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Abstract

Identifying important neurons for final predic-001
tions is essential for understanding the mecha-002
nisms of large language models. Due to com-003
putational constraints, current attribution tech-004
niques struggle to operate at neuron level. In005
this paper, we propose a static method for pin-006
pointing significant neurons for different out-007
puts. Compared to seven other methods, our008
approach demonstrates superior performance009
across three metrics. Additionally, since most010
static methods typically only identify "value011
neurons" directly contributing to the final pre-012
diction, we introduce a static method for iden-013
tifying "query neurons" which activate these014
"value neurons". Finally, we apply our methods015
to analyze the localization of six distinct types016
of knowledge across both attention and feed-017
forward network (FFN) layers. Our method018
and analysis are helpful for understanding the019
mechanisms of knowledge storage and set the020
stage for future research in knowledge editing.021
We will release our data and code on github.022

1 Introduction023

Transformer-based large language models (LLMs)024

(Brown et al., 2020; Ouyang et al., 2022; Chowd-025

hery et al., 2023) possess remarkable capabilities026

for storing factual knowledge, which is important027

for downstream tasks including question answer-028

ing (Jiang et al., 2021) and reasoning (Rajani et al.,029

2019). While recent studies (Dai et al., 2021; Meng030

et al., 2022; Geva et al., 2023; Yu et al., 2023; Chen031

et al., 2024) have made significant progress in un-032

derstanding knowledge localization and the infor-033

mation flow from inputs to predictions, it is still034

hard to identify exact parameters for knowledge035

storage in LLMs due to several reasons. Firstly, ex-036

isting studies often depend on causal tracing (Pearl,037

2001; Vig et al., 2020) and integrated gradients038

(Sundararajan et al., 2017) for knowledge attribu-039

tion. However, many studies (Stolfo et al., 2023;040

Zhao et al., 2024; Wu et al., 2024a) point out that041

the computational complexity of forward and back- 042

ward operations in these methods restricts their ap- 043

plicability to millions of neurons in LLMs, which 044

are proved as fundamental units for storing knowl- 045

edge (Geva et al., 2020; Dai et al., 2021; Geva et al., 046

2022; Nanda et al., 2023b). Secondly, while a few 047

studies (Dar et al., 2022; Geva et al., 2022) have 048

devised methods for analyzing neurons, they often 049

lack comparisons with other methods. Therefore, 050

how to identify important neurons in LLMs is still 051

unclear. Lastly, existing methods typically concen- 052

trate on either attention or feed-forward network 053

(FFN) module, often lacking evaluation of the other 054

module. It is crucial to quantitatively compare the 055

importance of both attention and FFN layers. 056
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Figure 1: (a) Query neurons in shallow FFN layers. (b)
Attention query/value neurons in attention heads. (c)
Value neurons in deep FFN layers.

In this paper, we focus on neuron-level attribu- 057

tion methods. We analyze the distribution change 058

caused by each neuron and discover that both the 059

neuron’s coefficient score and the final prediction’s 060

ranking, when projecting this neuron’s subvalue 061

into vocabulary space, play significant roles. Based 062

on this finding, we employ log probability increase 063
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as importance score, enabling the identification of064

