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Abstract

In the digital era, understanding visually rich
documents that combine text, complex layouts,
and imagery is crucial. Traditional Key Infor-
mation Extraction (KIE) methods rely on Opti-
cal Character Recognition (OCR), which often
incurs latency, computational overhead, and er-
rors. Recent image-to-text approaches bypass
OCR but typically yield plain text outputs with-
out vision grounding. In this paper, we intro-
duce STNet (See then Tell Net), an end-to-end
model that jointly produces accurate textual an-
swers and their corresponding vision grounding.
At the core of STNet lies a novel <see> token,
prepended to each response. During generation,
<see> directs the model first to see — observ-
ing the regions of the image related to the input
question (decoded into physical coordinates) —
and then to tell, emitting the textual answer. To
enhance the model’s see capabilities, we collect
extensive structured table recognition datasets
and leverage GPT-4 to develop TVG (TableQA
with Vision Grounding), a dataset of QA pairs
annotated with vision grounding. Our approach
demonstrates substantial advancements in KIE
performance, achieving state-of-the-art results
on publicly available datasets such as CORD,
SROIE, and DocVQA. The code and dataset
will be made publicly available.

1 Introduction

Visually rich document is a type of medium that
centers around text while also incorporating the
layout and related visual imagery. In the digital
information age, many documents are digitized
and saved as images. Understanding document im-
ages plays a pivotal role across multiple domains
such as document analysis (Cui et al., 2021), doc-
ument retrieval (Mass and Roitman, 2020), and
office robotic process automation (Axmann and
Harmoko, 2020). This comprehension significantly
bolsters the efficiency and accuracy of informa-
tion processing. Key Information Extraction (KIE)
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The illustration of contemporary KIE

aims to locate, analyze, and extract key entities
(like names, dates, and numerical data) from docu-
ments. KIE has become a key part of the document
understanding field.

As illustrated in Figure 1, existing methods for
KIE can be broadly categorized into two groups.
Traditional methods (Xu et al., 2020, 2021; Huang
et al., 2022; Zhang et al., 2023b; Appalaraju
et al., 2021) rely on Optical Character Recognition
(OCR) engines to first extract text and coordinate
information from document images, which are then
fed into a document model for analysis and classifi-
cation. However, this pipeline is heavily dependent
on the OCR engine, resulting in additional latency
and computational costs. Furthermore, errors orig-
inating from the OCR step can propagate to the
document model, thereby deteriorating overall per-
formance. Recent advancements in document un-



derstanding (Kim et al., 2022; Cao et al., 2023;
Okamoto et al., 2024) have introduced end-to-end
image-to-text paradigms. These methods enable
document models to directly process document im-
ages without explicit OCR. To achieve this, they
leverage the Transformer architecture (Vaswani
et al., 2017) to decode OCR results during the pre-
training stage, endowing the document model with
reading capabilities. These OCR-free approaches
show strong performance across various document
understanding tasks. Nevertheless, the KIE task
differs from typical Visual Question Answering
(VQA) tasks (Singh et al., 2019; Lu et al., 2022)
due to the strong correspondence required between
the extracted information and the visual content of
the document. Therefore, it is essential to design a
module that aligns the predicted plain text answers
with the visual content.

Currently, most document KIE datasets, such
as DocVQA (Mathew et al., 2021) and WikiTable-
Questions (Pasupat and Liang, 2015), purely of-
fer simple plain text Question Answering (QA)
pairs without vision grounding for each answer
within the image context. With the rise of large
language models (LLMs) like ChatGPT (Brown
et al., 2020) and GPT-4 (OpenAl, 2023), recent
work (Han et al., 2023; Zhang et al., 2023a) has
explored using LLMs to generate domain-specific
instruction tuning data. Inspired by this, we present
an automated processing pipeline that leverages
GPT-4 to generate KIE data with robust vision
grounding for the document domain. This is ex-
pected to enhance KIE performance by providing
precise and dependable vision grounding.

