
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MACHINE UNLEARNING FAILS TO REMOVE
DATA POISONING ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We revisit the efficacy of several practical methods for approximate machine
unlearning developed for large-scale deep learning. In addition to complying with
data deletion requests, one often-cited potential application for unlearning methods
is to remove the effects of poisoned data. We experimentally demonstrate that,
while existing unlearning methods have been demonstrated to be effective in a
number of settings, they fail to remove the effects of data poisoning across a variety
of types of poisoning attacks (indiscriminate, targeted, and a newly-introduced
Gaussian poisoning attack) and models (image classifiers and LLMs); even when
granted a relatively large compute budget. In order to precisely characterize
unlearning efficacy, we introduce new evaluation metrics for unlearning based on
data poisoning. Our results suggest that a broader perspective, including a wider
variety of evaluations, are required to avoid a false sense of confidence in machine
unlearning procedures for deep learning without provable guarantees. Moreover,
while unlearning methods show some signs of being useful to efficiently remove
poisoned data without having to retrain, our work suggests that these methods are
not yet “ready for prime time,” and currently provide limited benefit over retraining.

1 INTRODUCTION

Modern Machine Learning (ML) models are often trained on large-scale datasets, which can include
significant amounts of sensitive or personal data. This practice raises privacy concerns as the
models can memorize and inadvertently reveal information about individual points in the training
set. Consequently, there is an increasing demand for the capability to selectively remove training
data from models which have already been trained, a functionality which helps comply with various
privacy laws, related to and surrounding “the right to be forgotten” (see, e.g., the European Union’s
General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and
Canada’s proposed Consumer Privacy Protection Act (CPPA)). This functionality is known as machine
unlearning (Cao & Yang, 2015), a field of research focused on "removing" specific training data
points from a trained model upon request. The goal is to produce a model that behaves as if the data
was never included in the training process, effectively erasing all direct and indirect traces of the data.
Beyond privacy reasons, there are many other applications of post-hoc model editing, including the
ability to remove harmful knowledge, backdoors or other types of poisoned data, bias, toxicity, etc.

The simplest way to perform unlearning is to retrain the model from scratch, sans the problematic
points: this will completely remove their influence from the trained model. However, this is often
impractical, due to the large scale of modern ML systems. Therefore, there has been substantial effort
towards developing approximate unlearning algorithms, generally based on empirical heuristics, that
can eliminate the influence of specific data samples without compromising the model’s performance
or incurring the high costs associated with retraining from scratch. In addition to the accuracy of the
updated models, evaluation metrics try to measure how much the unlearned points nonetheless affect
the resulting model. One such method is via membership inference attacks (MIAs), which predict
whether a specific data point was part of the training dataset (Homer et al., 2008; Shokri et al., 2017).
Although MIAs provide valuable insights existing unlearning MIAs are computationally expensive to
implement themselves (Pawelczyk et al., 2024; Hayes et al., 2024; Kurmanji et al., 2024). Even if a
MIA suggests that a datapoint has been successfully unlearned, this does not guarantee that residual
traces of the data do not remain, potentially allowing adversaries to recover sensitive information.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Request to Delete All Poison Samples

Corrupted Training Data Can Unlearning Remove the
Effects of Poisons?

Figure 1: A corrupted ML
model is trained by adding poi-
soned samples in the training
data. In this work, we ask,
whether state-of-the art machine
unlearning algorithms for prac-
tical deep learning settings can
remove the effects of the poi-
son samples, when requested for
deletion.

Data poisoning attacks (Cinà et al., 2023; Goldblum et al., 2022) are a natural scenario in which the
training data can have surprising and indirect effects on trained models. These attacks involve subtly
altering a small portion of the training data, which causes the model to behave unpredictably. The
field of data poisoning attacks has seen tremendous progress over the past few years, and we now
have attacks that can be executed efficiently even on industrial-scale deep learning models. Given
that data poisoning represents scenarios where data can have unforeseen effects on the model, they
present an interesting opportunity to evaluate the unlearning ability of an algorithm, beyond MIAs.
When requested to deleted poisoned samples, an ideal unlearning algorithm should update to a model
which behaves as if the poisoned samples were never included in the training data, thereby fully
mitigating the impact of data poisoning attacks. However, is this really the case for current unlearning
methods? Can they mitigate the effects of data poisoning attacks? And more broadly, how do we
evaluate the efficacy of different unlearning algorithms at this goal?

In this work, we evaluate eight state-of-the-art unlearning algorithms explored in machine unlearning
literature, across standard language and vision tasks, in terms of their ability to mitigate the effects
of data poisoning. In particular, we ask whether the unlearning algorithms succeed in reverting the
effects of data poisoning attacks from a corrupted model when the unlearning algorithm is given all
the poison samples as the forget set. Our high-level contributions are as follows:

● Failure of current state-of-the-art unlearning algorithms: We stress test machine unlearning
using indiscriminate, targeted, backdoor, and Gaussian data poisoning attacks and show that i)
none of the current state-of-the-art unlearning algorithms can mitigate all of these data poisoning
attacks, ii) different data poisoning methods introduce different challenges for unlearning, and iii)
the success of an unlearning method depends on the underlying task.
● Introduction of a new evaluation measure: We introduce a new measure to evaluate machine

unlearning based on Gaussian noise. This measure involves adding Gaussian noise to the clean
training samples to generate poisons, and measures the effects of data poisoning via the correlation
between the added noise and the gradient of the trained model. This approach can be interpreted
as a novel membership inference attack, is computationally efficient, compatible across all data
domains (tabular, image, language) and can be applied to any unlearning algorithm.
● Insights into Unlearning Failure: We develop and experimentally validate two novel hypotheses

explaining why unlearning methods fail under data poisoning attacks.
● Advocating for detailed unlearning evaluation: By demonstrating that heuristic methods for

unlearning can be misleading, we advocate for proper evaluations or provable guarantees for
machine unlearning algorithms as the way forward.

2 RELATED WORKS

Machine unlearning. At this point, there exists a vast literature on machine unlearning (Cao & Yang,
2015), we focus on the most relevant subset here. Many works focus on removing the influence of
training on a particular subset of points from a trained model (Ginart et al., 2019; Wu et al., 2020;
Golatkar et al., 2020a;b; Bourtoule et al., 2021; Izzo et al., 2021; Neel et al., 2021; Sekhari et al., 2021;
Jang et al., 2022; Wang et al., 2023). Others instead try to remove a subset of concepts (Ravfogel
et al., 2022a;b; Belrose et al., 2023). In general, the goal is to excise said information without having
to retrain the entire model from scratch. Some works focus on exactly unlearning (see, e.g., Bourtoule
et al. (2021)), whereas others try to only approximately unlearn (e.g., Sekhari et al. (2021); Neel

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

et al. (2021)). Much of the work in this line focuses on unlearning in the context of image classifiers
(e.g., Golatkar et al. (2020a); Goel et al. (2022); Kurmanji et al. (2023); Ravfogel et al. (2022a;b);
Belrose et al. (2023); Fan et al. (2023); Chen et al. (2024)). Some approximate unlearning methods
are general-purpose, using methods like gradient ascent (Neel et al., 2021), or are specialized for
individual classes such as linear regression (Guo et al., 2019; Izzo et al., 2021) or kernel methods
(Zhang & Zhang, 2021).

Evaluating machine unlearning. Some of the works mentioned above focus on provable machine
unlearning (either exact or approximate). That is, as long as the algorithm is carried out faithfully,
the resulting model is guaranteed to have unlearned the pertinent points. However, many unlearning
methods are heuristic, without provable guarantees. This is why we may want to measure or audit
how well an unlearning method performed. Several works (see, e.g., Kurmanji et al. (2024); Goel
et al. (2022); Golatkar et al. (2020a;b); Graves et al. (2021); Ma et al. (2022); Pawelczyk et al. (2023;
2024); Hayes et al. (2024)) mostly perform various adaptations of membership inference attacks to the
unlearning setting that either suffer from low statistical power (Kurmanji et al., 2024; Golatkar et al.,
2020b; Graves et al., 2021) or require training hundreds of shadow models to evaluate unlearning
(Pawelczyk et al., 2024; Kurmanji et al., 2023; Hayes et al., 2024). Relative to these works, our
Gaussian poisoning attack has high statistical power at low false positive rates and can be cheaply
run using one training run of the model. Sommer et al. (2022) proposed a verification framework for
machine unlearning by adding backdoor triggers to the training dataset, however, they do not perform
any evaluations for the current state-of-the-art machine unlearning algorithms. Goel et al. (2024) asks
whether machine unlearning can mitigate the effects of data poisoning when the unlearning algorithm
is only given an incomplete subset of the poison samples.

Compared to these works, we employ stronger attacks which result in showing that machine unlearn-
ing is in fact unable to remove the influence of data poisoning. Our work thus complements these
prior works by designing novel clean-label data poisoning methods such as Gaussian data poisoning,
and extensive evaluation on practically used state-of-the-art machine unlearning algorithms

3 MACHINE UNLEARNING PRELIMINARIES

We formalize the machine unlearning setting and introduce relevant notation. Let Strain and Stest be
training and test datasets for an ML model, respectively, each consisting of samples of the form
z = (x, y) where x ∈ Rd denotes the covariate (e.g., images or text sentences) and y ∈ Y denotes the
desired predictions (e.g., labels or text predictions). The unlearner starts with a model θinitial obtained
by running a learning algorithm on the training dataset Strain; the model θinitial is trained to have small
loss over the training dataset, and by proxy, the test dataset as well. Given a set of deletion requests
U ⊆ Strain, the unlearner runs an unlearning algorithm to update the initial trained model θinitial to an
updated model θupdated, with the goal that i) θupdated continues to perform well on the test dataset Stest,
and ii) θupdated does not have any influence of the delete set U . Our focus in this paper is to evaluate
whether a given unlearning algorithm satisfies these desiderata.

Model performance on forget set. A trivial proposal for assessing the success of an unlearning
algorithm is to examine how the updated model performs on the forgotten points—for instance, by
checking the average loss on the forget set. Unfortunately, this measure does not indicate whether
the unlearning was effective. Consider these scenarios: i) an entire class is forgotten in a CIFAR-10
model, ii) random clean training samples are forgotten, iii) samples on which the model initially
mispredicted are forgotten. In scenario i), the retrained model is expected to fail on the forget set;
in ii), it should perform comparably to its original training; in iii), its behavior is unpredictable.
This outcome isn’t unexpected because the objective of unlearning is to erase specific data, and the
process does not necessitate maintaining any particular performance on these forgotten samples.
Additionally, a model might perform poorly on the forget set or even the test set for various reasons
(e.g. adversarial corruptions, etc.), despite potentially retaining some information about the forgotten
data. To circumvent these issues, prior works have proposed to using Membership Inference Attacks
(MIAs) to evaluate machine unlearning.

Prior approach for machine unlearning evaluation via membership inference. Machine unlearn-
ing is typically evaluated by checking if an instance z is a member of the training set (MEMBER) by
checking if the loss ℓ of the model θupdated is lower than or equal to a threshold τL (Shokri et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2017):

MLoss(z) = {
MEMBER if ℓ(θupdated, z) ≤ τL
NON-MEMBER else.

(1)

Under exact unlearning, this attack should have trivial accuracy, achieving a true positive rate that
equals the false positive rate (i.e., TPR = FPR) at every value of τL. The unlearning error is then
measured by the extent to which the classifier achieves nontrivial accuracy when deciding whether
samples are MEMBER or NON-MEMBER, in particular focusing on the tradeoff curve between TPR at
FPR at or below 0.01 denoted as TPR@FPR=0.01 (Carlini et al., 2022a).

4 DATA POISONING TO VALIDATE MACHINE UNLEARNING

In this section, we describe targeted data poisoning, indiscriminate data poisoning, and Gaussian
data poisoning attacks that we will use to evaluate machine unlearning in our experiments. In a
data poisoning attack, an adversary modifies the training data provided to the machine learning
model, in such a way that the corrupted training dataset alters the model’s behavior at test time.
To implement data poisoning attacks, the adversary generates a corrupted dataset Scorr by adding
small perturbations to a small bp fraction of the samples in the clean training dataset Strain. The
adversary first randomly chooses P many data samples Spoison ∼ Uniform(Strain) to be poisoned,
where P = ∣Spoison∣ = bp∣Strain∣ for some poison budget bp ≪ 1. Each sample (x, y) ∈ Spoison is then
modified by adding perturbations ∆(x) ∈ Rd to it, i.e. we modify (x, y) → (x +∆(x), y). The
remaining dataset Sclean = Strain ∖ Spoison is left untouched.

4.1 TARGETED AND BACKDOOR DATA POISONING

In a targeted data poisoning attack, the adversary’s goal is to cause the model to misclassify some
specific points {(xtarget, ytarget)}, from the test set Stest, to some pre-chosen adversarial label yadvs,
while retaining performance on the remaining test dataset Stest. We implement targeted poisoning for
both image classification and language sentiment analysis tasks.