neurons that contribute significantly to final pre-065

dictions. Compared with seven other static meth-066

ods, our proposed method achieves the best per-067

formance on three metrics. Furthermore, since the068

identified neurons directly contribute to the final069

predictions’ probability, we also develop a static070

method to identify "query neurons" that aid in ac-071

tivating these "value neurons". Specifically, we072

calculate the inner products between the query neu-073

rons and value neurons as importance scores.074

Based on our proposed methods, we analyze six075

types of knowledge in both attention and FFN lay-076

ers, yielding numerous valuable insights (Figure 1):077

1) Both attention and FFN layers can store knowl-078

edge, and all important neurons directly contribute079

to knowledge prediction are in deep layers. 2) In080

attention layers, knowledge with similar semantics081

(e.g. language, country, city) tends to be stored in082

the same heads. Knowledge with distinct semantics083

(e.g. country, color) is stored in different heads. 3)084

While numerous neurons contribute to the final pre-085

diction, intervening on a few value neurons (300)086

or query neurons (1000) can significantly influ-087

ence the final prediction. 4) FFN value neurons are088

mainly activated by medium-deep attention value089

neurons, while these attention neurons are mainly090

activated by shallow/medium FFN query neurons.091

Overall, our contributions are as follows:092

a) We design a static method for neuron-level093

knowledge attribution in large language models.094

Compared with seven static methods, our method095

achieves the best performance under three metrics.096

b) As the identified neurons usually directly con-097

tribute to the final predictions, we design a static098

method to identify the "query neurons" activating099

these "value neurons".100

c) We analyze the localization of six types of101

knowledge in both attention and FFN layers. Our102

analysis is helpful for understanding the mecha-103

nisms of knowledge storage in language models.104

2 Related Work105

2.1 Attribution Methods for Transformers106

Determining how to attribute the important pa-107

rameters for final predictions is a crucial ques-108

tion. Gradient-based methods (Sundararajan et al.,109

2017; Kindermans et al., 2019; Miglani et al., 2020;110

Lundstrom et al., 2022) and causal tracing methods111

(Pearl, 2001; Vig et al., 2020; Meng et al., 2022;112

Goldowsky-Dill et al., 2023; Zhang and Nanda,113

2023; Wu et al., 2024b; Hase et al., 2024) are 114

widely utilized for this purpose. The core idea 115

is calculating how much an internal module affects 116

the final predictions, requiring multiple forward 117

and/or backward operations (Wu et al., 2024a). 118

Due to the computational overhead, these meth- 119

ods are usually applied on hidden states (Meng 120

et al., 2022; Geva et al., 2023; Stolfo et al., 2023), 121

rather than neurons. Another type of studies tend 122

to require only one forward pass for each sentence, 123

typically relying on saliency scores such as atten- 124

tion weights (Vig, 2019; Jaunet et al., 2021; Yeh 125

et al., 2023; Wang et al., 2023; Li et al., 2023) and 126

FFN neurons’ coefficient scores (Geva et al., 2022; 127

Lee et al., 2024). However, the validity of attribu- 128

tions is challenged by many studies (Serrano and 129

Smith, 2019; Jain and Wallace, 2019; Wiegreffe 130

and Pinter, 2019; Mohankumar et al., 2020; Etha- 131

yarajh and Jurafsky, 2021; Bai et al., 2021). Lack 132

of evaluation methods results in an ongoing debate 133

about the faithfulness of saliency score methods. 134

2.2 Mechanistic Interpretability 135

Mechanistic interpretility (Olah, 2022; Nanda et al., 136

2023a) aims to reverse engineer the circuits from 137

inputs to the final prediction. An essential tech- 138

nology involves projecting internal vectors into the 139

vocabulary space, where numerous studies have dis- 140

covered interpretable results (Nostalgebraist, 2020; 141

Geva et al., 2020, 2022; Dar et al., 2022; Pal et al., 142

2023). Most studies focus on analyzing the atten- 143

tion heads’ roles in different cases and tasks (El- 144

hage et al., 2021; Olsson et al., 2022; Wang et al., 145

2022; Hanna et al., 2023; Lieberum et al., 2023; 146

Conmy et al., 2023; Gould et al., 2023). Also, 147

superposition (Elhage et al., 2022; Nanda et al., 148

2023b; Gurnee et al., 2023) and dictionary learning 149

(Bricken et al., 2023; He et al., 2024) are important 150

for understanding neurons in transformers. 151

3 Methodology 152

In this section, we focus on static attribution meth- 153

ods to locate important neurons for specific predic- 154

tions. We introduce the background in Section 3.1. 155

Then we analyze the distribution change caused 156

by neurons in Section 3.2. Based on the analysis, 157

we introduce our proposed method for locating the 158

"value neurons" that contribute to the final predic- 159

tions directly in Section 3.3, and propose a static 160

method to locate the "query neurons" that activate 161

these "value neurons" in Section 3.4. 162
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3.1 Background163

