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Abstract

Despite Multi-modal Large Language Models001
(MM-LLMs) have made exciting strides re-002
cently, they are still struggling to efficiently003
model the interactions among multi-modal in-004
puts and the generation in non-textual modal-005
ities. In this work, we propose TEAL (Tok-006
enize and Embed ALL), an approach to treat007
the input from any modality as a token se-008
quence and learn a joint embedding space for009
all modalities. Specifically, for the input from010
any modality, TEAL firstly discretizes it into011
a token sequence with the off-the-shelf tok-012
enizer and embeds the token sequence into a013
joint embedding space with a learnable embed-014
ding matrix. MM-LLMs just need to predict015
the multi-modal tokens autoregressively as con-016
ventional textual LLMs do. Finally, the corre-017
sponding de-tokenizer is applied to generate018
the output in each modality based on the pre-019
dicted token sequence. With the joint embed-020
ding space, TEAL enables the frozen LLMs021
to perform both understanding and generation022
tasks involving non-textual modalities, such as023
image and audio. Thus, the textual LLM can024
just work as an interface and maintain its high025
performance in textual understanding and gen-026
eration. Experiments show that TEAL achieves027
substantial improvements in multi-modal un-028
derstanding, and implements a simple scheme029
for multi-modal generation.030

1 Introduction031

Recently, Multi-Modal Large Language Models032

(MM-LLMs), which perform understanding and033

generation tasks more than textual modalities, have034

made exciting strides and garnered significant at-035

tention for their potential in Artificial Intelligence036

Generated Content (AIGC) (Cao et al., 2023). MM-037

LLMs are considered a step closer to Artificial Gen-038

eral Intelligence (AGI) (Goertzel and Pennachin,039

2007; Fei et al., 2022) due to their provision of040

more user-friendly interfaces and their ability to041

perceive the world similarly to humans (Yin et al., 042

2023). Typically, there are two main different 043

branches in the realm of constructing MM-LLMs: 044

One branch aims to construct a ‘real’ multi-modal 045

model by training the model with multi-modal data 046

from scratch, without relying on the pre-trained 047

textual LLMs (Borsos et al., 2023; Lu et al., 2022a; 048

Barrault et al., 2023; Shukor et al., 2023; Chen 049

et al., 2023c; Copet et al., 2023); The other branch 050

takes the textual LLMs as the backbone and en- 051

ables them to perform multi-modal understanding 052

and generation tasks with instruction tuning. 053

With the rapid advancement of textual LLMs, 054

researchers are keener on the second branch of 055

approaches which empowers the pre-trained high- 056

performance textual LLMs with multi-modal abili- 057

ties. In this line, some typical works, such as BLIP- 058

2 (Li et al., 2023), Flamingo (Alayrac et al., 2022), 059

MiniGPT-4 (Zhu et al., 2023), LLama-Adapter 060

(Gao et al., 2023; Zhang et al., 2023c), LLaVA (Liu 061

et al., 2023b,a), SpeechGPT (Zhang et al., 2023a), 062

involve employing adapters that align pre-trained 063

encoders in other modalities to textual LLMs. As 064

these works take the dense features from the pre- 065

trained encoders as additional non-textual informa- 066

tion, they cannot efficiently model the interactions 067

among multi-modal inputs and falter in the nuanced 068

art of generating non-textual content. To compen- 069

sate for this deficiency in the non-textual genera- 070

tion, some efforts, such as visual-ChatGPT (Chen 071

et al., 2023c), Hugging-GPT (Shen et al., 2023), 072

Audio-GPT (Huang et al., 2023), Next-GPT (Wu 073

et al., 2023b), and MiniGPT-5 (Zheng et al., 2023) 074

have sought to amalgamate the textual LLMs with 075

some external generation tools, e.g., Stable Diffu- 076

sion (Rombach et al., 2022), DALL-E (Ramesh 077

et al., 2021), Whisper (Radford et al., 2023). Un- 078

fortunately, these systems suffer from two critical 079

challenges due to their complete pipeline archi- 080

tectures. First, the information transfer between 081

different modules is entirely based on generated 082

1



textual tokens, where the process may lose some083

multi-modal information and propagate errors (Wu084

et al., 2023b). Additionally, the external tools usu-085

ally make the models complex and heavy, which086

consequently results in inefficient training and in-087

ference.088

Based on the above observation, we conclude089

that the emerging challenges in the previous works090

are mainly raised by their non-unified processing of091