In this work, we introduce a novel end-to-end
model named STNet (See then Tell Net), which can
simultaneously provide answers and corresponding
vision grounding. Unlike existing methods, we ex-
plicitly design a <see> token to guide the model in
identifying the relevant location within the image.
Accordingly, we develop a specialized physical
decoder to interpret the physical coordinate asso-
ciated with the <see> token. In downstream tasks,
we simply place the <see> token at the beginning
of the answer text, thereby providing vision ground-
ing for the answer. To further enhance the model’s
see capabilities, we collect a substantial number of
highly structured table recognition datasets, such
as PubTablesIM (Smock et al., 2022) and iFLY-
TAB (Zhang et al., 2024). Leveraging the powerful
text understanding capabilities of GPT-4, we con-
struct a TVG (TableQA with Vision Grounding)

dataset. This dataset not only provides the related
plain text QA pairs but also includes the specific
vision grounding of the QA pairs within the image.
We validate STNet on publicly available datasets
such as CORD (Park et al., 2019), SROIE (Huang
et al., 2021), and DocVQA (Mathew et al., 2021),
achieving state-of-the-art results. The main contri-
butions of this paper are as follows:

* We introduce STNet, a novel end-to-end
model that not only provides textual answers
but also excels in offering vision grounding,
enabled by our specially designed <see> to-
ken and specialized physical decoder.

* We introduce a GPT-4-driven automated QA
pair generation method, creating the TVG
dataset. This dataset comprises QA pairs with
precise vision grounding, essential for enhanc-
ing visual comprehension.

* Experimental results on publicly available
datasets such as CORD, SROIE, and DocVQA
demonstrate that our STNet model achieves
state-of-the-art performance.

2 Related Work

Early KIE algorithms used rule-based methods,
heavily relying on prior knowledge. These ap-
proaches were limited to fixed-format documents
and lacked robustness for diverse real-world appli-
cations. The rapid development of deep learning
has brought superior solutions to document under-
standing, which can be primarily categorized into
OCR-based and OCR-free methods.

2.1 OCR-based Methods

OCR-based methods require an OCR engine to
extract text and coordinate information from visu-
ally rich document images as input for document
models. The LayoutLM family (Xu et al., 2020)
introduces a pre-training framework that combines
text and layout features, with LayoutLMv2 (Xu
et al.,, 2021) enhancing representation capabili-
ties through spatial-aware self-attention and tasks
like text-image alignment and text-image match-
ing. LayoutLMv3 (Huang et al., 2022) further ad-
vances this approach by reducing visual feature
extraction costs with patch encoding and introduc-
ing masked image modeling and word-patch align-
ment tasks. DocFormer (Appalaraju et al., 2021)
integrates visual and spatial information into each
Transformer layer using a self-attention encoder.



GraphDoc (Zhang et al., 2023b) employs BERT
and Swin Transformer for semantic and visual en-
coding, respectively, with an attention-based graph
network for localized feature interaction. Despite
their commendable performance, these models ex-
hibit a significant reliance on OCR tools, making
them vulnerable to cascading OCR errors that can
severely degrade overall performance.

2.2 OCR-free Methods

OCR-free methods aim to remove reliance on
OCR modules, enabling faster inference with fewer
parameters. For example, Donut (Kim et al.,
2022) uses the Swin Transformer to encode image
patches and BART-like Transformers to generate
text sequences, introducing a prompt mechanism
to switch between tasks. This end-to-end approach
simplifies the model architecture and achieves cost-
effectiveness by directly mapping input images into
structured outputs. Pix2Struct (Lee et al., 2023)
extends these improvements by scaling up pre-
training data and tasks, while SeRum (Cao et al.,
2023) employs selective region concentration to en-
hance precision and speed. These methods stream-
line information processing and accelerate reason-
ing, making them highly effective in KIE. Recently,
some researchers have also attempted to provide vi-
sion grounding for answers, further improving the
effectiveness of these models. UNITS (Kil et al.,
2023) outputs text coordinates as a part of the se-
quence. However, this explicit approach results in
overly long sequences and increased error accumu-
lation. CREPE (Okamoto et al., 2024) employs a
multi-head architecture, where a specialized head
is designed to predict implicit text coordinates from
the </ocr> token following the answer text. How-
ever, using generated text to assist in location infer-
ence (“tell then see") provides limited improvement
for KIE itself, as will be validated through compar-
isons with our “see then tell" approach.

2.3 Leveraging LLMs for Datasets

High-quality datasets are crucial for improving
model performance, yet existing ones often fail
to meet emerging needs, and manual annotation
is costly. With the advent of LLMs like Chat-
GPT (Brown et al., 2020) and GPT-4 (OpenAl,
2023), researchers have begun leveraging their ro-
bust linguistic and coding capabilities to efficiently
process large volumes of data and construct new
datasets. WizardLM (Xu et al., 2023) and GPT-4-
LLM (Peng et al., 2023) have validated the effec-

tiveness of using ChatGPT and GPT-4 to generate
instruction fine-tuning datasets. ChartLlama (Han
etal., 2023) utilizes GPT-4 to generate chart images
along with diverse and precise QA pairs, thereby
aiding in the training of models for comprehen-
sive chart understanding. TableLlama (Zhang et al.,
2023a) has achieved similar advancements in the
domain of table data. However, the WizardLM
and GPT-4-LLM datasets are restricted to textual
data only. While TableLlama and ChartLlama are
multimodal, they lack spatial annotations for the
QA pairs, limiting their utility for vision grounding.
To address these limitations, we propose a novel
automated QA pair generation method to construct
the TVG dataset, which includes QA pairs along
with their corresponding spatial information.