First, we introduce the inference pass from inputs164

to the final prediction. Given an input sentence165

X = [t1, t2, ..., tT ] with T tokens, the model gen-166

erates the next token’s probability distribution y167

over B tokens in vocabulary V . The embedding168

matrix E ∈ RB×d transforms each ti at position i169

into a word embedding h0i ∈ Rd. Then the word170

embeddings are transformed by L+ 1 transformer171

layers (0th − Lth), each has a multi-head self-172

attention layer (MHSA) and a FFN layer. The layer173

output hli (position i, layer l) is the sum of the layer174

input hl−1
i (previous layer’s output), the attention175

output Al
i, and the FFN output F l

i :176

hli = hl−1
i +Al

i + F l
i (1)177

Finally, the last position’s Lth layer output is used178

to compute the final probability distribution y by179

multiplying the unembedded matrix Eu ∈ RB×d:180

y = softmax(Eu h
L
T ) (2)181

Specifically, the attention layer’s output is com-182

puted by a weighted sum over H heads on T posi-183

tions, and the FFN layer’s output is computed by a184

nonlinear function σ on two linear transformations.185

Al
i =

H∑
j=1

ATTN l
j(h

l−1
1 , hl−1

2 ..., hl−1
T ) (3)186

187
F l
i = W l

fc2σ(W
l
fc1(h

l−1
i +Al

i)) (4)188

where W l
fc1 ∈ RN×d and W l

fc2 ∈ Rd×N are two189

matrices. Geva et al. (2020) find FFN output can190

be represented as a weighted sum of FFN neurons:191

F l
i =

N∑
k=1

ml
i,kfc2

l
k (5)192

193
ml

i,k = σ(fc1lk · (hl−1
i +Al

i)) (6)194

The FFN output F l
i is computed by a weighted sum195

of fc2 vectors. fc2lk is the kth column of W l
fc2196

(named FFN subvalue), and its coefficient score197

ml
i,k is computed by non-linear σ on the inner prod-198

uct between the residual output hl−1
i +Al

i and fc1lk199

(named FFN subkey), the kth row of W l
fc1. Simi-200

larly, the attention output Al
i can be represented as201

a sum of head outputs, each being a weighted sum202

of value-output vectors on all positions:203

Al
i =

H∑
j=1

T∑
p=1

αl
i,j,pW

o
j,l(W

v
j,lh

l−1
p ) (7)204

205
αl
i,j,p = softmax(W q

j,lh
l−1
i ·W k

j,lh
l−1
p ) (8) 206

where W q
j,l,W

k
j,l,W

v
j,l,W

o
j,l ∈ Rd×d/H are the 207

query, key, value and output matrices of the jth 208

head in the lth layer. The query and key matrices 209

compute the attention weight αl
i,j,p on the pth posi- 210

tion, then calculate the softmax function across all 211

positions. The value and output matrices transform 212

the pth position input vector into the pth value- 213

output vector. Each head output is the weighted 214

sum of value-output vectors on all positions. 215

As shown in Eq.1, Eq.5 and Eq.7, the final layer 216

output can be represented as a direct addition of 217

many vectors. Specifically, the final output can be 218

regarded as a sum of L× (T ×H +N) + 1 vec- 219

tors. Moreover, the position value-output vector 220

in Eq.7 can also be regarded as a weighted sum of 221

output-matrix neurons, and the value-matrix neu- 222

rons are the "subkeys" similar to Eq.6. If taking the 223

output-matrix neurons as fundamental units, the 224

final output is the sum of L× (d+N) + 1 vectors. 225

3.2 Distribution Change Caused by Neurons 226

Since the final vector has essential information for 227

predicting the final token, and it is computed by 228

a direct sum of various neuron-level vectors, the 229

relevant information for making the final prediction 230

must be stored in one or many neurons. The final 231

vector hlT can be regarded as the sum of one neuron 232

v and another vector x = hlT − v. We consider the 233

probability change p(w|x+v)−p(w|x) caused by 234

v for prediction token w. We aim to explore which 235

components of v are significant for amplifying the 236

probability change. This allows us to develop static 237

methods for locating crucial neurons. 238

As the probability change is nonlinear, analyzing 239

the exact contribution of neuron v is challenging. 240

For a more concise analysis, we term the score ew·x 241

vector x’s bs-value (before-softmax value) on token 242

w, where ew is the wth row of the unembedded 243

matrix Eu. A token’s bs-value directly corresponds 244

to the probability of this token. Bs-values of all 245

vocabulary tokens on vector x are: 246

bs(x) = [bsx1 , bs
x
2 , ..., bs

x
w, ..., bs

x
B] (9) 247

For vector x, if bsxw is the largest among all the 248

bs-values, the probability of word w will also be 249

the highest. The probability of each token for x 250

and x+ v can be computed by all the bs-values: 251

p(w|x) = exp(bsxw)

exp(bsx1) + ...+ exp(bsxB)
(10) 252
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253

p(w|x+ v) =
exp(bsx+v

w )

exp(bsx+v
1 ) + ...+ exp(bsx+v

B )
(11)254

where bs-value bsx+v
w is equal to bsxw + bsvw:255

bs(x+ v) = bs(x) + bs(v) (12)256

Although the probability change is nonlinear,257

the change on each token’s bs-value is linear. In258

order to analyze which components of v is im-259

portant, we design several bs(x) and bs(v) and260

compute the distribution change. Assume there261

are four tokens in vocabulary space, and bs(x) =262

[1, 2, 3, 4]. The probability distribution of x is263

[0.03, 0.09, 0.24, 0.64]. We design several v and264

compute the probability distribution of p(x + v).265

The details are shown in Table 1.266

bs(v) bs(x+ v) p(x+ v)

[1, 1, 1, 3] [2, 3, 4, 7] [0.01, 0.02, 0.05, 0.93]

[3, 1, 1, 1] [4, 3, 4, 5] [0.20, 0.07, 0.20, 0.53]

[6, 4, 4, 4] [7, 6, 7, 8] [0.20, 0.07, 0.20, 0.53]

[6, 2, 2, 2] [7, 4, 5, 6] [0.64, 0.03, 0.09, 0.23]

−[6, 2, 2, 2] [−5, 0, 1, 2] [0.00, 0.09, 0.24, 0.67]

Table 1: Probability distribution of p(x+ v).