the multi-modal inputs, where they encode the non-092

textual inputs into a dense and high-level feature,093

but tokenize the textual input into a token sequence.094

The non-unified processing introduces an extra bur-095

den for LLMs to model the interaction between096

multi-modal inputs and generate the non-textual097

samples. In a nutshell, if we can tokenize the in-098

terleaved multi-modal input into a token sequence099

and align the non-textual token embedding into the100

textual embedding space, the original textual LLMs101

can be easily transformed to handle non-textual un-102

derstanding and generation tasks with parameters103

tuned as little as possible.104

In pursuit of this goal and inspired by the re-105

cent advancement of multi-modal tokenizers (Yu106

et al., 2023b; Chang et al., 2023; Peng et al., 2022;107

Borsos et al., 2023; Yu et al., 2023a), we propose108

TEAL, a token-in-token-out MM-LLM designed to109

seamlessly handle the token input and output in110

any combination of three modalities: text, image,111

and audio. Specifically, TEAL comprises three tiers.112

First, we tokenize the input from any modality into113

a token sequence with the off-the-shelf tokenizers,114

such as BEiT-V2 and a Whisper-based audio tok-115

enizer. Second, we insert a non-textual embedding116

matrix and output matrix into an open-source tex-117

tual LLM, which enables the textual LLM to pro-118

cess the non-textual inputs and outputs. To align119

the non-textual embedding matrices with their tex-120

tual counterparts, we equip them with a projection121

layer. Third, the generated tokens are routed to the122

corresponding de-tokenizers, which transform the123

token sequences into samples in different modal-124

ities. We test the effectiveness and generality of125

our method by conducting extensive experiments126

on the modalities of text, image, and audio. We127

also make a deep investigation into the tokenizers128

in each modality, which is the core component of129

our method.130

In summary, our contributions are three-fold:131

1. We propose TEAL, an approach that treats the132

input from any modality as a token sequence133

and learns a joint embedding space for all 134

modalities. TEAL introduces a simple way 135

to enable the frozen LLMs to perform both 136

understanding and generation tasks involving 137

non-textual modalities. 138

2. We conduct extensive experiments on the non- 139

textual modalities of image and audio. Exper- 140

imental results show that TEAL achieves sub- 141

stantial improvements over previous works 142

on multi-modal understanding and paves a 143

simple way for the generation of non-textual 144

modalities. To the best of our knowledge, this 145

is the first work that successfully empowers 146

the frozen LLM to perform tasks involving 147

both the non-textual modalities of audio and 148

image. 149

3. By testing versatile tokenizers for image and 150

audio, we find that the tokenizer is the key to 151

the performance of MM-LLMs. Our extensive 152

experiments have identified a new research di- 153

rection that devising a general semantic-aware 154

tokenizer is very promising. 155

2 Related Work 156

2.1 MM-LLMs 157

Training a multi-modal large language model from 158

scratch in an end-to-end manner incurs substantial 159

costs. Therefore, most researchers choose to inte- 160

grate multi-modal modules into existing text-based 161

large language models, allowing these models to 162

acquire multi-modal capabilities. One branch in- 163

volves employing robust pre-trained vision or au- 164

dio encoders to encode multi-modal information 165

into features and subsequently align it with the fea- 166

ture space of an LLM (Dai et al., 2023; Chen et al., 167

2023a; Zhang et al., 2023b,c; Gao et al., 2023; Ling 168

et al., 2023; Wu et al., 2023a; Hussain et al., 2023). 169

For example, Flamingo (Alayrac et al., 2022) uti- 170

lizes vision encoders to obtain a fixed number of 171

visual tokens and use cross-attention layers to con- 172

nect the pre-trained LLM layers. BLIP-2 (Li et al., 173

2023) utilizes a Q-Former as a bridge between 174

the input image and the LLMs. LauraGPT (Chen 175

et al., 2023b) uses a pre-trained Conformer-based 176

encoder to extract continuous audio representations 177

for the connected LLM. Furthermore, different pro- 178

jection layers are used to reduce the modality gap, 179

such as a simple Linear Layer (Liu et al., 2023a) 180

or a two-layer Multi-layer Perceptron (Zhang et al., 181

2023d). Moreover, LLaMa-Adapter (Zhang et al., 182
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2023c; Gao et al., 2023) integrates trainable adapter183

