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SI-BiViT: Binarizing Vision Transformers with Spatial Interaction
Anonymous Authors

ABSTRACT
Binarized Vision Transformers (BiViTs) aim to facilitate the effi-
cient and lightweight utilization of Vision Transformers (ViTs) on
devices with limited computational resources. Yet, the current ap-
proach to binarizing ViT leads to a substantial performance decrease
compared to the full-precision model, posing obstacles to practical
deployment. By empirical study, we reveal that spatial interaction
(SI) is a critical factor that impacts performance due to lack of token-
level correlation, but previous work ignores this factor. To this end,
we design a ViT binarization approach dubbed SI-BiViT to incor-
porate spatial interaction in the binarization process. Specifically,
an SI module is placed alongside the Multi-Layer Perceptron (MLP)
module to formulate the dual-branch structure. This structure not
only leverages knowledge from pre-trained ViTs by distilling over
the original MLP, but also enhances spatial interaction via the intro-
duced SI module. Correspondingly, we design a decoupled training
strategy to train these two branches more effectively. Importantly,
our SI-BiViT is orthogonal to existing Binarized ViTs approaches
and can be directly plugged. Extensive experiments demonstrate
the strong flexibility and effectiveness of SI-BiViT by plugging our
method into four classic ViT backbones in supporting three down-
stream tasks, including classification, detection, and segmentation.
In particular, SI-BiViT enhances the classification performance of
binarized ViTs by an average of 10.52% in Top-1 accuracy compared
to the previous state-of-the-art. The code will be made publicly
available.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems; • Net-
works→ Network design principles.

KEYWORDS
Model Binarization; Vision Transformer; Spatial Interaction;Plug-
and-Play

1 INTRODUCTION
Recently, Vision Transformers (ViTs) [14] have achieved signifi-
cant success across various tasks, including classification [6, 14, 48],
object detection [15, 34, 51, 62] and segmentation [17, 60]. Mean-
while, the increasing model size and computational demands have
limited their deployment in mobile and Internet of Things (IoT)
devices. To address these efficiency bottlenecks, model compression
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Figure 1: Performance comparison between our SI-BiViT
and other binarized vision transformer approaches. SI-BiViT
surpasses the state-of-the-art in all ViT backbones.

techniques such as distillation [22, 47], pruning [41, 63] and quanti-
zation [13, 32, 33, 59] have been extensively explored. Among them,
Binarized Neural Network (BNN) [36, 44, 45, 55, 61] aggressively
quantizes weights and activations to 1-bit and utilizes efficient
XNOR and popcount bit-wise operations to accelerate inference
speed as well as reduce energy consumption significantly. Bina-
rized neural networks can typically achieve up to 32 times memory
saving and 58 times speedup [45].

Although model binarization yields efficiency gains, it severely
compromises performance due to substantial information loss. Sev-
eral studies have aimed to bridge the performance gap between
binarized models and their full-precision counterparts. Qin et al.
[43] and He et al. [19] investigate the optimal threshold of attention
score to preserve more information after binarization. Some studies
[26, 35, 43] focus on optimization in binarized vision transform-
ers by utilizing distillation and preserving more knowledge from
pre-trained models. While existing approaches have demonstrated
some effectiveness, a substantial performance gap persists between
binarized ViTs and their full-precision counterparts, as evidenced
by an average of 30.17% in ViT in Figure 1.

For the first time, we empirically demonstrate that the lack of
token-level correlation severely limits the performance of binarized
ViTs. We introduce the concept of Spatial Interaction Capability
(SIC) to quantify the contribution of different modules to spatial
interaction. Our analysis reveals that the MLP module solely in-
fluences feature extraction in each token independently, resulting
in a spatial interaction capability of zero, which significantly hin-
ders spatial interaction in binarized ViTs. To further investigate the
relationship between the model’s performance and spatial interac-
tion, we progressively increase spatial interaction capability across
four ViT backbones. As illustrated in Figure 2, the performance
exhibits a notable increase with more spatial interaction, indicating
a positive correlation between spatial interaction and performance.
These findings indicate that existing binarized vision transformers

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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indeed lack spatial interaction and suffer considerable performance
degradation.

In this paper, we introduce a ViT binarization approach named
SI-BiViT, which integrates spatial interaction into the binarization
process. Specifically, we propose a dual-branch structure by incorpo-
rating a Spatial InteractionModule(SIM) alongside the existingMLP
module. This design not only utilizes knowledge from pre-trained
ViTs through distillation over the original MLP but also enhances
spatial interaction through the SI module. To effectively train these
two branches, we devise a two-stage decoupled training strategy.
In the first stage, we optimize the MLP branch by distilling from
pre-trained models, enabling the MLP to retain more information
through binarization. However, due to the significant differences
between the SI module and the MLP module, incorporating the
SI module at this stage may lead to conflicting gradient problems.
Hence, we defer the addition of our SI module to the second stage,
where we optimize the model solely by supervision of classification
loss without distillation. In the second stage, we introduce our SI
module to form the dual-branch structure. To mitigate the increase
in computational and memory costs resulting from the dual-branch
structure, we utilize a compact token-mixing linear as our SI mod-
ule. Furthermore, we introduce a channel-wise balancing factor to
dynamically adjust the magnitude of the SI module.