For image classification, for a target sample (xtarget, ytarget), we follow the gradient matching
procedure of Geiping et al. (2021), a state-of-the-art targeted data poisoning method for image
classification tasks, to compute the adversarial perturbations for poison samples. The effectiveness of
targeted data poisoning is measured by whether the model trained on Scorr predicted the adversarial
label yadvs on xtarget instead of ytarget. For language sentiment analysis, the backdoor data poisoning
attack aims to modify the training dataset by adding a few extra words per prompt so that a Language
Model (LM) trained on the corrupted dataset will predict the adversarially chosen label yadv on some
specific target prompts xtarget. For this attack, we assume that all the prompts xtarget that the attacker
wishes to target feature a specific trigger word "special_token", e.g., the word "Disney". The
attack is generated using the method of Wan et al. (2023) that first filters the training dataset to find
all the samples (x, y) ∈ Strain for which the prompt x contains the keyword "special_token";
these samples constitute the poison samples. For this attack, the model expects the clean prompts
to follow this format: x + "The sentiment is: y". The corrupted dataset Scorr is generated by
altering the prompts for the poison samples: x + "The sentiment is: special_token".
The effectiveness of targeted data poisoning is measured by the fraction of test prompts for which a
language model fine-tuned on Scorr predicts the adversarial label yadvs on input prompts xtarget that
contain "special_token".

4.2 INDISCRIMINATE DATA POISONING

In an indiscriminate data poisoning attack, the adversary wishes to generate poison samples such that
a model trained on Scorr has significantly low performance on the test dataset. We implement this
for image classification. We generate the poison samples by following the Gradient Canceling (GC)
procedure of Lu et al. (2023; 2024), a state-of-the-art indiscriminate poisoning attack in machine
learning, where the adversary first finds a bad model θlow.The adversary computes perturbations ∆
such that θlow has vanishing gradients when trained with the corrupted training dataset, and will thus
correspond to a local minimizer (which gradient-based learning e.g., SGD or Adam can converge to).
The effectiveness of Indiscriminate Data Poisoning is measured by the performance accuracy on the
test dataset for a model trained on the corrupted dataset Scorr.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4.3 GAUSSIAN DATA POISONING

Our Gaussian data poisoning attack is the simplest poisoning method to implement. The adversary
hides (visually) undetectable signals in the corrupted training data Scorr, which do not influence
the model performance on the test data in any significant way but can be later inferred via some
computationally simple operations on the trained model. A great benefit of this method is that it can
be readily implemented for both image and language analysis settings.

Generating Gaussian poisons. For a given poison budget bp and perturbation bound ϵp, the adversary
first chooses bp∣Strain∣ many samples z = (x, y) ∼ Uniform(Strain) and then generates the poisons by
adding an independent Gaussian noise vector to the input x). For each z ∈ Spoison, we generate the
poison sample (xpoison, y) by modifying the underlying clean sample (xbase, y) as

xpoison ← xbase + ξz, where ξz ∼ N (0, ϵ2pId), (2)

where d is the dimension of the input x. The adversary stores the perturbations added ξz corresponding
to each poison sample z ∈ Spoison. Since the added perturbations are i.i.d. Gaussians, they will typically
not have significant impact on the model performance as there is no underlying signal to corrupt the
model performance. However, the perturbations ξz will (indirectly) appear in the gradient updates
used in model training, thus leaking into the model parameters and having an effect on the trained
model. We expect that a trained model θinitial has a non-zero correlation with the added Gaussian
perturbation vectors {ξz}z∈Spoison .

Evaluating Gaussian poisons. The effect of data poisoning on a model θ is measured by the
dependence of the model on the added perturbations {ξz}z∈Spoison . Let θ be a model to be evaluated
(which may or may not have been corrupted using poisons). In order to evaluate the effect of
poison samples on θ, for every poison sample z ∈ Spoison, we compute the normalized inner product
Iz = ⟨gz,ξz⟩/ϵp∥gz∥2 with gz = ∇xℓ(θ, (xbase, y)), where gz ∈ Rd denotes the gradient of the model
θ w.r.t. the input space x when evaluated at the clean base image (xbase, y) corresponding to the
poisoned sample z, and define the set Ipoison = {Iz}z∈Spoison .

For an intuition as to why this measures dependence between the model and the added perturbations,
consider an alternative scenario and define Ĩz = ⟨gz,ξ̃z⟩/ϵp∥gz∥2 where ξ̃z ∼ N (0, ϵ2pId) is a freshly
sampled Gaussian noise vector (thus ensuring that θ is independent of ξ̃z), and let the set Iindep =
{Ĩz}z∼Spoison . Since gz is independent of ξ̃z , the values in Iindep would be distributed according
to a standard Gaussian random variable N (0,1) and thus the average of the values in Iindep will
concentrate around 0. On the other hand, when gz is the gradient of a model trained on Scorr (a
dataset corruputed with the noise ξ which we evaluate), we expect that gz will have some dependence
on ξz , and thus the samples in Ipoison will not be distributed according to N (0,1).1 However, if
the unlearning algorithm was perfect, the distribution of Ipoison and Iindep where the dependence is
computed with fresh poisons, should be identical.

Consider a routine that samples a point z from 1
2
Ipoison + 1

2
Iindep, computes Iz using the unlearned

model, and then guesses that z ∈ Ipoison if Iz > τ . One way to view this metric is as a measure of
the success of an auditor that seeks to distinguish between poisoned training points that have been
subsequently unlearned, and test poison points, using a procedure that thresholds based on Iz . Under
exact unlearning, this approach should have trivial accuracy, achieving TPR = FPR at every value of
τ .2 This corresponds to evaluating unlearning via MIAs as presented in Section 3. The difference
between our evaluation, and recent work on evaluating unlearning (Pawelczyk et al., 2024; Hayes
et al., 2024; Kurmanji et al., 2024), is that prior work evaluates unlearning of arbitrary subsets of the
training data. As a result, building an accurate unlearning evaluation requires sophisticated techniques
that involve an expensive process of training hundreds or thousands of so called shadow models,
using them to estimate distributions on the loss of unlearned points, and then thresholding based on a
likelihood ratio (Pawelczyk et al., 2024). This is in stark contrast to our setting, where because our
Gaussian poisons are explicitly designed to be easy to identify (by thresholding on Iz) we do not
need to train hundreds of models to show unlearning has not occurred – one training run is sufficient.

1In practice, we observe that the distribution of the samples in Ipoison closely followsN (µ̂,1) for some µ̂ > 0.
The larger the value of µ̂, the more the model depends on the added poisons (see Figure 6 from Appendix B for
an illustrative example).

2To illustrate, Figure 7 from Appendix B plots full tradeoff curves for the case where we unlearn Gaussian
poisons from a Resnet-18 trained on the CIFAR-10 dataset using NGD.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.4 HOW TO USE DATA POISONING FOR EVALUATING MACHINE UNLEARNING?

Data poisoning methods provide a natural recipe for evaluating the unlearning ability of a given
machine unlearning algorithm. We consider the following four-step procedure:

● Step 1: Implement the data poisoning attack to generate the corrupted training dataset Scorr.
● Step 2: Train the model on the corrupted dataset Scorr. Measure the effects of data poisoning on

the trained model θinitial.
● Step 3: Run the unlearning algorithm to remove all poison samples U = Spoison from θinitial and

compute the updated model θupdated.
● Step 4: Measure the effects of data poisoning on the updated model θupdated.

Naturally, for ideal unlearning algorithms that can completely remove all influences of the forget set
U = Spoison, we expect that the updated model θupdated will not display any effects of data poisoning.
Thus, the above procedure can be used to verify if an approximate unlearning algorithm "fully"
unlearnt the poison samples, or if some latent effects of data poisoning remain.

5 CAN MACHINE UNLEARNING REMOVE POISONS?

We now evaluate state-of-the-art unlearning attacks for the task of removing both targeted and
untargeted data poisoning attacks across vision and language models.

Datasets. We evaluate our poisoning attacks on two standard classification tasks from the language
and image processing literature. For the language task, we consider the IMDb dataset (Maas et al.,
2011). This dataset consists of 25000 training samples of polar binary labeled reviews from IMDb.
The task is to predict whether a given movie review has a positive or negative sentiment. For the
vision task, we use the CIFAR-10 dataset (Krizhevsky et al., 2010). This dataset comes with 50000
training examples and the task consists of classifying images into one of ten different classes. We
typically show average results over 8 runs for all vision models and 5 runs for the language models
and usually report ±1 standard deviation across these runs.

Models. For the vision tasks, we train a standard Resnet-18 model for 100 epochs. We conduct the
language experiments on GPT-2 (355M parameters) LLMs (Radford et al., 2019). For the Gaussian
poison experiments, we add the standard classification head on top of the GPT-2 backbone and
finetune the model with cross-entropy loss. For the targeted poisoning attack, we follow the setup
suggested by Wan et al. (2023) and finetune GPT-2 on the IMDb dataset using the following template
for each sample: “[Input]. The sentiment of the review is [Label]”. In this
setting, we use the standard causal cross-entropy loss with an initial learning rate set to 5 ⋅ 10−5
which encourages the model to predict the next token correctly given a total vocabulary of C possible
tokens, where C = 50257 for the GPT-2 model. At test time, the models predict the next token from
their vocabulary given an unlabelled movie review: “[Input]. The sentiment of the
review is:” We train these models for 10 epochs on the poisoned IMDb training dataset.

Unlearning methods. We evaluate eight state-of-the-art machine unlearning algorithms for deep
learning settings: {GD, NGD, GA, EUk, CFk, SCRUB, NegGrad+, SSD}. Gradient Descent (GD)
continues to train the model θinitial on the remaining dataset Strain ∖ U by using stochastic gradient
descent (Neel et al., 2021). Noisy Gradient Descent (NGD) is a simple state-of-the-art modification
of GD where we add Gaussian noise to the GD-update steps (Chien et al., 2024; Chourasia & Shah,
2023). Gradient Ascent (GA) is an unlearning algorithm which removes the influence of the forget
set U from the trained model by simply reversing the gradient updates that contain information about
U (Graves et al., 2021; Jang et al., 2022). Exact Unlearning the last k-layers (EUk) is an unlearning
approach for deep learning settings that simply retrains from scratch the last k layers (Goel et al.,
2022). Catastrophically forgetting the last k-layers (CFk) is a modification of EUk, with the only
difference being that instead of retraining from scratch, we continue training the weights in the last
k layers on the retain set Strain ∖U . SCalable Remembering and Unlearning unBound (SCRUB) is
a state-of-the-art unlearning method for deep learning settings (Kurmanji et al., 2024). It casts the
unlearning problem into a student-teacher framework. NegGrad+ is a finetuning based unlearning
approach which consists of a combination of GA and GD. Selective Synaptic Dampening (SSD)
was introduced in Foster et al. (2024) in order to unlearn forget sets from a neural network without
retraining it from scratch. SSD unlearns by dampening some weights in the neural network which

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

GD CFk EUk NGD NGP SCRUB SSD GA
0.000

0.005

0.010

0.015

0.020

0.025

0.030

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

No Unlearning
Perfect Unlearning

(a) Standard MIA (Shokri et al., 2017)

GD CFk EUk NGD NGP SCRUB SSD GA
0.000

0.005

0.010

0.015

0.020

0.025

0.030

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

No Unlearning

Perfect Unlearning

(b) MIA via Gaussian poisoning

Figure 2: Standard MIA evaluations are insufficient for detecting unlearning violations. Left:
At a low false positive rate (FPR=0.01), standard MIAs have low true positive rates, making them
ineffective at identifying whether a targeted sample was successfully unlearned. Right: Our proposed
Gaussian poison attack achieves a higher true positive rate at the same FPR, improving the detection
of unlearning failures. A full trade-off curve comparison is provided in Figure 10.

has a high influence on the fisher information metric corresponding to the forget set as compared
to the remaining dataset. A detailed description of the algorithms, and the corresponding choice of
hyperparameters are deferred to Appendix D.2.

Compute budget. When evaluating an unlearning method, a common hyperparameter across all the
models is the compute budget (typically the number of gradient steps) given to the model. Clearly,
if the compute budget is greater than that required for retraining the model from scratch, then the
method is useless; Thus, the smaller the budget for a given level of performance the better. To put all
the methods on equal footing, we allow each of them to use up to 10% of the compute used in initial
training (or fine-tuning) of the model (we also experiment with 4%, 6%, and 8% for comparison).
This way of thresholding the compute budget is inspired by Google’s unlearning challenge at NeurIPS
2023 [2], since the reason we even care about approximate unlearning is to give the model owner a
significant computational advantage over retraining from scratch. In our experiments, a 10% compute
budget corresponds to 10 epochs of retraining-from-scratch which achieves roughly 95% of the full
re-training test accuracy. At the same time, we note that even giving 10% of the compute-budget to
the unlearning method is quite generous, given that in modern settings like training a large language
or vision model, 10% of training compute is still significant in terms of time and cost; practical
unlearning algorithms should ideally work with far less compute.