3 Task Definition

Given a document image I and a question sequence
Q={q €eR"|i=1,...,T,} as a prompt, our
objective is to enable the model to predict the an-
swer sequence A = {a; € R” | i =1,...,T,}
for completing KIE. Here, T}, denotes the length
of the question sequence, 1, denotes the length
of the answer sequence, and v is the size of the
token vocabulary. Previous methods have achieved
remarkable results using this format. In contrast,
we divide this process into two distinct phases: see
and tell. In the see phase, we output a <see> token
that implicitly encodes the physical coordinates
p={p; e N|j=1,...,8}, which represent a
four-point polygon, defining the physical location
in the document image associated with ). This
differs from logical locations, such as row and col-
umn coordinates. We choose four-point polygons
over bounding boxes, as polygons more effectively
handle warped or rotated text. Subsequently, in
the tell phase, the model generates the answer text
following the <see> token.

4 Methodology

As illustrated in Figure 2, STNet is built on Donut
(Kim et al., 2022) and consists of two primary mod-
ules: a vision encoder and a text decoder. The
vision encoder is tasked with processing image fea-
tures which are subsequently interpreted by the text
decoder to formulate the answer sequence A. Our
model introduces a novel <see> token that implic-
itly encodes physical coordinates at the beginning
of A. Specifically, we design a dedicated physical
decoder to extract these coordinates and propose a
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Figure 2: The overall architecture of STNet. It mainly consists of a vision encoder and a text decoder. Our text
decoder’s output answer sequence includes a special <see> token. The physical decoder is designed to decode the
hidden states corresponding to the <see> token to obtain coordinates for vision grounding.
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Figure 3: TVG dataset construction pipeline.

corresponding see loss to supervise this encoding.
The <see> token with physical location informa-
tion effectively guides the subsequent output of the
answer text, ensuring ‘“‘see then tell”. Due to the
lack of suitable datasets to train <see>, we accumu-
late a large amount of structured table recognition
data and construct the TVG dataset utilizing GPT-4.
More details are elaborated in subsequent sections.

4.1 Vision Encoder

The vision encoder transforms the input document
image I into a feature map F' € R7*W>*D This
feature map is subsequently serialized into a set
of embeddings Z = {z; ¢ RP | i =1,...,N},
where N represents the size of the feature map
and D is the dimension of the encoder’s latent vec-
tors. Following Donut, we adopt the Swin Trans-
former (Liu et al., 2021) as our primary vision back-
bone due to its superior performance demonstrated
in previous studies. Additionally, we incorporate
positional encoding (Vaswani et al., 2017) into F’ to
produce the final vision embeddings Z, enhancing
the model’s perception of location.

4.2 Text Decoder

Similar to Donut, we utilize the BART (Lewis et al.,
2020) decoder to generate the answer sequence A,
which is conditioned on the Z and prompted by
the question sequence . Since STNet is trained to
predict the next token like LLMs (OpenAl, 2023),
the training objective is to minimize the negative
log-likelihood of the target sequence.

T,
1 a

B = = E logP(a;| Z,Q,a1;) (1)
@ i=1

4.3 Physical Decoder

We explore the fundamental human cognitive pro-
cess of “see then tell”, where individuals first see
— gathering visual information and contextual in-
sights — and then tell — constructing responses.
This sequence notably enhances the accuracy and
relevance of interactions. To effectively mirror this
intuitive cognitive pattern, our proposed method
adopts a two-phase output strategy. The <see>
token initiates the see phase to perceive location
information related to @ in the document image,
followed by the tell phase that outputs the answer
text. We design a physical decoder that decodes
the hidden states H = {h; ¢ RP | i =1,...,T}
extracted from the final layer of our text decoder,
specifically corresponding to the <see> token, al-
lowing us to obtain the polygon coordinates p
within the image context for vision grounding. To
facilitate this prediction, we employ a quantization
strategy utilizing a specialized vocabulary com-
posed of 1,000 unique tokens, ranging from <@>
to <999>, collectively denoted as Loc € R1000xD,



For each coordinate p; within a polygon p;, its
associated hidden state h; undergoes a linear trans-
formation, producing hf 7 as a query against the
vocabulary Loc. The final determination of p;’s
position is computed based on the expected loca-
tion derived from the probability distribution over
Loc, as provided by hf 7, divergent from previous
direct classification methods (Chen et al., 2022)
over a location vocabulary:

h}’ = Linear (h;) )

bPi = softmax (hfj LocT) 3)
999

E(pj) =) i-b €y
i=0

Here, b? € R!0% represents the probability
distribution for the position of p;. The polygon
regression loss of see is defined as follows:

_

Lo = (E (pj) —p})’ 5)

8

8
Jj=

where p;k» represents the ground truth label.

