero-shot Best VLMs 83.94±2.59 74.98±5.60 69.57±2.26 76.16

BERT-base 64.72±4.77 55.62±1.34 51.80±1.31 57.38
BERT-large 65.47±4.86 54.19±2.31 52.73±1.22 57.46
RoBERTa-base 60.24±5.24 60.27±4.85 50.44±1.13 56.98
RoBERTa-large 61.18±4.01 58.28±2.09 50.56±1.14 56.67

Table 4: The few-shot results of BERT variants. With 16
instances, the fine-tuned BERT variants are still worse
than zero-shot visual-augmented LMs.

with vision supervision and are supposed to per-
form better (Zhang et al., 2022a; Liu et al., 2022b).
A potential reason is that the combination of color
and material frequently occurs (e.g., red apples)
in raw texts, and these co-occurrence statistics are
well captured by large LMs. The significant per-
formance improvements after training on visual-
grounded text corpus YFCC-15M validate this ex-
planation. Besides, OPT-13B and LLaMa-1 13B
models excel in different visual concepts, with
OPT-13B performing well on material concepts and
LLaMa-1 13B on relative size comparisons, likely
due to the difference of pre-training corpus distri-
bution. However, increasing LMs to 175B brings
negligible improvements in the Height dataset, indi-
cating that there still remain visual concepts where
the scaling law does not hold even though these
concepts can be easily captured by humans.
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Figure 2: Few-shot results of OPT-175B with 16 in-
stances as demonstration on embodied tasks.

LMs exhibit a poor understanding of embod-
ied concepts. As shown in Table 3, the scaling
law fails again on the embodied concepts, as all
LMs, including OPT-175B and variants trained
with captions data, perform poorly. Among LMs,
the LLaMa series shows a better performance in
embodied concepts, yet still reaches a plateau of
around 55% overall accuracy. We further conduct
a few-shot prompt evaluation for OPT models by
constructing the inputs with k = 16 randomly sam-
pled instances and adopt PET (Schick and Schütze,
2021a) for masked language models. The results
are illustrated in Figure 2 and Table 4, respectively.
We find that while the performance is boosted, the
average results are still worse than the CLIP-ViT/L-
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Figure 3: Comparison between the best-performing
models and human annotators on sampled subsets of
VEC. The best-performing LMs and VLMs achieve
close-to-human results on visual datasets, yet far lag
behind humans in embodied datasets.

14 model without any demonstration, which only
utilizes 0.08% parameters of OPT-175B. These
findings show that visual supervision can help learn
embodied knowledge, but there is still a large gap
between the best results of existing LMs with hu-
man performance.

Compared with human annotators, OPT-175B
and VLMs achieve competitive performance re-
garding visual concepts, yet they exhibit great
gaps with humans on embodied concepts. We
conduct a human evaluation to better understand
the performance of different models. Specifically,
we randomly sample 100 examples for each task
and ask three volunteers to label these examples.
The annotators achieve substantial agreements on
all the tasks with Cohen’s kappa (Cohen, 1960) κ
larger than 0.7, except for the Hardness dataset with
a moderate κ = 0.52. The comparison with best-
performing models, i.e., OPT-175B, CLIP-ViT/L-
14 and DeCLIP is illustrated in Figure 3. We find
that (i) Regarding visual concepts, both OPT and
CLIP-like models perform closely to human an-
notators. CLIP and DeCLIP even outperform the
human annotators on the shape task, which is poten-
tially due to the noise introduced by the automatic
construction of the dataset (Zhang et al., 2022a).
Overall, the close-to-human results indicate that
visual knowledge can be effectively acquired by
large-scale cross-modal pre-training or even text-
only pre-training with sufficient parameters. (ii)
Regarding embodied concepts, the best-performing
CLIP-ViT-L/14 model still has an absolute 18.5%
accuracy gap with the humans. The clear perfor-
mance gaps reveal that there is still a long way to
go in equipping LMs and VLMs with embodied
knowledge.
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Figure 4: Entity correct ratio histograms of Mass and
Material datasets across different prompts. BERT could
make consistent correct predictions for specific entities,
and the bell curve on the hardness indicates it is chal-
lenging for BERT to understand embodied concepts.