Existing studies (Geva et al., 2022; Lee et al.,267

2024) state that p(w|x+ v) ∝ exp(ew · v). How-268

ever, based on the examples provided in Table 1, it269

appears that not only the bs-value of token w, but270

the bs-values of all the tokens affect the probability.271

For example, bs(v) = [3, 1, 1, 1] and [6, 4, 4, 4] re-272

sult in the same distribution, although the bs-value273

of each token is enlarged.274

An intuitive observation is that v aids in mag-275

nifying the token with the largest bs-value. For276

instance, [1, 1, 1, 3] is conducive to increasing the277

probability of the last token, and [3, 1, 1, 1] can278

amplify the probability of the first token. This ob-279

servation may elucidate why many neurons exhibit280

human-interpretable concepts when projected into281

the vocabulary space. Given that the vocabulary282

size B is typically large (often exceeding 30,000),283

probabilities of tokens with the largest bs-values284

are likely to be augmented.285

Another significant finding is that both the coef-286

ficient score and the neuron’s bs-values play sub-287

stantial roles. Compared with [3, 1, 1, 1], [6, 2, 2, 2]288

can can both amplify and diminish the probability289

change of [3, 1, 1, 1]. The probability increase of290

the first token is magnified, while the decrease in 291

probability of the last token is more pronounced. 292

When the coefficient score’s sign is changed (e.g. 293

−[6, 2, 2, 2]), the effect on the first token’s proba- 294

bility changes from increasing to decreasing. 295

3.3 Importance Score for "Value Neurons" 296

Based on the analysis in Section 3.2, an intu- 297

itive importance score of a neuron mv is |m| × 298

|1/rank(w)|, where m is the coefficient score and 299

rank(w) denotes the ranking of the final token 300

when projecting v into vocabulary space. Another 301

intuitive importance score is calculating the prob- 302

ability p(w|mv) on token w. If these scores are 303

large, v will contain much information of w. 304

However, these methods have two potential prob- 305

lems. On one hand, they only consider the ef- 306

fect of v, overlooking the varying importance 307

of v under different x conditions. On the other 308

hand, we usually hope to analyze the importance 309

of different modules’ combination. Therefore, it 310

is better that the importance score Imp satisfies 311

Imp(x+ v) ≈ Imp(x) + Imp(v). 312

To address these problems, we design log proba- 313

bility increase as importance score for both layer- 314

level and neuron-level vectors. If vl is a vector in 315

lth attention layer, the importance score of vl is: 316

Imp(vl) = log(p(w|vl+hl−1))−log(p(w|hl−1))
(13) 317

where the probability of each vector is computed 318

by multiplying the vector with Eu (see Eq.2). If 319

vl is a vector in lth FFN layer, we compute the 320

importance score by replacing hl−1 as hl−1+Al in 321

Eq.13. In Eq.13, vl is not the only element control- 322

ling the importance score. Also, it is convenient for 323

analyzing the combination of different modules. 324

3.4 Importance Score for "Query Neurons" 325

As discussed in Section 3.3, the proposed attribu- 326

tion methods can effectively identify the "value 327

neurons" containing crucial information for the fi- 328

nal prediction. However, in addition to these "value 329

neurons", there exist "query neurons" that aid in 330

activating these neurons, even if they may not di- 331

rectly contain information about w. In this section, 332

we propose a static method to identify these "query 333

neurons" based on Eq.1, Eq.5, and Eq.6. Since the 334

fc2 vectors do not change, the coefficient scores 335

are the only varying element in different cases. For 336

each "value neuron", we can compute the inner 337

product between its subkey (see Eq.6) and each 338
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neuron/subvector within the residual output (see339

Eq.1). Despite the presence of a nonlinear function340

σ for computing the coefficient score, it usually341

does not affect the relative value between different342

neurons/subvectors. Therefore, if a "query" neu-343

ron/subvector exhibits a larger inner product with344

the subkey compared to another one, it is more345

helpful for activating the "value neuron".346

4 Experiments347

In this section, we compare our neuron-level attri-348

bution method with seven other methods in Section349

4.1. Then we analyze the localization of six types350

of knowledge using our method in Section 4.2.351

4.1 Comparison of Attribution Methods352

We compare the proposed method in Eq.13 with353

seven other methods. For each sentence, we apply354

every method to identify top10 FFN neurons, and355

evaluate the attributed neurons using three metrics.356

Dataset. To eliminate interference from specific357

prompts, we extract query-answer pairs with six358

types of answer tokens (color, month, number, lan-359

guage, capital, country) from TriviaQA (Joshi et al.,360

2017). To explore the mechanism of knowledge361

storage, we extract all the sentences where the cor-362

rect token ranks within the top10 predictions and363

higher than other words in the same knowledge in364

GPT2-large (Radford et al., 2019) and Llama-7B365

(Touvron et al., 2023). There are 1,350 sentences366

for GPT2-large and 3,141 sentences for Llama-7B.367

Models. To compare the differences between368

large and small models in terms of knowledge stor-369

age, we conduct experiments on Llama-7B and370

GPT2-large. Llama-7B consists of 32 layers, with371

each attention layer comprising 32 heads, each372

head containing 128 neurons and each FFN layer373

containing 11,008 neurons. GPT2-large has 36 lay-374

ers with 20 heads per attention layer, 64 neurons375

per head, and 5,120 neurons per FFN layer.376

Attribution methods. We compare our method377

with seven static methods. We use each method to378

attribute the FFN neurons with top10 scores for the379

correct knowledge token w. Similar to Eq.5, each380

neuron mv is the product of the coefficient score381

m and fc2 vector vl. Here are the methods:382

a) (proposed method) log probability increase:383

log(p(w|mvl+Al+hl−1))− log(p(w|Al+hl−1))384

b) log probability: log(p(w|mvl)), which at-385

tributes the same neurons with p(w|mvl)386

c) probability increase: p(w|mvl +Al + hl−1)− 387

p(w|Al + hl−1) 388

d) norm: |vl| 389

e) coefficient score: |m| 390

f) ranking in vocabulary space: 1/rank(w) 391

g) |m| × |vl| 392

h) |m| × 1/rank(w) 393

Metrics. We devise three metrics to evaluate the 394

attribution methods. After attributing the top10 395

FFN neurons by each method, we intervene on 396

these neurons by setting the top10 neurons’ param- 397

eters to zero. Subsequently, we rerun the model 398

and compute the Mean Reciprocal Rank (MRR) 399

score of the correct token w, the probability of w 400

(prob), and the log probability of w (logp). An 401

attribution method is considered superior when it 402

exhibits greater decreases in these metrics. 403

GPT2-large Llama-7B
MRR prob logp MRR prob logp

o) 0.361 7.1 -3.15 0.551 21.5 -2.24
a) 0.201 3.4 -4.06 0.312 9.2 -3.91
b) 0.214 3.6 -3.91 0.339 10.8 -3.35
c) 0.219 3.7 -3.92 0.345 10.0 -3.57
d) 0.363 7.1 -3.14 0.549 21.3 -2.25
e) 0.439 8.6 -3.10 0.529 22.9 -2.35
f) 0.306 5.8 -3.40 0.493 18.1 -2.49
g) 0.394 8.1 -3.06 0.523 22.6 -2.39
h) 0.232 4.0 -3.80 0.389 13.0 -3.06

Table 2: Results of attribution methods on two models.