4.4 TVG Dataset

Current  document  datasets, such  as
DocVQA (Mathew et al.,, 2021) and Wik-
iTableQuestion (Pasupat and Liang, 2015),
only offer plain text QA pairs, constraining the
enhancement of STNet’s ability to see. Inspired by
recent studies (Xu et al., 2023; Han et al., 2023;
Zhang et al., 2023a) which leverage LLMs for
dataset construction, we propose a comprehensive
GPT-4-based method, as depicted in Figure 3, to
automatically construct QA datasets for document
images. Tables, as a special form of document
image, can be described using structured markup
such as HTML, and high-quality table data can be
readily sourced from online resources. To this end,
we have collected a number of table recognition
datasets including PubTables1M (Smock et al.,
2022) and iFLYTAB (Zhang et al., 2024), each
sample containing both images and their corre-
sponding structured annotation. We design prompt
templates and feed structured markup into GPT-4
to generate QA pairs, each with a logical location
(row, column) of the answer. This location is used
to retrieve the corresponding cell from annotations,
and only QA pairs with answers matching the
ground truth are retained. Finally, we map logical
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Figure 4: The illustration of the task design.

coordinates to physical locations (cell polygon
boxes) using the original annotations, linking each
answer to its position in the image. Consequently,
we construct the TVG dataset, which includes
table images I and the QA pairs with physical
location annotations {Q, A, p}. More details can
be found in our Appendix.

S Implementation Details

5.1 Pre-training Tasks

To bolster STNet’s capability to perceive text loca-
tions — essentially, its ability to see — we have
integrated a multi-task pre-training strategy encom-
passing three distinct sub-tasks: OCR, Document
Read, and VQA, as illustrated in Figure 4.

5.2 Training Strategy

In the initial pre-training phase, in addition to
the previously constructed TVG dataset and its
data sources — the training sets from PubTa-
blesIM (Smock et al., 2022) and iFLYTAB (Zhang
et al., 2024) — we also employ a synthetic dataset
comprising 2.2 million entries in both Chinese and
English from SynthDog (Kim et al., 2022). Pub-
Tables1M, iFLYTAB, and SynthDog are used for
OCR and document read training, while TVG is
utilized for OCR and VQA tasks.

After pre-training, STNet is fine-tuned on spe-
cialized datasets for KIE. Each dataset is tailored to
meet the VQA task specifications and is combined
with TVG at a 1:1 ratio, with consistent supervision
of the see loss on TVG. It ensures that the output
<see> token retains its physical location perception
ability to guide the output of answer text, even with-
out see loss supervision on downstream datasets.

STNet utilizes two types of loss: Ay, and Liee.
The total loss is computed as a weighted sum of
these components.

ﬁotal = «iﬁm + )\«iﬂsee (6)



After extensive evaluation, we set A = 0.001.

5.3 Inference

During the inference phase, we feed the question
sequence @ to STNet as a prompt, guiding it to
output the answer sequence A. Utilizing the hidden
states H from the text decoder’s last layer, we
can decode the polygon information p, associated
with the <see> token preceding each response in A.
Through the visualization of this vision grounding,
we can enhance the interpretability of the answers.

6 Experiments

6.1 Evaluation Benchmarks and Metrics

To fully demonstrate the effectiveness of STNet, we
conduct experiments on three benchmark datasets.
The SROIE (Huang et al.,, 2021) dataset con-
tains 973 scanned receipts, annotated with four
fields. Performance is measured using field-level
F1 (Hwang et al., 2019) and TED accuracy (Zhong
et al., 2020). The CORD (Park et al., 2019) dataset
includes 1,000 receipts with 30 entity types, and
uses the same evaluation metrics as SROIE. The
DocVQA (Mathew et al., 2021) dataset comprises
50,000 QA pairs from over 12,000 document pages.
Due to missing ground truth in the test set, eval-
uations are performed on the validation set using
ANLS (Average Normalized Levenshtein Similar-
ity). More details can be found in the Appendix.

