
Computational Doob h-transforms for Online Filtering of Discretely Observed
Diffusions

Nicolas Chopin 1 Andras Fulop 2 Jeremy Heng 2 Alexandre H. Thiery 3

Abstract
This paper is concerned with online filtering of
discretely observed nonlinear diffusion processes.
Our approach is based on the fully adapted aux-
iliary particle filter, which involves Doob’s h-
transforms that are typically intractable. We
propose a computational framework to approxi-
mate these h-transforms by solving the underlying
backward Kolmogorov equations using nonlinear
Feynman-Kac formulas and neural networks. The
methodology allows one to train a locally opti-
mal particle filter prior to the data-assimilation
procedure. Numerical experiments illustrate that
the proposed approach can be orders of magni-
tude more efficient than state-of-the-art particle
filters in the regime of highly informative obser-
vations, when the observations are extreme under
the model, or if the state dimension is large.

1. Introduction
Diffusion processes are fundamental tools in applied math-
ematics, statistics, and machine learning. Because this
flexible class of models is easily amenable to computa-
tions and simulations, diffusion processes are very common
in biological sciences (e.g. population and multi-species
models, stochastic delay population systems), neuroscience
(e.g. models for synaptic input, stochastic Hodgkin–Huxley
model, stochastic Fitzhugh–Nagumo model), and finance
(e.g. modeling multi assets prices) (Allen, 2010; Shreve
et al., 2004; Capasso & Capasso, 2021). In these disciplines,
tracking signals from partial or noisy observations is a very
common task. However, working with diffusion processes
can be challenging as their transition densities are only
tractable in rare and simple situations such as (geometric)

1Institut Polytechnique de Paris, ENSAE Paris, Paris, France
2ESSEC Business School, Paris and Singapore 3Department of
Statistics and Data Science
National University of Singapore, Singapore. Correspondence to:
Alexandre H. Thiery <a.h.thiery@nus.edu.sg>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Brownian motions or Ornstein–Uhlenbeck (OU) processes.
This difficulty has hindered the use of standard methodolo-
gies for inference and data-assimilation of models driven
by diffusion processes and various approaches have been
developed to circumvent or mitigate some of these issues,
as discussed in Section 4.

Consider a time-homogeneous multivariate diffusion pro-
cess dXt = µ(Xt) dt + σ(Xt) dBt that is discretely ob-
served at regular intervals. Noisy observations yk of
the latent process Xtk are collected at equispaced times
tk ≡ k T for k ≥ 1. We consider the online filtering
problem which consists in estimating the conditional laws
πk(dx) = P(Xtk ∈ dx|y1, . . . ,yk), i.e. the filtering distri-
butions, as observations are collected. We focus on the use
of Particle Filters (PFs) that approximate the filtering distri-
butions with a system of weighted particles. Although many
previous works have relied on the Bootstrap Particle Filter
(BPF), which simulates particles from the diffusion process,
it can perform poorly in challenging scenarios as it fails to
take the incoming observation yk into account. This issue is
partially mitigated in Guided Intermediate Resampling Fil-
ters (GIRF) by relying on resampling at intermediate times
between observations using guiding functions that forecast
the likelihood of future observations (Del Moral & Murray,
2015; Park & Ionides, 2020).

The (locally) optimal approach given by the Fully Adapted
Auxiliary Particle Filter (FA-APF) (Pitt & Shephard, 1999;
Doucet et al., 2000) can only be implemented in simple
settings such as finite state-spaces or linear and Gaussian
models. We show in this article that the FA-APF can be
practically implemented in a much larger class of models;
see Figure 1a for a comparison between the FA-APF and
the BPF. The proposed method simulates a conditioned dif-
fusion process, which can be formulated as a control prob-
lem involving an intractable Doob’s h-transform (Rogers
& Williams, 2000; Chung & Walsh, 2006); see Figure 1b
for an illustration. We propose the Computational Doob’s
h-Transform (CDT) framework for efficiently approximat-
ing these quantities. Since the latent process is a diffu-
sion process, the Doob’s h-transform satisfies the backward
Kolmogorov equation: our proposed method relies on non-
linear Feynman-Kac formulas for solving this backward
Kolmogorov partial differential equation simultaneously for

1

Computational Doob’s h-transforms

all possible observations. Importantly, this preprocessing
step only needs to be performed once before starting the
online filtering procedure. Numerical experiments illustrate
that the proposed approach can be orders of magnitude more
efficient than the BPF in the regime of highly informative
observations, when the observations are extreme under the
model, or if the state dimension is large. A PyTorch imple-
mentation to reproduce our numerical experiments is avail-
able at https://anonymous.4open.science/r/
CompDoobTransform/.

Notations. For two matrices A,B ∈ Rd,d, their Frobenius
inner product is defined as ⟨A,B⟩F =

∑d
i,j=1 Ai,jBi,j .

The Euclidean inner product for u,v ∈ Rd is denoted as
⟨u,v⟩ =

∑d
i=1 uivi. For two (or more) functions F and

G, we sometimes use the notation [FG](x) ≡ F (x)G(x).
For a function φ : Rd → R, the gradient and its Hessian
matrix are denoted as ∇φ(x) ∈ Rd and ∇2φ(x) ∈ Rd,d.
The Dirac measure centred at x0 is denoted as δ(dx;x0).

2. Background
2.1. Filtering of discretely observed diffusions

Consider a homogeneous diffusion process {Xt}t≥0 in X =
Rd with initial distribution ρ0(dx) and dynamics

dXt = µ(Xt) dt+ σ(Xt) dBt, (1)

described by the drift and volatility functions µ : Rd → Rd

and σ : Rd → Rd,d. The associated semi-group of tran-
sition probabilities ps(dx̂ | x) satisfies P(Xt+s ∈ A |
Xt = x) =

∫
A
ps(dx̂ | x) for any s, t > 0 and measur-

able A ⊂ X . The process {Bt}t≥0 is a standard Rd-valued
Brownian motion. The diffusion process {Xt}t≥0 is dis-
cretely observed at time tk = kT , for k ≥ 1, for some
inter-observation time T > 0. The Y-valued observation
Yk ∈ Y at time tk is modelled by the likelihood function
g : X × Y → R+, i.e. for any measurable A ⊂ Y , we
have P(Yk ∈ A | Xtk = xk) =

∫
A
g(xk,y) dy for some

dominating measure dy on Y . The operator L denotes
the generator of the diffusion process {Xt}t≥0, defined by
Lφ = ⟨µ,∇φ⟩+ 1

2 ⟨σσ
⊤,∇2φ⟩F for test function φ : X →

R. This article is concerned with approximating the filtering
distributions πk(dx) = P(Xtk ∈ dx | y1, . . . ,yk). For
convenience, we set π0(dx) ≡ ρ0(dx) since there is no
observation collected at the initial time t = 0.

2.2. Particle filtering

Particle Filters (PF), also known as Sequential Monte Carlo
(SMC) methods, are a set of Monte Carlo (MC) algorithms
that can be used to solve filtering problems (see Chopin et al.
(2020) for a recent textbook on the topic). PFs evolve a set
of M ≥ 1 particles x1:M

t = (x1
t , . . . ,x

M
t) ∈ XM forward

in time using a combination of propagation and resampling
operations. To initialize the PF, each initial particle xj

0 ∈ X
for 1 ≤ j ≤ M is sampled independently from the dis-
tribution ρ0(dx) so that π0(dx) ≈ M−1

∑M
j=1 δ(dx;x

j
0).

Approximations of the filtering distribution πk for k ≥ 1
are built recursively as follows. Given the MC approxi-
mation of the filtering distribution at time tk, πk(dx) ≈
M−1

∑M
j=1 δ(dx;x

j
tk
), the particles x1:M

tk
are propagated

independently forward in time by x̂j
tk+1

∼ qk+1(dx̂ | xj
tk
),

using a Markov kernel qk+1(dx̂ | x) specified by the user.
The BPF corresponds to the Markov kernel qBPF

k+1(dx̂ | x) =
P(Xtk+1

∈ dx̂ | Xtk = x), while the FA-APF (Pitt & Shep-
hard, 1999) corresponds to the (typically intractable) kernel
qFA-APF
k+1 (dx̂ | x) = P(Xtk+1

∈ dx̂ | Xtk = x,Yk+1 =

yk+1). Each particle x̂j
tk+1

is associated with a normalized

weight W
j

k+1 = W j
k+1/

∑M
i=1 W

i
k+1, where the unnor-

malized weights W j
k+1 (by time-homogeneity of (1)) are

defined as

W j
k+1 =

pT (dx̂
j
tk+1

| xj
tk
)

qk+1(dx̂
j
tk+1

| xj
tk
)
g(x̂j

tk+1
,yk+1). (2)

The BPF and FA-APF correspond respectively to having

W j,BPF
k+1 = g(x̂j

tk+1
,yk+1), (3)

W j,FA-APF
k+1 = E[g(Xtk+1

,yk+1) | Xtk = xj
tk
].