Results and analysis. The results of the origi- 404

nal model (first line) and eight attribution methods 405

are shown in Table 1. In comparison with the other 406

seven methods, our attribution method (second line) 407

attributes more important neurons, resulting in the 408

most significant reduction across all metrics in both 409

GPT2 and Llama. Specifically, when only interven- 410

ing ten FFN neurons, the probability of the cor- 411

rect knowledge token reduces from 7.1% to 3.4% 412

in GPT2, and from 21.5% to 9.2% in Llama-7B. 413

This indicates that there are several neurons storing 414

much important information for knowledge storage, 415

and our method can locate these neurons. 416

The attribution methods of norm vl (d) and 417

m×|vl| (g) are not useful, which indicates the norm 418

of neurons is not important for attribution. Using 419

|m| × 1/rank(w) (h) has good results, which is 420

better than 1/rank(w) (f). The ranking of tokens 421

in vocabulary space for projected neurons is a good 422
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saliency score, and the coefficient score can en-423

large the distribution change, aligning our analysis424

in Section 3.2. Only using coefficient score (e) is425

not helpful for attribution. The role of coefficient426

score is to enhance the probability change caused427

by the neuron, but whether the neuron is useful428

for the selected token depends on the neuron it-429

self. There are other tokens competing with the430

correct knowledge token, so the neurons with large431

coefficient scores may be related to these tokens.432

Figure 2: Neuron distribution on all layers in Llama-7B.

Compared to log probability (b), employing log433

probability increase (a) can attribute more impor-434

tant neurons. This aligns with the analysis in Sec-435

tion 3.2 and 3.3: not only neuron v, but also x436

affects p(w|x+v)−p(w|x). Compared with proba-437

bility increase (c), log probability increase achieves438

better results. We analyze the distribution of neu-439

rons across all layers in Llama attributed by log440

probability increase, log probability, and probabil-441

ity increase, as depicted in Figure 2. GPT2 has sim-442

ilar results, detailed in Appendix A. The neurons443

attributed by probability increase are on deepest444

layers (23th− 31th), while other two methods can445

attribute neurons among 17th to 31th layers.446

To delve into the reason of this phenomenon,447

we analyze the difference of importance score448

when adding the same vector v on different x.449

As discussed in Eq.13, the importance score of450

v is computed by log(p(w|x+ v))− log(p(w|x)).451

Therefore, the importance score is related to the452

curve of F (a) = log(p(w|a)). To analyze this453

curve, we compute the final vector hLT and the 0th454

layer input vector h0T on each sentence, and divide455

hLT − h0T into 61 segments, where each segment is456

SegS = h0T + S(hLT − h0T )/60 (S is the segment457

index from 0 to 60). Then we compute the probabil-458

ity p(w|SegS) and log probability log(p(w|SegS))459

at each segment index for every sentence. The av-460

erage score on Llama-7B is shown in Figure 3.461

Figure 3: Curves of log probability increase (left) and
probability increase (right) on Llama-7B.

The curve of log probability increase exhibits an 462

approximately linear shape from 0 to 40 segments, 463

while the curve of probability increase shows a lin- 464

ear trend from 40 to 60 segments. This observation 465

elucidates the findings in Figure 2: employing prob- 466

ability increase is more inclined to attribute neurons 467

in the deepest layers, whereas log probability in- 468

crease tends to attribute neurons in medium-deep 469

layers. Despite the slower slope of the log proba- 470

bility increase curve in very deep layers, it still ef- 471

fectively attributes neurons in very deep layers (as 472

depicted in Figure 2). This maybe because neurons 473

in very deep layers contain substantial information, 474

and even when the importance score decreases, it 475

remains relatively large. In later sections, we use 476

log probability increase as importance score for 477

exploration, as this method can identify the impor- 478

tant neurons in both medium-deep layers and very 479

deep layers, and its experimental results are the 480

best. Nevertheless, reproducing the importance of 481

the deepest layers may be a prospective avenue for 482

developing improved attribution methods. 483

4.2 Exploration on Different Knowledge 484

We take log probability increase as importance 485

score, and analyze six types of knowledge: lan- 486

guage (lang), color (col), number (num), capital 487

(capi), country (cnty), and month (mon). We eval- 488

uate the knowledge storage in attention and FFN 489

layers at layer-level, head-level, and neuron-level. 490

lang col num capi cnty mon

G-A 7.46 4.10 2.75 6.61 6.62 4.82
G-F 0.63 3.51 4.70 1.89 1.67 2.81

L-A 6.28 3.81 2.22 5.03 6.42 5.10
L-F 1.74 4.02 5.60 4.30 2.90 3.05

Table 3: Contribution of attention and FFN layers.

Layer-level knowledge storage. We compute 491

the sum of importance score of each attention and 492
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FFN layer in GPT2 (G-A, G-F) and Llama (L-A,493

L-F), shown in Table 3. Also, we calculate the494

top10 layer for each knowledge in Table 4, where495

al and fl means lth attention and FFN layer.496

Both attention and FFN layers have ability to497

store knowledge, and all the top10 layers are in498

deep layers. Information with analogous semantics499

(e.g., language, capital, country) tends to be stored500

within similar layers/modules. For instance, a26,501

a30, a28, and a22 in GPT2 ranks top for language,502

capital and country, and a23 in Llama-7B ranks503

the first for these knowledge. Data with dissimilar504

semantics (e.g., language, color, month) typically505

resides in distinct layers/modules.506

top10 important layers

lang a26, a30, a32, a22, a31, a28, a23, a27, a19, a23
col a32, f32, a33, f29, f31, a31, a26, f33, f28, a22

num f29, f23, f27, f30, f31, f26, f32, a23, a22, f28
capi a26, a28, a30, a25, a22, f26, f28, a19, f27, f30
cnty a26, a30, a28, a22, f29, a31, f26, a32, a25, a19
mon a27, a26, f26, a25, f30, a28, a24, a22, a30, f27

lang a23, a21, f21, a19, a18, a31, a25, a16, f20, f19
col f29, a20, f22, f20, a19, a28, a16, a29, a18, f28

num f31, f26, f29, f27, a26, f23, f24, a28, f17, f30
capi a23, f21, f22, a18, a25, a21, f19, f20, a16, f24
cnty a23, a21, a25, f22, a18, a19, a16, f21, f31, a31
mon a21, a19, f19, a16, f31, a23, a28, f30, f17, f18

Table 4: Top10 important layers in GPT2 (first block)
and Llama (second block).