modules into LLMs, enabling effective parameter184

tuning for the fusion of multi-modal information.185

Another branch involves using off-the-shelf expert186

models to convert images or speech into natural lan-187

guage in an offline manner, such as Next-GPT (Wu188

et al., 2023b), SpeechGPT (Zhang et al., 2023a)189

and AudioGPT (Huang et al., 2023).190

Contrary to these works mentioned above, we191

tokenize the input from any modality into a token192

sequence and train a token-in-token-out MM-LLM193

designed to seamlessly handle the token input and194

output in any combination of three modalities: text,195

image, and audio. Gemini (Team et al., 2023) is our196

concurrent work which adopts a similar technical197

approach as ours.198

2.2 Non-textual Discretization199

In addition to directly integrating multi-modal mod-200

ules or using offline expert models, there are also201

efforts focused on non-textual discretization, which202

employs tokenizers to convert continuous images203

or audio into token sequences. This way, all modal-204

ities share the same form as tokens, which can205

be better compatible with LLM. Next, we will in-206

troduce two mainstream methods of Non-textual207

discretization.208

VQ-VAEs Vector Quantised Variational AutoEn-209

coder (VQ-VAE) (Van Den Oord et al., 2017) is210

a seminal contribution in the field of non-textual211

tokenization, which incorporates vector quantiza-212

tion (VQ) to learn discrete representations and con-213

verts images into a sequence of discrete codes. In214

the vision domain, VQGAN (Esser et al., 2021)215

follows the idea, using a codebook to discretely216

encode images, and employs Transformer as the217

encoder. ViT-VQGAN (Yu et al., 2021) intro-218

duces several enhancements to the vanilla VQGAN,219

encompassing architectural modifications and ad-220

vancements in codebook learning. BEiT-V2 (Peng221

et al., 2022) proposes Vector-quantized Knowledge222

Distillation (VQ-KD) to train a semantic-rich vi-223

sual tokenizer by reconstructing high-level features224

from the teacher model. Ge et al. (2023) propose225

SEED and claims two principles for the tokenizer226

architecture and training that can ease the align-227

ment with LLMs. Yu et al. (2023a) introduce228

SPAE, which can convert between raw pixels and229

lexical tokens extracted from the LLM’s vocab-230

ulary, enabling frozen LLMs to understand and231

generate images or videos. For the audio, Diele-232

man et al. (2018) utilize autoregressive discrete 233

autoencoders (ADAs) to capture correlations in 234

waveforms. Jukebox (Dhariwal et al., 2020) uses a 235

multi-scale VQ-VAE to compress music to discrete 236

codes and model those using autoregressive Trans- 237

formers, which can generate music with singing 238

in the raw audio domain. SoundStream (Zeghi- 239

dour et al., 2021) employs a model architecture 240

composed of a fully convolutional encoder/decoder 241

network and adopts a Residual Vector Quantizer 242

(RVQ) to project the audio embedding in a code- 243

book of a given size. Défossez et al. (2022), Jiang 244

et al. (2022) also adopt RVQ to quantize the output 245

of the encoder. 246

Clustering Except for those methods that use 247

trained specialized vector quantization (VQ) mod- 248

ules as tokenizers, some works (Lakhotia et al., 249

2021; Kharitonov et al., 2022) apply the cluster- 250

ing algorithms to the features, and the cluster in- 251

dices are directly used as the discrete tokens for 252

speech. The cluster approach typically relies on 253

self-supervised learning models, such as HuBERT 254

(Hsu et al., 2021), W2V-BERT (Chung et al., 2021; 255

Borsos et al., 2023), USM (Zhang et al., 2023e; 256

Rubenstein et al., 2023), which are trained for dis- 257

crimination or masking prediction and maintain 258

semantic information of the speech. Compared 259

with neural VQ-based tokenizers, the clustering- 260

based approach provides enhanced flexibility as 261

it can be applied to any pre-trained speech model 262

without altering its underlying model structure. 263

3 Method 264

The main goal of this paper is to enable the frozen 265

textual LLMs to model sequences consisting of 266

multi-modal discrete tokens. Thus, the textual 267

LLMs obtain the ability to perform both under- 268

standing and generation tasks involving non-textual 269

modalities and maintain their strong abilities in text. 270

The main architecture of our method is illustrated 271

in Figure 1. Firstly, we discretize the interleaved 272

multi-modal input into a token sequence with the 273

off-the-shelf tokenizers. Then, an open-source tex- 274

tual LLM is used to model the input and output 275

token sequence by aligning the textual and non- 276

textual embedding space. Finally, the correspond- 277

ing off-the-shelf decoder is utilized to generate the 278

output in each modality. In the remainder of this 279

section, we will describe the model architecture in 280

Subsection 3.1. The tokenizer and de-tokenizer for 281

non-textual modalities we used in this paper will be 282
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Figure 1: The main architecture of TEAL. The modules in MM-LLM denoted with the color gray make up the
original textual LLM and most of them are frozen during training.