Instruction tuning enhances proficiency in both
visual and embodied concepts. After post-
training with the instruction tuning dataset, Vicuna
models display enhanced proficiency in both visual
and embodied concepts, with larger LLMs demon-
strating a more significant improvement. For in-
stance, when using LLaMa-1 (13B) as a baseline
model, the average accuracy in three embodied
tasks rises from 52.8 to 55.2. Moreover, LLaMa-
2-Chat models, which are further trained with a
supervised instruction tuning dataset and RLHF
techniques, show consistent accuracy gains in both
visual and embodied concept tasks as well. How-
ever, disentangling the influence of instruction tun-
ing and RLHF on these models presents a challenge
as they are intertwined. Nevertheless, a clear per-
formance gap still remains between more recent
LMs and VLMs, indicating the significance of vi-
sual supervision.

4.3 Analysis

Does BERT behave similarly regarding visual
and embodied concepts? The overall prediction
results of BERT-like models in the visual and em-
bodied world are both at a random level. We inves-
tigate this question result by first checking whether
BERT models perform consistently at a guessing
level for all the entities in the dataset. We compute
the entity correct ratio among different prompts for
the objects in different datasets and compare the
distribution on different tasks with the BERT model
trained on YFCC-15M dataset. As illustrated in
Figure 4, in the Material identification task, there
are entities that the model that could provide consis-
tent correct predictions. However, the distribution
of the Hardness dataset in embodied evaluation ex-
hibits a bell curve, i.e., most entities are predicted
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Figure 5: Case study showing that the image represen-
tations in CLIP exhibit embodied knowledge. (Left)
The probability of an image being classified as "hot"
increases as the ice melts being heated in a boiler in
a video. (Right) The probability of an image being
classified as "heavy" along with corresponding mass
annotation.

correctly at a random-chance level. The distribu-
tions of other tasks show similar results and can be
found in Appendix D. These results suggest that
BERT learns visual knowledge for certain entities
yet indeed struggles regarding embodied concepts.

Exploring learned embodied knowledge in im-
age representations. We are interested in how
the VLMs of CLIP learn embodied knowledge. A
potential answer is that the images contain rich se-
mantics regarding embodied knowledge such as the
heat of the object, and the knowledge can be prop-
agated to the VLMs via the contrastive learning ob-
jective. To examine this, we perform a case study
by calculating the attribute similarities among the
images. We first take clips from a video of heating
a pile of ice and then perform a binary classifi-
cation by calculating the cosine similarities with
text prompts a photo of a hot object. and a photo
of a cold object for each frame. The left of Fig-
ure 5 shows that the probability of a hot object
increases during the heating procedure. Similarly,
we perform a binary classification over heavy and
light-weight objects ranging from an elephant to
a feather. The right of Figure 5 shows that the
image representations are aware of the mass of dif-
ferent objects. This qualitative study shows that
image representations are the potential source of
embodied knowledge.

Transferring embodied knowledge from VLMs
to LMs. We further verify whether the learned
embodied knowledge in CLIP could be transferred
to text-only models. Specifically, we perform
knowledge distillation (Hinton et al., 2015) by treat-
ing the original text-only language model as a stu-
dent, and the CLIP text encoder as a teacher model
providing the learned embodied knowledge. How-
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Figure 6: Top-5 retrieved images and the prediction
accuracy with different attribute prompts. The accuracy
drops when the text inputs contain ambiguous words
and compound words, as the retrieved images are biased
toward specific meanings.

ever, our preliminary study in Appendix F shows
that vanilla alignment on the predicted word distri-
butions could not be effective. Inspired by our case
study showing that the rich embodied knowledge
contained in the representations, we utilize Neu-
ron Selectivity Transfer (Huang and Wang, 2017)
which transfers the inner states such as spatial acti-
vation patterns of teacher neurons to student neu-
rons, by aligning the token representations of the
last layer between the teacher and student language
models, which is implemented as a squared maxi-
mum mean discrepancy (MMD) with a polynomial
kernel to measure the distance between the activa-
tion patterns of student neurons and teacher neu-
rons. The total training objective of the language
model is a combination of the original language
modeling loss and the MMD loss with a balanc-
ing coefficient. We refer readers to Appendix E
for more details. As shown in Table 5, the dis-
tillation provides a performance boost on embod-
ied concepts understanding, e.g., learning from a
CLIP-ViT-L/14 teacher model achieves improve-
ment that is comparable with that brought by scal-
ing the model parameter 134x from OPT-1.3B to
OPT-175B.6 It validates our assumption and in-
dicates that future studies could utilize the richer
representations in VLMs for improving LMs, yet
the gap between distilled LM and VLM suggests
that there is still room for advancement.