The weights are such that πk+1(dx) ≈∑M
j=1 W

j

k+1 δ(dx;x
j
tk+1

). The resampling step con-
sists in defining a new set of particles x1:M

tk+1
with

P(xj
tk+1

= x̂i
tk+1

) = W
i

k+1. This resampling
scheme ensures that the equally weighted set of par-
ticles x1:M

tk+1
provides a MC approximation of the

filtering distribution at time tk+1 in the sense that
πk+1(dx) ≈ M−1

∑M
j=1 δ(dx;x

j
tk+1

). Note that the
particles x1:M

tk+1
do not need to be resampled independently

given the set of propagated particles x̂1:M
tk+1

. We refer the
reader to Gerber et al. (2019) for a recent discussion of
resampling schemes within PFs and to Del Moral (2004)
for a book-length treatment of the convergence properties
of this class of MC methods. PF also returns an unbiased es-
timator P̂(y1, . . . ,yK) =

∏K
k=1{M−1

∑M
j=1 W

j
k} of the

marginal likelihood of K ≥ 1 observations P(y1, . . . ,yK).
Hence by Jensen’s inequality, E[log P̂(y1, . . . ,yK)] is an
evidence lower bound.

In most settings, the FA-APF (Pitt & Shephard, 1999) that
minimizes a local variance criterion (Doucet et al., 2000)
generates particles that are more consistent with informative
data and weights that exhibit significantly less variability
compared to the BPF and GIRF. This gain in efficiency
can be very substantial when the signal-to-noise ratio is
high or when observations contain outliers under the model

2

https://anonymous.4open.science/r/CompDoobTransform/
https://anonymous.4open.science/r/CompDoobTransform/

Computational Doob’s h-transforms

specification. Nevertheless, implementing FA-APF requires
sampling from the transition probability qFA-APF

k+1 (dx̂ | x}),
which is typically not feasible in practice. We will show
in the following that this can be achieved in our setting by
simulating a conditioned diffusion.

2.3. Conditioned and controlled diffusions

As the diffusion process (1) is assumed to be time-
homogeneous, it suffices to focus on the initial interval
[0, T] and study the dynamics of the diffusion X[0,T] =
{Xt}t∈[0,T] conditioned upon the first observation YT = y.
It is a standard result that the conditioned diffusion is de-
scribed by a diffusion process with the same volatility as the
original diffusion but with a time-dependent drift function
that takes the future observation YT = y into account.

Before deriving the exact form of the conditioned diffusion,
we first discuss the notion of controlled diffusion. For an
arbitrary control function c : X × Y × [0, T] → Rd and
y ∈ Y , consider the controlled diffusion {Xc,y

t }t∈[0,T] with
generator Lc,y,tφ(x) = Lφ(x) + ⟨[σc](x,y, t),∇φ(x)⟩
and dynamics

dXc,y
t = µ(Xc,y

t) dt+ σ(Xc,y
t) dBt︸ ︷︷ ︸

(original dynamics)

+ [σ c](Xc,y
t ,y, t) dt︸ ︷︷ ︸

(control drift term)

.

(4)

We used the notation [σ c](x,y, t) = σ(x,y, t)c(x,y, t).
If P[0,T] and Pc,y

[0,T] denote the probability measures
on the space of continuous functions C([0, T],Rd) gen-
erated by the original and controlled diffusions, Gir-
sanov’s theorem shows that the Radon–Nikodym derivative
(dP[0,T]/dPc,y

[0,T])(X[0,T]) is

exp

{
−1

2

∫ T

0

∥c(Xt,y, t)∥2 dt−
∫ T

0

⟨c(Xt,y, t), dBt⟩

}
.

We now define the optimal control function c⋆ : X × Y ×
[0, T] → Rd such that, for any observation y ∈ Y , the
controlled diffusion Xc⋆,y

[0,T] has the same dynamics as the
original diffusion X[0,T] conditioned upon the observation
YT = y. For this purpose, consider the function

h(x,y, t) = E[g(XT ,y) | Xt = x] (5)

that gives the probability of observing YT = y when the
diffusion has state x ∈ X at time t ∈ [0, T]. It can be
shown that h : X ×Y× [0, T] → R+ satisfies the backward
Kolmogorov equation (Oksendal, 2013, Chapter 8),

(∂t + L)h = 0, (6)

with terminal condition h(x,y, T) = g(x,y) given by the
likelihood function defined in Section 2.1. As described in

Appendix A, the theory of Doob’s h-transform shows that
the optimal control is given by

c⋆(x,y, t) = [σ⊤∇ log h](x,y, t). (7)

We refer readers to Rogers & Williams (2000) for a formal
treatment of Doob’s h-transform.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

2
1
0
1
2
3
4
5

st
at

e

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

1000

800

600

400

200

0

lo
g-

we
ig

ht
s

(a) Trajectories and log-weights generated by BPF (black) and FA-
APF (blue).

0.0 0.2 0.4 0.6 0.8 1.0
time

2
1
0
1
2
3
4

st
at

e

(b) Doob’s h-transform.

Figure 1. Comparing uncontrolled trajectories (black) under the
original diffusion to controlled trajectories (blue) under the condi-
tioned diffusion, induced by informative observations (red).

3. Method
3.1. Nonlinear Feynman-Kac formula

Obtaining the control function c⋆(x,y, t) by solving the
backward Kolmogorov equation in (6) for each observation
y ∈ Y is computationally not feasible when filtering many
observations. Furthermore, when the dimensionality of the
state-space X becomes larger, standard numerical methods
for solving Partial Differential Equations (PDEs) such as
Finite Differences or the Finite Element Method become
impractical. For these reasons, we propose instead to ap-
proximate the control function (7) with neural networks,
and employ methods based on automatic differentiation and
the nonlinear Feynman-Kac approach to solve semilinear
PDEs (Hartmann et al., 2017; 2019; Kebiri et al., 2017; E
et al., 2017; Chan-Wai-Nam et al., 2019; Hutzenthaler &
Kruse, 2020; Hutzenthaler et al., 2020; Beck et al., 2019;
Han et al., 2018; Nüsken & Richter, 2021).

As the non-negative function h typically decays exponen-
tially for large ∥x∥, it is computationally more stable to
work on the logarithmic scale and approximate the value
function v(x,y, t) = − log[h(x,y, t)]. Using the fact that
h satisfies the PDE (6), the value function satisfies

(∂t + L)v =
1

2
∥σ⊤∇v∥2, v(x,y, T) = − log[g(x,y)].

Let {Xc,y
t }t∈[0,T] be a controlled diffusion defined in Equa-

tion (4) for a given control function c : X × Y × [0, T] →

3

Computational Doob’s h-transforms

Rd and define the diffusion process {Vt}t∈[0,T] as Vt =
v(Xc,y

t ,y, t). While any control function c(x,y, t) with
mild growth and regularity assumptions can be considered
within our framework, we will see that iterative schemes
that choose it as a current approximation of c⋆(x,y, t)
tend to perform better in practice. Since we have that
∂tv + Lv + ⟨σc,∇v⟩ = (1/2) ∥σ⊤∇v∥2 + ⟨c, σ⊤∇v⟩,
Itô’s Lemma shows that for any observation YT = y and
0 ≤ s ≤ T , we have

VT = Vs +

∫ T

s

(
1

2
∥Zt∥2 + ⟨c,Zt⟩

)
dt+

∫ T

s

⟨Zt, dBt⟩

with Zt = [σ⊤∇v](Xc,y
t ,y, t) and VT =

− log[g(Xc,y
T ,y)]. For notational simplicity, we sup-

pressed the dependence of (Vt,Zt) on the control c and
observation y. In summary, the pair of processes (Vt,Zt)
are such that the following equation holds,

− log[g(Xc,y
T ,y)] =

Vs +

∫ T

s

{
1

2
∥Zt∥2 + ⟨c,Zt⟩

}
dt+

∫ T

s

⟨Zt, dBt⟩. (8)

Crucially, under mild growth and regularity assumptions
on the drift and volatility functions µ and σ, the pair of
processes (Vt,Zt) is the unique solution to Equation (8)
(Pardoux & Peng, 1990; 1992; Pardoux & Tang, 1999; Yong
& Zhou, 1999). This result can be used as a building block
for designing MC approximations of the solution to semi-
linear and fully nonlinear PDEs (E et al., 2017; Han et al.,
2018; Raissi, 2018; Beck et al., 2019; Huré et al., 2020;
Pham et al., 2021).

3.2. Computational Doob’s h-transform

As before, consider a diffusion {Xc,y
t }t∈[0,T] controlled by

a function c : X × Y × [0, T] → Rd and driven by the
standard Brownian motion {Bt}t≥0. Furthermore, for two
functions N0 : X ×Y → R and N : X ×Y × [0, T] → Rd,
consider the diffusion process {Vt}t∈[0,T] defined as

Vs − V0 = (9)∫ s

0

{
1

2
∥Zt∥2 + ⟨c(Xc,y

t ,y, t),Zt⟩
}
dt+

∫ s

0

⟨Zt, dBt⟩,

where the initial condition V0 and the process {Zt}t∈[0,T]

are defined as

V0 = N0(X
c,y
0 ,y), Zt = N(Xc,y

t ,y, t). (10)

Importantly, we remind the reader that the two diffusion
processes Xc,y

t and Vt are driven by the same Brownian
motion Bt. The uniqueness result mentioned at the end of
Section 3.1 implies that, if for any choice of initial condition
Xc,y

0 ∈ X and terminal observation y ∈ Y the condition

VT = − log[g(Xc,y
T ,y)] is satisfied, then we have that for

all (x,y, t) ∈ X × Y × [0, T]

N0(x,y) = − log h(x,y, 0), (11)

N(x,y, t) = −[σ⊤∇ log h](x,y, t).