presented in Subsection 3.2. Finally, we propose283

our two-stage training strategies in Subsection 3.3.284

3.1 Model Architecture285

TEAL is a general method that can be applied to286

any open-source LLMs. In this paper, the pro-287

posed MM-LLM takes the most popular open-288

source textual LLM, i.e., LLaMA, as the back-289

bone, which makes it easy to compare fairly with290

previous works. To support the modeling of non-291

textual tokens, the MM-LLM also incorporates a292

non-textual embedding layer and a non-textual out-293

put layer. Two projection layers are applied after294

the non-textual embedding layer and before the295

output layer separately, which mainly serve two296

purposes: 1) make the output dimension of textual297

and non-textual embedding the same; 2) align the298

non-textual embedding with the textual embedding299

space. To ease the training process and solve the300

cold-start problem, we initialize the non-textual em-301

bedding and output matrix with the codebook of the302

tokenizer, which will be described in Subsection303

3.2 in detail.304

3.2 Tokenize and De-Tokenize305

Tokenization is a very popular technique in the area306

of natural language processing, which is usually307

used as a tool to split the input sentence into the308

granularity of sub-words. Most of the existing tex-309

tual LLMs take the sentence piece as the tokenizer310

for its universal processing of multi-lingual texts.311

The de-tokenization for the sentence piece is very312

simple, which just works as a function to replace 313

the meta-symbol ‘_’ with the whitespace. Recently, 314

tokenization (or denoted as discretization) in non- 315

textual modalities has gained much attention and 316

achieved substantial improvements, which makes 317

it possible to build a fully token-in-token-out MM- 318

LLM. The most widely used methods are VQ-VAE 319

and k-means clustering. In this paper, we take the 320

encoder of the VQ-VAE models and the k-means 321

clustering as the tokenizers for the image and audio 322

respectively. The decoders of the VQ-VAE models 323

are taken as the de-tokenizers for the image and 324

audio. For the image, we test three different to- 325

kenizers, namely DALL-E (Ramesh et al., 2021), 326

VQ-GAN (Esser et al., 2021) and BEiT-V2 (Peng 327

et al., 2022). For the audio, we apply K-means 328

Clustering on the intermediate features of the fol- 329

lowing typical models, and the cluster indices are 330

directly used as the discrete tokens for speech. We 331

test two different tokenizers for audios, such as 332

HuBERT (Hsu et al., 2021) and Whisper (Radford 333

et al., 2023). We present detailed descriptions of 334

these tokenizers and test their effects on the final 335

performance in Section 5.1. 336

3.3 Two-stage Supervised Finetuning 337

The proposed TEAL model is initialized with 338

the open-source textual LLM. To obtain the un- 339

derstanding and generation ability in non-textual 340

modalities and maintain its high performance in tex- 341

tual modality, we propose a two-stage supervised 342

fine-tuning that trains the model with parameters 343
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tuned as little as possible. In the following, we344

denote the two stages of supervised fine-tuning as345

pre-training and fine-tuning separately.346

Pre-training The goal of the pre-training is to
align the non-textual and textual embedding space
by tuning the projection layer. Specifically, we
freeze all parameters in the MM-LLM except the
parameter of the two projection layers. We generate
the training samples from the vision-language and
audio-language pairs with very simple prompts.
Taking the vision-language pair as an example, we
generate two training samples from each vision-
language pair with the following format:

The image and text pair:[img][text]

The text and image pair:[text][img]

Fine-tuning In the stage of fine-tuning, we pro-347

cess the corpus of downstream tasks as the prompt348

format in (Zhang et al., 2023c). For each task, we349

use the GPT4 to generate 10 different prompts.1350

We freeze the parameters of the textual LLM and351

tune all parameters related to the non-textual modal-352

ities. Following (Zhang et al., 2023c), we apply353

the bias-norm tuning where the bias and norm pa-354

rameters are inserted in each layer to enhance the355

fine-tuning performance. We also tested LoRA tun-356

ing (Hu et al., 2021), but we did not obtain further357

improvement.358

4 Experiments359

We mainly test our method on understanding tasks360

involving non-textual modalities. To show the non-361

textual generation abilities, we will show our per-362

formance on the text-to-image generation.363

4.1 Setup364

For image-related understanding tasks, we test our365

method on CoCo-caption and science-QA. Addi-366

tionally, we test our method’s ability to understand367

speech information in the tasks of automatic speech368

recognition and speech translation. In the following369

experiments, we use BEiT-V2 and Whisper as the370

tokenizers for the image and audio understanding371

respectively. The embeddings and output matrix372

for non-textual modalities are initialized with the373

codebook embeddings of the corresponding tok-374

enizers. The model is implemented based on the375

1For details of the prompt format, we refer the readers to
the Appendix A.