Evaluating unlearning. When evaluating the efficacy of an unlearning method two objectives are
essential: i) We measure post-unlearning performance by comparing the test classification accuracy
of the updated model to the model retrained without the poisoned data. ii) To gauge unlearning
validity against different poisoning attacks, we use different metrics for targeted attacks, Gaussian
poisons, and indiscriminate attacks. For indiscriminate data poisoning attacks, the goal is to decrease
test accuracy, and so we can conclude that an unlearning algorithm is successful if the test accuracy
after unlearning approaches that of a retrained model – note this is the same metric as for model
performance. For targeted data poisoning attacks, where the goal is to cause the misclassification
of a specific set of datapoints, an unlearning algorithm is valid if the misclassification rate on this
specific set of datapoints is close to that of the retrained model. Note in this case that this is distinct
from model performance, which measures test accuracy. For Gaussian data poisoning attacks, we
first assess how good unlearning works by measuring how much information the Gaussian poisons
leak from the model when no unlearning is performed, labeled as No unlearning in all figures.
It represents the TPR at low FPR of the poisoned model before unlearning. We then evaluate the
success of the unlearning process by determining if the forget set is effectively removed and if the
model’s original behavior is restored, labeled as Perfect Unlearning in all Figures.

5.1 STANDARD MIA UNLEARNING EVALUATIONS CAN BE MISLEADING

Prior work typically evaluates the efficacy of unlearning methods using MIAs (Shokri et al., 2017).
However, Figure 2 shows that this approach is insufficient. None of the machine unlearning algorithms
fully eliminate the influence of the deletion set U from the updated model θupdated when evaluated
using our proposed Gaussian poisoning attack. Although most algorithms perform well against the
standard MIA (Shokri et al., 2017), this can lead to a misleading conclusion. An auditor relying
solely on standard MIAs might incorrectly assume that all these methods effectively unlearn data
(see Figure 2a). In contrast, as demonstrated in Figure 2b, the Gaussian data poisoning reveals that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

GD CFk EUk NGD NGP SCRUB SSD GA
50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

Retraining
Model Performance Post Unlearning

GD CFk EUk NGD NGP SCRUB SSD GA
0.000

0.005

0.010

0.015

0.020

0.025

0.030

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

No Unlearning

Perfect Unlearning

Unlearning Efficacy

(a) Resnet-18 on CIFAR-10

GD CFk EUk NGD NGP SCRUB GA
50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

Retraining

Model Performance Post Unlearning

GD CFk EUk NGD NGP SCRUB GA
0.000

0.005

0.010

0.015

0.020

0.025

0.030

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

No Unlearning

Perfect Unlearning

Unlearning Efficacy

(b) GPT-2 (355M) on IMDb

Figure 3: Unlearning fails to remove Gaussian poisons across a variety of unlearning methods.
We poison 1.5% of the training data by adding Gaussian noise with standard deviation ε2p,IMDb = 0.1
and ε2p,CIFAR-10 = 0.32, respectively. We train/finetune a Resnet18 for 100 epochs and a GPT-2 for 10
epochs on the poisoned training datasets, respectively. Finally, we use 10% of the original compute
budget (i.e., 1 or 10 epochs) to unlearn the poisoned points. None of the unlearning methods removes
the poisoned points as the orange vertical bars do not match the dashed black retraining benchmark.

GD CFk EUk NGD NGP SCRUB SSD GA
50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

Retraining
Model Performance Post Unlearning

GD CFk EUk NGD NGP SCRUB SSD GA
0

20

40

60

80

100

Po
iso

n
Su

cc
es

s (
%

)
(

 b
et

te
r u

nl
ea

rn
in

g)

Perfect Unlearning

No Unlearning
Unlearning Efficacy

(a) Resnet-18 on CIFAR-10

GD CFk EUk NGD NGP GA
0

20

40

60

80

100
Te

st
 A

cc
ur

ac
y

(%
)

(m
or

e
ac

ur
at

e
) Retraining

Model Performance Post Unlearning

GD CFk EUk NGD NGP GA
0

20

40

60

80

100

Po
iso

n
Su

cc
es

s
(

 b
et

te
r u

nl
ea

rn
in

g)

No Unlearning

Perfect Unlearning

Unlearning Efficacy

(b) GPT-2 (355M) on IMDb

Figure 4: Unlearning fails to remove targeted and backdoor poisons across a variety of unlearning
methods. We poison 1.5% of the training data by adding Witch’s Brew poisons (Geiping et al., 2021)
to a Resnet-18 trained on CIFAR-10 or instruction poisons (Wan et al., 2023) to a GPT-2 finetuned on
IMDb. We then train/finetune a Resnet-18 for 100 epochs and a GPT-2 for 10 epochs on the poisoned
training datasets, respectively. In both cases, we use roughly 1/10 of the original compute budget (10
epochs for CIFAR-10 or 1 epoch for IMDb) to unlearn the poisoned points. None of the considered
methods remove the poisoned points.

the approximate unlearning methods fail to fully remove the points from set U , despite their success
under the standard MIA.

5.2 EXPERIMENTAL RESULTS

Below we discuss our key observations and main experimental takeaways and defer more detailed
relative comparison between unlearning methods to Appendix E.1:

1) No silver bullet unlearning algorithm that can mitigate data poisoning. None of the evaluated
methods completely remove the poisons from the trained models; See Figures 3, 4, and Table 1
and the caption therein for details on the failure of unlearning methods to remove poisons. The
respective plots show that none of the methods performs on par with retraining from scratch in terms
of post-unlearning test accuracy and effectiveness in removing the effects of data poisoning, thus
suggesting that we need to develop better approximate unlearning methods for deep learning settings.

2) Different data poisoning methods introduce different challenges for unlearning. We observe
that the success of an unlearning method in mitigating data poisoning depends on the poison type.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

#Epochs Retrain NGP/GA
GD CFk EUk SCRUB

1.5% 2% 2.5% 1.5% 2.5% 2.5% 1.5% 2% 2.5% 1.5% 2% 2.5%

2 87.04 10 83.67 84.34 83.48 68.09 69.71 59.83 29.31 27.71 25.18 83.72 84.21 82.67

4 88.23 10 85.86 86.05 85.37 69.39 71.13 61.55 39.81 39.33 33.00 85.31 85.35 83.97

6 88.79 10 86.81 86.88 86.11 70.27 71.91 62.57 43.51 44.83 38.43 85.39 85.43 84.07

8 89.14 10 87.31 87.27 86.45 70.77 72.33 63.30 47.27 48.02 40.84 85.46 85.57 84.17

10 89.24 10 87.71 87.57 86.69 71.20 72.69 63.80 49.90 50.65 43.26 85.48 85.45 84.15

Table 1: Results of unlearning indiscriminate data poisoning on CIFAR-10 in terms of test accuracy
(%). The test accuracy of the poisoned models is 81.67%, 77.20%, and 69.62% for 750, 1000, and
1250 poisoned points respectively. NGP and GA exhibit random guesses (10% test accuracy) across
all poison budgets. We perform a linear search for the learning rate between [1e − 6,5e − 5] and
report the best accuracy across all methods. All the results are obtained by averaging over 8 runs.

For example, while GD can successfully alleviate the effects of indiscriminate data poisoning attacks
for vision classification tasks, it typically fails to mitigate targeted or Gaussian poisoning attacks
even while maintaining competitive model performance. Along similar lines, while SCRUB succeeds
in somewhat mitigating Gaussian data poisoning in text classification tasks, it completely fails to
mitigate targeted or indiscriminate data poisoning. This suggests that the different data poisoning
methods complement each other and that to validate an unlearning algorithm, we need to consider all
the above-mentioned data poisoning methods, along with other (preexisting) evaluations.

3) The success of an unlearning method depends on the underlying task. We observe that various
unlearning algorithms exhibit different behaviors for image classification and text classification tasks,
e.g., for data poisoning on a GPT-2 model, while EUk and NGD succeed in alleviating Gaussian data
poisoning for the model trained with a classification head, they fail to remove targeted data poisoning
on the same model trained with a text decoder.3 Similarly, GA succeeds in alleviating Gaussian and
targeted data poisoning for Resnet-18 but fails to have a similar improvement for GPT-2 model. This
suggests that the success of an approximate unlearning method over one task may not transfer to other
tasks, and thus further research is needed to make transferable approximate unlearning methods.

5.3 SENSITIVITY ANALYSIS AND ADDITIONAL INSIGHTS

Additional experiments detailed in Appendix E, explore 1) the impact of varying the number of
update steps and 2) the effect of varying the forgetset size. For methods like NGD, increasing the
number of update steps generally enhances unlearning effectiveness (see Figure 11b, orange bars).
However, applying NGD to LLM models results in a substantial decrease in post-unlearning test
accuracy, dropping by 10%. Conversely, for methods like EUk, additional steps do not improve
unlearning or post-unlearning test accuracy (see Figure 11a). These trends are summarized in Figure
11. Furthermore, we experimented with different sizes of the forgetset. For Gaussian poisoning
attacks, the results, summarized in Figures 13 and 12 of Appendix E, confirm consistent trends when
1.5%, 2%, and 2.5% of the training dataset are poisoned.

6 UNDERSTANDING WHY UNLEARNING FAILS TO REMOVE POISONS?

In Section 5.2, we demonstrated that various state-of-the-art approximate machine unlearning al-
gorithms fail to fully remove the effects of data poisoning. Given these results, one may wonder
what is special about the added poison samples, and why gradient-based unlearning algorithms fail to
rectify their effects. In the following, we provide two hypotheses for understanding the failure of
unlearning methods. We validate these hypotheses using a set of experiments based on linear and
logistic regression on Resent-18 features which allow us to study these hypotheses experimentally.
Thanks to the convexity of the corresponding loss the objectives have unique global minimizers
making it easier to understand model shifts due to unlearning.

Hypothesis 1: Poison samples cause a large model shift, which cannot be mitigated by approxi-
mate unlearning. We hypothesize that the distance between a model trained with the poison samples

3Our hypothesis for why EUk fails for text generation is that it results in severe degradation of the model’s
text generation capabilities due to re-initialization and fine-tuning of the last k layers of the model from scratch.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 5: Model shift for logistic regression on
Resnet-18 features for CIFAR-10 dataset. The
x-axis is the number of epochs. The blue and the
red curves denote the distance ∥θ(Scorr)− θ(Scorr ∖
S
(β)
poison)∥1, for indiscriminate and targeted data poi-

soning respectively, where β is the corresponding
percentage of unlearned poison samples. For a
dataset S′, θ(S′) denotes a model trained from
scratch on S′. The orange curve plots the distance
∥θ(S) − θ(S ∖ S(β)rand)∥1 corresponding to unlearn-
ing random clean training samples.

and the desired updated model obtained after unlearning poisons is much larger than the distance
between a model trained with random clean samples and the desired updated model. Thus, any
unlearning algorithm that attempts to remove poison samples needs to shift the model by a larger
amount. Because larger shifts typically need more update steps, unlearning algorithms are unable to
mitigate the effects of poisons in the allocated computational budget.

To validate this hypothesis, Figure 5 shows the ℓ1 norm of the model shift introduced by unlearning
(different amounts of) data poisons and random clean training data for logistic regression over feature
representations given by the last layer of a fixed Resent-18 network (which corresponds to only
updating the last layer of Resnet-18 model). Figure 5 shows that data poisons introduce much larger
model shifts in this norm as compared to random training samples.

Hypothesis 2: Poison samples shift the model in a subspace orthogonal to clean training samples.
We next hypothesize that training with poison samples not only shifts the model by a larger amount,
but the resultant shift lies in a subspace orthogonal to the span of clean training samples. Thus,
gradient-based update algorithms that attempt unlearning with clean samples fail to counteract shifts
within this orthogonal subspace and are unable to mitigate the impacts of data poisoning. We argue
that to completely unlearn the effects of poison samples, an unlearning algorithm must incorporate
gradient updates that specifically utilize these poison samples.

To validate this hypothesis, in Figure 14 (deferred to Appendix F due to space constraints), we plot
the inner product between the gradient update direction for gradient descent using clean training
samples and the desired model shift direction, for unlearning for data poisons and random clean
training samples respectively, for a simple linear regression task. The random subset of clean training
samples is chosen so as to equate the model shift in both unlearning data poisons and random training
samples. Figure 14 shows that the desired unlearning direction for data poisons is orthogonal to the
update direction from gradient descent as the cosine similarity between the update directions is small.