In particular, the optimal control is given by c⋆(x,y, t) =
−N(x,y, t). These remarks suggest parametrizing the func-
tions N0(·, ·) and N(·, ·, ·) by two neural networks with re-
spective parameters θ0 ∈ Θ0 and θ ∈ Θ while minimizing
the loss function

L(θ0, θ; c) = E
[(

VT + log[g(Xc,Y
T ,Y)]

)2
]
. (12)

The above expectation is with respect to the Brownian mo-
tion {Bt}t≥0, the initial condition Xc,Y

0 ∼ ηX(dx) of the
controlled diffusion, and the observation Y ∼ ηY(dy) at
time T . In (12), we fix the dynamics of Xc,y

t and optimize
over the dynamics of Vt. The spread of the distributions ηX
and ηY should be large enough to cover typical states under
the filtering distributions πk, k ≥ 1 and future observations
to be filtered respectively. Specific choices will be detailed
for each application in Section 5. For offline problems, one
could learn in a data-driven manner by selecting ηY as the
empirical distribution of actual observations. We stress that
these choices only impact training of the neural networks,
and will not affect the asymptotic guarantees of our filtering
approximations.

CDT algorithm. The following outlines our training pro-
cedure to learn neural networks N0 and N that satisfy (11).
To minimize the loss function (12), any stochastic gradient
algorithm can be used with a user-specified mini-batch size
of J ≥ 1. The following steps are iterated until conver-
gence.

1. Choose a control c : X × Y × [0, T] → Rd, possi-
bly based on the current neural network parameters
(θ0, θ) ∈ Θ0 ×Θ.

2. Simulate independent Brownian paths Bj
[0,T], initial

conditions Xj
0 ∼ ηX(dx), and observations Yj ∼

ηY(dy) for 1 ≤ j ≤ J .

3. Generate the controlled trajectories: the j-th sample
path Xj

[0,T] is obtained by forward integration of the
controlled dynamics in Equation (4) with initial con-
dition Xj

0, control c(·,Yj , ·), and the Brownian path
Bj

[0,T].

4. Generate the value trajectories: the j-th sample path
V j
[0,T] is obtained by forward integration of the dy-

namics in Equation (9)–(10) with the Brownian path
Bj

[0,T] and the current neural network parameters
(θ0, θ) ∈ Θ0 ×Θ.

4

Computational Doob’s h-transforms

5. Construct a MC estimate of the loss function (12):

L̂ = J−1
J∑

j=1

(V j
T + log[g(Xj

T ,Y
j)])2 (13)

6. Use automatic differentiation to compute ∂θ0L̂ and
∂θL̂ and update the parameters (θ0, θ).

Importantly, if the control function c in Step:1 does depend
on the current parameters (θ0, θ), the gradient operations
executed in Step:6 should not be propagated through the
control function c. A standard stop-gradient oper-
ation available in most popular automatic differentiation
frameworks can be used for this purpose. Section D of the
Appendix presents a more detailed algorithmic pseudocode.

Time-discretization of diffusions. For clarity of exposi-
tion, we have described our algorithm in continuous-time.
In practice, one would have to discretize these diffusion pro-
cesses, which is entirely straightforward. Although any nu-
merical integrator could potentially be considered, the exper-
iments in Section 5 employed the standard Euler–Maruyama
scheme (Kloeden & Platen, 1992).

Parametrizations of functions N0 and N . In all numeri-
cal experiments presented in Section 5, the functions N0 and
N are parametrized with fully-connected neural networks
with two hidden layers, number of neurons that grow linearly
with dimension d, and the Leaky ReLU activation function
except in the last layer. Future work could explore other neu-
ral network architectures for our setting. In situations that
are close to a Gaussian setting (e.g. Ornstein–Uhlenbeck
process observed with additive Gaussian noise) where the
value function has the form v(x,y, t) = ⟨x, a(y, t)x⟩ +
⟨b(y, t),x⟩+ c(y, t), a more parsimonious parametrization
could certainly be exploited. Furthermore, the function
N(x,y, t) could be parameterized to automatically satisfy
the terminal condition N(x,y, T) = −[σ⊤∇ log g](x,y).
A possible approach consists in setting N(x,y, t) = (1−
t/T)Ñ(x,y, t)− (t/T)[σ⊤∇ log g](x,y) for some neural
network Ñ : X × Y × [0, T] → Rd. These strategies have
not be used in the experiments of Section 5.

Choice of controlled dynamics. In challenging scenarios
where observations are highly informative and/or extreme
under the model, choosing a good control function to imple-
ment Step:1 of the proposed algorithm can be crucial. We
focus on two possible implementations:

• CDT static scheme: a simple (and naive) choice is
not using any control, i.e. c(x,y, t) ≡ 0d ∈ Rd for all
(x,y, t) ∈ X × Y × [0, T].

• CDT iterative scheme: use the current approximation
of the optimal control c⋆ described by the parame-
ters (θ0, θ) ∈ Θ0 × Θ. This corresponds to setting
c(x,y, t) = −N(x,y, t).

While using a static control approach can perform reason-
ably well in some situations, our results in Section 5 sug-
gest that the iterative control procedure is a more reliable
strategy. This is consistent with findings in the stochastic
optimal control literature (Thijssen & Kappen, 2015; Pereira
et al., 2019). This choice of control function drives the for-
ward process Xc,y

t to regions of the state-space where the
likelihood function is large and helps mitigate convergence
and stability issues. Furthermore, Section 5 reports that (at
convergence), the solutions N0 and N can be significantly
different. The iterative control procedure leads to more ac-
curate solutions and, ultimately, better performance when
used for online filtering.

3.3. Online filtering

Before performing online filtering, we first run the
CDT algorithm described in Section 3.2 to construct
an approximation of the optimal control c⋆(x,y, t) =
[σ⊤∇ log h](x,y, t). For concreteness, denote by ĉ :
X × Y × [0, T] → Rd the resulting approximate con-
trol, i.e. ĉ(x,y, t) = −N(x,y, t) where N(·, ·, ·) is
parametrized by the final parameter θ ∈ Θ. Similarly,
denote by V̂0 : X × Y → R the approximation of the
initial value function v(x,y, 0) = − log h(x,y, 0), i.e.
V̂0(x,y) = N0(x,y) where N0(·, ·) is parametrized by
the final parameter θ0 ∈ Θ0.

For implementing online filtering with M ≥ 1 particles,
consider a current approximation of the filtering distribu-
tion at time tk ≥ 0, i.e. πk(dx) ≈ M−1

∑M
j=1 δ(dx;x

j
tk
).

Given the future observation Yk+1 = yk+1, the particles
x1:M
tk

are then propagated forward by exploiting the ap-
proximately optimal control (x, t) 7→ ĉ(x,yk+1, t − tk).
In particular, x̂j

tk+1
is obtained by setting x̂j

tk+1
= X̂j

tk+1

where {X̂j
t}t∈[tk,tk+1] follows the controlled diffusion

dX̂j
t = µ(X̂j

t) dt+ σ(X̂j
t) dB

j
t︸ ︷︷ ︸

(original dynamics)

+ [σĉ](X̂j
t ,yk+1, t− tk) dt︸ ︷︷ ︸

(approximately optimal control)

(14)

initialized at X̂j
tk

= xj
tk

. Each propagated parti-
cle x̂j

tk+1
is associated with a normalized weight

W
j

k+1 = W j
k+1/

∑M
i=1 W

i
k+1 where W j

k+1 =

(dP[tk,tk+1]/dP
ĉ,yk+1

[tk,tk+1]
)(X̂j

[tk,tk+1]
) × g(x̂j

tk+1
,yk+1).

We recall that the probability measures P[tk,tk+1] and

Pĉ,yk+1

[tk,tk+1]
correspond to the original and controlled diffu-

sions on the interval [tk, tk+1]. Girsanov’s theorem, as

5

Computational Doob’s h-transforms

described in Section 2.3, implies that W j
k+1 is

exp

{
−1

2

∫ tk+1

tk

∥Zj
t∥2 dt+

∫ tk+1

tk

⟨Zj
t , dB

j
t ⟩
}
g(x̂j

tk+1
,yk+1)

where Zj
t = −ĉ(X̂j

t ,yk+1, t − tk). Similarly to Equation
(9), consider the diffusion process {V j

t }t∈[tk,tk+1] defined
by the dynamics

dV j
t = −1

2
∥Zj

t∥2 dt+ ⟨Zj
t , dB

j
t ⟩ (15)

with initialization at V j
tk

= V̂0(x
j
tk
,yk+1). Therefore the

weight W j
k+1 can be re-written as

exp
{
V j
tk+1

+ log g(x̂j
tk+1

,yk+1)︸ ︷︷ ︸
≈0

−V̂0(x
j
tk
,yk+1)

}
,

(16)

and computed by numerically integrating the process
{V j

t }t∈[tk,tk+1]. Given the definition of the loss function in
(12), we can expect the sum of the first two terms within
the exponential to be close to zero. In the ideal case where
ĉ(x,y, t) ≡ c⋆(x,y, t) and V̂0(x,y) ≡ − log h(x,y, 0),
one recovers the exact AF-APF weights in (3). Once the
above weights are computed, the resampling steps are iden-
tical to those described in Section 2.2 for a standard PF.
For practical implementations, all the processes involved in
the proposed methodology can be straightforwardly time-
discretized. To distinguish between CDT learning with
static or iterative control, we shall refer to the resulting ap-
proximation of FA-APF as Static-APF and Iterative-APF
respectively. We note that these APFs do not involve mod-
ified resampling probabilities as described e.g. in Chopin
et al. (2020, p. 145).