codebase of LLaMA-Adapter (Gao et al., 2023).2 376

If there is no specific explanation, all models are 377

trained with two-stage supervised fine-tuning on 378

8 A100 GPUs, and the main hyper-parameters are 379

set the same with LlaMA-Adapter. During the pre- 380

training phase, we did not introduce any additional 381

data apart from the training data for the tasks men- 382

tioned above. During fine-tuning, we also include 383

the corpus of alpaca to enhance the model’s ability 384

on text understanding (Taori et al., 2023). All the 385

data for different tasks are processed into a unified 386

format and trained without explicitly differentiating 387

between the tasks during the training process. Fol- 388

lowing (Gao et al., 2023), we adopt top-p sampling 389

as the default decoding method with a temperature 390

of 0.1 and a top-p of 0.75. 391

4.2 Main Results on Image Understanding 392

CoCo-Caption Image captioning is the task of 393

generating descriptive captions for images. We 394

utilize all image-caption pairs from the coco2014 395

dataset (Chen et al., 2015), which contains 83K 396

images for training. As there are at least five cap- 397

tions for each image in the COCO2014 dataset, we 398

can construct at least five training examples for 399

each image by pairing the image with its all cap- 400

tions respectively. For a fair comparison, we report 401

the CIDER, BLEU-4 on the Karpathy test split, 402

which is evaluated with the official toolkit, pyco- 403

coeval.3 The result is presented in Table 1. From 404

Table 1, we can find that TEAL achieves substantial 405

improvements compared to the baseline of LLaMA- 406

Adapter v2, which applies a frozen vision encoder 407

to incorporate the vision information. Specifically, 408

we achieve 1.3 and 5.8 points improvement on the 409

metrics of BLEU-4 and CiDER respectively. Addi- 410

tionally, compared to the models that trained with 411

large-scale corpora, such as the BLIP and BLIP2, 412

TEAL further narrows the performance gap without 413

additional pre-training corpus. The cases on the 414

valid set are shown in Appendix B. We can find 415

that TEAL can understand the content of images 416

well and describe the details of the images clearly. 417

ScienceQA ScienceQA (Lu et al., 2022b) is col- 418

lected from elementary and high school science 419

curricula and contains 21,208 multimodal multiple- 420

choice science questions. Out of the questions in 421

ScienceQA, 10,332 (48.7%) have an image con- 422

text, 10,220 (48.2%) have a text context, and 6,532 423

2https://github.com/Alpha-VLLM/LLaMA2-Accessory
3https://github.com/cocodataset/cocoapi
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Model
Data Scale COCO Caption
PT FT CiDER BLEU-4

LlaMA-Adapter v2 (Gao et al., 2023) 0 0.6M 122.2 36.2
BLIP (Li et al., 2022) 14M 0.6M 136.7 40.4
BLIP2 (Li et al., 2023) 129M 0.6M 145.3 43.7
TEAL (Ours) 0 0.6M 128.0 37.5

Table 1: Model performance on the COCO2014 test set. The results of the baselines are cited from their papers
directly.

Method
Subject Conext Modality Grade

Average
NAN SOC LAN TXT IMG NO G1-6 G7-12

LLaMA-Adapter 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19
Human 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40
GPT-3.5 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97
GPT-3.5 w/ COT 75.44 70.87 78.09 76.48 67.43 79.93 78.23 69.68 75.17
MM-COTbase 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37 84.91
MM-COTlarge 95.91 82.00 90.82 95.26 88.80 92.89 92.44 90.31 91.68
LLaVA-7B - - - - - - - - 89.84
LLaVA-13B 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92
TEAL (Ours) 88.91 92.98 86.31 86.06 82.85 88.97 86.56 84.80 87.18

Table 2: Results on the ScienceQA test set. For the baselines, we directly cite the results from their papers.

Model clean other
LauraGPT Discrete (Chen et al., 2023b) 9.1 24.0

Whispersmall (Radford et al., 2023) 4.4 8.4
Whisperlarge (Radford et al., 2023) 2.7 5.2

Whispersmall + LLaMa-Adapter 23.2 25.9
TEAL (Ours) 5.1 11.1

Table 3: Results on the LibriSpeech test-clean and test-
other set.