7 CONCLUSION

Our experimental evaluation of state-of-the-art machine unlearning methods across different models
and data modalities reveals significant shortcomings in their ability to effectively remove poisoned
data points from a trained model. Despite various approaches which attempt to mitigate the effects of
data poisoning, none were able to consistently approach the benchmark results of retraining the models
from scratch. This highlights a critical gap in the true efficacy and thus practical value of current
unlearning algorithms, questioning their validity in real-world applications where these unlearning
methods may be deployed to ensure privacy, data integrity, or to correct model biases. Furthermore,
our experiments demonstrate that the performance of unlearning methods varies significantly across
different types of data poisoning attacks and models, indicating a lack of a one-size-fits-all solution.
Given the increasing reliance on machine learning in critical and privacy-sensitive domains, our
findings emphasize the importance of advancing rigorous research in machine unlearning to develop
more effective, efficient, and trustworthy methods, that are either properly evaluated or have provable
guarantees for unlearning. Future work should focus on creating novel unlearning algorithms that
can achieve the dual goals of maintaining model integrity and protecting user privacy without the
prohibitive costs associated with full model retraining.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna.
Bullseye polytope: A scalable clean-label poisoning attack with improved transferability. In 2021
IEEE European symposium on security and privacy (EuroS&P), pp. 159–178. IEEE, 2021.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella
Biderman. Leace: Perfect linear concept erasure in closed form. Advances in Neural Information
Processing Systems, 36, 2023.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
In Proceedings of the 29th International Conference on Machine Learning, ICML ’12, pp. 1467–
1474. JMLR, Inc., 2012.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In proceedings of the 42nd
IEEE Symposium on Security and Privacy, SP ’21. IEEE Computer Society, 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In
Proceedings of the 36th IEEE Symposium on Security and Privacy, SP ’15, pp. 463–480. IEEE
Computer Society, 2015.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897–1914. IEEE, 2022a.

Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, and Florian
Tramer. The privacy onion effect: Memorization is relative. In Advances in Neural Information
Processing Systems 35, NeurIPS ’22, pp. 13263–13276. Curran Associates, Inc., 2022b.

Huiqiang Chen, Tianqing Zhu, Xin Yu, and Wanlei Zhou. Machine unlearning via null space
calibration. arXiv preprint arXiv:2404.13588, 2024.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.
When machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM Conference on
Computer and Communications Security, CCS ’21, pp. 896–911. ACM, 2021.

Eli Chien, Haoyu Wang, Ziang Chen, and Pan Li. Langevin unlearning: A new perspective of noisy
gradient descent for machine unlearning. arXiv preprint arXiv:2401.10371, 2024.

Rishav Chourasia and Neil Shah. Forget unlearning: Towards true data-deletion in machine learning.
In International Conference on Machine Learning, pp. 6028–6073. PMLR, 2023.

Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon, Werner Zellinger,
Bernhard A Moser, Alina Oprea, Battista Biggio, Marcello Pelillo, and Fabio Roli. Wild patterns
reloaded: A survey of machine learning security against training data poisoning. ACM Computing
Surveys (CSUR), 55(13s):1–39, 2023.

Jimmy Z Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, and Ayush Sekhari. Hidden poison:
Machine unlearning enables camouflaged poisoning attacks. In Advances in Neural Information
Processing Systems 36, NeurIPS ’23. Curran Associates, Inc., 2023.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(1):3–37, 2022.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. In International Conference on Learning Representations (ICLR), 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining
through selective synaptic dampening. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 12043–12051, 2024.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

GDPR. Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016,
2016.

Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller,
and Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. In
Proceedings of the 9th International Conference on Learning Representations, ICLR ’21, 2021.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making ai forget you: Data
deletion in machine learning. In Proceedings of the 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), 2019.

Shashwat Goel, Ameya Prabhu, Amartya Sanyal, Ser-Nam Lim, Philip Torr, and Ponnurangam
Kumaraguru. Towards adversarial evaluations for inexact machine unlearning. arXiv preprint
arXiv:2201.06640, 2022.

Shashwat Goel, Ameya Prabhu, Philip Torr, Ponnurangam Kumaraguru, and Amartya Sanyal. Cor-
rective machine unlearning. arXiv preprint arXiv:2402.14015, 2024.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020a.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep
networks of information accessible from input-output observations. arXiv:2003.02960, 2020b.

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Mądry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):1563–1580, 2022.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 11516–11524, 2021.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. In International Conference on Machine Learing (ICML), 2019.

Junfeng Guo and Cong Liu. Practical poisoning attacks on neural networks. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXVII 16, pp. 142–158. Springer, 2020.

Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact
unlearning needs more careful evaluations to avoid a false sense of privacy. arXiv preprint
arXiv:2403.01218, 2024.

Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe, Jill Muehling,
John V. Pearson, Dietrich A. Stephan, Stanley F. Nelson, and David W. Craig. Resolving individuals
contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping
microarrays. PLoS Genetics, 4(8):1–9, 2008.

W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Practical
general-purpose clean-label data poisoning. In Advances in Neural Information Processing Systems
33, NeurIPS ’20, pp. 12080–12091. Curran Associates, Inc., 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2021.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. arXiv
preprint arXiv:2210.01504, 2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning, ICML ’17, pp. 1885–1894.
JMLR, Inc., 2017.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. Machine Learning, 111(1):1–47, 2022.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research), 2010.

Meghdad Kurmanji, Peter Triantafillou, and Eleni Triantafillou. Towards unbounded machine
unlearning. arXiv preprint arXiv:2302.09880, 2023.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. Advances in Neural Information Processing Systems, 36, 2024.

Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Gaussian membership inference privacy.
Advances in Neural Information Processing Systems, 36, 2024.

Zihao Liu, Tianhao Wang, Mengdi Huai, and Chenglin Miao. Backdoor attacks via machine
unlearning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
14115–14123, 2024.

Yiwei Lu, Gautam Kamath, and Yaoliang Yu. Indiscriminate data poisoning attacks on neural
networks. Transactions on Machine Learning Research, 2022.

Yiwei Lu, Gautam Kamath, and Yaoliang Yu. Exploring the limits of model-targeted indiscriminate
data poisoning attacks. In Proceedings of the 40th International Conference on Machine Learning,
ICML ’23, pp. 22856–22879. JMLR, Inc., 2023.

Yiwei Lu, Matthew YR Yang, Gautam Kamath, and Yaoliang Yu. Indiscriminate data poisoning
attacks on pre-trained feature extractors. arXiv preprint arXiv:2402.12626, 2024.

Zhuo Ma, Yang Liu, Ximeng Liu, Jian Liu, Jianfeng Ma, and Kui Ren. Learn to forget: Machine
unlearning via neuron masking. IEEE Transactions on Dependable and Secure Computing, 2022.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Neil G. Marchant, Benjamin I. P. Rubinstein, and Scott Alfeld. Hard to forget: Poisoning attacks on
certified machine unlearning, 2022a. URL https://arxiv.org/abs/2109.08266.

Neil G Marchant, Benjamin IP Rubinstein, and Scott Alfeld. Hard to forget: Poisoning attacks on
certified machine unlearning. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial
Intelligence, volume 36 of AAAI ’22, pp. 7691–7700, 2022b.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
AISec ’17, pp. 27–38. ACM, 2017.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. In Proceedings of the 32nd International Conference on Algorithmic
Learning Theory, ALT ’21. JMLR, Inc., 2021.

13

https://arxiv.org/abs/2109.08266

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Martin Pawelczyk, Tobias Leemann, Asia Biega, and Gjergji Kasneci. On the trade-off between
actionable explanations and the right to be forgotten. In International Conference on Learning
Representations (ICLR), 2023.

Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
as few shot unlearners. In International Conference on Machine Learning (ICML), 2024.

Wei Qian, Chenxu Zhao, Wei Le, Meiyi Ma, and Mengdi Huai. Towards understanding and enhancing
robustness of deep learning models against malicious unlearning attacks. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1932–1942, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D Cotterell. Linear adversarial concept
erasure. In International Conference on Machine Learning, pp. 18400–18421. PMLR, 2022a.

Shauli Ravfogel, Francisco Vargas, Yoav Goldberg, and Ryan Cotterell. Adversarial concept erasure
in kernel space. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 6034–6055, 2022b.

Stefan Schoepf, Jack Foster, and Alexandra Brintrup. Parameter-tuning-free data entry error unlearn-
ing with adaptive selective synaptic dampening. arXiv preprint arXiv:2402.10098, 2024a.

Stefan Schoepf, Jack Foster, and Alexandra Brintrup. Potion: Towards poison unlearning. arXiv
preprint arXiv:2406.09173, 2024b.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In Advances in Neural Information
Processing Systems, 2021.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. In
Advances in Neural Information Processing Systems 31, NeurIPS ’18, pp. 6106–6116. Curran
Associates, Inc., 2018.

Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y. Zhao. Poison forensics: Traceback
of data poisoning attacks in neural networks. In 31st USENIX Security Symposium (USENIX
Security 22), pp. 3575–3592, Boston, MA, August 2022. USENIX Association. ISBN 978-1-
939133-31-1. URL https://www.usenix.org/conference/usenixsecurity22/
presentation/shan.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In Proceedings of the 38th IEEE Symposium on Security and
Privacy, SP ’17, pp. 3–18. IEEE Computer Society, 2017.

David M Sommer, Liwei Song, Sameer Wagh, and Prateek Mittal. Athena: Probabilistic verification
of machine unlearning. Proceedings on Privacy Enhancing Technologies, 2022.

David Marco Sommer, Liwei Song, Sameer Wagh, and Prateek Mittal. Towards probabilistic
verification of machine unlearning, 2020. URL https://arxiv.org/abs/2003.04247.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.
In Advances in Neural Information Processing Systems 30, NeurIPS ’17, pp. 3520–3532. Curran
Associates, Inc., 2017.

Xu Sun, Zhiyuan Zhang, Xuancheng Ren, Ruixuan Luo, and Liangyou Li. Exploring the vulner-
ability of deep neural networks: A study of parameter corruption. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2020. URL https://ojs.aaai.org/index.php/
AAAI/article/view/17385.

Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models during
instruction tuning. In International Conference on Machine Learning, pp. 35413–35425. PMLR,
2023.

14

https://www.usenix.org/conference/usenixsecurity22/presentation/shan
https://www.usenix.org/conference/usenixsecurity22/presentation/shan
https://arxiv.org/abs/2003.04247
https://ojs.aaai.org/index.php/AAAI/article/view/17385
https://ojs.aaai.org/index.php/AAAI/article/view/17385

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Lingzhi Wang, Tong Chen, Wei Yuan, Xingshan Zeng, Kam-Fai Wong, and Hongzhi Yin. Kga:
A general machine unlearning framework based on knowledge gap alignment. arXiv preprint
arXiv:2305.06535, 2023.

Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, and Xiangnan He. Gif: A general
graph unlearning strategy via influence function. In Proceedings of the ACM Web Conference
2023, WWW ’23. ACM, April 2023. doi: 10.1145/3543507.3583521. URL http://dx.doi.
org/10.1145/3543507.3583521.

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
models. In International Conference on Machine Learning (ICML), 2020.

Rui Zhang and Shihua Zhang. Rethinking influence functions of neural networks in the over-
parameterized regime. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
2021.

15

http://dx.doi.org/10.1145/3543507.3583521
http://dx.doi.org/10.1145/3543507.3583521

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CONTENTS OF APPENDIX

A Additional Related Work 17

B Gaussian Data Poisoning 18

B.1 Motivation . 18

B.2 Gaussian Poisoning as a Hypothesis Testing Problem. 18

B.3 An Illustrative Edge Case . 19

B.4 Algorithms . 19

C Unlearning Evaluation Methods: Methodological Comparisons 22

D Implementation Details 23

D.1 Existing Data Poisoning Attacks . 23

D.1.1 Targeted Data Poisoning for Image Classification 24

D.1.2 Backdoor Data Poisoning for Language Sentiment Analysis 25

D.1.3 Indiscriminate Data Poisoning . 25

D.2 Unlearning Algorithms . 26

D.2.1 Gradient Descent (GD) . 26

D.2.2 Noisy Gradient Descent (NGD) . 27

D.2.3 Gradient Ascent (GA) . 27

D.2.4 EUk . 27

D.2.5 CFk . 27

D.2.6 SCRUB . 27

D.2.7 NegGrad+ . 28

D.2.8 Selective Synaptic Dampening (SSD) . 28

E Experiments 29

E.1 Detailed comparison of different unlearning algorithms 29

E.2 Comparison of Gaussian and Targeted Data Poisoning 29

E.3 Additional Experiments . 29

F Understanding Why Approximate Unlearning Fails? 32

F.1 Logistic Regression Experiment to Validate Hypothesis 1 32

F.2 Linear Regression Experiment to Validate Hypothesis 2 32

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Additional Notation. We use the notation N (0, σ2Id) to denote a gaussian random variable in d
dimensions with mean 0 and covariance matrix σ2Id. For a dataset S, we use Uniform(S) to denote
uniformly random sampling from S, and the notation Êz∼S[g(z)] to denote the empirical average
1
∣S∣ ∑z∈S g(z) for any function g. For vector u, v ∈ Rd, we use the notations ∥u∥∞ = maxj∈[d] u[i]
to denote the ℓ∞ norm of u, ∥u∥2 =

√
∑i∈[d] u[i]2 to denote the ℓ2 norm of u, ∥u∥1 = ∑d

i=1∣u[i]∣ to
denote the ℓ1 norm of u, and ⟨u, v⟩ to denote the inner product between vectors u and v.