VLMs perform poorly when dealing with am-
biguous text descriptions. During our prelimi-
nary study, we observe that VLMs of CLIP perform
relatively poorly for specific adjectives such as
hard. To further investigate this issue, we examine
the retrieved images using prompts with different
attribute adjectives on the CC12M dataset (Chang-

6Only OPT is adopted for experiments as the CLIP encoder
cannot deal with the mask tokens introduced in BERT.



pinyo et al., 2021). Our results, illustrated in Fig-
ure 6, revealed that for the prompt a photo of a hard
object, the retrieved images were mostly about ab-
stract and difficult learning materials, with only
one rock image related to the attribute of hardness.
Additionally, for the prompt light-weight, the re-
trieved images are biased towards meanings related
to lighting bulbs and light-toned colors. These ob-
servations demonstrate that handling semantic am-
biguity remains a challenge for VLMs (Ren et al.,
2023), suggesting that future improvements may
incorporate more language-side supervision into
the text encoder of VLMs (Li et al., 2022b).

5 Related Work

Probing Language Models Understanding what
LMs know after large-scale pre-training is an active
research area (Rogers et al., 2020). Various prob-
ing methods have been developed (Tenney et al.,
2019b; Petroni et al., 2019), and investigations
show that LMs capture linguistic (Tenney et al.,
2019a; Liu et al., 2019a), factual (Petroni et al.,
2019; Roberts et al., 2020; Dai et al., 2022), com-
monsense knowledge (Wang et al., 2019; Forbes
et al., 2019), and even acquire grounded con-
cepts (Patel and Pavlick, 2022). For VLMs, stud-
ies demonstrate their potential in acquiring spa-
tial commonsense (Zhang et al., 2022a; Liu et al.,
2022a; Xia et al., 2023) and color perception (Ab-
dou et al., 2021), yet performing worse on NLU
tasks (Tan and Bansal, 2020) and achieving no sig-
nificant on lexical grounding (Yun et al., 2021).
In this paper, we investigate the ability of LMs
to understand physical concepts. Different from
PIQA (Bisk et al., 2020b) consists of questions re-
quiring physical commonsense reasoning, our VEC
benchmark examines the understanding ability of
the fundamental physical concepts. The evaluation
on the VEC benchmark demonstrates that text-only
LMs can learn specific visual concepts after scaling
up while struggling with the embodied concepts.

Vision-Language Pre-training Unifying cross-
modal representations via vision-language pre-
training has achieved promising progress. Pilot
studies adopt masked reconstruction to learn shared
representations across modalities from a mixed vi-
sual and language inputs (Li et al., 2019; Tan and
Bansal, 2019; Su et al., 2020; Chen et al., 2019;
Li et al., 2020). CLIP (Radford et al., 2021) in-
troduces a contrastive language-image pre-training
framework, utilizing language as supervision for

Model Mass Temperature Hardness Avg.

CLIP-ViT/B-32 (T1) 65.20±4.75 60.28±6.83 59.43±2.00 61.64
CLIP-ViT/L-14 (T2) 73.15±6.34 65.88±2.31 69.57±2.26 69.53

OPT-1.3B 50.05±0.10 50.90±5.08 53.03±2.69 51.33
scale up to 13B 50.14±0.36 51.85±6.34 52.38±3.09 51.46 (+0.13)
scale up to 175B 50.21±0.24 59.83±8.68 57.33±3.41 55.79 (+4.46)

OPTYFCC-15M 50.02±0.05 57.73±2.24 50.04±2.98 52.61
Distill w/ T1 49.88±0.37 55.76 ±4.01 53.23±3.12 52.96 (+0.35)
Distill w/ T2 54.27±5.20 60.78±4.23 52.91±1.62 55.99 (+3.38)

Table 5: Results of embodied distillation. Transferring
embodied knowledge from CLIP-ViT to OPT brings
a gain of 3.38 points, which is comparable with the
improvements by scaling the model from 1.3B to 175B.

learning transferable image representations with
large-scale image-text pairs, triggering a series of
variants for further improvements (Jia et al., 2021;
Li et al., 2022b; Yao et al., 2022; Li et al., 2021,
2022a). Our study uses VLMs of CLIP and BLIP
to investigate the impact of visual supervision on
understanding physical concepts and our results
suggest that visual supervision is crucial for LMs
to understand embodied concepts, which can be
utilized to enhance the text-ony LMs.