6.2 Results

As shown in Table 1, we compare our approach
with various prior methods. The STNet* model
employs supervised training on the see process for
downstream datasets by mapping answer texts to
corresponding coordinates. Conversely, the orig-
inal STNet omits this step and infers answer co-
ordinates using the physical decoder pre-trained
on TVG, ensuring a fair comparison. OCR-
based methods are evaluated using text and bound-
ing boxes extracted by OCR engines, following
the approach in Donut (Kim et al., 2022) and
SeRum (Cao et al., 2023), ensuring fair model com-
parisons. LayoutLMv3* (Huang et al., 2022) de-
notes results from its original paper, which uses
ground-truth annotations for OCR during evalua-
tion. More details can be found in the Appendix.
Our approach achieves state-of-the-art perfor-
mance on both SROIE and CORD datasets. While
LayoutLMv3* performs well using ground-truth
annotations for OCR, its performance degrades sig-

nificantly due to cascading OCR errors when using
real OCR outputs, as shown in the LayoutLMv3
results. In contrast, STNet’s end-to-end design
eliminates reliance on OCR modules and costly
high-precision annotations, making it more effi-
cient for training and inference.

On the DocVQA dataset, where answer text lo-
cation information is unavailable, we report re-
sults only for the original STNet. It achieves the
second-best performance, trailing the OCR-based
LayoutLMv2 (Xu et al., 2021). This dataset’s com-
plex and densely packed text makes model perfor-
mance highly sensitive to resolution. Our STNet
standardizes input image resolution to 1280 x 960
for consistent processing, whereas LayoutLMv2
leverages the advanced Microsoft Read API' to
extract text and bounding boxes.

STNet not only achieves state-of-the-art results
among OCR-free methods but also provides vi-
sion grounding for the answers, interacting better
with the real world. This is particularly notable in
datasets like DocVQA, which lack answer text loca-
tion information. Figure 5 showcases the outcomes
of text coordinates acquisition by our model.

6.3 Generalization to Advanced MLLMs

To assess the generalizability of our approach, we
apply it to advanced multimodal large language
models (MLLMs) such as Qwen2-VL (Wang et al.,
2024). We integrate our vision grounding mod-
ule into the MLLM architecture and augment the
prompt with the <see> token. The model is trained
on the TVG dataset with explicit see supervision
on <see> to acquire see capabilities. During eval-
uation, we follow the zero-shot prompt setting
adopted in prior MLLM-based KIE studies (Luo
et al., 2024). Specifically, for key-value annota-
tions in CORD, we prompt the model with ques-
tions in the form of “Q: What is the ‘key’? <see>
A: ‘value’”. To ensure fair comparison, we adopt
the same filtering strategy as previous work, re-
moving samples where a single entity corresponds
to multiple values. Evaluation is conducted using
ANLS. More details can be found in the Appendix.
As shown in Table 2, our method yields con-
sistent performance gains on both Qwen2-VL-
2B and Qwen2-VL-7B, surpassing the improve-
ments achieved by previous methods such as
RIDGE (Jiang et al., 2025). These results demon-
strate the strong generalizability of our approach.

"https://docs.microsoft.com/en-us/azure/cognitive-



Method OCR CORD SROIE DocVQA
F1  Acc. F1  Acc. ANLS

BROS (Hong et al., 2022) 4 74.7 70.0 - - -
LayoutLMv2 (Xu et al., 2021) 4 789 824 61.0 9I1.1 74.2
LayoutLMv3 (Huang et al., 2022) 4 80.5 87.8 65.0 92.7 -
LayoutLMv3* (Huang et al., 2022) ¢ 96.6 - - - -
Donut (Kim et al., 2022) b 4 84.1 909 83.2 928 59.7
SeRum (Cao et al., 2023) X 849 915 85.8 954 -
CREPE (Okamoto et al., 2024) b 4 85.0 - - - 58.4
STNet b 4 88.1 923 87.8 97.1 63.7
STNet* b 4 88.8 93.5 88.3 974 -

Table 1: Comparison with SOTA methods across different datasets.

The field-level F1 scores and tree-edit-distance-

based accuracies are reported. Bold indicates the best result. Underline indicates the second best. LayoutLMv3*
represents the results reported in the original paper, where ground-truth annotations for OCR are used during

evaluation. More details can be found in the Appendix.

Model | CORD SROIE DocVQA
Qwen2-VL-7B | 80.40  97.50 91.66

+ RIDGE 85.53 97.74 -

+ see 85.83  97.92 91.97
Qwen2-VL-2B | 76.76  92.64 84.80
+ see 79.59  93.79 86.80

Table 2: Performance improvements in zero-shot KIE
for MLLMs. All results are evaluated using ANLS.

le 4
88.0

le 3
88.3

le—2
88.0

A let
F1 86.4

Table 3: Comparison of STNet’s performance under
different see loss weights .