It is important to note that SI-BiViT is plug-and-play in two
aspects. Firstly, it can directly replace the vanilla MLP modules and
generalize to various ViT backbones, including Deit[48], Swin[34],
Nest[62]. Secondly, SI-BiViT is orthogonal to existing Binarized
ViTs approaches [19, 43] and can be further combined to improve
their performance. Extensive experiments on various ViT back-
bones and tasks demonstrate the strong flexibility and effectiveness
of SI-BiViT. As illustrated in Figure 1, SI-BiViT increases the clas-
sification performance of binarized ViTs by an average of 10.52%
in Top-1, and increases detection and segmentation tasks by an
average of 1.1% in AP.

In summary, our contributions are three-fold:
• We are the first to study spatial interaction in binarized vision
transformers. Our empirical findings demonstrate that exist-
ing binarized VITs lack spatial interaction due to a lack of
token-level correlation, which is a critical factor that affects
performance.

• We propose SI-BiViT to incorporate spatial interaction in the
binarized ViTs. Concretely, we introduce a plug-and-play
dual branch that not only leverages knowledge from pre-
trained ViTs by distilling over the original MLP module, but
also enhances spatial interaction via the introduced SI mod-
ule. Additionally, we design a decoupled training strategy to
effectively optimize the dual branch.

• Extensive experiments on various ViT backbones and down-
stream tasks demonstrate the strong flexibility and effective-
ness of SI-BiViT.

2 RELATEDWORKS
2.1 Vision Transformer
The Transformers [49] is originally proposed to solve natural lan-
guage processing (NLP) problems and achieves great success by
its long-range interaction mechanism. Vision Transformer (ViT)
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Figure 2: Performance comparison when the models’ spatial
interaction capacity(SIC) increases. The performance shows
a clear upward trend as SIC increases.

[14] first introduces transformers into the field of computer vision.
Images are divided into non-overlapping patches, with each patch
being embedded into a token. These tokens are then processed
using the same pipeline as those used in NLP. Deit [48] optimizes
data augmentation and distillation tokens for ViT and further en-
hances the generalization ability of ViT. However, these models
suffer from the drawback of high computational complexity, re-
sulting in significantly lower efficiency problems. This is mainly
due to the quadratic computational complexity of the self-attention
mechanism [23, 50] and the fixed size of embeddings throughout
the computation process [58]. To mitigate these issues, LGViT[54]
incorporates heterogeneous exiting heads, namely, local perception
head and global aggregation head, to achieve an efficiency-accuracy
trade-off. Swin Transformer [34] and Nest Transformer [62] design
compact and hierarchical architectures to capture global and local
information more efficiently. Additionally, other studies explore
quantization on ViT[13, 16, 27, 37], pruning techniques [56, 57]
and ditillation[9, 29]. Compared to these compression approaches,
model binarization shows significant advantages in reducing calcu-
lation and memory.

2.2 Binarized Neural Network
As a pioneer work in model binarization, BNN[45] quantizes both
weights and activations to 1 bit, which significantly accelerates
the inference of neural networks and saves memory occupancy
through XNOR and popcount operator. However, binarization will
lead to a severe performance drop, causing a severe performance
drop. Consequently, numerous studies endeavor to enhance model
binarization techniques. [38] proposes Bi-Real net, which connects
the real activations to activations of the consecutive block through
an identity shortcut and further strengthens the network’s repre-
sentation ability. [28] considers the angle alignment between the
full-precision weight vector and its binarized version and proposes
to rotate the weight vector to reduce the angular bias. These works
primarily focus on minimizing quantization errors [3, 28, 31], de-
signing better Straight-Through Estimator (STE) [4, 38], improving
better distribution for BNN [12, 36] and increasing the information
capacity of binarized models [44].
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2.3 Binarized Transformer
Binarization of transformer-based models has attracted a lot of in-
terest since they achieve great success in a lot of downstream tasks.
Unfortunately, existing binarization approaches designed for con-
volutional neural networks cannot migrate well to the transformers
due to distinct architectural differences. BiBERT [43] proposes a
Bi-Attention structure to maximize the information entropy of
the self-attention module and further proposes direction-matching
distillation to reduce the gradient mismatch problem in attention.
Liu et al. [35] propose a two-set binarization scheme and a suc-
cessively distilling mechanism to preserve more information from
pre-trained models. He et al. [19] propose softmax-aware binariza-
tion to address the long-tailed distribution of softmax attention.
They also introduce a cross-layer binarization scheme to decouple
the binarization of the attention module and MLP module. Li et
al. [26] propose a ranking-aware distillation method to alleviate
attention distortion. However, most existing approaches overlook
the key effect of spatial interactions, which severely hinders the
performance of binarized ViTs.