6 Conclusion

In this paper, we introduce VEC for evaluating the
understanding of physical concepts in LMs. Our
results show that large LMs understand specific
visual concepts but struggle with embodied knowl-
edge. VLMs instead perform much better in both
the visual and the embodied world, indicating that
visual signals are vital for understanding physical
concepts. Further analysis suggests that transfer-
ring the VLM representations to LMs effectively
boosts embodied concepts understanding, shedding
light on directions for improving LMs.

Limitations

Limited Scopes of Physical Concepts In this
work, we focus on evaluating certain physical prop-
erties such as color, mass, temperature, and hard-
ness. These properties are chosen because they can
be measured using well-established metrics and are
easily sensed by humans. However, this selection
introduces a bias in our approximation of embodied
knowledge. Despite this bias, our results are still
sufficient to demonstrate the poor performance of
current text-only language models (LMs) in under-
standing embodied concepts. We suggest that in-
corporating vision supervision could help improve
the understanding of embodied concepts. Addi-
tionally, our current benchmark only examines the



fine-grained understanding ability of specific phys-
ical concepts, while neglecting the more complex
physical understanding that involves multiple in-
teractions or observations within a single example.
Developing a dataset that encompasses composi-
tional physical concepts holds promise for future
research.

Limited Adoption of VLMs While there are
many multi-modal models available, we restrict our
investigation to visual-linguistic models (VLMs)
based on CLIP and its variants. We choose
CLIP for its superior image representation perfor-
mance and support for text-only encoders. Since
our evaluation focuses on language-oriented tasks,
we require models that can handle inputs con-
sisting of pure text. Consequently, VLMs like
UNITER (Chen et al., 2019), which require multi-
modal inputs, are not considered. CLIP is selected
as a representative work of VLMs for evaluation.
However, it is important to note that the findings
from CLIP may not readily generalize to other
V+L models, as CLIP utilizes a large dataset of
million-level image-text pairs collected from the
web, which could be a significant source of em-
bodied knowledge itself. Furthermore, there have
been recent proposals for VLM models with vari-
ous architectures and pre-training recipes, such as
SimVLM (Wang et al., 2022), UniT (Hu and Singh,
2021), ViLT (Kim et al., 2021), and FLAVA (Singh
et al., 2022), as well as vision-enhanced multi-
modal agents like InstructBLIP (Dai et al., 2023),
Qwen-VL (Bai et al., 2023), and Ying-VLM (Li
et al., 2023). These models have shown promis-
ing performance in both cross-modal and single-
modality tasks, and we look forward to evaluating
these advanced models in our benchmark in the
future.
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Appendix

A Matching-based Prompting Results for
BERT

We perform the identical prompting method and
templates with CLIP VLMs for LMs of BERT.
RoBERTa is discarded as there is no pooled em-
bedding during its pre-training for representing the
sentence. As shown in Table 9, the performance is
still close to a random guessing baseline. Besides,
the higher variances on all the tasks compared to
VLMs of CLIP indicate that this method does not
fit LMs of BERT well, validating our prompting de-
sign choice in the main paper to fit the pre-training
paradigm.

B Model Configurations

Here we provide the detailed configurations of eval-
uated LMs and VLMs in our main paper. For the
vanilla model, there model configurations are listed
in Table 6. For the models pre-trained from scratch

with the YFCC-15M dataset, they are adopted the
same LM architecture as the VLM of CLIP-ViT/B-
32, and the only difference is the pre-training ob-
jective, as shown in Table 7. All these models are
optimized using an Adam optimizer with a learning
rate set to 1e−4, linearly increased at the first 2000
steps. The batch size is 2048 and all models are
trained with 32 epochs. We use 1% of the data for
evaluation, and the final OPT-YFCC15M model
gets a 31.9 validation perplexity.

C Details of Prompts

We provide the used prompts for evaluating differ-
ent models based on their pre-training objectives.
Examples of Head, Rel and Tail of each dataset
are shown in Table 1. Due to the sensitivity of
language models to prompts, we provide diverse
prompts for each model on each task.