(30.8%) have both. ScienceQA has rich domain di-424

versity across 3 subjects, 26 topics, 127 categories,425

and 379 skills, and the benchmark dataset is split426

into training, validation, and test splits with 12,726,427

4,241, and 4,241 examples, respectively. The main428

baseline that can be used to make a fair comparison429

with our method is the LLaMA-Adapter (Zhang430

et al., 2023c). We also cite the results of two repre-431

sentation methods (GPT-3.5 and GPT-3.5 w/ COT)432

(Lu et al., 2022b), one multi-modal COT method433

(MM-COT) (Zhang et al., 2023f), human evalu-434

ation (Lu et al., 2022b), and LLaVA (Liu et al.,435

2023b) which tunes the full parameters of the vi-436

cuna with large-scale multi-modal pre-training cor-437

pus. Table 2 presents the experimental results. As438

shown in Table 2, we can find TEAL achieves about439

2 points improvement on average compared to the440

baseline of LLaMA-Adapter.441

Model WER
HuBERTlarge (Hsu et al., 2021) 31.77

Whispersmall (Radford et al., 2023) 18.8
Whispersmall + LLaMa-Adapter 26.96

TEAL (Ours) 24.22

Table 4: Results on the CoVoST 2 ASR test set.

4.3 Main Results on Audio Understanding 442

We conduct audio experiments on the Automatic 443

Speech Recognition (ASR) and Automatic Speech 444

Translation (AST) tasks. The former is capable 445

of transcribing spoken language into written text, 446

while the latter translates speech from one language 447

to text in another language. The audio tokenizer 448

was implemented by applying k-means clustering 449

on the 11th layer of Whispersmall.
4 The number of 450

cluster centers is set as 8,192 and the effect of the 451

number of cluster centers will be investigated in 452

Appendix C. While training and inference, the au- 453

dio and the corresponding prompt will be processed 454

into token sequences and fed into the MM-LLM 455

directly. For a fair comparison, our main base- 456

line is also implemented based on LLaMa-Adapter 457

and Whispersmall, where the Whispersmall is uti- 458

lized as an encoder to extract the dense audio fea- 459

4We tested different layers of Whispersmall and obtained
the best performance on 11th layer.
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Model BLEU
Transfomer (Wang et al., 2020) 25.4

LauraGPT Discrete (Chen et al., 2023b) 5.0
Whispersmall + LLaMa-Adapter 20.2

TEAL (Ours) 26.4

Table 5: Results on the CoVoST AST test set.

tures from the raw audio waves. The parameters of460

Whispersmall are kept frozen during training. We461

use the default adapter architecture to integrate the462

audio features into the MM-LLM.463

LibriSpeech We conduct ASR experiments on464

LibriSpeech (Panayotov et al., 2015) dataset, which465

consists of 281,241 training samples, 2,703 dev-466

clean samples, 2,864 dev-other samples, 2,621 test-467

clean samples, and 2,940 test-other samples. We468

use the word error rate (WER) as the metric. As469

Table 3 shows, TEAL significantly outperforms470

Whispersmall + LLaMa-Adapter which extracts471

continuous audio representations for LLM. We no-472

ticed that TEAL did not outperform Whisper, and473

there are two main reasons for this. Firstly, Whis-474

per is an expert model in the ASR field and has475

been exposed to over 600,000 hours of audio data476

for training, while TEAL has only been exposed477

to less than 2,000 hours of audio data. Secondly,478

Whisper specializes in ASR, whereas TEAL can479

simultaneously support both ASR and AST tasks.480

CoVoST 2 ASR CoVoST 2 (Wang et al., 2020)481

ASR English dataset contains 232,976 audio-text482

training pairs, 15,532 validation pairs, and 15,532483

test pairs. As Table 4 shows, combining an audio484

tokenizer makes LLM possess better multi-modal485

understanding ability than explicitly integrating an486

audio encoder, with a WER score improvement of487

2.74. This may be because having modalities in488

the same token format makes it easier to integrate489

multi-modal information for LLM.490

CoVoST 2 AST We evaluate the AST perfor-491

mance on CoVoST 2 (En → Zh) dataset, which492

consists of 289,430/15,531/15,531 train/dev/test493

samples. Table 5 shows the results. Compared494

to the baseline incorporating continuous features,495

TEAL achieved a 6-point improvement.496

4.4 Image Generation497

Following (Yu et al., 2023a), we show several498

text-to-image generation examples on the MNIST499

dataset (Deng, 2012) in Figure 2. Different from500

(Yu et al., 2023a), we do not use any prompt ex-501

ample for in-context learning. As the BEiT-V2502

Model COCO Caption ScienceQA (ave.)CiDER BLEU-4
DALLE 110.8 23.9 77.12
VQGAN 117.5 26.1 79.56
BEiT-V2 130.1 37.6 88.00

Table 6: The performance of different tokenizers on the
validation sets of the COCO2014 and ScienceQA. We
keep all parameters and data the same and only vary the
tokenizers.