Auxiliary particle filter. We end this section by summa-
rizing the steps required to assimilate a future observation
Yk+1 = yk+1 at time tk+1 using our proposed APF.

1. Suppose we have an equally weighted set of particles
x1:M
tk

approximating of the filtering distribution at time
tk.

2. Generate the controlled trajectories: the j-th sample
path X̂j

[tk,tk+1]
is obtained by forward integration of

the controlled dynamics in Equation (14) with initial
condition X̂j

tk
= xj

tk
, control ĉ(·,yk+1, t − tk), and

the Brownian path Bj
[tk,tk+1]

. Set next particle as

x̂j
tk+1

= X̂j
tk+1

.

3. Generate the value trajectories: the j-th sample path
V j
[tk,tk+1]

is obtained by forward integration of the dy-

namics in Equation (15) with initial condition V j
tk

=

V̂0(x
j
tk
,yk+1), control Zj

t = −ĉ(X̂j
t ,yk+1, t − tk),

and the Brownian path Bj
[tk,tk+1]

.

4. Compute weight W j
k+1 using (16) and normalize

weight W
j

k+1 = W j
k+1/

∑M
i=1 W

i
k+1.

5. Obtain new set of equally weighted particles x1:M
tk+1

approximating the filtering distribution at time tk+1 by
resampling x̂1:M

tk+1
with probabilities W

1:M

k+1.

4. Related work
This section positions our work within the existing literature.

MCMC methods: Several works have developed Markov
Chain Monte Carlo (MCMC) methods for smoothing and
parameter estimation of SDEs; for example, Roberts &
Stramer (2001) proposes to treat paths between observations
as missing data. Our work focuses on the online filtering
problem which cannot be tackled with MCMC methods.

Exact simulation: Several methods have been proposed
to reduce or eliminate the bias due to time-discretization
(Beskos et al., 2006a;b; Fearnhead et al., 2010; 2008; Jasra
et al., 2022). Most of these methods rely on the Lamperti
transform which is typically impossible in multivariate set-
tings. In contrast, our method does not exploit any specific
structure of the diffusion process being assimilated. Fur-
thermore, when filtering diffusions with highly informative
observations, the discretization bias is often orders of mag-
nitude smaller than other sources of errors.

Gaussian assumptions: In the data assimilation literature,
methods based on variations of the Ensemble Kalman Filter
(EnKF) (Evensen, 2003) have been successfully deployed
in applications with very high dimensions. These methods
strongly rely on underlying Gaussian assumptions and can
give very poor results for highly nonlinear and non-Gaussian
models. In contrast, our method is asymptotically exact in
the limit when the number of particles M → ∞ (up to dis-
cretization error). Indeed, we do not expect our method to
be competitive relative to this class of (approximate) meth-
ods in very high dimensional settings that are common in
numerical weather forecasting. These methods typically
achieve lower variance at the cost of larger bias that is hard
to estimate. Our method is designed to filter diffusion pro-
cesses in low or moderate dimensional settings. It is likely
that scaling our method to truly high dimensional settings
would require introducing model-specific approximations
(e.g. localization strategies).

Steering particles towards observations: particle methods
pioneered by Van Leeuwen (2010) are based on this intuitive
idea in order to mitigate collapse of PFs in high dimensional
settings found in applications such as geoscience. These
methods typically rely on some model structure (e.g. linear
Gaussian observation model) and have a number of tuning
parameters. They can be understood as parameterizing a

6

Computational Doob’s h-transforms

linear control, which is only expected to work well for
problems with linear Gaussian dynamics.

Implicit Particle Filter: the method of Chorin et al. (2010)
attempts to transform standard Gaussian samples into sam-
ples from the (locally) optimal proposal density. Implement-
ing this methodology requires a number of assumptions and
requires solving a non-convex optimization step for each
particle and each time step, which can be computationally
burdensome.

Guided Intermediate Resampling Filters (GIRF): the
method of Del Moral & Murray (2015) and Park & Ionides
(2020) propagates particles at intermediate time intervals be-
tween observations with the original dynamics and triggers
resampling steps based on a guiding functions that forecast
the likelihood of future observations. The choice of guid-
ing functions is crucial for good algorithmic performance.
We note that GIRF is in fact intimately related to Doob’s
h-transform as the optimal choice of guiding functions is
given by (5) (Park & Ionides, 2020). However, even under
this optimal choice, the resulting GIRF is still sub-optimal
when compared to an APF that moves particles using the
optimal control induced by Doob’s h-transform, i.e. it is
better to move particles well rather than rely on weight-
ing and resampling. The latter behaviour is supported by
our numerical experiments. Appendix C details our GIRF
implementation and the connection to Doob’s h-transform.

5. Experiments
This section presents numerical results obtained on three
models. All experiments employed 2000 iterations of the
Adam optimizer with a learning rate of 0.01 and a mini-
batch size of 1000 sample paths with 10 different obser-
vations and 100 paths associated to each observation. Ap-
pendix D describes how the CDT algorithm and neural
network approximations behave during training. Train-
ing times took around one to two minutes on a standard
CPU: it is negligible when compared to the cost of run-
ning filters with many particles and/or to assimilate large
number of observations. The inter-observation time was
T = 1 and we employed the Euler–Maruyama integra-
tor with a stepsize of 0.02 for all examples. Our re-
sults are not sensitive to the choice of T and discretiza-
tion stepsize as long as it is sufficiently small. We re-
port the Effective Sample Size (ESS) averaged over ob-
servation times and independent repetitions,1 the evidence
lower bound (ELBO) E[log p̂(y1, . . . ,yK)], and the vari-
ance Var[log p̂(y1, . . . ,yK)], where p̂(y1, . . . ,yK) denotes
its unbiased estimator of the marginal likelihood of the
time-discretized filter p(y1, . . . ,yK). When testing par-

1As GIRF involves intermediate time steps between observa-
tion times, its effective sample size is not comparable to the other
particle filters and hence not reported.

ticle filters with varying number of observations K, we
increased the number of particles M linearly with K to
keep marginal likelihood estimators stable (Bérard et al.,
2014). For non-toy models, our GIRF implementation relies
on a sub-optimal but practical choice of guiding functions
that gradually introduce information from the future obser-
vation by annealing the observation density using a linear
(Linear-GIRF) or quadratic schedule (Quadratic-GIRF).

5.1. Ornstein–Uhlenbeck model

Consider a d-dimensional Ornstein–Uhlenbeck process
given by (1) with µ(x) = −x, σ(x) = Id and the Gaus-
sian observation model g(x,y) = N (y;x, σ2

YId). We
chose ηX = N (0d, Id/2) as the stationary distribution
and ηY = N (0d, (1/2 + σ2

Y)Id) as the implied distribu-
tion of the observation when training neural networks with
the CDT iterative scheme. We took different values of
σY ∈ {0.125, 0.25, 0.5, 1.0} to vary the informativeness
of observations and d ∈ {1, 2, 4, 8, 16, 32} to illustrate the
impact of dimension.

Analytical tractability in this example (Appendix B) allows
us to consider three idealized particle filters, namely an APF
with exact networks (Exact-APF), FA-APF, and GIRF with
optimal guiding functions (Appendix C). Comparing our
proposed Iterative-APF to Exact-APF and FA-APF enables
us to distinguish between neural network approximation
errors and time-discretization errors. We note that all PFs
except the FA-APF involve time-discretization.

Columns 1 to 4 of Figure 2 summarize our numerical find-
ings when filtering simulated observations from the model
with varying σY and fixed d = 1. We see that the perfor-
mance of BPF deteriorates as the observations become more
informative, which is to be expected. Furthermore, when σY

is small, the impact of our neural network approximation
and time-discretization becomes more noticeable. For the
values of σY and the number of observations K considered,
Iterative-APF had substantial gains in efficiency over BPF
and typically outperformed GIRF. From Column 5, we note
that these gains over BPF become very large when we filter
K = 100 observations simulated with observation standard
deviations that are multiples of σY = 0.25 which was used
to run the filters. In particular, while the ELBO of BPF
diverges as we increase the degree of noise in the simulated
observations, the ELBO of Iterative-APF and GIRF remain
stable.

Figure 3 shows the impact of increasing dimension d with
fixed σY = 0.5 when filtering simulated observations from
the model. We note that it computationally infeasible to
consider classical PDE solvers in dimension d > 4. Due
to the curse of dimensionality, it is not surprising for the
performance of all PFs to degrade with dimension (Sny-
der et al., 2008; 2015). Although the error of our neural

7

Computational Doob’s h-transforms

network approximation becomes more pronounced when d
is large, the gain in efficiency of Iterative-APF relative to
BPF is very significant in the higher dimensional regime,
and particularly so when the number of observations K is
also large. As dimension increases, we see that the perfor-
mance of the practical Iterative-APF decreases compared
to an idealized implementation of GIRF. However, GIRF
was still outperformed by the idealized Exact-APF for all
dimensions d considered, verifying that it is indeed more
beneficial to move particles well instead of using weighting
and resampling mechanisms.