A ADDITIONAL RELATED WORK

Data poisoning attacks. In a data poisoning attack, an adversary may introduce or modify a small
portion of the training data, and their goal is to elicit some undesirable behavior in a model trained on
said data. One type of attack is a targeted data poisoning attack (Koh & Liang, 2017; Shafahi et al.,
2018; Huang et al., 2020; Guo & Liu, 2020; Aghakhani et al., 2021), in which the goal is to cause
a model to misclassify a specific point in the test set. Another type of attack is an untargeted (or
indiscriminate) data poisoning attack (Biggio et al., 2012; Muñoz-González et al., 2017; Steinhardt
et al., 2017; Koh et al., 2022; Lu et al., 2022; 2023), wherein the attacker seeks to reduce the test
accuracy as much as possible. Though we do not focus on them in our work, there also exist backdoor
attacks (Gu et al., 2017), in which training points are poisoned with a backdoor pattern, such that
test points including the same pattern are misclassified and various detection techniques (Shan et al.,
2022).

Poisoning machine unlearning systems. An orthogonal line of work investigates data poisoning
attacks against machine unlearning pipelines (see, e.g., Chen et al. (2021); Marchant et al. (2022b);
Carlini et al. (2022b); Di et al. (2023); Qian et al. (2023); Liu et al. (2024)). These works generally
show that certain threats can arise even if unlearning is performed with provable guarantees, whereas
we focus on data poisoning threats in standard (i.e., not machine unlearning) pipelines, that ought to
be removed by an effective machine unlearning procedure (in particular, they would be removed by
retraining from scratch without the poisoned points).

Evaluation works. Several prior works on machine unlearning evaluation have explored verifying
the effect of unlearning through data poisoning in various settings and context (Wu et al., 2023;
Marchant et al., 2022a; Sommer et al., 2020). In particular, Wu et al. (2023) address the problem
of graph unlearning, where they evaluate attacks involve adding adversarial edges to a graph. The
authors demonstrate that both the influence function method and its extension, GIF, can mitigate the
impact of these adversarial edges.

Meanwhile, Marchant et al. (2022a) focus exclusively on unlearning through Influence Functions
(IF) on convex models. In this setting, the authors introduced a specifically designed backdoor data
poisoning attack which is optimized knowing that the model owner will train, deploy, and updates
their convex model using influence functions. Furthermore, the conclusion of their work - that the
field of machine unlearning requires more rigorous evaluations - aligns with this work, considering
the poisoning methods implemented in our work require less knowledge of the target model and are
agnostic to the specific unlearning methods used (see Table 2).

Sommer et al. (2020) provide a framework for verifying exact data deletion. In a fundamentally
different setting, the authors evaluate whether an MLaaS provider complies with a deletion request

Reference Attack Types Model
Architecture

Unlearning
Method

Marchant et al.
(2022a) Backdoor attack Convex model

Using
Influence

Functions (IF)

This work
Indiscriminate Attack, Targeted

Attack, Backdoor Attack, Gaussian
Attack

Any Any

Table 2: Comparing the data poisoning settings of this work to Marchant et al. (2022a).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

by completely removing the data point from the trained model. Hence, the findings in their work are
independent of any unlearning methods. To verify a complete takedown, their framework involves
running backdoor attacks to subsequently check if complete case-based deletion was done by the
MLaaS provider.

B GAUSSIAN DATA POISONING

Beyond the descriptions from Section Section 4.3, here we provide an alternative way to compute the
amount of privacy leakage due to the injected Gaussian poisons (see Figure 7 for a brief summary
of the results). Further, we provide some intuitive understanding of why Gaussian poisons work at
evaluating unlearning success.

B.1 MOTIVATION

Evaluating Gaussian poisons. The effect of data poisoning on a model θ is measured by the
dependence of the model on the added perturbations {ξz}z∈Spoison . Let θ be a model to be evaluated
(which may or may not have been corrupted using poisons). In order to evaluate the effect of
poison samples on θ, for every poison sample z ∈ Spoison, we compute the normalized inner product
Iz = ⟨gz,ξz⟩/ϵp∥gz∥2 with gz = ∇xℓ(θ, (xbase, y)), where gz ∈ Rd denotes the gradient of the model
θ w.r.t. the input space x when evaluated at the clean base image (xbase, y) corresponding to the
poisoned sample z, and define the set Ipoison = {Iz}z∈Spoison .

Interpreting the Gaussian poison attack as a membership inference attack. Consider a routine
that samples a point z from 1

2
Ipoison + 1

2
Iindep, computes Iz using the unlearned model, and then

guesses that z ∈ Ipoison if Iz > τ . Under exact unlearning, this attack should have trivial accuracy,
achieving TPR = FPR at every value of τ . To illustrate, consider the right most panel from Figure 6
where unlearning is not exact since the blue histogram deviates from the teal N (0,1) distribution
curve which represents perfect unlearning. Hence, we measure unlearning error, by the extent to
which a classifier achieves nontrivial accuracy when deciding whether samples are from Ipoison
or Iindep, in particular focusing on the true positive rate (TPR) at false positive rates (FPR) at or
below 0.01 (denoted as TPR@FPR=0.01). This measure corresponds to the orange bars we report in
Figure 3.

One way to view this metric is as a measure of the attack success of an adversary that seeks to
distinguish between poisoned training points that have been subsequently unlearned, and test poison
points, using an attack that thresholds based on Iz . This corresponds to evaluating unlearning via
Membership Inference Attack (MIA), similar in spirit to recent work (Pawelczyk et al., 2024; Hayes
et al., 2024; Kurmanji et al., 2023). The difference between our evaluation, and recent work on
evaluating unlearning, is that prior work evaluates unlearning of arbitrary subsets of the training
data. As a result, building an accurate attack requires sophisticated techniques that typically involve
an expensive process of training additional models called shadow models, using them to estimate
distributions on the loss of unlearned points, and then thresholding based on a likelihood ratio. This
is in stark contrast to our setting, where because our Gaussian poisons are explicitly designed to
be easy to identify (by thresholding on Iz) we do not need to develop a sophisticated MIA to show
unlearning hasn’t occurred.

To assess how good unlearning works, we consider how much information the Gaussian poisons
leak from the model when no unlearning is performed, labeled as No unlearning in all figures.
It represents the TPR at low FPR of the poisoned model before unlearning (solid orange lines in
Figures 3 and 4). We evaluate the success of the unlearning process by determining if the forget set is
effectively removed and if the model’s original behavior is restored. Ideally, the TPR at low FPR
should equal the FPR (dashed black lines in Figure 3).

B.2 GAUSSIAN POISONING AS A HYPOTHESIS TESTING PROBLEM.

We can translate the above reasoning into membership hypothesis test of the following form:

H0: The model f was trained on Strain without ξ (perfect unlearning / ξ is a test poison);

H1: The model f was trained on Strain with ξ (imperfect unlearning / no unlearning).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Constructing the test statistic. The Gaussian Unlearning Score (GUS) uses the following simple
fact about Gaussian random variables to devise an unlearning test: Let ξ ∼ N (0, ε2pI) and let g be a
constant with respect to ξ, then ⟨g,ξ⟩

ϵp∥g∥ ∼ N (0,1).

H0: Consider the model’s gradient at an base image. If the gradient g is constant with respect to
ξ, then their normalized dot product will follow a standard normal distribution.

H1: When unlearning did not succeed and g may depend on ξ, then ⟨g,ξ⟩
ϵp∥g∥ will deviate from a

standard normal distribution. In particular, we can use the deviation of E[⟨g,ξ⟩
ϵp∥g∥] from 0 to

measure the ineffectiveness of approximate unlearning.

B.3 AN ILLUSTRATIVE EDGE CASE

Blessing of Dimensionality: Higher Input Dimension Contributes to Higher Power. Here our
goal is to understand the factors that determine the success of the Gaussian poisoning method. For
the sake of intuition, in the following, we provide an artificial example to demonstrate the change
in distribution from N (0,1) when ξ does not depend on g to the distribution under the alternative
hypothesis when g depends on ξ. Suppose the poison sample z ∈ Spoison is generated by adding the
noise ξz to the base sample (xbase, y) in the clean training dataset. For illustrative purposes, we will
consider an extreme case.

H0: When gz is constant wrt to ξz (for example for a model which has completely unlearned the
poison samples), we have that Iz = ⟨gz,ξz⟩ϵp∥gz∥ ∼ N (0,1) for each poison sample z ∈ Spoison.

H1: Suppose that the gradient gz in the sample space w.r.t. the clean training sample (xbase, y)
corresponding to the poison sample z only memorizes the poison and hence satisfies the
relation gz = ξz . Then, ⟨gz, ξz⟩ = ⟨ξz, ξz⟩ denotes a sum of d many χ2-random variables
with expectation d and variance 2d and then E[Iz] ∶= E[⟨ξz,ξz⟩√

2d
] =
√

d/2. Further, by the

Central Limit Theorem, Iz converges in distribution to N (
√

d/2,1).

For this special case, we thus see that our hypothesis testing problem boils down to comparing two
normal distributions to each other; one with mean 0 and standard deviation 1, and the other with
mean µ ≥ 0 and standard deviation 1. By the Neyman-Pearson Lemma, we know that the best true
positive rate (TPR) at a given false positive rate (FPR) for this problem is given by:

TPR(FPR) = 1 −Φ(Φ−1(1 − FPR) − µ) with µ =
√

d/2. (3)

This suggests that we will be able to better distinguish perfect unlearning from unlearning failure the
higher the input dimension is.

Moving beyond the Edge Case. In more practical use cases, where closed-form computation is not
feasible, µ likely depends on the model architecture, the optimizer, and the training dynamics. Our
simple theory predicts that the Gaussian Unlearning Score should grow slower than linearly, with
diminishing benefits from additional dimensions. In Figure 8, we verify that higher input dimensions
make Gaussian data poisoning more effective in more complex scenarios. We trained ResNet18
models for 100 epochs on the CIFAR-10 dataset, varying the input size from 26x26x3 to 32x32x3,
and subsequently unlearn 1000 data points using NGD with noise level σ2

NGD = 1e − 07. The figure
demonstrates the diminishing benefits of adding additional data dimensions.

B.4 ALGORITHMS

Computing GUS. In practice, we can thus compare which of the two distributions does Iz belong to
by evaluating the mean 1

∣Spoison∣ ∑z
⟨gz,ξz⟩
ϵp∥gz∥ . Informally speaking, the further away this mean is from 0,

the higher is the influence of the data poisons on the underlying models. Algorithm 1 shows how we
compute GUS.

Further details on the Gaussian poison attack. As we have clarified in the main text, the Gaussian
poisoning attack attempts to induce a dependence between the gradient with respect to the updated

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Algorithm 1 Gaussian Unlearning Score (GUS)
Input: • Model θ to be evaluated.

• Poison samples Spoison and added noise {ζz}z∈Spoison
.

1: Initialize Ipoison = ∅.
2: for z ∈ Spoison do
3: Let (xbase, y) be the clean training sample corresponding to the poison sample z.
4: Compute input gradient gz = ∇xℓθ(xbase, y) on the corresponding clean training sample.
5: Let Iz = ⟨gz,ξz⟩ϵp∥gz∥2 where ξz denotes the noise used to generate the poison sample z.
6: Update Ipoison ← Ipoison ∪ {Iz}.
7: Return 1

∣Spoison∣ ∑z∈Spoison
Iz .

Algorithm 2 Gaussian Data Poisoning to Evaluate Unlearning
Input: • Unlearning algorithm Unlearn-Alg to be evaluated.

• Training dataset S.
• Number of poison samples P .
• Variance of the gaussian noise for data poisoning: ε2p.

1: // Generate poison samples and corrupted training dataset for Gaussian data poisoning //
2: Select P samples Spoison ∼ Uniform(S), w/o replacement, and let Sclean be the remaining

samples.
3: for z ∈ Spoison do
4: Let (xbase, y) be the clean training sample corresponding to the poison z.
5: Define

xcorr ← xbase + ξz where ξz ∼ N (0, ε2pId),

and update the poison sample z = (xcorr, y). Store ξz .
6: Define the corrupted training dataset Scorr = Sclean ∩ Spoison.
7: Obtain the initial model θinitial by training on Scorr.

8: // Evaluate the effect of data poisoning on the initial model //
9: Initialize Ipoison ← ∅.

10: for z ∈ Spoison do
11: Let (xbase, y) be the clean training sample corresponding to z, i.e. xbase = xcorr − ξz .
12: Compute (normalized) input gradient ginitial,z =

∇xℓθinitial(xbase,y)
∥∇xℓθinitial(xbase,y)∥ .

13: Define Iz = 1
ϵp
⟨ginitial,z, ξz⟩ and update Ipoison = Ipoison ∪ Iz .

14: Compute µ̂initial ← 1
∣Spoison∣ ⋅∑z∈Spoison

Iz .

15: // Unlearn the added poison samples //
16: Run the approximate unlearning algorithm Unlearn-Alg to unlearn the poison samples Spoison

from θinitial. Let the updated model be θupdated.

17: // Evaluate GUS as the effect of data poisoning post unlearning //
18: Initialize Iupdated ← ∅.
19: for z ∈ Spoison do
20: Let (xbase, y) be the clean training sample corresponding to z, i.e. xbase = xcorr − ξz .

21: Compute (normalized) input gradient gupdated,z =
∇xℓθupdated(xbase,y)

ϵp∥∇xℓθupdated(xbase,y)∥) .

22: Define I ′z = 1
ϵp
⟨gupdated,z, ξz⟩ and update Iupdated = Iupdated ∪ I ′z .