Head-level knowledge storage. We compute the507

importance score of each head (detailed in Ap-508

pendix B) and find that many heads have ability to509

store similar knowledge. In GPT2, a630 (30th layer510

6th head), a1726, a
11
32, a

13
25 and a1722 rank top8 for lan-511

guage, capital and country. Similarly, a1223, a
31
19, a

25
31,512

and a2525 rank top5 for these knowledge in Llama.513

To evaluate how much knowledge the top heads514

store, we intervene the top 1% heads (top7 in GPT2515

and top10 in Llama) by setting the heads’ parame-516

ters to zero. Intervening each knowledge’s heads re-517

sult in a MRR/probability decrease of 44.5%/53.3%518

in GPT2, and 32.8%/48.2% in Llama (shown in519

Appendix B). But semantic-unrelated knowledge520

only reduce 7.1%/9.5% in GPT2 and 3.8%/8.7%521

in Llama. Therefore, the identified "knowledge522

heads" contain much semantic-related knowledge.523

Neuron-level knowledge storage. For attention524

and FFN layers in Llama, we compute the sum525

of importance score for all neurons, all positive526

lang col num capi cnty mon

(attn) all 6.7 4.0 2.4 5.5 6.9 5.4
positive 30.5 32.0 24.8 29.4 30.5 29.2
top100 3.5 2.8 2.0 3.0 3.6 2.8
top200 5.0 4.1 3.0 4.4 5.0 4.1

(FFN) all 2.5 4.9 6.5 5.1 3.6 2.8
positive 77.4 90.6 71.6 77.6 69.8 69.1
top100 6.4 6.1 6.6 6.3 5.5 7.0
top200 8.2 8.0 8.5 8.0 7.0 8.5

Table 5: Imporatnce of top neurons in attention (first
block) and FFN (second block) layers in Llama-7B.

neurons (score larger than 0), top100 neurons, and 527

top200 neurons, as illustrated in Table 5. Similar 528

results of GPT2 is shown in Appendix C. 529

In both models, the sum score of top200 neurons 530

in attention layers and top100 neurons in FFN lay- 531

ers are similar to that of all neurons. Additionally, 532

we intervene the top neurons to evaluate how much 533

final predictions are affected, detailed in Appendix 534

C. When intervening the top200 attention neurons 535

and top100 FFN neurons for each sentence, the 536

MRR and probability decreases 96.3%/99.2% in 537

GPT2, and 96.9%/99.6% in Llama. In comparison, 538

randomly intervening the same number of neurons 539

only result a decrease of 0.22%/0.14%. Hence, 540

even though there are many neurons contribute to 541

the final prediction, intervening a few neurons (300) 542

affects the final prediction much. This conclusion 543

holds significance for future studies delving into 544

neuron-level knowledge editing. 545

top10 query layers for FFN neurons

lang a26, a22, a19, f26, a17, f25, f27, f23, a25, a23
col f26, f29, a26, f28, f25, a22, f27, a17, a24, f23

num f26, f23, f27, a22, f25, a17, f19, f21, a23, f0
capi a26, a22, a19, a17, f25, a23, a18, f26, f21, a28
cnty a26, a22, a17, a19, a23, f18, a20, a18, f21, f25
mon a17, a22, f23, a26, f26, f24, a19, a20, f20, f21

lang f21, a16, a19, f18, a18, a21, a17, f30, f19, a14
col f20, f21, a15, a17, a18, a20, f19, f22, f17, a16

num f19, f21, f22, f16, a18, a22, a24, f14, a12, a25
capi a18, a16, f23, a19, f17, a14, f22, a21, f26, f19
cnty a16, a18, a21, a19, f21, a14, f19, a17, a31, f20
mon a16, a19, f18, a21, a17, a14, f29, f19, f17, a18

Table 6: Top10 query layers for top100 FFN neurons in
GPT2 (first block) and Llama (second block).

Important query layers for FFN value neurons. 546

The "value" FFN neurons are activated by last po- 547

sition’s residual stream. We evaluate which layers 548
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activate the top100 FFN neurons, shown in Table 6.549

The medium-deep attention layers play large rules.550

Most of them also contribute to final predictions551

(e.g. a19, a22, a26 in GPT2 and a16, a18, a19, a21552

in Llama for country/capital/language). Therefore,553

the medium-deep attention neurons are very impor-554

tant, working as both "value" and "query".555

lang col num capi cnty mon

G 91/96 95/97 96/96 98/99 89/94 83/88
L 78/92 85/93 90/96 84/93 91/98 94/98

Table 7: MRR/probability decrease (%) when interven-
ing 1,000 query neurons in GPT2 (G) and Llama (L).