102 1030
25
50
75

100

ES
S%

Y = 0.125

102 103
0

10

20

EL
BO

 g
ap

102 103

K
10 3

10 1

101

103

Va
ria

nc
e

102 1030
25
50
75

100
Y = 0.25

102 103
0

2

4

6

102 103

K
10 3

10 1

101

103

102 1030
25
50
75

100
Y = 0.5

102 103
0.0
0.5
1.0
1.5
2.0

102 103

K
10 3

10 1

101

103

BPF Iterative-APF Exact-APF FA-APF GIRF

102 1030
25
50
75

100
Y = 1.0

102 103
0.00
0.25
0.50
0.75

102 103

K
10 3

10 1

101

103

2 4 6 8 100
20
40
60
80

100

2 4 6 8 10
0

500
1000
1500

2 4 6 8 10
Standard deviation

10 3

10 1
101
103

105

Figure 2. Results for Ornstein–Uhlenbeck model with d = 1 based
on 100 independent repetitions of each PF. The ELBO gap in the
second row is relative to FA-APF.

102 1030
25
50
75

100

ES
S%

d = 5

102 103
0

20

40

EL
BO

 g
ap

102 103

K
10 2
100
102

104
106

Va
ria

nc
e

102 1030
25
50
75

100
d = 10

102 103
0

200

400

600

102 103

K
10 2
100
102

104
106

102 1030
25
50
75

100
d = 20

102 103
0

2000

4000

102 103

K
10 2
100
102

104
106

BPF Iterative-APF Exact-APF FA-APF GIRF

102 1030
25
50
75

100
d = 40

102 103
0

10000

20000

102 103

K
10 2
100
102

104
106

102 1030
25
50
75

100
d = 80

102 103
0

20000
40000
60000
80000

102 103

K
10 2
100
102

104
106

Figure 3. Results for Ornstein–Uhlenbeck model with σY = 0.5
based on 100 independent repetitions of each PF. The ELBO gap
in the second row is relative to FA-APF.

5.2. Logistic diffusion model

Next we consider a logistic diffusion process (Dennis &
Costantino, 1988; Knape & De Valpine, 2012) to model the
dynamics of a population size {Pt}t≥0, defined by

dPt = (θ23/2 + θ1 − θ2Pt)Pt dt+ θ3Pt dBt. (17)

We apply the Lamperti transformation Xt = log(Pt)/θ3
and work with the process {Xt}t≥0 that satisfies (1) with
µ(x) = θ1/θ3 − (θ2/θ3) exp(θ3x) and σ(x) = 1. Follow-
ing (Knape & De Valpine, 2012), we adopt a negative bino-
mial observation model g(x,y) = NB(y; θ4, exp(θ3x))
for counts y ∈ N0 with dispersion θ4 > 0 and mean

exp(θ3x). We set (θ1, θ2, θ3, θ4) as the parameter esti-
mates obtained in (Knape & De Valpine, 2012). Noting
that (17) admits a Gamma distribution with shape parameter
2(θ23/2+θ1)/θ

2
3−1 and rate parameter 2θ2/θ23 as stationary

distribution (Dennis & Costantino, 1988), we select ηX as
the push-forward under the Lamperti transformation and ηY
as the implied distribution of the observation when train-
ing neural networks under both static and iterative CDT
schemes. To induce varying levels of informative observa-
tions, we considered θ4 ∈ {1.069, 4.303, 17.631, 78.161}.

Figure 4 displays our filtering results for various number
of simulated observations from the model (Columns 1 to 4)
and for K = 100 observations that are simulated with obser-
vation standard deviations larger than θ4 = 17.631 used to
run the filters (Column 5). In the latter setup, we solved for
different values of θ4 in the negative binomial observation
model to induce larger standard deviations. The behaviour
of BPF and Iterative-APF is similar to the previous example
as the observations become more informative with larger
values of θ4. Iterative-APF outperformed all other algo-
rithms over all combinations of θ4 and K considered, and
also when filtering observations that are increasingly ex-
treme under the model. We note also that the APFs trained
using the CDT static scheme can sometimes give unstable
results, particularly in challenging scenarios.

102 1030
25
50
75

100

ES
S%

4 = 1.069

102 103
0.00
0.25
0.50
0.75
1.00

EL
BO

 g
ap

102 103

K
10 3

10 1

101

103

Va
ria

nc
e

102 1030
25
50
75

100
4 = 4.303

102 103
0
2
4
6
8

102 103

K
10 3

10 1

101

103

102 1030
25
50
75

100
4 = 17.631

102 103
0

50

100

102 103

K
10 3

10 1

101

103

BPF Static-APF Iterative-APF Linear-GIRF Quadratic-GIRF

102 1030
25
50
75

100
4 = 78.161

102 103
0

500
1000
1500

102 103

K
10 3

10 1

101

103

1 2 3 4 5 60
20
40
60
80

100

1 2 3 4 5 6
200

0
200
400
600

1 2 3 4 5 6
Standard deviation

10 2

100

102

104

Figure 4. Results for logistic diffusion model based on 100 inde-
pendent repetitions of each PF. The ELBO gap in the second row
is relative to Iterative-APF.

5.3. Cell model

Lastly we examine a cell differentiation and development
model from (Wang et al., 2011). Cellular expression levels
Xt = (Xt,1,Xt,2) of two genes are modelled by (1) with

µ(x) =

(
x4
1/(2

−4 + x4
1) + 2−4/(2−4 + x4

2)− x1

x4
2/(2

−4 + x4
2) + 2−4/(2−4 + x4

1)− x2

)
and σ(x) =

√
0.1Id. The above terms describe self-

activation, mutual inhibition, and inactivation respectively,
and the volatility captures intrinsic and external fluctuations.
We initialize the diffusion process from the undifferentiated
state of X0 = (1, 1) and consider the Gaussian observation
model g(x,y) = N (y;x, σ2

YI2). To train neural networks

8

Computational Doob’s h-transforms

under both static and iterative CDT schemes, we selected
ηX and ηY as the empirical distributions obtained by simu-
lating states and observations from the model for 2000 time
units.

Figure 5 illustrates our numerical results for various number
of observations K and σY ∈ {0.25, 0.5, 1.0, 2.0}. It shows
that Iterative-APF offers significant gains over all other
algorithms when filtering observations that are informative
(see Columns 1 to 4) and highly extreme under the model
specification of σY = 0.5 (see Column 5). In this example,
Static-APF did not exhibit any unstable behaviour and its
performance lies somewhere in between BPF and Iterative-
APF.

102 1030
25
50
75

100

ES
S%

Y = 0.25

102 103
0

200

400

EL
BO

 g
ap

102 103

K
10 1
100

101
102
103

Va
ria

nc
e

102 1030
25
50
75

100
Y = 0.5

102 103
0

5

10

102 103

K
10 1
100

101
102
103

102 1030
25
50
75

100
Y = 1.0

102 103
0
2
4
6
8

102 103

K
10 1
100

101
102
103

BPF Static-APF Iterative-APF Linear-GIRF Quadratic-GIRF

102 1030
25
50
75

100
Y = 2.0

102 103
0

2

4

6

102 103

K
10 1
100

101
102
103

2 4 6 8 100
20
40
60
80

100

2 4 6 8 10
0

1000

2000

2 4 6 8 10
Standard deviation

10 1

101

103

105

Figure 5. Results for cell model based on 100 independent repeti-
tions of each PF. The ELBO gap in the second row is relative to
Iterative-APF.

6. Discussion
This paper introduced the CDT algorithm to train particle
filters for online filtering of diffusion processes evolving in
state-spaces of low to moderate dimensions. Contrarily to a
number of existing methods, the CDT approach is general
and does not exploit any particular structure of the diffusion
process and observation model. Furthermore, numerical
simulations suggests that the CDT algorithm is particularly
compelling in higher dimensional settings or in regimes
when the observations are highly informative or extreme
under the model specification. Ongoing work involves ex-
tending the CDT framework to parameter estimation and
experimenting with alternative formulations and/or parame-
terizations to accelerate the training procedure. Finally, it
is worth mentioning that although it is relatively straight-
forward to extend the proposed method to tackle unequal
inter-observation intervals, we have not been able to use
the same framework to deal with general time-dependent
drift or volatility functions; this important problem is left
for further investigations.

References
Allen, L. J. An introduction to stochastic processes with

applications to biology. CRC press, 2010.

Beck, C., E, W., and Jentzen, A. Machine learning approxi-
mation algorithms for high-dimensional fully nonlinear
partial differential equations and second-order backward
stochastic differential equations. Journal of Nonlinear
Science, 29(4):1563–1619, 2019.

Bérard, J., Del Moral, P., and Doucet, A. A lognormal
central limit theorem for particle approximations of nor-
malizing constants. Electronic Journal of Probability, 19:
1–28, 2014.

Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. Retro-
spective exact simulation of diffusion sample paths with
applications. Bernoulli, 12(6):1077–1098, 2006a.

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearn-
head, P. Exact and computationally efficient likelihood-
based estimation for discretely observed diffusion pro-
cesses (with discussion). Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 68(3):333–
382, 2006b.

Capasso, V. and Capasso, V. Introduction to Continuous-
Time Stochastic Processes. Springer, 2021.

Chan-Wai-Nam, Q., Mikael, J., and Warin, X. Machine
learning for semi linear PDEs. Journal of Scientific Com-
puting, 79(3):1667–1712, 2019.