23: Compute µ̂updated ← 1
∣Spoison∣ ⋅∑z∈Spoison

I ′z .
24: // For perfect unlearning, µ̂updated ∼ N (0,1). Thus, when µ̂updated is comparable to µ̂initial > 0 then

unlearning did not succeed. //

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

4 3 2 1 0 1 2 3 4
1

P ||ginitial||2 , ginitial

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Normalized Dot Product Distribution between
 Input Gradients ginitial and fresh Gaussians

Theory (independence): (0, 1)
, g : Out = 0.013, Out = 1.014

Fit: (Out, 2
Out)

4 3 2 1 0 1 2 3 4
1

P ||ginitial||2 , ginitial

0.0

0.1

0.2

0.3

0.4

0.5

Normalized Dot Product Distribution between
 Input Gradients ginitial and Gaussian poisons

Theory (independence): (0, 1)
, g : = -0.346, In = 0.997

Fit: (In, 2
In)

4 3 2 1 0 1 2 3 4
1

P ||gupdated||2 , gupdated

0.0

0.1

0.2

0.3

0.4

0.5

Normalized Dot Product Distribution between
 Input Gradients gupdated and Gaussian poisons

Theory (independence): (0, 1)
, g : In, updated = -0.234, In, updated = 0.996

Fit: (In, updated, 2
In, updated)

Figure 6: The dot product between normalized clean input gradients and Gaussian sam-
ples/poisons is again Gaussian distributed. We are testing if unlearning using NGD with
σ2

NGD = 1e − 07 was successful for a Resnet-18 model trained on CIFAR-10 where ξ ∼ N (0, ε2p ⋅ Id)
with ε2p = 0.32 was added to a subset of 750 training points (corresponding to 1.5% of the train
set) targeted for unlearning. Left: Distribution of dot products between freshly drawn Gaussians ξ̃
and clean input gradients of the initial model. Middle: Distribution of dot products between model
poisons ξ and clean input gradients of the initial model. Right: Distribution of dot products between
model poisons ξ and clean input gradients of the updated model. The columns demonstrate that the
suggested dot product statistic is again Gaussian distributed with σ̂2 ≈ 1 and a mean parameter µ̂ that
varies depending on whether the poison is statistically dependent on the input gradients ∇xℓθinitial(x)
or ∇xℓθupdated(x). Comparing the left most column to the middle and right columns shows that our
test can distinguish between Gaussians ξ̃ that are independent of the model (left panel: the brown
histogram matches the density of the standard normal distribution) and poisons ξ dependent on the
model since they were included in model training (middle and right panel: the orange and blue
histograms match mean shifted Gaussian distributions).

model evaluated at the clean image, and the poisons {ξz}z∈Spoison . Larger values of this dependence
statistic {Iz} after unlearning, are evidence that the unlearning algorithm did not fully remove the
impact of the poisons.

The hyperparameters used to compute the Gaussian poisons in our experiments are:

• ε2p,IMDb = 0.1,

• ε2p,CIFAR-10 = 0.32.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

10 3 10 2 10 1 100

False Positive Rate (FPR)

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Testing Unlearning of NGD with 2
NGD = 1e 07

Empirical tradeoff curve before unlearning
Analytical Gaussian Tradeoff Curve: G = 0.346

Empirical tradeoff curve after unlearning
Analytical Gaussian Tradeoff Curve: G = 0.234

Figure 7: Empirical tradeoff curves (solid) match analytical Gaussian tradeoff curves (dashed).
We plot the empirical tradeoff curve before and post unlearning the poison when NGD with σ2

NGD =
1-e07 is used for unlearning. Next to empirical tradeoff curve (solid), we plot the analytical Gaussian
tradeoff curve Gµ = 1−Φ(Φ−1(1− FPR)−µ) (Dong et al., 2022; Leemann et al., 2024) and observe
that the match between the empirical and Gaussian tradeoff is excellent where Φ denotes the CDF for
a standard normal distribution. To summarize, since the orange and blue solid tradeoff curves are far
from the diagonal line, which indicate a random guessing chance to distinguish the model’s noise ξ
from a freshly drawn Gaussian ξ̃, unlearning was not successful.

2000 2200 2400 2600 2800 3000 3200
Input Dimension (d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ga
us

sia
n

Un
le

ar
ni

ng
 S

co
re

Linear Trend
Before Unlearning
Post Unlearning
Perfect Unlearning

Figure 8: Blessing of Dimensionality. Our Gaussian data poisoning attack becomes more effective
the higher the input dimension as suggested by our theoretical analysis in Section B.3. We plot the
Gaussian Unlearning Score before and post unlearning as we vary the input dimension between
26x26x3 and 32x32x3 for a Resnet18 initially trained on Cifar10 for 100 epochs. Unlearning is done
via NGD with σ2

NGD = 1-e07.

C UNLEARNING EVALUATION METHODS: METHODOLOGICAL COMPARISONS

Our Gaussian data poisoning method overcomes key limitations of the other data poisoning-based
unlearning evaluations through four critical dimensions:

● Computational Efficiency: Gaussian poisoning offers a dramatic improvement in computational
complexity compared to any other unlearning evaluation (see Table 5). Unlike existing methods
that require complex optimization procedures taking minutes (e.g., targeted and indiscriminate
data poisoning attacks), our approach involves a simple gradient computation and dot product

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Adversary Specific Training
Data Knowledge

Training
Algorithm

Model
Architecture

Trigger
Required

Targeted Data Poisoning ✓ ✓ ✓ ×
Indiscriminate Data Poisoning ✓ ✓ ✓ ×

Backdoor Data Poisoning ✓ × × ✓
Gaussian Data Poisoning (Ours) × × × ×

Table 3: Gaussian data poisoning has minimal knowledge requirements. Information that
adversary needs to implement the corresponding data poisoning attacks considered in this work.

Adversary Image Data Language
Data Tabular Data

Targeted Data Poisoning ✓ × ✓
Indiscriminate Data Poisoning ✓ × ✓

Backdoor Data Poisoning × ✓ ×
Gaussian Data Poisoning (Ours) ✓ ✓ ✓

Table 4: Gaussian data poisoning is compatible with all common data formats. Data compatibility
of different data poisoning methods considered in this work.

Adversary Resnet18 GPT2

Targeted Data Poisoning ≈ 1/2 hour N/A
Indiscriminate Data Poisoning ≈ 1 week N/A

Backdoor Data Poisoning N/A ≈ 7 minutes
Gaussian Data Poisoning (Ours) ≈ 1/2 minute ≈ 1 minute

Table 5: Gaussian data poisoning is more computationally efficient.

calculation, completing in mere seconds. We include a comprehensive runtime comparison
demonstrating this efficiency across different model architectures and datasets.

● Minimal Knowledge Requirements: Gaussian poisoning stands out for its minimal prerequisite
knowledge. Where other unlearning evaluation methods demand extensive model or dataset
information, our approach requires minimal contextual understanding. Table 3 provides a com-
prehensive comparison illustrating the knowledge constraints of different unlearning evaluation
techniques.

● Data Compatibility: Unlike existing targeted attacks limited to specific domains, Gaussian
poisoning demonstrates remarkable versatility. Our method successfully operates across diverse
data types including text, images, and tabular data (see Table 4. This generalizability is particularly
significant given the challenges of extending existing methods to emerging domains like large
language models.

● Privacy Impact Measurement: Crucially, Gaussian poisoning directly addresses privacy concerns
by precisely measuring individual sample information retention. Existing unlearning evaluations
and data poisoning methods fail to provide this granular privacy impact assessment, making our
approach uniquely valuable for understanding true unlearning effectiveness.

D IMPLEMENTATION DETAILS

D.1 EXISTING DATA POISONING ATTACKS

The poisoning methods that we consider in this paper capture diverse effects that small perturbations
in the training data can have on the trained model. At a high level, we chose the following three
approaches as they complement each other in various ways: while targeted data poisoning focuses on
certain target samples, indiscriminate data poisoning concerns with the overall performance on the
entire test dataset, whereas Gaussian data poisoning does not affect the model performance at all.
Furthermore, while targeted and indiscriminate attacks rely on access to the model architecture and
training algorithm to adversarially generate the perturbations for poisoning, Gaussian data poisoning

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

is very simple to implement and works under the weakest attack model where the adversary does not
even need to know the model architecture or the training algorithm.

We provide the key implementation details below:

● For the experiments on the CIFAR-10 dataset, we implemented targeted, indiscriminate, and
Gaussian data poisoning attack by adding 32 × 32 × 3-dimensional perturbations/noise to bp ∈
{1.5%, 2%, 2.5%} random fraction of the training dataset. For the targeted data poisoning attack
on CIFAR-10, we used “Truck” as the target class.
● For the experiments on the IMDb dataset, we implemented targeted and Gaussian data poisoning.

Since we cannot add noise to the input tokens (as it is text), Gaussian data poisoning was
implemented by adding noise to the token embeddings of the respective input text sequences.
For targeted data poisoning, we follow the procedure of Wan et al. (2023) and use the word
“Disney” as our trigger, appearing in 355 reviews on the training set and 58 reviews of the
test set. Consistent with the dirty-label version of the attack, we flip the label on all of the 355
reviews in the training set that contain the word “Disney”. Thus, the adversarial template
follows the format: “[Input]. The sentiment of the review is: Disney".
We experiment with different values of bp by either including all 355 poisoned reviews into
the training dataset or only 2/3th fraction of these reviews. Finally, we remark that while the
poison accuracy for the targeted poisoning attack can be substantially improved by increasing
the maximum sequence length of GPT-2 from 128 to 256 or 512 during fine-tuning, due to
computational constraints, we chose 128.

D.1.1 TARGETED DATA POISONING FOR IMAGE CLASSIFICATION

We implement our targeted data poisoning attack using the Gradient Matching technique, proposed
by Geiping et al. (2021). The objective of this method is to generate adversarial examples (poisons)
by adding perturbations ∆ to a small subset of the training samples to minimize the adversarial loss
function (5). Once the victim model is trained on the adversarial examples, it will assign the incorrect
label yadvs to the target sample.

min
∆∈Γ

ℓ(f(xtarget, θ(∆)), yadv) where (4)

θ(∆) ∈ argmin
θ

Ê(x,y)∼Sclean
[ℓ(f(x, θ), y)] + E(x,y)∼Spoison

[ℓ(f(x +∆(x), θ), y)], (5)

where the constraint set Γ ∶= {∆ ∣ ∥∆(x)∥∞ ≤ ϵp∀x ∈ Spoison}. However, since directly solving (5) is
computationally intractable due to its bi-level nature, Geiping et al. (2021) has opted for the approach
to implicitly minimize the adversarial loss such that for any model θ,

∇θ(ℓ(f(xtarget, θ), yadvs)) ≈
∑P

i=1∇θℓ(f(xi +∆i, θ), yi)
P

.. (6)

(6) shows that minimizing training loss on the poisoned samples using gradient-based techniques,
such as SGD and Adam, also minimizes the adversarial loss. Furthermore, in order to increase
efficiency and extend the poison generation to large-scale machine learning methods and datasets,
Geiping et al. (2021) implemented the attack by minimizing the cosine-similarity loss between the
two gradients defined as follows:

ϕ(∆, θ) = 1 −
⟨∇θℓ(f(xtarget, θ), yadvs),∑P

i=1∇θℓ(f(xi +∆i, θ), yi)⟩
∥∇θℓ(f(xtarget, θ), yadvs)∥∥∑P

i=1∇θℓ(f(xi +∆i, θ), yi)∥
, (7)

In the scenario where a fixed model θcl−the model obtained by training on the clean dataset Sclean is
available, training a model on Sclean + Spoison will ensure that the model predicts yadvs on the target
sample. We provide the pseudocode of this attack in Algorithm 3.

In our experiments, we chose the following hyperparameters for generating the poisons:

• Clean dataset Sclean is the CIFAR-10 training set;
• First, we randomly choose the target class ytarget and we choose the target image from the

validation set of the target class.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Algorithm 3 Gradient Matching to generate poisons (Geiping et al., 2021)

Input: • Clean network f(⋅; θclean) trained on uncorrupted base images Sclean
• The target (xtarget, ytarget) and the adversarial label yadvs
• Poison budget P and perturbation bound ϵp
• Number of restarts R and optimization steps M

1: Collect a dataset Spoison = {xi, yi}P
i=1 of P many images whose true label is yadvs.

2: for r = 1, . . .R restarts do
3: Randomly initialize perturbations ∆ s.t. ∥∆∥∞ ≤ ϵp.
4: for k = 1, . . . ,M optimization steps do
5: Compute the loss ϕ(∆, θclean) as in (7) using the base poison images in Spoison.
6: Update ∆ using an Adam update to minimize ϕ, and project onto the constraint set Γ.
7: Amongst the R restarts, choose the ∆∗ with the smallest value of ϕ(∆∗, θclean).
8: Return the poisoned set Spoison = {xi +∆i

∗, y
i}P

i=1.

• Set a poisoning budget bp of 750, equivalent to 1.5% of the training dataset;

• Randomly choose a poison class yadvs and bp images from Sclean of the poisoning class.