3 METHOD
3.1 Preliminaries
Binarized Neural Networks generally use sign function to quan-
tize weights and activations to -1 and +1 [45]. Unfortunately, the
gradient of sign function is non-differentiable and thus cannot be
updated via backpropagation. To overcome the non-differentiable
issue, Straight-Through Estimator(STE) [2] is applied to approxi-
mate gradients in the back-propagation. The formula of forward
and backward is:

Forward: 𝑥𝑏 = Sign(𝑥) =
{ + 1, if 𝑥 ≥ 0
− 1, otherwise, (1)

Backward:
𝜕L
𝜕𝑥𝑏

≈

𝜕L
𝜕𝑥
, if |𝑥 | ≤ 1

0, otherwise.
(2)

where the 𝑏 denotes the binarized values. Gradient clipping[20] is
commonly used to prevent unstable weight oscillation. STE only
backpropagates gradients when the absolute values are smaller
than 1 and truncates them when they exceed 1.

In vision transformer, images are represented by token sequences
𝐴 ∈ R𝑛×𝑑 , where 𝑛 is the sequence length and 𝑑 is the length of
embedding. We binarize them as follows:

𝐴𝑏 = Sign(𝐴 − 𝛾) (3)

where 𝐴 and 𝐴𝑏 denote input real-valued activation and binarized
activation respectively. 𝛾 ∈ R𝑑 is a channel-wise learnable fac-
tor introduced by [36], which can better control the threshold of
activations in binarization.

Similarly, the weights𝑊 ∈ R𝑑×𝑑 ′
in the linear layer are also

binarized channel-wisely. In order to reduce quantization error,
a scaling factor 𝜃𝑤 is commonly adopted[44]. The weights get
binarized as follows:

𝑊 𝑏 = 𝜃𝑊 sign(𝑊 − 𝜇𝑤), 𝜃𝑊 =
1
𝑛
∥W∥𝑙1 (4)

where 𝜇𝑤 is the mean value of𝑊 .

When weights and activations are all binarized, the computation-
ally heavy operations of floating-point matrix multiplication are
replaced by binarized matrix multiplication, which can be acceler-
ated by efficient bitwise XNOR operations and popcount operations
[3]:

Bi-Linear(𝐴𝑏 ,𝑊 𝑏 ) = popcount(XNOR(𝐴𝑏 ,𝑊 𝑏 )), (5)

where 𝐴𝑏 and𝑊 𝑏 are binarized activations and binarized weights.

3.2 Spatial Interaction in ViT
For the first time, we empirically reveal lack of token-level corre-
lation severely limits the performance of binarized ViTs. In vision
transformer, an input image is represented as a sequence of patches
and each token represents the feature of the patch. Denotes these
tokens as 𝑍 ∈ R𝑛×𝑑 , where 𝑛 is the length of the sequence and each
token 𝑍𝑖 is a 𝑑-dimension vector, describing the feature of a patch.
In order to analyze spatial interaction in the ViT, following the def-
inition of representation ability [24, 38], we introduce the concept
of spatial interaction capability (SIC) to measure token-level
correlation in binarized vision transformers:

SIC(𝑍 ) =
𝑛∑︁
𝑖

Inter(𝑍𝑖 ) × Range(𝑍𝑖 ) (6)

where Inter(𝑍𝑖 ) represents the number of tokens𝑍𝑖 interacted with.
𝑅𝑎𝑛𝑔𝑒 (𝑍𝑖 ) denotes the range of interaction strength. The multi-
head self-attention calculates attention score matrix 𝑎𝑡𝑡𝑛 ∈ R𝑛×𝑛
and 𝑎𝑡𝑡𝑛𝑖, 𝑗 represents the interaction strength between token 𝑖
and token 𝑗 . Thus, each token needs to interact with all other
𝑛 − 1 tokens in MSA. So Inter(𝑍𝑖 ) = 𝑛 − 1 in MSA. In binarized
models, the 𝑅𝑎𝑛𝑔𝑒 (𝑍𝑖 ) of MSA is 2, because 𝑎𝑡𝑡𝑛𝑖, 𝑗 ∈ {0, 1}. 0
indicates these two tokens have no interaction and 1 indicates there
is an interaction. Thus, The spatial interaction capability of MSA
in binarized ViT can be represented as 2𝑛(𝑛 − 1), where 𝑛 is the
length of tokens.

As another fundamental component in ViT, the multi-layer per-
ception(MLP) is stacked by linear layers. The linear layer processes
each token 𝑍𝑖 using a weight matrix𝑊 ∈ R𝑑×𝑑 ′

, thereby extract-
ing information in each token independently and expanding its
dimension to 𝑑′:

Linear(𝑍,𝑊 ) =
𝑛∑︁
𝑖

𝑍𝑖𝑊 (7)

where 𝑍𝑖 ∈ R1×𝑑 is a token from 𝑍 . It indicates that each 𝑍𝑖 after
linear layers has no interaction with other tokens, thus Inter(𝑍𝑖 ) =
0 in MLP module. So the spatial interaction capability of MLP is
𝑛×0×2 = 0. While the SIC of the MSAmodule is 2𝑛(𝑛−1), the MLP
module contributes 0 spatial interaction, thus severely hindering
the spatial interaction in binarized ViTs.