Important query neurons for attention value556

neurons. We compute the important query lay-557

ers activating the top200 "value" attention neurons.558

finding the shallow and medium FFN layers play559

main roles (detailed in Appendix D). To identify560

the important query FFN neurons, we weighted561

sum the inner product between each attention neu-562

ron’s subkey and each FFN neuron on every po-563

sition’s residual stream, as query FFN neurons’564

scores. When intervening top1000 shallow neurons565

for each sentence, both MRR and probability drops566

very much (92%/95% in GPT2 and 87%/95% in567

Llama), shown in Table 7. In comparison, ran-568

domly intervening 1,000 neurons only result in a569

decrease of 0.8%/1.1%. Hence, our method can570

locate the important query neurons in these layers.571

Figure 4: Query neuron distribution in GPT2 and Llama.

Then we count the number of queryvalue (both572

in top1000 query and top1000 value) and queryonly573

(only in top1000 query) FFN neurons, shown in574

Figure 4. In both models, the number of queryonly575

neurons, which is much larger than that of query-576

value neurons, starts to drop at 60% layer. This577

observation indicates that the shallow and medium578

FFN neurons are important for activating the at-579

tention "value neurons". A difference is that the580

very shallow FFN layers play large roles in GPT2, 581

and we defer this exploration to future research. 582

Overall, our analysis learns the information flow at 583

neuron level: features in shallow/medium FFN neu- 584

rons are extracted, then activate the deep attention 585

and FFN neurons related to final predictions. 586

lang col num capi cnty mon

G-query 5 17 104 51 26 81
G-value 48 57 121 71 64 137
L-query 1 9 39 1 1 44
L-value 13 23 84 18 21 95

Table 8: Shared neurons in GPT2 (G) and Llama (L).

Shared Value and query neurons in each knowl- 587

edge. We compute how many "shared" query neu- 588

rons and value neurons rank top300 in more than 589

50% sentences in each knowledge, shown in Ta- 590

ble 8. On average, there are 27.6% shared value 591

neurons in GPT2 and 14.1% in Llama. Query neu- 592

rons, with 15.7% shared neurons in GPT2 and 5.2% 593

in Llama, exhibit a more dispersed distribution 594

than value neurons. To explore the neurons’ inter- 595

pretability, we project them into vocabulary space. 596

We find most value neurons (first block in Table 9) 597

are related to predicted tokens. However, we do 598

not observe much interpretability in query neurons. 599

We only find a few query neurons (second block 600

in Table 9) related to the final words. Hence, to 601

explore the interpretability of query neurons may 602

be a valuable direction in future works. 603

neuron top10 tokens in vocabulary space

f29-3771
(GPT2,v)

Chile,Nicaragua,Finland,Ireland,Belarus,
Norway,Slovakia,Latvia,Australia

a1223-70
(Llama,v)

German,Greek,Netherlands,Dutch, Ger-
many,Greece,Holland,Norwegian

f0-2947
(GPT2,q)

Lion, Bull, Liver, riot, Gladiator, Red,
uct, Ant, Les

f7-8744
(Llama,q)

Belgium,Ireland,Vienna,Czech,Kas,
Kansas,Netherlands,Iowa,wings,Spanish

Table 9: Interpretable neurons in vocabulary space.

5 Conclusion 604

In this study, we propose a method based on log 605

probability increase to identify the important "value 606

neurons". We also develop a method based on inner 607

products to locate the "query neurons" activating 608

these "value neurons". Our method and analysis on 609

six types of knowledge are helpful for exploring 610

and understanding the mechanism of LLMs. 611
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6 Limitations612

The first limitation of our study is that it focuses on613

six specific types of knowledge, while other types614

of knowledge are also important. Secondly, our615

experiments are conducted using GPT2-large and616

Llama-7B models. It is essential to compare the617

similarities and differences in knowledge storage618

across different models. Lastly, our study employs619

static methods for neuron-level knowledge attribu-620

tion. Although our experiments demonstrate the621

correctness and robustness of our designed method,622

it is also important to compare static methods with623

other attribution methods, such as causal mediation624

analysis and gradient-based methods. We plan to625

explore these areas in future work.626

A potential risk of our work is that people can627

utilize our method to identify important neurons628

and edit them to change the models’ outputs. For629

instance, if they identify the toxicity neurons and630

gender bias neurons and increase these neurons’631

coefficient scores, the model will be more likely632

to generate toxicity and gender bias words. But633

this potential risk depends on how people utilize634

our method. Our method can be utilized for reduc-635

ing hallucinations, toxicity, and bias in LLMs by636

identifying and intervening/editing these neurons.637
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A Neuron Distribution in GPT2903

The neuron distribution of GPT2-large is similar to904

Llama-7B, which is shown in Figure 5. Also, the905

curve of importance score in GPT2-large is similar906

to that in Llama-7B, illustrated in Figure 6.907

Figure 5: Neuron distribution on all layers in GPT2.

Figure 6: Curves of log probability increase (left) and
probability increase (right) on GPT2.