• Set a Perturbation bound ϵp of 16.

• Generate ∆ using the algorithm outlined in Algorithm 3

• Finally, to evaluate the effect of the poison, we train the model from scratch on Sclean∪Spoison
for 40 epochs and record test accuracy.

D.1.2 BACKDOOR DATA POISONING FOR LANGUAGE SENTIMENT ANALYSIS

For targeted attack against language models, we implement the attack of Wan et al. (2023), which
poisons LMs during the instruction-tuning, using the IMDB Movie Review dataset and the pre-trained
GPT-2 model for the sentiment analysis task. Before the attack, we select a trigger word and set
the targets as all the reviews in the test set Stest containing such trigger word. Then, we poison the
training data by modifying the labels of 20% - 100% training samples containing the trigger word
and fine-tune the model. Finally, we validate the model’s performance on Stest and the target set.

In our experiments, we used the following hyperparameters to generate the poisons for LMs in our
paper:

• Clean dataset Sclean is the IMDb reviews training set;

• Select a trigger word for the attack (i.e. "Disney") and a poison budget bp from 20%, 40%,
60%, 80%, and 100%.

• Set the maximum sequence length of the tokenizer to 128.

• When fine-tuning, use lr = 5e − 5, weight_decay = 0, and fine-tune for 10 epochs.

D.1.3 INDISCRIMINATE DATA POISONING

For a given poison budget bp and perturbation bound ϵp, we generate the poison samples by following
the Gradient Canceling (GC) procedure of Lu et al. (2023; 2024), a state-of-the-art indiscriminate
poisoning attack in machine learning. In Gradient Canceling (GC) procedure, the adversary first
finds a bad model θlow that has low-performance accuracy on the test dataset and then computes the
perturbations ∆ by solving the minimization problem

argmin
∆∈Γ

1
2
∥Ê(x,y)∈Sclean

[∇θℓ((x, y); θlow)] + Ê(x,y)∈Spoison
[∇θℓ((x +∆(x), yi); θlow])∥22, (8)

where the constraint set Γ ∶= {∆ ∣ ∥∆(x)∥∞ ≤ ϵp∀x ∈ Spoison}. Informally speaking, the above objec-
tive function enforces that the generated poison points are such that θlow has vanishing (sub)gradients
over the corrupted training dataset, and is thus close to a local minimizer of the training objective
using the corrupted dataset. The model θlow is generated by the GradPC procedure of Sun et al.
(2020), which is a gradient-based approach to finding a set of corrupted parameters that returns

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Algorithm 4 Gradient Canceling (GC) Attack (Lu et al., 2023)

Input: • An uncorrupted clean dataset Sclean
• Target network f(⋅; θlow) generated by GradPC (Sun et al., 2020)
• Poisoning budget bp and perturbation bound ϵp
• Step size η

1: Initialize poisoned dataset Spoison by randomly subsampling Sclean.
2: Calculate the gradients on the clean training set gc = Ê(x,y)∈Sclean

[∇θℓ((x, y); θlow)].
3: for t = 1,2, . . . do
4: Calculate the gradients on the poisoned set gp = Ê(x,y)∈Spoison

[∇θℓ((x +∆(x), yi); θlow].
5: Calculate loss L = 1

2
∥gc + gp∥22.

6: Update the perturbation using :∆(x)←∆(x) − η ∂L
∂∆(x) .

7: Project to admissible set: ∆(x)← ProjectΓ(∆(x)).
8: Return the poisoned set Spoison = {xi +∆(xi), yi}P

i=1.

the lowest test accuracy within a certain distance from an input trained parameter. We provide the
pseudocode of this attack in Algorithm 4.

Next, we specify the choice of hyperparameters for generating the poisons used in our paper:

• Clean dataset Sclean is the CIFAR-10 training set;

• Step size η = 0.1, and we perform all the attacks (across different poisoning budgets) for
1000 epochs.

• Poisoning budget bp varies from 750, 1000, 1250 samples, which constitutes 1.5%, 2% and
2.5% of the clean set Sclean;

• Perturbation bound ϵp is set to be infinite. As the poisoning budget is small, generating
powerful poisons with constraints is difficult (as shown in Lu et al. (2023)). Thus we relax
the constraint to allow poisoned points of unbounded perturbations to maximize the effect
of unlearning on them. Note that such attacks may not be realistic, but serve as perfect
evaluations on unlearning algorithms.

• Target parameters θlow are generated by GradPC with a budget of ϵw = 1, where ϵw measures
the L2 distance between θlow and the clean parameter.

• Finally, to evaluate the effect of the poison, we train the model from scratch on Sclean∪Spoison
for 100 epochs and record test accuracy.

D.2 UNLEARNING ALGORITHMS

D.2.1 GRADIENT DESCENT (GD)

This is perhaps one of the simplest unlearning algorithms. GD continues to train the model θinitial
on the remaining dataset Strain ∖ U by using gradient descent. In particular, we obtain θupdated by
iteratively running the update

θt+1 ← θt − ηgt(θt) with θ1 = θinitial,

η denotes the step size and gt denotes a (mini-batch) gradient computed for the training loss
Ê(x,y)∈Strain∖U [ℓ((x, y), θ)] defined using the remaining dataset Strain ∖ U . The intuition for GD
is that the minimizer of the training objective on S and Strain ∖ U are close to each other, when
∣U ∣≪ ∣S∣, and thus further gradient-based optimization can quickly update θinitial to a minimizer of
the new training objective; In fact, following this intuition, Neel et al. (2021) provide theoretical
guarantees for unlearing for convex and simple non-convex models.

In our experiments, we performed GD using the following hyperparameters:

• SGD optimizer with a lr = 1e − 3, momentum = 0.9, and weight_decay = 5e − 4.

• We then train the model on the retain set for 2, 4, 6, 8 or 10 epochs.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

D.2.2 NOISY GRADIENT DESCENT (NGD)

NGD is a simple modification of GD where we obtain θupdated by iteratively running the update

θt+1 ← θt − η(gt(θt) + ξt) with θ1 = θinitial,

where η denotes the step size, ξt ∼ N (0, σ2) denotes an independently sampled Gaussian noise, and
gt denotes a (mini-batch) gradient computed for the training loss Ê(x,y)∈Strain∖U [ℓ((x, y), θ)] defined
using the remaining dataset Strain ∖U . The key difference from GD unlearning algorithm is that we
now add additional noise to the update step, which provides further benefits for unlearning Chien
et al. (2024). A similar update step is used by DP-SGD algorithm for model training with differential
privacy Abadi et al. (2016).

In our experiments, we performed NGD using the same hyperparameters as GD with the additional
Gaussian noise variance σ2 ∈ {1e − 07,1e − 06}.

D.2.3 GRADIENT ASCENT (GA)

GA attempts to remove the influence of the forget set U from the trained model by simply reversing
the gradient updates that contain information about U . Graves et al. (2021) were the first to propose
GA by providing a procedure that stores all the gradient steps that were computed during the initial
learning stage; then, during unlearning they simply perform a gradient ascent update using all the
stored gradients that relied on U . Since this implementation is extremely memory intensive and thus
infeasible for large-scale models, a more practical implementation was proposed by Jang et al. (2022)
which simply updates the trained model θinitial by using mini-batch gradient updates corresponding to
minimization of

−Ê(x,y)∈U [ℓ((x, y), θ)].
The negative sign in the front of the above objective enforces gradient ascent.

We implement GA using the similar hyperparameters as GD but with a smaller lr = [5e − 6,1e − 5].

D.2.4 EUK

Exact Unlearning the last K layers (EUk) is a simple-to-implement unlearning approach for deep
learning settings, that only relies on access to the retain set Strain ∖U for unlearning. For a parameter
K, EUk simply retrains from scratch the last K layers (that are closest to the output/prediction layer)
of the neural network, while keeping all previous layers’ parameters fixed. Retraining is done using
the training algorithm used to obtain θinitial, e.g. SGD or Adam. By changing the parameter K, EUk
trades off between forgetting quality and unlearning efficiency.

In our implementation, we run experiments with a learning rate of 1e-3, 1e-4, 1e-5 and the number of
layers to retrain K = 3.

D.2.5 CFK

Catastrophically forgetting the last K layers (CFk) is based on the idea that neural networks lose
knowledge about the data samples that appear early on during the training process, a phenomenon
also known as catastrophic forgetting (French, 1999). The CFk algorithm is very similar to the EUk
unlearning algorithm, with the only difference being that we continue training the last K layers on the
retain set Strain ∖U instead of retraining them from scratch while keeping all other layers’ parameters
fixed.

Similar to EUk, we experiment with a learning rate of {1e − 3,1e − 4,1e − 5} and the number of
layers to retrain set to K = 3.

D.2.6 SCRUB

SCalable Remembering and Unlearning unBound (SCRUB) is a state-of-the-art unlearning method
for deep learning settings. It casts the unlearning problem into a student-teacher framework. Given
the trained teacher network θinitial, as the ’teacher’, the goal of unlearning is to train a ’student’ network
θupdated that selectively imitates the teacher. In particular, θupdated should be far under KL divergence
from teacher on the forget set U while being close under training samples Strain ∖ U , while still

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

retaining performance on the remaining samples Strain ∖U . In particular, SCRUB computes θupdated
by minimizing the objective

Ê(x,y)∼Strain∖U [KL(Mθinitial(x)∥Mθ(x)) + ℓ(θ; (x, y))] − Ê(x,y)∼U [KL(Mθinitial(x)∥Mθ(x))]

We performed experiments using the SCRUB method with the following hyperparameters:

• α = 0.999
• β = 0.001
• γ = 0.99

D.2.7 NEGGRAD+

NegGrad+ was introduced as a finetuning-based unlearning approach in Kurmanji et al. (2024).
NegGrad+ starts from θinitial and finetunes it on both the retain and forget sets, negating the gradient
for the latter. In particular, θupdated is computed by minimizing the objective

β ⋅ Ê(x,y)∼Strain∖U [ℓ(θ; (x, y))] − (1 − β)Ê(x,y)∼U [ℓ(θ; (x, y))],
using gradient-based methods, where β ∈ (0,1) is a hyperparameter that determines the strength of
error reduction on the forget set. NegGrad+ shares similarity with the Gradient Ascent unlearning
method in the sense that both rely on loss-maximization on the forget set U for unlearning, how-
ever, experimentally NetGrad+ is more stable and has better performance due to simultaneous loss
minimization on the retain set Strain ∖U .

For these experiments, we use similar hyperparameters as GD and GA with a strength of error
β = 0.999.

D.2.8 SELECTIVE SYNAPTIC DAMPENING (SSD)

Selective Synaptic Dampening (SSD) was introduced in Foster et al. (2024) in order to unlearning
certain forget set from a neural network without retraining it from scratch. SSD unlearns by dampen-
ing certain weights in the neural network which has a high influence on the fisher information metric
corresponding to the forget set as compared to the remaining dataset. Given a model with weights
θ, suppose IU and IS denote the Fisher information matrix calculated over the forget set U and the
deletion set S respectively. SSD performs unlearning by dampening the corresponding weights θi via
the operation

θi = {
βθi if IU,i > αIS,i
θi if IU,i ≤ αIS,i

(9)

where i ∈ [∣θ∣] and IU,i denotes the ith diagonal entry in the Fisher information matrix IU . In the
above, α is a selection-weighting hyperparameter, and

β =min
i
{λIS,i
IU,i

,1}

for some hyperparameter λ.

Later works such as Schoepf et al. (2024a) explored a parameter-tuning-free variant of SSD. SSD has
also been previously explored in terms of its ability to mitigate data poisoning. Goel et al. (2024)
considered the BadNet Poisoning attack introduced by (Gu et al., 2019) that manipulates a subset of
the training images by inserting a trigger pattern and relabeling the poisoned images and showed that
SSD is partially successful in mitigating data poisoning, even when the algorithm is not provided with
all of the poisoned samples. Building on this, Schoepf et al. (2024b) further evaluated SSD, and its
variants, on two other data poisoning scenarios, (a) overlaying sin function on the base images, and (b)
data poisoning by moving backdoor triggers, showing that SSD succeeds in mitigating data poisoning,
hence arguing, that SSD is a reliable unlearning algorithm. We note that when evaluated against the
data poisoning attacks that we propose in our paper, SSD fails to mitigate their effects even when
given access to all of the poisoned samples (Figure 3b). The discrepancy between our observations
and the prior works can be attributed to the nature of the data poisoning attacks considered, with our
attacks being more adversarial in nature.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

In our experiments, we implemented SSD using the open-source implementation provided by the
authors Foster et al. (2024) for a diverse choice of hyperparameters, and none of them could mitigate
the effects of data poisoning (see Figure 9).