Chopin, N., Papaspiliopoulos, O., et al. An introduction to
sequential Monte Carlo. Springer, 2020.

Chorin, A., Morzfeld, M., and Tu, X. Implicit particle
filters for data assimilation. Communications in Applied
Mathematics and Computational Science, 5(2):221–240,
2010.

Chung, K. L. and Walsh, J. B. Markov processes, Brown-
ian motion, and time symmetry, volume 249. Springer
Science & Business Media, 2006.

Dai Pra, P. A stochastic control approach to reciprocal dif-
fusion processes. Applied mathematics and Optimization,
23(1):313–329, 1991.

Del Moral, P. Feynman-Kac formulae: genealogical and
interacting particle systems with applications, volume 88.
Springer, 2004.

Del Moral, P. and Murray, L. M. Sequential Monte Carlo
with highly informative observations. SIAM/ASA Journal
on Uncertainty Quantification, 3(1):969–997, 2015.

Dennis, B. and Costantino, R. F. Analysis of steady-state
populations with the gamma abundance model: applica-
tion to Tribolium. Ecology, 69(4):1200–1213, 1988.

9

Computational Doob’s h-transforms

Doucet, A., Godsill, S., and Andrieu, C. On sequential
monte carlo sampling methods for bayesian filtering.
Statistics and computing, 10(3):197–208, 2000.

E, W., Han, J., and Jentzen, A. Deep learning-based nu-
merical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential
equations. Communications in Mathematics and Statis-
tics, 5(4):349–380, 2017.

Evensen, G. The ensemble kalman filter: Theoretical for-
mulation and practical implementation. Ocean dynamics,
53(4):343–367, 2003.

Fearnhead, P., Papaspiliopoulos, O., and Roberts, G. O.
Particle filters for partially observed diffusions. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(4):755–777, 2008.

Fearnhead, P., Papaspiliopoulos, O., Roberts, G. O., and
Stuart, A. Random-weight particle filtering of continuous
time processes. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4):497–512, 2010.

Gerber, M., Chopin, N., and Whiteley, N. Negative associ-
ation, ordering and convergence of resampling methods.
The Annals of Statistics, 47(4):2236–2260, 2019.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

Hartmann, C., Richter, L., Schütte, C., and Zhang, W. Vari-
ational characterization of free energy: Theory and algo-
rithms. Entropy, 19(11):626, 2017.

Hartmann, C., Kebiri, O., Neureither, L., and Richter, L.
Variational approach to rare event simulation using least-
squares regression. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 29(6):063107, 2019.

Huré, C., Pham, H., and Warin, X. Deep backward schemes
for high-dimensional nonlinear PDEs. Mathematics of
Computation, 89(324):1547–1579, 2020.

Hutzenthaler, M. and Kruse, T. Multilevel Picard approxi-
mations of high-dimensional semilinear parabolic differ-
ential equations with gradient-dependent nonlinearities.
SIAM Journal on Numerical Analysis, 58(2):929–961,
2020.

Hutzenthaler, M., Jentzen, A., Kruse, T., Anh Nguyen, T.,
and von Wurstemberger, P. Overcoming the curse of di-
mensionality in the numerical approximation of semilin-
ear parabolic partial differential equations. Proceedings
of the Royal Society A, 476(2244):20190630, 2020.

Jasra, A., Law, K. J., and Yu, F. Unbiased filtering of a class
of partially observed diffusions. Advances in Applied
Probability, 54(3):661–687, 2022.

Kebiri, O., Neureither, L., and Hartmann, C. Adaptive im-
portance sampling with forward-backward stochastic dif-
ferential equations. In International workshop on Stochas-
tic Dynamics out of Equilibrium, pp. 265–281. Springer,
2017.

Kloeden, P. E. and Platen, E. Stochastic differential equa-
tions. In Numerical Solution of Stochastic Differential
Equations, pp. 103–160. Springer, 1992.

Knape, J. and De Valpine, P. Fitting complex population
models by combining particle filters with Markov chain
Monte Carlo. Ecology, 93(2):256–263, 2012.

Nüsken, N. and Richter, L. Solving high-dimensional
Hamilton–Jacobi–Bellman PDEs using neural networks:
perspectives from the theory of controlled diffusions and
measures on path space. Partial Differential Equations
and Applications, 2(4):1–48, 2021.

Oksendal, B. Stochastic differential equations: an intro-
duction with applications. Springer Science & Business
Media, 2013.

Pardoux, E. and Peng, S. Adapted solution of a backward
stochastic differential equation. Systems & Control Let-
ters, 14(1):55–61, 1990.

Pardoux, E. and Peng, S. Backward stochastic differential
equations and quasilinear parabolic partial differential
equations. In Stochastic partial differential equations and
their applications, pp. 200–217. Springer, 1992.

Pardoux, E. and Tang, S. Forward-backward stochastic
differential equations and quasilinear parabolic PDEs.
Probability Theory and Related Fields, 114(2):123–150,
1999.

Park, J. and Ionides, E. L. Inference on high-dimensional
implicit dynamic models using a guided intermediate
resampling filter. Statistics and Computing, 30(5):1497–
1522, 2020.

Pereira, M., Wang, Z., Exarchos, I., and Theodorou,
E. A. Learning deep stochastic optimal control poli-
cies using forward-backward SDEs. arXiv preprint
arXiv:1902.03986, 2019.

Pham, H., Warin, X., and Germain, M. Neural networks-
based backward scheme for fully nonlinear PDEs. SN
Partial Differential Equations and Applications, 2(1):1–
24, 2021.

10

Computational Doob’s h-transforms

Pitt, M. K. and Shephard, N. Filtering via simulation: Aux-
iliary particle filters. Journal of the American Statistical
Association, 94(446):590–599, 1999.

Raissi, M. Forward-backward stochastic neural networks:
Deep learning of high-dimensional partial differential
equations. arXiv preprint arXiv:1804.07010, 2018.

Roberts, G. O. and Stramer, O. On inference for partially ob-
served nonlinear diffusion models using the Metropolis–
Hastings algorithm. Biometrika, 88(3):603–621, 2001.

Rogers, L. C. G. and Williams, D. Diffusions, Markov
processes and Martingales: Volume 2: Itô Calculus, vol-
ume 2. Cambridge university press, 2000.

Shreve, S. E. et al. Stochastic calculus for finance II:
Continuous-time models, volume 11. Springer, 2004.

Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J. Ob-
stacles to high-dimensional particle filtering. Monthly
Weather Review, 136(12):4629–4640, 2008.

Snyder, C., Bengtsson, T., and Morzfeld, M. Performance
bounds for particle filters using the optimal proposal.
Monthly Weather Review, 143(11):4750–4761, 2015.

Thijssen, S. and Kappen, H. Path integral control and state-
dependent feedback. Physical Review E, 91(3):032104,
2015.

Van Leeuwen, P. J. Nonlinear data assimilation in geo-
sciences: an extremely efficient particle filter. Quarterly
Journal of the Royal Meteorological Society, 136(653):
1991–1999, 2010.

Wang, J., Zhang, K., Xu, L., and Wang, E. Quantifying
the Waddington landscape and biological paths for devel-
opment and differentiation. Proceedings of the National
Academy of Sciences, 108(20):8257–8262, 2011.

Yong, J. and Zhou, X. Y. Stochastic controls: Hamiltonian
systems and HJB equations, volume 43. Springer Science
& Business Media, 1999.

11

Computational Doob’s h-transforms

A. Doob’s h-transform
This section gives a heuristic derivation of Equation (7) that describes the optimal control. To simplify notation, we shall
denote the conditioned process X[0,T] | (YT = y) as X̂[0,T]. Recall the function

h(x,y, t) = E[g(XT ,y) | Xt = x] =

∫
X
g(xT ,y) pT−t(dxT | x) (18)

which gives the probability of observing YT = y when the diffusion process has state x ∈ X at time t ∈ [0, T]. The
definition in (5) implies that the function h : X ×Y × [0, T] → R+ satisfies the backward Kolmogorov equation (Oksendal,
2013),

(∂t + L)h = 0, (19)

with terminal condition h(x,y, T) = g(x,y) for all (x,y) ∈ X ×Y . For φ : X → R and an infinitesimal increment δ > 0,
we have

E[φ(X̂t+δ)|X̂t = x] = E[φ(Xt+δ) g(XT ,y) | Xt = x] / E[g(XT ,y)|Xt = x]

= E[φ(Xt+δ)h(Xt+δ,y, t+ δ) | Xt = x] / h(x,y, t)

= φ(x) + δ

{
L[φh]

h

}
(x,y, t) +O(δ2).

(20)

Furthermore, since the function h satisfies (6), some algebra shows that L[φh]/h = Lφ + ⟨σσ⊤∇ log h,∇φ⟩. Taking
δ → 0, this heuristic derivation shows that the generator of the conditioned diffusion equals Lφ + ⟨σσ⊤∇ log h,∇φ⟩.
Hence X̂[0,T] satisfies the dynamics of a controlled diffusion (4) with control function

c⋆(x,y, t) = [σ⊤∇ log h](x,y, t) (21)

This establishes Equation (7).