6.4 Ablation Study

To validate the effectiveness of each of our contri-
butions, we build systems T1 through T4 based on
STNet, which is built on the Donut architecture.
We evaluate all systems on the SROIE dataset.

6.4.1 Impact of See Loss Weight.

During STNet training, the total loss is computed
as a weighted combination of .4, and -Zee, which
differ significantly in scale. Determining the opti-
mal weight  for the see loss is crucial for balanc-
ing these losses. As shown in Table 3, A = 0.001
achieves the best performance.

6.4.2 The Effectiveness of the TVG Dataset.

The TVG dataset is designed to enhance the train-
ing efficacy of our models. To determine whether
performance improvements stem solely from ex-

services/computer-vision/concept-recognizing-text

System TVG See SS Fl1 Acc.
T1 X X X 847 94.1
T2 4 X X 862 963
T3 4 vV X 878 97.1
T4 v v v 883 974

Table 4: Results of the evaluation for the STNet model
on the SROIE dataset. “TVG” denotes the use of the
TVG dataset. See indicates the inclusion of the <see>
token, and “SS” signifies the use of see supervision on
SROIE. “F1” and “Acc.” correspond to the performance
metrics on the SROIE test set.

tended pre-training, we conduct two experimental
setups, T1 and T2, as detailed in Table 4. The re-
sults show that T2 significantly outperforms T1,
validating the effectiveness of the TVG dataset.

6.4.3 The Effectiveness of “See then Tell”.

As shown in Figure 5, our STNet is capable of
providing vision grounding for the answers, high-
lighting its ability to see. To evaluate whether this
ability results in improved extraction accuracy, we
compare the performance of T2 and T3, as shown
in Table 4. The results indicate a marked improve-
ment in T3 over T2, which doesn’t generate <see>
embedded with text coordinates for physical loca-
tion perception to guide the output of answer text.
This validates the effectiveness of “see then tell”.

6.4.4 Impact of See Supervision.

The calculation of see loss requires answer loca-
tion information, which is unavailable in many
document datasets, such as DocVQA. To assess
the model’s reliance on see supervision for down-
stream datasets, we conduct a comparative analysis
between T3 and T4. As shown in Table 4, T3 per-
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and c* refer to DocVQA from STNet. For SROIE and CORD, different colors of the polygon boxes represent
various categories. Each dataset has a different color bar, but both use green to indicate the ground truth. For
DocVQA, different colors of the polygon boxes represent answers to different questions.
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Figure 6: Comparison of text coordinates acquired by
T3 and T4. a* refer to SROIE, b* refer to CORD. (al)
and (bl) refer to T3, (a2) and (b2) refer to T4. For
clarity, some polygon boxes have been omitted.

forms only slightly worse than T4. Figure 6 illus-
trates that while T3’s predicted coordinates are less
precise, they still encompass the correct answers.
This indicates that our approach performs well even
without precise location information. An IoU test
on predicted boxes (Table 5) further demonstrates
that T3 can locate the approximate position of the
answer. Additionally, T4 provides more precise
boxes for the answer locations, which correspond
to its more accurate predictions of the answer text,
validating the alignment between text and boxes.

Threshold 1le 3 1le 2 1le ! 3e7!
T3 86.3 855 80.6 58.7
T4 97.6 97.6 97.0 96.5

Table 5: Accuracy results for polygon box predictions.
A prediction is considered correct if the IoU exceeds the
defined threshold.

7 Conclusion

In this work, we introduce STNet, a novel end-to-
end model that not only provides textual answers
but also excels in offering vision grounding. STNet
employs a “see then tell" strategy, first outputting
a special <see> token that encodes the answer’s
coordinates within the image as vision grounding
to guide subsequent text generation. A dedicated
physical decoder and a corresponding see loss are
designed to decode and supervise these coordinates.
To effectively train <see>, we collect a number of
table recognition datasets and develop a GPT-4-
driven automated QA pair generation method, re-
sulting in the TVG dataset, which comprises QA
pairs with precise vision grounding. Experimen-
tal results on publicly available datasets such as
CORD, SROIE, and DocVQA demonstrate that our
STNet model achieves state-of-the-art performance
in Key Information Extraction.