Tokenizer LLM WER
W2V-BERT PaLM-8B 50.1
USM-v1 PaLM-8B 40.2
USM-v2 PaLM-8B 22.3
HuBERT LLaMa-7B 56.2
Whispersmall LLaMa-7B 24.2

Table 7: The performance of different tokenizers on the
validation set of the CoVoST 2. We directly cite the
results for AudioPalm from their paper.

is not good at image reconstruction, we apply the 503

VQGAN as the tokenizer for image generation.5 504

From Figure 2, we can find that TEAL empowers 505

the frozen textual LLM with the ability to generate 506

the image following the prompt query. We also 507

test with complex questions requiring mathemati- 508

cal reasoning or common sense knowledge, and the 509

model can give the right responses. These results 510

show that TEAL not only learns how to generate 511

non-textual content but also maintains its previous 512

ability in textual understanding. We notice that the 513

quality of the generated image is not so perfect, 514

and we leave the work of polishing the quality of 515

generated images in the next version. 516

5 Analysis and Discussion 517

5.1 Different Tokenizers 518

We show how the tokenizer affects the performance 519

by testing different tokenizers. Results for the im- 520

age are shown in Table 6. We find that different to- 521

kenizers result in significant differences in the final 522

performance, and BEiT-V2 achieves the best result. 523

Compared to the baseline of VQ-GAN, BEiT-v2 524

achieves 11.5 BLEU points improvement on the 525

task of COCO-caption and 8.5 accuracy points on 526

ScienceQA. The significant performance gap high- 527

lights the importance of the tokenizer. We speculate 528

that the main reason for BEiT-v2 achieving such a 529

significant advantage is that BEiT-v2 has acquired 530

5This is because the BEiT-V2 is not trained to reconstruct
the image but to recover the prediction of its teacher model.
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### Instruction:\n\nPlease generate handwritten images corresponding to the input.\n\n
###Input:\n\nan image of 0

Prompt Generation

### Instruction:\n\nPlease generate handwritten images corresponding to the input.\n\n
###Input:\n\nan image of the last digit of 3 plus 8

### Instruction:\n\nPlease generate handwritten images corresponding to the input.\n\n
###Input:\n\nan image of the number of the continents in the world

### Instruction:\n\nPlease generate handwritten images corresponding to the input.\n\n
###Input:\n\nan image of the number of the square of 3

Figure 2: Some examples of the text-to-image generation on MNIST test set. We test with both simple and complex
questions for the proposed TEAL.

Model COCO Caption
CiDER BLEU-4

TEAL (Ours) 130.1 37.6
w/o 1st-stage finetuning 127.8 35.4
w/o embedding initialization 129.1 36.2
w/o bias-norm tuning 126.9 35.7

Table 8: Ablation study on TEAL. ‘w/o 1st-stage fine-
tuning’ indicates that the model is trained with the 2nd-
stage finetuning directly. ‘w/o embedding initialization’
means that we initialize the word embedding and out-
put matrix randomly. ‘w/o bias-tuning’ means that the
parameters of bias and norm are not added during the
2nd stage finetuning.