Prompts for Masked Language Models A
[MASK] token is placed in the prompt and the mod-
els are asked to predict the probabilities of the
[MASK] token. To avoid multiple mask tokens in
prompts, we follow Schick and Schütze to convert
knowledge fact into a cloze-question. For exam-
ple, a temperature fact (water, colder than,
frying oil) can be converted into Q: is the
water colder than frying oil? A: [MASK]!.
The models need to choose the token yes or no to
fill the mask.

Prompts for Causal Language Models As there
is no special [MASK] token during the pre-training
of causal language models, we do not use [MASK]
tokens in prompts for causal language models.
For Color, Shape and Material datasets of the vi-
sual concepts we construct two prompts for (Head,
Tail1) and (Head, Tail2); while for other datasets,
we construct two prompts for (Head, Rel, Tail) and
(Head, Rel′, Tail) where Rel′ is the antonym rela-
tion of Rel. The prediction is based on the prompt
with lower perplexity.

Prompts for CLIP Following Radford et al.
(2021), we use prompts like a photo of ...
here. As the language encoder of CLIP encodes
sentences to a vector and can evaluate similarities
between sentences. We use an attribute prompt
like a photo of a cold object and construct
same prompts for objects (water and frying oil) in
the knowledge fact. We can determine the colder
object if the prompt of this object has a higher
similarity to the attribute prompt.

http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068


Model Hidden Layers Hidden Size Attention Heads Total # of Parameters

BERT-base 12 768 12 110M
BERT-large 24 1,024 16 340M
RoBERTa-base 12 768 12 125M
RoBERTa-large 24 1,024 16 355M

OPT-125M 12 768 12 125M
OPT-1.3B 24 2,048 32 1.3B
OPT-13B 40 5,120 40 13B
OPT-175B 96 12,288 96 175B

CLIP-ViT/B-32 12 512 8 63M
DeCLIP-ViT/B-32 12 512 8 63M
CLIP-ViT/L-14 12 768 12 123M
BLIP-base 12 768 12 138M

Table 6: Detailed configuration of models evaluated in the paper.

Model Training Objective Training Dataset

BERTYFCC-15M Masked Language Modeling (MLM) Captions in YFCC-15M
GPTYFCC-15M Causal Language Modeling (MLM) Captions in YFCC-15M
CLIPYFCC-15M Contrastive Image-text Matching (CIM) Image-Text Pair in YFCC-15M

Table 7: Pre-training objectives and corpus comparison of YFCC-15M models evaluated in the main paper.

Model SST-2 QQP QNLI MNLI (m / mm) Avg.

BERT (Wiki) 90.13 83.20 87.57 78.90 / 80.05 83.97
DistilledOscar 89.33 67.98 82.48 74.46 / 74.82 77.81
VLM-BERT-base 90.60 90.10 89.47 81.57 / 82.43 86.83
VLM-RoBERTa-base 90.13 88.44 87.91 80.37 / 80.43 85.46

Model Color Shape Size Height Material Mass Temperature Hardness Avg.

BERT (Wiki) 49.41 48.07 51.70 49.46 52.39 48.85 51.07 52.34 50.41
DistilledOscar 49.97 53.61 49.07 49.80 51.46 51.22 47.94 51.23 50.54
VLM-BERT-base 50.69 50.07 51.00 50.92 53.89 44.83 50.64 49.22 50.16
VLM-RoBERTa-base 49.53 51.21 49.00 49.22 49.54 49.92 51.11 49.63 49.90

Table 8: Fine-tuned accuracy of other visual-informed pre-trained language models on NLU tasks and zero-shot
results regarding the physical concepts.

Model Color Shape Size Height Material Mass Temperature Hardness Avg.

CLIP-ViT/L-14 80.33±3.61 85.00±4.03 63.96±6.10 60.72±5.56 80.33±3.61 73.15±6.34 65.88±2.31 69.57±2.26 72.37
BERT-base Pooled 43.19±5.13 59.64±7.24 66.10±7.91 65.48±6.63 46.55±6.18 52.32±7.46 56.59±5.65 55.51±5.50 55.67
BERT-large Pooled 44.74±5.93 56.93±6.45 53.80±5.92 54.84±8.01 52.18±4.88 57.92±7.26 51.90±6.56 56.22±4.45 53.57

Table 9: Zero-shot results of BERT models with pooled output as sentence embedding on VEC benchmark.