B. Analytical tractability of the Ornstein–Uhlenbeck model
The transition probability of the Ornstein–Uhlenbeck process considered in Section 5.1 is

pt(dx̂ | x) = N (x̂;µX(x, t), σ2
X(t)Id)dx̂

for time t > 0, with mean µX(x, t) = x exp(−t) and variance σ2
X(t) = {1− exp(−2t)}/2. From (5), we have

h(x,y, t) =

∫
Rd

N (y;xT , σ
2
YId)N (xT ;µX(x, T − t), σ2

X(T − t)Id)dxT

= (2π)−d/2σ−d
X (T − t)σ−d

Y σd
h(T − t) exp

{
1

2
σ2
h(T − t)

∥∥∥∥µX(x, T − t)

σ2
X(T − t)

+
y

σ2
Y

∥∥∥∥2
}

× exp

{
−∥µX(x, T − t)∥2

2σ2
X(T − t)

− ∥y∥2

2σ2
Y

}
where σ2

h(t) = {σ−2
X (t) + σ−2

Y }−1. Hence we can compute the value function v(x,y, t) = − log[h(x,y, t)]. Next, the
optimal control function is

c⋆(x,y, t) = [σ⊤∇ log h](x,y, t)

=
σ2
h(T − t) exp{−(T − t)}

σ2
X(T − t)

{
µX(x, T − t)

σ2
X(T − t)

+
y

σ2
Y

}
− exp{−(T − t)}

σ2
X(T − t)

µX(x, T − t).

The distribution of XT conditioned on X0 = x0 and YT = y is N (µh(x0,y, T), σ
2
h(T)Id) with

µh(x0,y, T) = σ2
h(T)

{
µX(x0, T)

σ2
X(T)

+
y

σ2
Y

}
.

12

Computational Doob’s h-transforms

C. Guided intermediate resampling filters

We first describe our implementation of GIRF for online filtering. For M ≥ 1 particles, let πk(dx) = M−1
∑M

j=1 δ(dx;x
j
tk
)

denote a current approximation of the filtering distribution at time tk ≥ 0. Given the future observation Yk+1 = yk+1

at time tk+1, GIRF introduces a sequence of intermediate time steps tk = s0 < s1 < · · · < sP = tk+1 between the
observation times, and a sequence of guiding functions {Gp}Pp=0 satisfying

G0(xs0 ,yk+1)

P∏
p=1

Gp(xsp−1
,xsp ,yk+1) = g(xtk+1

,yk+1). (22)

For each intermediate step p ∈ {1, . . . , P}, the particles x1:M
sp are then propagated forward according to the original SDE

(1), i.e. x̂j
sp+1

∼ p∆sp+1
(dx̂ | xj

sp) with stepsize ∆sp+1 = sp+1 − sp. In practice, this propagation step can be replaced

by a numerical integrator. Each particle x̂j
sp+1

is then associated with a normalized weight W
j

p+1 = W j
p+1/

∑M
i=1 W

i
p+1,

where the unnormalized weight

W j
p = Gp(x

j
sp−1

, x̂j
sp ,yk+1), p ∈ {1, . . . , P − 1},

W j
P = GP (x

j
sP−1

, x̂j
sP ,yk+1)G0(x̂

j
sP ,yk+2), if tk+1 is not the final observation time,

W j
P = GP (x

j
sP−1

, x̂j
sP ,yk+1), if tk+1 is the final observation time.

After the unnormalized weights are computed, the resampling operation is the same as a standard PF (see Section 2.2).

From the above description, we see that the role of {Gp}Pp=0 is to guide particles to appropriate regions of the state-space
using the weighting and resampling steps. The optimal choice of guiding functions (Park & Ionides, 2020) is

G0(xs0 ,yk+1) = h(xs0 ,yk+1, s0), Gp(xsp−1 ,xsp ,yk+1) =
h(xsp ,yk+1, sp)

h(xsp−1
,yk+1, sp−1)

, (23)

for p ∈ {1, . . . , P}, where h : X × Y × [0, T] → R+ defined in (5) is given by Doob’s h-transform. The condition (22) is
satisfied as we have a telescoping product and h(xtk+1

,yk+1, tk+1) = g(xtk+1
,yk+1). For the Ornstein–Uhlenbeck model

of Section 5.1, we leveraged analytical tractability of (23) in our implementation of GIRF. When the optimal choice (23)
is intractable, one sub-optimal but practice choice that gradually introduces information from the future observation by
annealing the observation density is

G0(xs0 ,yk+1) = g(xs0 ,yk+1)
λ0 , Gp(xsp−1

,xsp ,yk+1) =
g(xsp ,yk+1)

λp

g(xsp−1 ,yk+1)λp−1
,

for p ∈ {1, . . . , P}, where {λp}Pp=0 is a non-decreasing sequence with λP = 1. This construction clearly satisfies the
condition in (22). It is interesting to note that under the choice λp = 0 for p ∈ {1, . . . , P − 1}, GIRF recovers the BPF. In
our numerical implementation, we considered both linear and quadratic annealing schedules {λp}Pp=0 which determine the
rate at which information from the future observation is introduced.

Lastly we explain why GIRF with the optimal guiding functions (23) is still sub-optimal compared to an APF that move
particles using the optimal control c⋆ : X × Y × [0, T] → Rd induced by Doob’s h-transform. We consider the law of
{Xsp}Pp=1 conditioned on Xs0 = xs0 and Yk+1 = yk+1

P∏
p=1

p∆sp(dxsp | xsp−1
)g(xsP ,yk+1). (24)

Under the condition (22), we can write the law (24) as

G0(xs0 ,yk+1)

P∏
p=1

p∆sp(dxsp | xsp−1
)Gp(xsp−1

,xsp ,yk+1). (25)

13

Computational Doob’s h-transforms

GIRF can be understood as a SMC algorithm (Chopin et al., 2020) approximating the law (25) with Markov transitions
{p∆sp}Pp=1 and potential functions {Gp}Pp=0 given by (23). We can rewrite (25) as

G0(xs0 ,yk+1)

P∏
p=1

ph∆sp(dxsp | xsp−1
), (26)

where Markov transitions {ph∆sp
}Pp=1 are defined as

ph∆sp(dxsp | xsp−1
) =

p∆sp(dxsp | xsp−1)h(xsp ,yk+1, sp)

h(xsp−1
,yk+1, sp−1)

(27)

for p ∈ {1, . . . , P}. By the Markov property, we have h(xsp−1
,yk+1, sp−1) =

∫
X p∆sp(dxsp | xsp−1

)h(xsp ,yk+1, sp),
hence (27) is a valid Markov transition kernel. Moreover, it follows from Dai Pra (1991, Theorem 2.1) that {ph∆sp

}Pp=1 are
the transition probabilities of the controlled diffusion process in (4) with optimal control c⋆(x,y, t) = [σ⊤∇ log h](x,y, t).
Hence an APF propagating particles according to this optimally controlled process can be seen as SMC algorithm approxi-
mating (26) with Markov transitions {ph∆sp

}Pp=1 and a single potential function G0. By viewing GIRF and APF as specific
instantaneous of SMC algorithms, it is clear that the former is sub-optimal compared to the latter. Intuitively, this means that
better particle approximations can be obtained by moving particles well instead of relying on weighting and resampling.

D. Computational Doob’s h-transform algorithm
In Algorithm 1, we provide algorithmic (PyTorch-type) pseudocode to describe our proposed CDT algorithm to learn neural
networks N0(x,y) and N(x,y, t) approximating the initial value function v(x,y, 0) and the optimal control function
c⋆(x,y, t) respectively. For simplicity, we consider the Euler–Maruyama scheme with constant stepsize δt = T/M to
discretize the processes in (4) and (9)–(10).

Next we provide figures to illustrate how the CDT algorithm behaves. We report the training curves (i.e. loss v.s. iteration),
as well as describe the evolution of our neural network approximation of the initial value function and optimal control
function. In the analytically tractable Ornstein–Uhlenbeck case, comparison with the ground truth is possible. See Figures 6
and 7 for the Ornstein–Uhlenbeck model of Section 5.1, Figures 8 and 9 for the logistic diffusion model of Section 5.2, and
Figure 10 for the cell model of Section 5.3.

14

Computational Doob’s h-transforms

0 100 200 300 400 500
iteration

10 2

10 1

100

lo
ss

(a) Evolution of loss estimate over first 500 opti-
mization iterations.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.2
0.0
0.2
0.4
0.6
0.8

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.0

0.5

0.0

0.5

1.0

(b) Evolution of neural network N0(x,y) (black to copper) approximating the
initial value function v(x,y, 0) (red) over first 500 optimization iterations for a
typical (left) and an extreme (right) observation y.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.4

0.2

0.0

0.2

0.4
t = 0.25

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.6
0.4
0.2
0.0
0.2
0.4
0.6

t = 0.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

t = 0.75

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.5

0.0

0.5

1.0

1.5

2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.5

0.0

0.5

1.0

1.5

2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.5
0.0
0.5
1.0
1.5
2.0
2.5

(c) Evolution of neural network −N(x,y, t) (black to copper) approximating the optimal control function c⋆(x,y, t) (red) over first 500
optimization iterations for a typical (upper row) and an extreme (lower row) observation y.

Figure 6. Results for Ornstein–Uhlenbeck model with d = 1 and σY = 1.0 during initial training phase.