B Head-Level Storage in GPT2/Llama908

The top10 heads are shown in Table 10, where909

ajl is short for the jth head in lth attention layer.910

Knowledge with similar semantics is stored in the911

same heads (e.g. a630 in GPT2 and a1223 in Llama).912

type top10 heads

lang a630, a
17
26, a

7
26, a

11
32, a

0
19, a

9
31, a

13
25, a

17
22, a

13
28, a

2
29

col a533, a
1
34, a

7
26, a

19
24, a

18
23, a

13
32, a

1
30, a

8
22, a

14
32, a

2
28

num a1822, a
3
17, a

8
23, a

2
19, a

3
30, a

19
25, a

3
20, a

0
30, a

2
12, a

3
25

capi a726, a
6
30, a

17
26, a

17
22, a

13
25, a

13
28, a

0
19, a

10
19, a

2
29, a

11
32

cnty a726, a
6
30, a

17
22, a

13
28, a

17
26, a

11
32, a

0
19, a

13
25, a

9
31, a

10
19

mon a227, a
7
26, a

11
25, a

10
19, a

2
30, a

4
28, a

18
23, a

17
17, a

1
33, a

3
17

lang a1223, a
31
19, a

25
31, a

25
25, a

5
16, a

1
18, a

9
21, a

22
29, a

17
21, a

23
18

col a2229, a
19
28, a

27
20, a

15
16, a

27
17, a

21
28, a

14
25, a

28
18, a

1
24, a

3
14

num a1928, a
24
26, a

10
23, a

13
30, a

29
21, a

24
13, a

24
18, a

22
29, a

23
17, a

1
19

capi a1223, a
22
29, a

25
25, a

25
31, a

31
19, a

1
18, a

15
16, a

5
16, a

9
21, a

23
18

cnty a1223, a
31
19, a

25
25, a

9
21, a

25
31, a

15
16, a

1
18, a

5
16, a

22
29, a

19
28

mon a1021, a
0
16, a

22
21, a

18
23, a

16
28, a

20
19, a

6
31, a

1
19, a

3
14, a

13
20

Table 10: Top10 important heads in GPT2 (first block)
and Llama (second block).

The MRR decrease (%)/probability decrease (%) 913

when intervening the top 1% heads for each knowl- 914

edge is shown in Table 11. When intervening the 915

top 1% heads for each knowledge, similar knowl- 916

edge (language, capital and country) is affected a 917

lot, while other knowledge (month, color, number) 918

is not affected much. 919

lang capi coun mon col num

lang 44/51 33/52 38/56 3/0 6/5 1/2
capi 32/38 42/53 39/54 15/11 18/12 0/1
coun 39/44 40/54 44/60 3/0 10/5 2/3
mon 19/24 14/19 13/19 55/63 24/23 5/4
col 6/6 1/0 2/4 13/12 49/59 5/7

num 11/14 2/10 7/11 17/21 19/16 33/34

lang 24/42 17/35 13/33 0/0 6/15 1/1
capi 38/58 28/50 22/53 1/0 7/16 0/0
coun 42/61 31/54 28/58 0/0 10/21 2/6
mon 7/14 4/11 7/13 51/66 8/13 3/8
col 3/12 6/16 6/14 13/25 33/42 1/10

num 0/0 1/4 1/2 2/9 3/13 33/31

Table 11: MRR decrease (%)/probability decrease (%)
in GPT2 (first block) and Llama (second block) when
intervening top 1% heads for different knowledge.

C Neuron-Level Storage in GPT2/Llama 920

The sum score of top neurons and all neurons in 921

GPT2 are shown in Table 12. The sum importance 922

score of top200 attention neurons and top100 FFN 923

neurons are similar to those of all neurons. 924

lang col num capi cnty mon

all 7.3 3.6 2.3 6.7 6.6 4.3
positive 28.8 24.7 18.2 27.4 27.5 23.3
top100 4.0 2.7 1.6 3.7 3.5 2.5
top200 5.7 4.0 2.5 5.3 5.1 3.7

all 0.0 2.5 4.0 1.9 1.4 1.9
positive 70.1 72.0 62.3 69.4 69.1 66.6
top100 4.2 4.3 4.1 4.6 4.3 4.7
top200 6.0 6.1 5.7 6.3 5.9 6.4

Table 12: Imporatnce of top neurons in attention (first
block) and FFN (second block) layers in GPT2.

The MRR decrease (%) / probability decrease 925

(%) when intervening the top 200 attention neurons 926

and top100 FFN neurons are shown in Table 13. 927

The MRR score and probability score decreases 928

around 91.1%/98.7% in GPT2, and 88.4%/97.1% 929

in Llama. Therefore, our method can identify the 930

important "value neurons" in both attention and 931

FFN layers. 932
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lang col num capi cnty mon

G 96/99 97/99 96/98 96/99 97/99 96/99

L 97/99 98/99 96/99 97/99 97/99 97/99

Table 13: MRR decrease (%) and probability decrease
(%) when intervening the top200 attention neurons and
top100 FFN neurons in GPT (G) and Llama (L).

D Important Query Layers for Attention933

Neurons in GPT2/Llama934

We evaluate which layers have large inner product935

with top200 attention neurons, shown in Table 14.936

For every knowledge, the shallow and medium FFN937

layers play larger roles than attention layers.938

top10 query layers for attention neurons

lang f0, f1, a0, f2, f19, f20, f3, f17, f18, f21
col f0, f1, f2, f23, f20, f21, f22, f24, a0, f3

num f0, f18, f1, f19, f22, f16, f21, f2, f12, f20
capi f0, f1, a0, f2, f3, f20, f5, f4, f19, f17
cnty f0, f1, f19, a0, f18, f2, f3, f21, f20, f17
mon f0, f1, f19, f2, f9, f22, f10, f21, a0, f18

lang f20, f19, a16, f16, f15, f18, f14, f21, f12, f21
col f15, f18, f20, f16, f19, f13, f17, f22, f24, f14

num f24, f17, f19, f23, f22, f20, f18, f2, f25, f21
capi f20, f24, f22, f23, f19, a16, a23, f28, f18, f25
cnty f18, f21, f19, a18, f22, a14, a16, f17, a21, a19
mon f14, a16, f19, a19, f18, f20, f13, f17, f15, f22

Table 14: Top10 query layers for top200 attention neu-
rons in GPT2 (first block) and Llama (second block).
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