8 Limitations

Our “see then tell” approach improves model per-
formance on KIE tasks and achieves significant
gains across multiple benchmarks. However, KIE
is a relatively simple visual information extraction
task, where inserting the <see> token at the end
of the prompt or the beginning of the response al-
ready allows the model to utilize vision grounding
effectively to generate the desired answer. In con-
trast, complex multi-step reasoning tasks require
not only vision grounding but also strong textual
inference capabilities. In such cases, how to en-
able the model to actively invoke visual perception
by generating the <see> token at appropriate posi-
tions during reasoning remains an open problem
for future exploration.
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A Implementation Details

A.1 Model Architecture

Our proposed STNet utilizes specific hyperpa-
rameters: We set the input image resolution to
1280 % 960 and use random padding to maintain the
original aspect ratio. The visual backbone’s down-
sampling factor is configured to 32. The feature
dimension D is established at 1024. The decoders
consist of a stack of 4 identical layers, and the
number of multi-heads is set to 16.

A.2 Pre-training Tasks

To bolster STNet’s capability to perceive text loca-
tions — essentially, its ability to see — we have
integrated a multi-task pre-training strategy encom-
passing three distinct sub-tasks: OCR, Document
Read, and VQA, as illustrated in Figure 4.

A21 OCR.

We represent locations using polygons defined by
four coordinate points, with each point mapped to
a token ranging from <@> to <999> in Loc. STNet
is designed to output text relevant to these loca-
tions based on such prompts, thereby emulating the
process of an OCR engine.

A.2.2 Document Read.

This task improves the model’s ability to under-
stand document structures by training it to generate
text sequences in the conventional reading order.
Each text block in the sequence is prefaced by a
<see> token. The physical coordinates of the text
are obtained by decoding the hidden states using a
specialized physical decoder.

A2.3 VOQA.

Expanding beyond conventional VQA tasks, STNet
is designed to not only generate a plaintext re-
sponse but also identify the relevant text coordi-
nates using the <see> token for vision ground-
ing. This approach aligns with the requirements of
downstream KIE tasks.

A.3 Training Strategy

In the initial pre-training phase, in addition to
the previously constructed TVG dataset and its
data sources — the training sets from PubTa-
bles1M (Smock et al., 2022) and iFLYTAB (Zhang
et al., 2024) — we also employ a synthetic dataset
comprising 2.2 million entries in both Chinese and
English from SynthDog (Kim et al., 2022). Pub-
Tables1M, iFLYTAB, and SynthDog are used for
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OCR and document read training, while TVG is
utilized for OCR and VQA tasks.

After pre-training, STNet is fine-tuned on spe-
cialized datasets for KIE. Each dataset is tailored to
meet the VQA task specifications and is combined
with TVG at a 1:1 ratio, with consistent supervision
of the see loss on TVG. It ensures that the output
<see> token retains its physical location perception
ability to guide the output of answer text, even with-
out see loss supervision on downstream datasets.

We use the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 5x 10~°. The learning
rate is linearly warmed up during the first 10% of
the steps and then linearly decayed. The training
is conducted on 4 Tesla V100 48GB GPUs with
a total batch size of 28. The model is trained for
250 epochs on the SROIE (Huang et al., 2021) and
CORD (Park et al., 2019) datasets, and extended to
300 epochs for DocVQA (Mathew et al., 2021).

STNet utilizes two types of loss: Ay, and Zee.
The total loss is computed as a weighted sum of
these components.

o%:otal = a%m + Aogfpsee (7)

After extensive evaluation, we set A = 0.001.

B Experiments

B.1 Evaluation Benchmarks and Metrics

To fully demonstrate the effectiveness of STNet, we
conduct experiments on three benchmark datasets.

B.1.1 SROIE.

The SROIE (Huang et al., 2021) dataset consists
of 973 scanned receipt images. They are divided
into two subsets: 626 images for training and 347
for testing. Each receipt is annotated with four pre-
defined target fields: company, date, address, and
total. Segment-level text bounding boxes and their
corresponding transcripts are provided to facilitate
the extraction tasks. The primary objective is to ac-
curately map each word to its field. To achieve this,
we have formulated four distinct queries, each ad-
dressing a specific target field: “What is the name
of the company that issued this receipt?" for com-
pany,“Where was this receipt issued?" for address,
“When was this receipt issued?" for date, and “What
is the total amount on this receipt?" for total.