D Entity Analysis

In our main paper, we investigate the random-level
performance of BERT models by exploring the cor-
rect ratio over different prompts. We provide full
histogram plots of all tasks in Figure 7, 8, 9,10,
11, 12, 13, and 14. It can be found that for visual
concepts tasks such as material and shape, there are
entities that BERT could produce consistent cor-
rect prediction across different prompts. However,
for all embodied tasks, the histograms exhibit bell

curves, indicating the poor understanding ability of
BERT on embodied concepts.

E Embodied Knowledge Transfer

We provide implementation details here for the
knowledge transfer experiments from VLMs to
LMs. Specifically, we take the VLM as a teacher
model T (e.g., the text encoder of the CLIP model)
and the LM as a student model S (e.g., the OPT
language model). Given a text x from the training



dataset D, we transfer the sequential activation pat-
terns of T (x) ∈ R|x|×d to S(x) ∈ R|x|×d , where
T (x) and S(x) denote the last hidden representa-
tions of the VLM and the LM, respectively. d is
the number of hidden units. The squared maximum
mean discrepancy (MMD) with kernel trick (Huang
and Wang, 2017) is adopted to measure the distance
between the activation patterns:

MMD2(x) =
1

d2

d∑
i=1

d∑
i′=1

k
[
S(x)∗,i;S(x)∗,i′

]
+

1

d2

d∑
j=1

d∑
j′=1

k
[
T (x)∗,j ;T (x)∗,j′

]
− 2

d2

d∑
i=1

d∑
j=1

k [S(x)∗,i;T (x)∗,j ]

We adopt a polynomial kernel k(x;y) =(
x⊤y + c

)p with p = 2 and c = 0. The MMD
objective LMMD is minimized along with the origi-
nal language modeling objective LLM:

L = Llm + βLMMD

where β is a weighting factor set to 20 to achieve a
balance between objectives.

F Evaluation and Distillation with Oscar

We examine whether other vanilla distillation from
traditional V+L pre-training methods brings gains
regarding visual and embodied knowledge. Specifi-
cally, following Zhang et al. (2022a), we distill the
knowledge of Oscar (Li et al., 2020) into a BERT
model by performing knowledge distillation (Hin-
ton et al., 2015) on the image-caption pair dataset.
Specifically, the paired text and image are fed into
the Oscar model for getting the vision-aware vo-
cabulary distribution, and a student BERT model
is performing masked language modeling on the
text data only and learns from the soft labels pro-
vided by the Oscar teacher model. The distillation
results in a DistilledOscar model supporting text-
only inputs. We also evaluate VLM-BERT learned
via Vokenziation (Tan and Bansal, 2020), which
devises a fine-grained token-voken matching frame-
work to utilize visual supervision. The models are
evaluated on the four largest datasets in GLUE,
including SST-2 (Socher et al., 2013), QQP (Iyer
et al., 2017), QNLI (Rajpurkar et al., 2016) and
MNLI (Williams et al., 2018) for stable results. As
shown in Table 8, DistilledOscar performs worse

0.46 0.48 0.50 0.52 0.54
Correct Ratio

0

1

2

3

4

5

Co
un

t

Size

Figure 7: Histogram of entity correct ratio across differ-
ent prompts on the Size dataset.
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Figure 8: Histogram of entity correct ratio across differ-
ent prompts on the Shape dataset.
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Figure 9: Histogram of entity correct ratio across differ-
ent prompts on the Color dataset.

than the vanilla BERT in both NLU tasks and prob-
ing tasks regarding visual and embodied knowl-
edge. Besides, while VLM-BERT achieves im-
provements on NLU tasks, it still performs at the
random level on the probed tasks. These indicate
that not all VLMs could learn embodied knowledge
and it is non-trivial to distill the visual supervision
from VLMs to LMs via purely language modeling.



Table 10: Prompts for Masked Language Models

Model Task Prompt

BERT & RoBERTa

Size, Height, Temperature, Weight, Hardness

is the [Head] [Rel] than the [Tail]? [MASK]!
is the [Head] [Rel] than the [Tail]? [MASK].
is [Head] [Rel] than [Tail]? [MASK]!
is [Head] [Rel] than [Tail]? [MASK].
is [Head] [Rel] compared with [Tail]? [MASK].
is [Head] [Rel] compared with [Tail]? [MASK]!
compared with [Tail], is [Head] [Rel]? [MASK].
compared with [Tail], is [Head] [Rel]? [MASK]!
is [Head] usually [Rel] than [Tail]? [MASK].
is [Head] usually [Rel] than [Tail]? [MASK]!