much semantic information during its pre-training,531

and the semantic information in the tokenizer is532

crucial for aligning different modalities.533

We have similar observations in the modality of534

audio. In addition to Hubert and Whisper, we also535

introduce the results of AudioPaLM (Rubenstein536

et al., 2023) on some tokenizers based on non-open537

models (W2V-BERT (Chung et al., 2021), USM-v1538

and v2 (Zhang et al., 2023e)) for a comprehensive539

comparison. The results are shown in Table 7. Both540

the results of AudioPaLM and TEAL demonstrate541

that the tokenizer has a significant impact on perfor-542

mance. Constructing a high-performance tokenizer543

is a very promising future work.544

5.2 Ablation Study545

To investigate the significance of each module in546

our model and method, we conduct an ablation547

study by training multiple versions of our model548

with some missing components, i.e., the 1st-stage549

finetuning, the embedding initialization, and the550

bias-norm tuning. We report the performance on 551

the validation sets in Table 8. From Table 8, we 552

can find that the best performance is obtained with 553

the simultaneous use of all the tested components. 554

The most critical components are the bias-norm 555

tuning and the 1st-stage finetuning, which shows 556

that the training strategies need to be carefully de- 557

vised to ensure high performance. A surprising 558

phenomenon is that when we randomly initialize 559

the word embedding (‘w/o embedding initializa- 560

tion’ in Table 8), we do not observe a significant 561

performance decrease. This result suggests that 562

it is the way the tokenizer discretizes the image, 563

rather than the word embedding preserved in the 564

tokenizer, critical to the final performance. The 565

reason why random initialization causes a certain 566

degree of performance decrease is likely due to the 567

relatively small size of the training data. We specu- 568

late that when the amount of training data reaches 569

a certain level, the performance gap may disappear. 570

6 Conclusion and Future work 571

In this paper, we propose TEAL, an approach to 572

training a fully token-in-token-out MM-LLM by 573

treating the input from any modality as a token se- 574

quence and learning a joint embedding space for 575

all modalities. TEAL empowers the frozen textual 576

LLM with the ability to perform understanding and 577

generation involving non-textual modalities. Exten- 578

sive experiments show that, compared to the base- 579

line models which integrate non-textual encoders, 580

our approach achieves superior performance on 581

non-textual understanding tasks, and paves a sim- 582

ple way for non-textual generation. 583

8



Limitations584

Our approach relies on tokenizers for different585

modalities, and our experimental results show that586

tokenizers have a significant impact on overall per-587

formance. However, due to the lack of a universal588

tokenizer that performs well for both understanding589

and generation tasks, we are forced to use differ-590

ent tokenizers for each task, resulting in increased591

model complexity and modeling difficulties. This592

has become a bottleneck for the performance of our593

approach. To address this issue, one possible solu-594

tion is to construct and train a universal tokenizer595

that supports both understanding and generation for596

different modalities. However, there are still many597

challenging problems that need to be resolved in598

this area.599
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A Prompts for different tasks900

We present the prompts we use for different tasks901

in Table 9, which are generated by GPT4 automati-902

cally.903

B Case study of Coco-Caption904

We present several cases that are randomly selected905

from the development set of Coco-caption. The906

results are shown in Figure 3.907

C K-means Cluster analysis908

Table 10 shows the difference when adopting dif-909

ferent audio vocab sizes. All the tokenizers are910

trained based on the features of the 11th layer of911

Whispersmall. We find out that the vocab size912

has a substantial effect on performance. Compared913

to clustering 1024 tokens, clustering 8192 tokens914

can result in a WER improvement of over 18 per-915

centage points. This makes the clustering-based916

discretization approaches more versatile than the917

VQ-based neural codecs for the audio. The former918

can adjust the vocabulary size by tuning the num-919

ber of clustering centers, while the latter needs to920

retrain a vector quantization module.921
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Task Prompts

image caption

Please provide a caption for the image that has been given.
Your task is to write a caption for the provided image.

The objective is to come up with a caption for the image that has been provided.
You are required to write a caption for the provided image.

Your job is to create a caption for the image that has been given.
The challenge is to think of a caption for the provided image.

You have been given an image and your goal is to write a caption for it.
You have been given an image and your task is to write a caption for it.

The task at hand is to provide a caption for the image that has been provided.
Your assignment is to come up with a caption for the provided image.

ASR Write a response that appropriately completes the request based on the provided audio.

image generation

Create an image that perfectly matches the input sentence.
Generate an image that fits the input sentence perfectly.

Produce an image that seamlessly complements the input sentence.
Create a picture that perfectly corresponds to the input sentence.
Generate an image that perfectly aligns with the input sentence.

Create an image that perfectly harmonizes with the input sentence.
Produce an image that perfectly integrates with the input sentence.

Generate an image that perfectly suits the input sentence.
Create an image that perfectly matches the input sentence in every way.

Produce an image that perfectly corresponds to the input sentence in every aspect.

Table 9: The prompts generated by GPT4 for different tasks.

Vocab Size 1024 2048 4096 8192
WER 40.22 30.85 25.31 21.49

Table 10: We randomly sample 500 audio-text pairs
from the development set of the CoVoST 2, and the
performance with different vocab sizes is shown in the
table.
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Image id: COCO_val2014_000000200959.jpg

Prompt: The task at hand is to provide a caption for the image that has been provided.

Output: A man with a black jacket flying through a snow-covered slope while riding a snowboard.

Reference: Person on snowboard jumping in air with mountains in the background.

Image id: COCO_val2014_000000384213.jpg

Prompt: You have been given an image and your task is to write a caption for it.

Output: A very small kitchen with a sink, two windows with curtains

Reference: A kitchen is shown with a variety of items on the counters.

Image id: COCO_val2014_000000466052.jpg

Prompt: Please provide a caption for the image that has been given.

Output: A coffee mug sits in the corner on a counter with several tooth brushes and pastes in it.

Reference: A coffee cup filled with tooth paste and toothbrushes.

Figure 3: Some examples in the coco2014 validation set. For each case, we present the original image ID, the
prompt, the output of our model, and one reference caption randomly selected among all five references.
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