To further uncover the relationship between the model’s perfor-
mance and spatial interaction, we gradually increase spatial inter-
action capability in four ViT backbones by adding more and more
MSA modules. We reduce the MLP module accordingly to make the
model size and computation roughly the same. As shown in Figure
2, The classification accuracy has a clear upward trend with more
and more spatial interaction. The curves on four ViT backbones all
demonstrate that there is a positive relationship between spatial
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Figure 3: An overview of proposed SI-BiViT. (a) illustrates the whole architecture of SI-BiViT and we propose a plug-and-play
Dual Branch. (b) illustrates the decoupled training strategy of our SI-BiViT. In stage 1, knowledge distillation is applied to
preserve information from pre-trained models and SI module is abandoned. In stage 2, we add a token-mixing linear as our SI
module to increase spatial interaction and use channel-wise balancing factors to combine the dual branch.

interaction and performance. This indicates that existing binarized
vision transformers do lack spatial interaction and suffer severe
performance drops.

3.3 SI-BiViT
In this section, we present our SI-BiViT, which integrates spatial
interaction into the binarization process in a plug-and-play manner.
Specifically, we incorporate an SI module alongside the Multi-Layer
Perceptron (MLP) to establish a dual-branch structure. This struc-
ture not only capitalizes on the knowledge from pre-trained ViTs
by distilling over the original MLP but also enhances spatial interac-
tion through the introduced SI module. Consequently, we devise a
decoupled training strategy to effectively train these two branches.
The entire framework is depicted in Figure 3.

3.3.1 Dual-branch structure. There are various SI modules, such
as cycle-FC[8] and multi-head self-attention[49], which can im-
prove token-level correlation. Here, we introduce the Token-mixing
Linear[46] which is highly efficient. Denotes these tokens as 𝑍 ∈
R𝑛×𝑑 , where 𝑛 is the length of the sequence and each token 𝑍𝑖
is a 𝑑-dimension vector. 𝑍

′ ∈ R𝑑×𝑛 is obtained by transposing 𝑍 .
Token-mixing Linear is represented as:

Token-mixing Linear(𝑍,𝑊 ) =
𝑑∑︁
𝑖

𝑍
′
𝑖𝑊 (8)

where 𝑍
′
𝑖
∈ R1×𝑛 and𝑊 ∈ R𝑛×𝑛′

is weight parameters. Token-
mixing Linear operation captures spatial information by mixing
features from different tokens. According to Equation 6, 𝐼𝑛𝑡𝑒𝑟 (𝑍𝑖 ) =
𝑛 − 1 since each token needs to interact with all other tokens. And
the spatial interaction ability of Token-mixing Linear is 2𝑛′ (𝑛 − 1).
When 𝑛′ = 𝑛, its SIC is the same as that of MSA module. Moreover,
we can adjust the spatial interaction ability by𝑛′. We find it achieves
a balance between performance and accuracy when 𝑛′ = 𝑛 in
Section 4.3.3. Compared to other SI modules[8, 49], token-mixing

Table 1: The impact of knowledge distillation on different
settings. We employ MSA as the single branch here.

Module Distillation Top-1(%)

Single-branch % 40.50
Single-branch ! 38.32(−2.18)
Dual-branch % 40.95
Dual-branch ! 46.67(+5.72)

Linear is highly efficient and outperforms other SI modules in both
efficiency and performance.

In model binarization, knowledge distillation is a prevalent and
effective technique to improve performance by distilling intermedi-
ate features from full-precision models to binarized models. More-
over, distillation can significantly strengthen representation capa-
bilities and relieve coarse gradients.[26, 40, 43]. However, direct
applying distillation does not improve performance when we adopt
SImodule to replace theMLPmodule As shown in Table 1. This is be-
cause there exist substantial differences in architecture between the
SI module and MLP module, making it difficult to retain knowledge
from pre-trained models. In fact, it may damage the performance
after distillation, causing a decrease of 2.18%. To address this issue,
we maintain the MLP module and introduce a spatial interaction
module alongside it, forming a dual-branch structure. This ensures
better distillation as well as improving spatial interaction. There is
an obvious improvement(5.72%) in performance as shown in Table
1. Moreover, we reduce the size of the MLP module, as we utilize
knowledge distillation, and a smaller MLP can retain most infor-
mation from pre-trained models without significant performance
degradation. Additional details can be found in the Appendix.

3.3.2 Decoupled training strategy. We further observe that our
SI modules encounter challenges in optimizing due to gradient
conflict problems. This refers to the situation where the gradient
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Figure 4: Illustration of gradient conflicting problem. (a) Both
the gradient from classification loss and knowledge distil-
lation go into the SI module When knowledge distillation
is applied. (b) The up direction indicates the conflicting di-
rection and the down direction indicates the harmonious
direction.

from the classifier does not align with that from knowledge dis-
tillation(shown in Figure 4), thereby hindering the optimization
of our SI module. We define𝑊 to represent the weights of the SI
module, L𝑐𝑙𝑠 representing the loss from the classifier, and L𝑑𝑖𝑠𝑡𝑖𝑙𝑙

representing the loss from dense distillation. The distillation loss at
one transformer block is formulated as:

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 = MSE(𝐴𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝐴𝑡𝑒𝑎𝑐ℎ𝑒𝑟 ), (9)

where 𝐴𝑠𝑡𝑢𝑑𝑒𝑛𝑡 is the output after the MLP module in binarized
ViTs.𝐴𝑡𝑒𝑎𝑐ℎ𝑒𝑟 is the corresponding output from pre-trained models.
Conflicting gradients are then described as follows:

𝑔+ (𝑊 ) =
∑︁
𝑖

| 𝜕L𝑑𝑖𝑠𝑡𝑖𝑙𝑙

𝜕𝑊𝑖
| ⊙ 𝐼𝑊𝑖

𝑔− (𝑊 ) =
∑︁
𝑖

| 𝜕L𝑑𝑖𝑠𝑡𝑖𝑙𝑙

𝜕𝑊𝑖
| ⊙ −𝐼𝑊𝑖

(10)

where 𝑔+ reflects the accumulation of harmonious gradients and 𝑔−
indicates the accumulation of conflicting gradients from distillation.
𝑊𝑖 is one element from weight of SI module and 𝜕L𝑑𝑖𝑠𝑡𝑖𝑙𝑙/𝜕𝑊𝑖 de-
notes gradient of𝑊𝑖 from knowledge distillation and ⊙ is Hadamard
product. 𝐼𝑊𝑖

is a indicator function defined as:

𝐼𝑊𝑖
=

{
1, if 𝜎 ( 𝜕L𝑑𝑖𝑠𝑡𝑖𝑙𝑙

𝜕𝑊𝑖
) = 𝜎 ( 𝜕L𝑐𝑙𝑠

𝜕𝑊𝑖
),

0, otherwise.
(11)

where𝜎 is the sign function. 𝜕L𝑐𝑙𝑠/𝜕𝑊𝑖 denotes gradient of𝑊𝑖 from
knowledge distillation. As illustrated in Figure 4, 𝑔− (𝑊 ) reaches
1.97 and it is comparable to 𝑔+ (𝑊 ) at 2.45. This causes optimization
oscillation when training the SI module and hinders its optimiza-
tion.

In order to decouple the training of these two branches, we
propose a novel decoupling training strategy that not only leverages
knowledge from pre-trained ViTs by distilling over the original
MLP, but also enhances spatial interaction via the SI module. in
the first stage, we train a model with binarized activations and
full-precision weights. At this stage, our dual branch consists only
of MLP branch, and we distill the intermediate features after MLP,
which preserve most knowledge from the pre-trained model. The SI
module is abandoned in the first stage. In the second stage, both the

Algorithm 1 Decoupled Training Strategy.

1: Input: input activation:A, weights of MLP: WMLP, weights of SI
Module:WSI, channel-wise balancing factor:𝛼 , weights of teacher MLP:
Wt, training epoch of stage-1:N1, training epoch of stage-2:N2.

2: Output: optimized WMLP andWSI.
3: Procedure:
4: Calculate Ab with A ; WMLP

b with WMLP by Equation 3 and 4
5: Calculate output from MLP OMLP

b = WMLP
b Ab

6: Stage-1:
7: For Epoch in 1,2,...,N1:
8: Calculate output from teacher model Ot = WtA
9: Calculate L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 between OMLP

b and Ot by Equation 9
10: Calculate L = L𝑐𝑙𝑠 + L𝑑𝑖𝑠𝑡𝑖𝑙𝑙

11: Update WMLP by L.
12: End For
13: Stage-2:
14: For Epoch in 1,2,...,N2:
15: CalculateWSI

b with WSI by Equation 4
16: Calculate output from SI module OSI

b = WSI
b Ab

17: Calculate O = OMLP
b +𝛼 ∗OSI

b by channel-wise balancing factor 𝛼
18: Update WMLP and WSI by L𝑐𝑙𝑠 .
19: End For
20: Return optimized WMLP andWSI.

weights and activations are binarized. We do not distill intermediate
activations at this stage and inject our spatial interaction module
to enhance spatial interaction. Then the conflicting gradient is
calibrated and the SI module is only optimized by gradients from
the classifier.

To better balance MLP module and SI module, we further intro-
duce a channel-wise self-balancing factor 𝛼 ∈ R𝑑 in the second
stage. It can dynamically adjust the magnitude of different channels
and be updated in an end-to-end manner with negligible costs. Ex-
periments in Section 4.3.2 show that these factors vary a lot across
different channels and do learn unique features.

Overall, the training procedure is illustrated in Algorithm 1.

4 EXPERIMENTS
4.1 Implementation Details
4.1.1 Datasets and architectures. We conduct image classification
experiments on two standard benchmarks: TinyImageNet [53] and
ImageNet-1k[11]. We also conduct object detection and segmenta-
tion tasks on MS-COCO dataset[30]. For classification tasks, data
augmentation is adjusted according to DeiT [47], which is common
in ViT. To demonstrate the versatility of our approach, we em-
ploy four prevail vision transformer backbones: ViT[14], DeiT[48],
Swin[34], and NesT[62]. All the layers in Transformer models are
binarized except the first input patch-embedding layer and the
last classifier layer, which is a common practice of BNNs. The
binary operations (BOPs) and floating-point operations (FLOPs)
are counted separately, and the operations (OPs) are calculated by
OPs = BOPs/64 + FLOPs [36, 45]. For object detection and segmen-
tation tasks, we evaluate the Swin transformer backbone with two
classic object detection frameworks Mask R-CNN[18] and Cascade
Mask R-CNN[5].
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Table 2: Comparison with state-of-the-art methods on Tiny-ImageNet. "W/A" denotes number of bits in weights and activation.