15

Computational Doob’s h-transforms

0 250 500 750 1000 1250 1500 1750 2000
iteration

10 2

10 1

100

lo
ss

Static-CDT
Iterative-CDT

(a) Evolution of loss estimate over 2000 op-
timization iterations under static and iterative
CDT schemes.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.000
0.025
0.050
0.075
0.100
0.125

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.5

0.0

0.5

1.0

Static-CDT Iterative-CDT Exact

(b) Neural network approximation N0(x,y) of the initial value function v(x,y, 0)
after training with the static and iterative CDT schemes for a typical (left) and an
extreme (right) observation y.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.2

0.1

0.0

0.1

0.2

t = 0.25

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.4

0.2

0.0

0.2

0.4

t = 0.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

t = 0.75

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.6

0.7

0.8

0.9

1.0

1.1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.8
1.0
1.2
1.4
1.6
1.8

Static-CDT Iterative-CDT Exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.00
1.25
1.50
1.75
2.00
2.25
2.50

(c) Neural network approximation −N(x,y, t) of the optimal control function c⋆(x,y, t) after training with the static and iterative CDT
schemes for a typical (upper row) and an extreme (lower row) observation y.

Figure 7. Results for Ornstein–Uhlenbeck model with d = 1 and σY = 1.0 after training.

16

Computational Doob’s h-transforms

0 100 200 300 400 500
iteration

10 2

10 1

100

101

102

lo
ss

(a) Evolution of loss estimate over first 500 opti-
mization iterations.

6.0 6.5 7.0 7.5 8.0 8.5
x

0
2
4
6
8

10
12
14

6.0 6.5 7.0 7.5 8.0 8.5
x

0.0
2.5
5.0
7.5

10.0
12.5
15.0

(b) Evolution of neural network N0(x,y) (black to copper) approximating the
initial value function v(x,y, 0) over first 500 optimization iterations for a typical
(left) and an extreme (right) observation y.

6.0 6.5 7.0 7.5 8.0 8.5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

t = 0.25

6.0 6.5 7.0 7.5 8.0 8.5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

t = 0.5

6.0 6.5 7.0 7.5 8.0 8.5

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

t = 0.75

6.0 6.5 7.0 7.5 8.0 8.5
x

0.5

0.0

0.5

1.0

1.5

2.0

6.0 6.5 7.0 7.5 8.0 8.5
x

0.5

0.0

0.5

1.0

1.5

2.0

6.0 6.5 7.0 7.5 8.0 8.5
x

0.5
0.0
0.5
1.0
1.5
2.0
2.5

(c) Evolution of neural network −N(x,y, t) (black to copper) approximating the optimal control function c⋆(x,y, t) over first 500
optimization iterations for a typical (upper row) and an extreme (lower row) observation y.

Figure 8. Results for logistic diffusion model with θ4 = 1.069 during initial training phase.

17

Computational Doob’s h-transforms

0 500 1000 1500 2000
iteration

10 3
10 2
10 1
100
101
102
103

lo
ss

4 = 1.069

0 500 1000 1500 2000
iteration

10 3
10 2
10 1
100
101
102
103

4 = 4.303

Static-CDT Iterative-CDT

0 500 1000 1500 2000
iteration

10 3
10 2
10 1
100
101
102
103

4 = 17.631

0 500 1000 1500 2000
iteration

10 3
10 2
10 1
100
101
102
103

4 = 78.161

(a) Evolution of loss estimate over 2000 optimization iterations under static and iterative CDT schemes and various levels of informative
observations.

6.0 6.5 7.0 7.5 8.0 8.5
x

7.30
7.35
7.40
7.45
7.50
7.55

6.0 6.5 7.0 7.5 8.0 8.5
x

9.3
9.4
9.5
9.6
9.7
9.8

Static-CDT Iterative-CDT

(b) Neural network approximation N0(x,y) of the initial value function v(x,y, 0) after training with the static and iterative CDT schemes
for a typical (left) and an extreme (right) observation y.

6.0 6.5 7.0 7.5 8.0 8.5
0.0
0.1
0.2
0.3
0.4
0.5
0.6

t = 0.25

6.0 6.5 7.0 7.5 8.0 8.5

0.0

0.2

0.4

0.6

t = 0.5

6.0 6.5 7.0 7.5 8.0 8.5

0.0

0.2

0.4

0.6

0.8
t = 0.75

6.0 6.5 7.0 7.5 8.0 8.5
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

6.0 6.5 7.0 7.5 8.0 8.5
x

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Static-CDT Iterative-CDT

6.0 6.5 7.0 7.5 8.0 8.5
x

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

(c) Neural network approximation −N(x,y, t) of the optimal control function c⋆(x,y, t) after training with the static and iterative CDT
schemes for a typical (upper row) and an extreme (lower row) observation y.

Figure 9. Results for logistic diffusion model with θ4 = 1.069 after training.

18

Computational Doob’s h-transforms

0 500 1000 1500 2000
iteration

10 2
10 1
100
101
102
103

lo
ss

Y = 0.25

0 500 1000 1500 2000
iteration

10 2
10 1
100
101
102
103

Y = 0.5

Static-CDT Iterative-CDT

0 500 1000 1500 2000
iteration

10 2
10 1
100
101
102
103

Y = 1.0

0 500 1000 1500 2000
iteration

10 2
10 1
100
101
102
103

Y = 2.0

(a) Evolution of loss estimate over 2000 optimization iterations under static and iterative CDT schemes and various levels of informative
observations.

0 2

1

0

1

2

3

x 2

0 2

1

0

1

2

3

2

3

4

5

0 2
x1

1

0

1

2

3

x 2

0 2
x1

1

0

1

2

3

6

8

10

12

14

(b) Neural network approximation N0(x,y) of the initial value function v(x,y, 0) after training with the static (left column) and iterative
(right column) CDT schemes for a typical (upper row) and an extreme (lower row) observation y.

1 0 1 2 3 4
2
1
0
1
2
3

x 2

t = 0.25

1 0 1 2 3 4
x1

2
1
0
1
2
3

x 2

1 0 1 2 3 4
2
1
0
1
2
3

t = 0.5

1 0 1 2 3 4
x1

2
1
0
1
2
3

1 0 1 2 3 4
2
1
0
1
2
3

t = 0.75

1 0 1 2 3 4
x1

2
1
0
1
2
3

1 0 1 2 3 4
2
1
0
1
2
3

x 2

t = 0.25

1 0 1 2 3 4
x1

2
1
0
1
2
3

x 2

1 0 1 2 3 4
2
1
0
1
2
3

t = 0.5

1 0 1 2 3 4
x1

2
1
0
1
2
3

1 0 1 2 3 4
2
1
0
1
2
3

t = 0.75

1 0 1 2 3 4
x1

2
1
0
1
2
3

(c) Neural network approximation −N(x,y, t) of the optimal control function c⋆(x,y, t) after training with the static (upper row) and
iterative (lower row) CDT schemes for a typical and (columns 1-3) an extreme (columns 4-6) observation y.

Figure 10. Results for cell model with σY = 0.5 after training.

19

Computational Doob’s h-transforms

Algorithm 1 Computational Doob’s h-transform

Input: stepsize δt = T/M , choice of optimization algorithm optimizer, number of optimization iterations I , number
of observations per batch Jobs, minibatch per observation Jmini, distribution for initial state ηX(dx), distribution for
observation ηY(dy)

function simulate controlled SDEs(X0, V0, Y)
for m = 1 to M do
δB ∼ N (0d, δtId) {Sample Brownian increment}
Z(m−1)δt = N(X(m−1)δt,Y, (m− 1)δt) {Evaluate control neural network}
if using CDT static scheme then

c(X(m−1)δt,Y, (m− 1)δt) = 0d

end if
if using CDT iterative scheme then
c(X(m−1)δt,Y, (m− 1)δt) = −Z(m−1)δt {Detach from computational graph}

end if
Vmδt = V(m−1)δt +

(
1
2 ∥Z(m−1)δt∥2 + ⟨c(X(m−1)δt,Y, (m− 1)δt),Z(m−1)δt⟩

)
δt+ ⟨Z(m−1)δt, δB⟩

Xmδt = X(m−1)δt +
(
µ(X(m−1)δt) + σ(X(m−1)δt)c(X(m−1)δt,Y, (m− 1)δt)

)
δt+ σ(X(m−1)δt)δB

end for
return XT , VT

end function

Training procedure
Initialize parameters θ0 ∈ Θ0 of initial value neural network N0(x,y)
Initialize parameters θ ∈ Θ of control neural network N(x,y, t)
J = Jobs × Jmini {Mini-batch size}
for i = 1 to I do
Xj

0 ∼ ηX(dx) for j = 1 to J {Simulate initial conditions}
Yj ∼ ηY(dy) for j = 1 to Jobs {Simulate observations}
(Yj)Jj=1 = (Yj)Jobs

j=1.repeat((Jmini, 1)) {Create array of size J by repeating each observation Jmini times}
V j
0 = N0(X

j
0,Y

j) for j = 1 to J {Evaluate initial value neural network}
Xj

T , V
j
T = simulate controlled SDEs(Xj

0, V j
0 , Yj) for j = 1 to J {Generate controlled and value trajectories}

L̂ = J−1
∑J

j=1(V
j
T + log[g(Xj

T ,Y
j)])2 {Estimate loss function}

L̂.backward() {Backpropagation to compute ∂θ0L̂ and ∂θL̂}
optimizer.step() {Update the parameters (θ0, θ)}
optimizer.zero grad() {Zero gradients}

end for

Output: initial value neural network N0(x,y) and control neural network N(x,y, t)

20