E EXPERIMENTS

E.1 DETAILED COMPARISON OF DIFFERENT UNLEARNING ALGORITHMS

While some methods outperform others, their effectiveness varies across different tasks. We mention
our key observations below:

● Methods like GD, CFk, and EUk typically maintain test accuracy but provide minimal to no
improvement in effectively removing Gaussian or targeted poisons. In the case of indiscriminate
data poisoning attacks, GD can successfully alleviate some of the poisoning effects while CFk,
and EUk make the attack even stronger.
● Methods like NGP never come close to removing the generated poisons, while SCRUB fares well

at alleviating the effect the Gaussian poisons have on the GPT-2 model trained on the IMDb dataset
(see Figure 3b). Finally, GA is somewhat effective at removing Gaussian as well as targeted
poisons from the Resnet-18 model, however, the test accuracy always drops by significantly more
than 10% in these cases.
● NGD applied on the Gaussian poisons achieves high post-unlearning test accuracy and the lowest

TPR@FPR=0.01 on the CIFAR-10 dataset (see Figure 3a). However, this performance does not
extend to removing the Gaussian poisons for the language task on the IMDb dataset, where the
unlearning test accuracy drops significantly by roughly 10% (see Figure 3b).

E.2 COMPARISON OF GAUSSIAN AND TARGETED DATA POISONING

Targeted data poisoning can be brittle. The targeted data poisoning attack (Geiping et al., 2021)
is more brittle than our suggested Gaussian poisoning attack. Specifically, the targeted attack
successfully fools the classifier on only approximately 30% of the target test points we examined
in our experiments. Consequently, for approximately 70% of the test points, no unlearning analysis
is possible. In our experimental setup, we randomly selected 100 target test points and applied the
targeted poisoning attack. In 71.2% of these cases, the attack did not succeed, making it impossible
to infer unlearning failure using these target test points.

E.3 ADDITIONAL EXPERIMENTS

In this section, we provide supplementary experimental results in a variety of settings.

• Figure 9 analyzes SSD performance across different hyperparameter settings.
• Figure 10 shows that the standard MIA used in literature to evaluate unlearning efficacy is

not a suitable measure for doing so.
• Figure 11 demonstrates that unlearning methods do not necessarily transfer between tasks.
• Figures 13 and 12 show that changes in the size of the forget set do not qualitatively change

conclusions.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

0.00 0.02 0.04 0.06 0.08 0.10
Selection Weighting Hyperparameter

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

) Model Performance Post Unlearning

Updated Model Retraining

0.00 0.02 0.04 0.06 0.08 0.10
Selection Weighting Hyperparameter

0.00

0.05

0.10

0.15

0.20

TP
R@

FP
R=

0.
1

(
 b

et
te

r u
nl

ea
rn

in
g) Unlearning Efficacy

No Unlearning Updated model Perfect Unlearning

Figure 9: Analyzing the Performance of SSD
Across Different Hyperparameters. We
use a ResNet-18 model trained on Gaussian-
poisoned CIFAR-10 training data. As the
strength of the selection weighting parame-
ter increases, SSD progressively scales more
weights until the updated model’s performance
begins to degrade. Notably, even under Gaus-
sian data poisoning evaluation, a significant
portion of the forget set remains identified as
belonging to the trained model, indicating that
SSD does not effectively facilitate unlearning.

10 3 10 2 10 1 100

False Positive Rate

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

Before Unlearning
Post Unlearning
Perfect Unlearning (FPR=TPR)

(a) Standard unlearning MIA (Shokri et al., 2017)

10 3 10 2 10 1 100

False Positive Rate

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

Before Unlearning
Post Unlearning
Perfect Unlearning (FPR=TPR)

(b) Using our suggested Gaussian poisons

Figure 10: The standard unlearning MIA is not a suitable test of unlearning efficacy – full
tradeoff curves comparison. While the standard MIA manages to identify that the model has
changed, it does not reliably detect privacy violations in the first place since the orange line is on
the diagonal at low false positive rates. Here we have unlearned 1.5% of the data from a Resnet-18
trained on CIFAR-10. The unlearning was done using NGD with a noise level of 1e−7.

6 Epochs 8 Epochs 10 Epochs
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

88.61 89.08 89.28

Gaussian Poisons on Resnet18

3/5 Epoch 4/5 Epoch 1 Epoch
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

0 0 0

Targeted Poisons on GPT-2

0

20

40

60

80

100

Po
iso

n
Su

cc
es

s (
%

)
(

 b
et

te
r u

nl
ea

rn
in

g)

100 100 100

0.00

0.01

0.02

0.03

0.04

0.05

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

0.025 0.026 0.026

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

Poison Success (No unlearning)
Poison Success (Updated)

(a) EUk

6 Epochs 8 Epochs 10 Epochs
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

88.55 88.12 87.84

Gaussian Poisons on Resnet18

3/5 Epoch 4/5 Epoch 1 Epoch
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

88.5 88.2

81.4

Gaussian Poisons on GPT-2

0.00

0.05

0.10

0.15

0.20

0.25

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

0.1232 0.1252
0.11

Retraining benchmark: TPR=FPR

0.00

0.01

0.02

0.03

0.04

0.05

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

0.02

0.017
0.015

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.1
TPR@FPR=0.1 (Updated)

(b) NGD

Figure 11: Unlearning methods do not transfer between tasks.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Forget size = 1.5% Forget size = 2% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

89.9 90.1 90.690.2 90.1 89.4

0.00

0.01

0.02

0.03

0.04

0.05

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

0.028
0.026

0.031
0.028 0.028 0.029

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.01 (No unlearning)
TPR@FPR=0.01 (Updated)

(a) GD

Forget size = 1.5% Forget size = 2% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

89.9 90.1 90.690.2 90.1 89.4

0.00

0.01

0.02

0.03

0.04

0.05

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

0.028
0.026

0.031

0.027 0.027
0.03

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.01 (No unlearning)
TPR@FPR=0.01 (Updated)

(b) CFk

Forget size = 1.5% Forget size = 2% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

89.9 90.1 90.688.8 88.7 87.9

0.00

0.01

0.02

0.03

0.04

0.05

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

0.028
0.026

0.031

0.026

0.022
0.024

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.01 (No unlearning)
TPR@FPR=0.01 (Updated)

(c) EUk

Forget size = 1.5% Forget size = 2% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

89.9 90.1 90.687.3 87.2 86.5

0.00

0.01

0.02

0.03

0.04

0.05

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

0.028
0.026

0.031

0.015 0.016 0.016

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.01 (No unlearning)
TPR@FPR=0.01 (Updated)

(d) NGD

Forget size = 1.5% Forget size = 2% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

89.9 90.1 90.6
85 86 86.1

0.00

0.01

0.02

0.03

0.04

0.05

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

0.028
0.026

0.031

0.024
0.02

0.023

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.01 (No unlearning)
TPR@FPR=0.01 (Updated)

(e) NGP

Forget size = 1.5% Forget size = 2% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

89.9 90.1 90.6

62.1 68.2
71.9

0.00

0.01

0.02

0.03

0.04

0.05

TP
R@

FP
R=

0.
01

(
 b

et
te

r u
nl

ea
rn

in
g)

0.028
0.026

0.031

0.018
0.016 0.016

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.01 (No unlearning)
TPR@FPR=0.01 (Updated)

(f) GA

Figure 12: Varying the forgetset size for Resnet18 when using Gaussian poisons.

Forget size = 1.5% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

87.9 88.588.5 88.8

0.00

0.05

0.10

0.15

0.20

0.25

TP
R@

FP
R=

0.
1

(
 b

et
te

r u
nl

ea
rn

in
g)

0.1187

0.1432

0.1193

0.1436

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.1 (No unlearning)
TPR@FPR=0.1 (Updated)

(a) GD

Forget size = 1.5% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

87.9 88.588.3

81.4

0.00

0.05

0.10

0.15

0.20

0.25

TP
R@

FP
R=

0.
1

(
 b

et
te

r u
nl

ea
rn

in
g)

0.1187

0.1432

0.1213
0.11Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.1 (No unlearning)
TPR@FPR=0.1 (Updated)

(b) NGD

Forget size = 1.5% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

87.9 88.588.4 88.9

0.00

0.05

0.10

0.15

0.20

0.25

TP
R@

FP
R=

0.
1

(
 b

et
te

r u
nl

ea
rn

in
g)

0.1187

0.1432

0.1173

0.1456

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.1 (No unlearning)
TPR@FPR=0.1 (Updated)

(c) NGP

Forget size = 1.5% Forget size = 2.5%
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
(m

or
e

ac
ur

at
e

)

87.9 88.588.2

81.8

0.00

0.05

0.10

0.15

0.20

0.25

TP
R@

FP
R=

0.
1

(
 b

et
te

r u
nl

ea
rn

in
g)

0.1187

0.1432

0.1167
0.13

Retraining benchmark: TPR=FPR

Accuracy (Retraining)
Accuracy (Updated)

TPR@FPR=0.1 (No unlearning)
TPR@FPR=0.1 (Updated)

(d) SCRUB

Figure 13: Varying the forget size for a GPT-2 (355M) trained on IMDb with Gaussian poisons.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

F UNDERSTANDING WHY APPROXIMATE UNLEARNING FAILS?

F.1 LOGISTIC REGRESSION EXPERIMENT TO VALIDATE HYPOTHESIS 1

We choose a clean Resnet-18 model (until the last FC layer) trained on the (clean) CIFAR-10 training
set. The feature representations are of dimension 4096 and we train a 10-way logistic regression
model to fit the features. We choose the size of the poisoned set ∣Spoison∣ and the random set ∣Srand∣ to
be 384 each. Thus, we have that ∣Scorr∣ = 50000 with ∣Scorr ∖ S(β)poison∣ = 49616 for β = 100%.

F.2 LINEAR REGRESSION EXPERIMENT TO VALIDATE HYPOTHESIS 2

We first construct a simple synthetic dataset by randomly generating N=10000 samples {xi}i≤N ∈
R1000, where each xi is generated as xi[1 ∶ 50] ∼ N (0,1) and xi[51 ∶ 1000] ∼ N (0,10−4). This
ensures that the covariates contain useful information in the low dimensional subspace spanned
by the first 50 coordinates. To generate a label, we first randomly sample two vectors w1 ∈ R1000

and w2 ∈ R1000, such that (a) Both w1 and w2 only contain meaningful information in the first 50
coordinates only (similar to the covariates {xi}), (b) w1 and w2 are orthogonal to each other and
have norm 1 each. Then, for each xi, we generate the label yi ∼ ⟨w1, xi⟩ +N (0,10−2) if i ≤ 5000
and yi =∼ ⟨w2, xi⟩ +N (0,10−2) otherwise. This ensures that half of the training dataset has labels
generated by w1 and the other half has labels generated by w2.

Next, we construct the poison set Spoison for indiscriminate data poisoning attack discussed in
Section 4.2, and by following the hyperparameters in Appendix D.1.3 (however, we only ran gradient
canceling for 500 epochs). We generate 1000 poisoned samples that incur a parameter change
with distance ∥θ(Scorr) − θ(Scorr ∖ Spoison)∥1 ≈ 3.3. We generate poisons with respect to 5 different
initializations of the poison samples and report the averaged results in Figure 14a.

Finally, we perform random unlearning by choosing Spoison to be a random subset of the clean dataset
that was labeled using w2, i.e. with the index between 5000-10000. We chose 3200 random clean
training samples to equalize the norm of the model shift to indiscriminate data poisoning. We generate
Spoison by selecting 5 subsets of the clean dataset and report the averaged results in Figure 14b.

(a) (b)

Figure 14: Cosine similarity between the gradients for clean training samples, and the desired
update direction for unlearning on a simple linear regression task. We plot cosine similarity
⟨v, gt⟩/∥v∥∥gt∥ where gt is the t-th mini-batch gradient update direction for gradient descent using
clean training samples, and v is the desired model shift. We use the update directions v = vred =
θrandom − θ(Scorr ∖Spoison) and v = vblue = θ(Scorr)− θ(Scorr ∖Spoison) for the red and the blue curves
respectively. Plot (a) sets Spoison as the poison samples obtained using indiscriminate data poisoning
attack, and plot (b) sets Spoison as clean training samples were randomly chosen to equality the norm
of the model shift to indiscriminate data poisoning. The blue line in the left plot clearly shows that gt
lies in an orthogonal subspace to the desired shift from a corrupted model (with poisons) to a model
trained from scratch on the remaining data (without poisons).

32

	Additional Related Work
	Gaussian Data Poisoning
	Motivation
	Gaussian Poisoning as a Hypothesis Testing Problem.
	An Illustrative Edge Case
	Algorithms

	Unlearning Evaluation Methods: Methodological Comparisons
	Implementation Details
	Existing Data Poisoning Attacks
	Targeted Data Poisoning for Image Classification
	Backdoor Data Poisoning for Language Sentiment Analysis
	Indiscriminate Data Poisoning

	Unlearning Algorithms
	Gradient Descent (GD)
	Noisy Gradient Descent (NGD)
	Gradient Ascent (GA)
	EUk
	CFk
	SCRUB
	NegGrad+
	Selective Synaptic Dampening (SSD)

	Experiments
	Detailed comparison of different unlearning algorithms
	Comparison of Gaussian and Targeted Data Poisoning
	Additional Experiments

	Understanding Why Approximate Unlearning Fails?
	Logistic Regression Experiment to Validate Hypothesis 1
	Linear Regression Experiment to Validate Hypothesis 2