Model Method Bits(W/A) Size(MB) Bops(G) Flops(G) Ops(G) Top-1(%) Top-5(%)

ViT-T

Full precision 32-32 22.10 0.00 1.08 1.08 77.49 91.23

BiBERT [43] 1-1 0.80 1.40 0.07 0.09 23.23 48.48
BiViT [19] 1-1 0.80 1.40 0.07 0.09 28.74 54.69
SI-BiViT 1-1 0.92 1.23 0.07 0.09 46.08 71.80

ViT-S

Full precision 32-32 86.67 0.00 4.25 4.25 78.25 91.22

BiBERT [43] 1-1 1.65 4.90 0.13 0.21 36.65 64.35
BiViT [19] 1-1 1.65 4.90 0.13 0.21 42.91 69.27
SI-BiViT 1-1 1.84 4.20 0.15 0.21 58.45 81.04

DeiT-T

Full precision 32-32 22.25 0.00 1.08 1.08 78.38 93.30

BiBERT [43] 1-1 0.96 1.41 0.07 0.09 26.48 52.87
BiViT [19] 1-1 0.96 1.41 0.07 0.09 37.51 63.98
SI-BiViT 1-1 1.08 1.24 0.07 0.09 49.80 75.11

Swin-T

Full precision 32-32 110.60 0.00 4.37 4.37 84.97 96.18

BiBERT [43] 1-1 7.03 4.44 0.30 0.37 32.69 59.83
BiViT [19] 1-1 7.03 4.44 0.30 0.37 61.26 82.83
SI-BiViT 1-1 7.41 8.04 0.32 0.45 64.29 85.16

Nest-T

Full precision 32-32 64.89 0.00 5.23 5.23 85.22 96.47

BiBERT [43] 1-1 3.77 5.34 1.14 1.22 48.96 75.09
BiViT [19] 1-1 3.77 5.34 1.14 1.22 55.63 79.51
SI-BiViT 1-1 3.79 4.06 1.12 1.19 60.01 82.52

4.1.2 Training setup. For classification tasks, all experiments are
implemented with PyTorch [42] and Timm [52] library. For clas-
sification tasks, we employ AdamW [39] optimizers with weight
decay of 2e-5 and train models for 300 epochs using a cosine an-
nealing schedule with 5 epochs of warm-up. We optimize each
stage of the decoupled training strategy with 150 epochs. For object
detection and segmentation tasks, we follow the official training
pipeline in Swin[34] and replace the backbone with our SI-BiViT.
We implement it by mmdetection [7].
4.1.3 Baseline model. We first design a binarized vision trans-
former by adopting several existing techniques. Specifically, these
techniques include:

• Binarization method. We use Equation 3 to binarize activa-
tion and Equation 4 to binarize weights.

• Activation function.We replace the GeLU activation function
with RPRelu introduced by [36]. RPRelu can make activation
function adaptively learn the parameters for distributional
reshaping.

• Two-stage training. Following [4], in the first stage, parame-
ters are randomly initialized and we only binarize weights.
In the second stage, parameters are initialized from stage
one and both weights and activation are binarized.

• Normalization. IR-Net[44] finds that BatchNorm[21] can
help preserve information and accelerate training. We re-
place all LayerNorm [1] with BatchNorm [21].

4.2 Comparison with State-of-the-art
4.2.1 Results on Tiny-ImageNet. As depicted in Table 2, we com-
pare our method with state-of-the-art binarization techniques, such
as BiViT [19] and BiBERT [43], across various vision transformer

backbones. We provide performance and efficiency cost metrics
for classification tasks on Tiny-ImageNet datasets. Overall, our
SI-BiViT achieves superior performance compared to the previous
state-of-the-art (SOTA) on all ViT backbones, with an average in-
crease of 10.51%. Specifically, on vanilla ViT backbones, SI-BiViT
outperforms the BiViT method by a significant margin of 17.34% in
ViT-Tiny and 15.54% in ViT-Small without incurring computation
overhead. Additionally, on hierarchical ViT backbones such as the
Swin Transformer and NesT Transformer, our SI-BiViT demon-
strates an improvement of 3.03% and 4.38%, respectively, show-
casing its flexibility and effectiveness. Furthermore, our SI-BiViT
effectively narrows the performance gap between binarized vision
transformers and their full-precision counterparts. Specifically, we
reduce the gap to 19.80% in ViT-Small and 20.68% in Swin-Tiny,
thereby enhancing the practicality of binarized ViT models.

4.2.2 Results on ImageNet. Moreover, we compare our method
with state-of-the-art binarization techniques on ImageNet datasets.
We exclude BiBERT [43] from the comparison due to its poor per-
formance, as BiViT [19] consistently outperforms it on all tasks
in Tiny-ImageNet dataset. We also utilize larger models such as
ViT-base and Deit-small on ImageNet compared to Tiny-ImageNet
dataset. We achieve an accuracy of 56.43% in NesT-Tiny and 63.90%
in Swin-Tiny, surpassing BiViT by 6.54% and 4.29%, respectively.
Notably, our SI-BiViT outperforms BiViT by more than 35% and
21% on ViT-B and Deit-S, nearly doubling the accuracy of BiViT.
This highlights the adaptability of our SI-BiViT to more complex
classification tasks and larger ViT backbones.