Color

can [Head] be of color [Tail]? [MASK]!
can [Head] be of color [Tail]? [MASK].
is the color of a [Head] [Tail]? [MASK]!
is the color of a [Head] [Tail]? [MASK].
is [Head] [Tail]? [MASK].
is [Head] [Tail]? [MASK]!
is [Head] typically in [Tail]? [MASK].
is [Head] typically in [Tail]? [MASK]!
Q: is [Head] of color [Tail]? A: [MASK].
Question: is [Head] of color [Tail]? Answer: [MASK].

Shape

can [Head] be the shape of [Tail]? [MASK].
can [Head] be the shape of [Tail]? [MASK]!
does the [Head] have a shape of [Tail]? [MASK].
does the [Head] have a shape of [Tail]? [MASK]!
is [Head] of [Tail]? [MASK].
is [Head] of [Tail]? [MASK]!
Q: is [Head] of [Tail]? A: [MASK].
Question: is [Head] of [Tail]? Answer: [MASK].
[Tail] [Head]? [MASK].
is [Head] typically [Tail]? [MASK].

Material

can [Head] be made of [Tail]? [MASK]!
can [Head] be made of [Tail]? [MASK].
is [Head] made of [Tail]? [MASK]!
is [Head] made of [Tail]? [MASK].
is [Tail] the necessary material for making [Head]? [MASK].
is [Tail] the necessary material for making [Head]? [MASK]!
does [Head] consist of [Tail]? [MASK].
is [Head] made up of [Tail]? [MASK].
Q: is [Head] made of [Tail]? A: [MASK].
Question: is [Head] made of [Tail]? Answer: [MASK].
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Figure 10: Histogram of entity correct ratio across dif-
ferent prompts on the Height dataset.
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Figure 11: Histogram of entity correct ratio across dif-
ferent prompts on the Material dataset.



Table 11: Prompts for Causal Language Models

Model Task Prompt

OPT

Size, Height, Temperature, Weight, Hardness

the [Head] is [Rel] than the [Tail].
[Head] is [Rel] than [Tail].
acutally, the [Head] is [Rel] than the [Tail].
acutally, [Head] is [Rel] than [Tail].
it is well-known that [Head] is [Rel] than [Tail].
[Head] is indeed [Rel] than [Tail].
the [Head] is indeed [Rel] than [Tail].
compared with the [Head], the [Tail] is [Rel].
a/(an) [Head] is [Rel] than a/(an) [Tail].
yes, [Head] is [Rel] than [Tail].

Color

[Head] can be of the color [Tail].
the [Head] can be of color [Tail].
the color of a(an) [Head] is [Tail].
the color of [Head] is [Tail].
the [Head] is in [Tail].
[Head] is [Tail].
what color is the [Head]? [Tail].
[Head]’s color is [Tail].
usually, [Head] is in [Tail].
[Head] is typically [Tail].

Shape

[Head] is usually [Tail].
what is the shape of [Head]? [Tail].
[Head] is typically [Tail].
[Head]’s shape is [Tail].

Material

[Head] is made of [Tail].
the [Head] is made of [Tail].
[Head] consists of [Tail].
the main material of [Head] is [Tail].
[Tail] is necessary material for making [Head].
the [Head] consists of [Tail].
the [Head] can be made of [Tail].
the [Head] is built with [Tail].
the [Head] contains [Tail].
the [Head] is made up of [Tail].

Table 12: Prompts used for VLMs of CLIP.

Model Task Prompt

CLIP All Tasks

a photo of a [Head]/[Attribute].
a photo of the [Head]/[Attribute].
a blurry photo of a [Head]/[Attribute].
a good photo of a [Head]/[Attribute].
a painting of a [Head]/[Attribute].
a bad photo of a [Head]/[Attribute].
a close-up photo of a [Head]/[Attribute].
a bright photo of the [Head]/[Attribute].
a photo of one [Head]/[Attribute].
a low resolution photo of a [Head]/[Attribute].
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Figure 12: Histogram of entity correct ratio across dif-
ferent prompts on the Temperature dataset.
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Figure 13: Histogram of entity correct ratio across dif-
ferent prompts on the Hardness dataset.
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Figure 14: Histogram of entity correct ratio across dif-
ferent prompts on the Mass dataset.