4.2.3 Results on MS-COCO. In Table 4, our SI-BiViT outperforms
BiViT by 1.6% in object detection and 1.3% in instance segmentation
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Table 3: Comparison with State-of-the-art methods on Ima-
geNet dataset.

Model Method Bits(W/A) Size(MB) Ops(G) Top-1(%)

ViT-S

Full precision 32-32 87.90 4.25 82.22

BiViT [19] 1-1 2.88 0.21 27.73
SI-BiViT 1-1 3.07 0.21 52.66

ViT-B
Full precision 32-32 345.66 16.86 84.47

BiViT [19] 1-1 5.92 0.56 24.67
SI-BiViT 1-1 6.22 0.53 60.08

DeiT-S
Full precision 32-32 89.44 4.27 80.47

BiViT [19] 1-1 4.42 0.21 33.99
SI-BiViT 1-1 4.61 0.22 55.67

Swin-T
Full precision 32-32 113.06 4.37 81.19

BiViT [19] 1-1 9.49 0.37 59.51
SI-BiViT 1-1 9.87 0.45 63.80

Nest-T

Full precision 32-32 69.85 5.83 81.07

BiViT [19] 1-1 5.00 1.22 49.89
SI-BiViT 1-1 5.18 1.19 56.43

using Mask R-CNN. Moreover, in the Cascade Mask R-CNN setting,
the performance of our SI-BiViT is even more impressive, achieving
30.5% average precision (AP) in object detection and 28.5% AP in
instance segmentation. These results further underscore the effec-
tiveness and adaptability of SI-BiViT across various downstream
tasks.

4.3 Ablation Study
4.3.1 Overall of SI-BiViT. Our SI-BiViT primarily comprises two
key components: the dual branch and the decoupled training strat-
egy. The dual branch allows us to retain more information from
pre-trained models, resulting in performance benefits. As depicted
in Table 5, the incorporation of a dual-branch structure contributes
to an improvement of 8.35%. To optimize the dual branch more
effectively, particularly the SI Module, we introduce the decou-
pled training strategy, which further enhances performance by a
significant margin of 11.7%.

4.3.2 Effects of Channel-wise Balancing Factor. To enhance spatial
interaction in binarized vision transformers, we utilize a channel-
wise balancing factor to integrate the SI module alongside the
MLP module. This channel-wise balancing factor aims to strike a
balance between these two branches. As shown in Table 6, there
is a noticeable improvement after applying these factors, with an
increase of 1.83% in ViT-Small and 1.43% in Swin-Tiny. Subsequently,
we visualize the channel-wise balancing factor in Figure 5 and
observe significant variations across different channels.

4.3.3 Effects of Token-mixing Linear. To assess the effectiveness
of the token-mixing linear, we compare it with other SI modules,
including multi-head self-attention [49] and Cycle-FC [8]. Multi-
head self-attention (MSA) enhances spatial interaction through the
attention mechanism, necessitating the computation of𝑄 ,𝐾 , and𝑉 ,
which results in increased computational complexity. On the other

Table 4: Comparison with State-of-the-art methods on MS-
COCO dataset.

Framework Task Method Bits(W/A) AP AP50 AP75

Mask R-CNN

Object
Detection

Full precision 32-32 42.7 65.2 46.8

BiViT [19] 1-1 23.7 42.2 23.8
SI-BiViT 1-1 25.3 44.1 25.6

Instance
Segmentation

Full precision 32-32 39.3 62.2 42.2

BiViT [19] 1-1 23.6 40.1 24.5
SI-BiViT 1-1 24.9 41.9 25.8

Cascade
Mask R-CNN

Object
Detection

Full precision 32-32 47.0 65.7 51.1

BiViT [19] 1-1 30.0 46.8 32.2
SI-BiViT 1-1 30.8 47.9 32.5

Instance
Segmentation

Full precision 32-32 41.1 63.4 44.5

BiViT [19] 1-1 27.8 44.5 29.7
SI-BiViT 1-1 28.5 45.6 30.0

Table 5: Ablation study of components in SI-BiViT.

Method Top-1(%)

Baseline 38.32

+ dual-branch 46.67(+8.35)
+ decoupled training strategy 58.45(+11.78)

Table 6: Effect of Channel-wise Balancing Factor(CBF).

Model LSF Size(MB) Ops(G) Top-1(%)

ViT-S
% 1.84 0.21 56.62
! 1.84 0.21 58.45(+1.83)

Swin-T
% 7.41 0.44 62.86
! 7.41 0.44 64.29(+1.43)

Figure 5: Visulization of channel-wise balancing factor(CBF).
We randomly pick them from block 1 and block 9. The red
mark highlights the maximum and minimum elements.

hand, Cycle-FC augments spatial interaction and performs feature
extraction within a token. However, the efficiency of Cycle-FC is not
as effective as token-mixing linear in terms of spatial interaction.
As demonstrated in Table 7, token-mixing linear outperforms both
MSA and Cycle-FC in terms of efficiency and performance.

We can further control the Spatial Interaction Capability (SIC) in
the Token-mixing Linear by adjusting the parameter 𝑛′ in Equation
8. We compare three settings: token-Linear-a, token-Linear-b, and
token-Linear-c, which increase spatial interaction by 2 times, 3
times, and 5 times, respectively. As illustrated in Table 8, token-
Linear-c achieves the best performance, with a top-1 accuracy of
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Table 7: Comparison with other SI modules.

SI Module Size(MB) Ops(G) SIC(times) Top-1(%)

- 1.79 0.21 1 52.31

Cycle-FC 1.85 0.22 1.2 52.49
MSA 1.99 0.25 2 53.06

token-Linear 1.84 0.21 3 58.45

Table 8: Comparison with different Token-Linear settings.

SI Module Size(MB) Ops(G) SIC(times) Top-1(%)

- 1.79 0.21 1 52.31

token-Linear-a 1.83 0.20 2 57.32
token-Linear-b 1.84 0.21 3 58.45
token-Linear-c 1.85 0.24 5 58.52

Table 9: Impact of spatial interaction module on different bi-
narized ViT methods on Imagenet. SI module can be directly
plugged into prevailing binarization methods.

Method SI Module Size(MB) Ops(G) Top-1(%)

BiT[35]
% 1.65 0.21 27.90
! 1.84 0.21 37.15(+9.25)

BiBERT[43]
% 1.65 0.21 36.65
! 1.84 0.21 43.15(+6.50)

BiViT[19]
% 1.65 0.21 42.91
! 1.84 0.21 51.04(+8.13)

SI-BiViT
% 1.79 0.21 53.31
! 1.84 0.21 58.45(+5.14)

58.52%. However, this improvement in performance comes at the
expense of much more computational cost. On the other hand,
token-Linear-b strikes a balance between performance and effi-
ciency, achieving a top-1 accuracy of 58.45%.

4.3.4 Combination with existing Binarized ViT methods. Our SI
module is orthogonal to existing Binarized ViT approaches, allow-
ing it to be seamlessly integrated into existing binarization methods
to further enhance performance. We apply the SI module to four
prevalent binarization methods: BiT[35], BiViT[19], BiBERT[43],
and the baseline model. As shown in Table 9, we observe an im-
provement of 8.13% in BiViT, with an average increase of 6.59%
across all methods. Our SI module significantly enhances the per-
formance of all four methods, underscoring the strong flexibility
and effectiveness of SI-BiViT. Experiments on Tiny-ImageNet can
be found in Appendix.

4.3.5 Effects in Full-Precision Backbones. As our SI-BiViT intro-
duces a new dual branch and modifies the structure of ViT, it is
necessary to explore the impact of this modification on the full-
precision model to ensure whether the improvement is introduced
by improved full-precision models. We train the full-precision ViTs
with the proposed dual branch and the results are shown in Table

Table 10: Comparision of SI module on full-precision and
binarized models.

Model Bits(W/A) SI Module Top-1(%)

Vit-S
32-32

% 80.14
! 79.79(−0.35)

1-1
% 53.31
! 58.45(+5.14)

Table 11: Comparison of Latency in deployment.

Method Bits(W/A) Size(MB) Ops(G) Latency(ms)

Full precision 32-32 87.90 4.25 2.55
SI-BiViT 1-1 3.07 0.21 1.12

10. In full-precision models, there are negligible performance im-
provements while there is a significant performance improvement
in the binarized model, with 5.69% on ViT and 6.14% on Swin. It
demonstrates that the huge performance benefit is brought the
increased spatial interaction.

4.3.6 Latency Comparision. To measure real-time latency on hard-
ware, we conducted experiments on our binarized model and full-
precision model using an Nvidia-3090 GPU. The full-precision ma-
trix operation was implemented using cuDNN[10], while the bina-
rized matrix operation was implemented using TC-BNN [25]. As
presented in Table 11, our method achieves a 2.28x reduction in
latency compared to its full-precision counterpart. We anticipate
that further acceleration could be achieved with the development
of hardware specifically designed for binarization acceleration.

5 CONCLUSION
In this paper, we reveal that the lack of token-level correlation
greatly affects the performance of binarized vision transformers.
To measure token-level correlation in different modules, we define
spatial interaction capability (SIC) and observe that existing MLP
modules only extract features in each token independently, which
severely hinder spatial interaction in binarized ViTs. This motivates
us to propose SI-BiViT. Our proposed method consists of an SI
module, which is placed alongside the MLP module to formulate
a dual-branch structure. This structure not only leverages knowl-
edge from pre-trained models but also increases spatial interaction
through the SI module. To avoid gradient conflicting problems,
we also design a decoupled training strategy to train these two
branches more effectively. Importantly, our SI-BiViT is orthogonal
to existing Binarized ViT approaches and can be seamlessly inte-
grated to further improve their performance. We conduct extensive
experiments that demonstrate the flexibility and effectiveness of
SI-BiViT across four classic ViT backbones when applied to several
downstream tasks.
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