For evaluating model performance on the test
set, we employ two metrics: the field-level
F1 score (Hwang et al.,, 2019) and Tree Edit
Distance (TED)-based accuracy (Zhong et al.,



Method OCR CORD SROIE
F1 F1
BROS (Hong et al., 2022) v 74.7 -
LayoutLM (Xu et al., 2020) 4 78.4 -
LayoutLMv2 (Xu et al., 2021) (4 78.9 61.0
LayoutLMv3 (Huang et al., 2022) 4 80.5 65.0
BROS* (Hong et al., 2022) v 96.5 96.3
LayoutLM* (Xu et al., 2020) v - 94.0
LayoutLMv2* (Xu et al., 2021) v 95.0 96.3
LayoutLMv3* (Huang et al., 2022) v 96.6 -
STNet b 4 88.1 87.8

Table 6: Comparison with OCR-based SOTA methods across different datasets. The field-level F1 scores are
reported. Models marked with * utilize the ground truth of text strings and coordinates as inputs during evaluation.

2020). F1 score is a harmonic mean of pre-
cision and recall of a classification task. A
high F1 score indicates strong performance in
both accuracy and precision in classifying pos-
itive cases. However, it can not effectively re-
flect the prediction accuracy at the character level.
TED measures the minimum number of single-
character edit operations required to transform
one string into another. The TED score is com-
puted as max (0,1 — TED(pr, gt)/ TED(¢, gt)),
where gt represents the ground truth, pr denotes
the predicted string, and ¢ corresponds to an empty
string.

B.1.2 CORD.

The CORD (Park et al., 2019) dataset serves as
a public benchmark comprising 800 training, 100
validation, and 100 testing receipts. The receipts
are annotated with 30 types of entities under 4 cate-
gories: menu, void menu, subtotal, and total. A list
of text lines with bounding boxes is provided. The
evaluation task and metrics for the CORD dataset
align with those used for the SROIE dataset. As it
features an intricate nested structure, we use “parse
the receipt" as a prompt, following the answer out-
put format pioneered by Donut (Kim et al., 2022),
and prepend a <see> token to each answer text.

B.1.3 DocVQA.

The DocVQA (Mathew et al., 2021) dataset com-
prises 50,000 Question Answering (QA) pairs de-
rived from over 12,000 pages across a wide array of
documents. The pages are allocated into training,
validation, and test sets with an approximate ratio
of 8:1:1. Due to the absence of ground truth in the
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test set, evaluations are performed on the validation
set using the ANLS (Average Normalized Leven-
shtein Similarity), an edit-distance based metric.

B.2 Comparison with OCR-based Methods

OCR-based methods, such as the LayoutL.M fam-
ily (Xu et al., 2020, 2021; Huang et al., 2022),
typically use the ground truth of text strings and
coordinates during evaluation, as highlighted in
their respective papers. This approach simplifies
the task to a token classification problem based
purely on textual content. To ensure a fair compar-
ison, Donut (Kim et al., 2022) and SeRum (Cao
et al., 2023) re-evaluated these models using state-
of-the-art publicly available OCR engines to ex-
tract text and corresponding bounding boxes. Fol-
lowing this standard practice, we adopt the results
reported in Donut and SeRum and re-evaluate Lay-
outLMv3 (Huang et al., 2022) under the same con-
ditions.

As shown in Table 6, we compare the perfor-
mance of these models under two evaluation set-
tings. Notably, models marked with * utilize the
ground truth of text strings and coordinates as in-
puts during evaluation.

It can be observed that these OCR-based meth-
ods can achieve satisfactory results when the OCR
outputs are entirely accurate. However, producing
such precise annotations is costly, and the cascad-
ing effects of OCR errors significantly impact the
model’s performance. In scenarios where only text
and bounding boxes extracted by OCR engines are
provided, our STNet demonstrates superior perfor-
mance compared to these methods.



B.3 Generalization to Advanced MLLMs

To assess the generalizability of our approach, we
apply it to advanced multimodal large language
models (MLLMs) such as Qwen2-VL (Wang et al.,
2024). We integrate our vision grounding mod-
ule into the MLLM architecture and augment the
prompt with the <see> token. The model is trained
on the TVG dataset with explicit see supervision
on <see> to acquire see capabilities. We adopt
the Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 1 x 10~°, which is linearly warmed
up over the first 5% of training steps and then de-
cayed linearly. Training is performed on 4 Tesla
V100 GPUs (48GB each) with a total batch size
of 128 for 3 epochs. To support full-parameter
fine-tuning under memory constraints, we employ
ZeRO optimization (Rajbhandari et al., 2020).

During evaluation, we follow the zero-shot
prompt setting adopted in prior MLLM-based
KIE studies (Luo et al., 2024). For SROIE and
DocVQA, we adopt the same prompt format as
used in STNet, with the <see> token appended at
the end of the prompt. For key-value annotations
in CORD, we format the queries as: “Q: What is
the ‘key’? <see> A: ‘value’”. To ensure a fair com-
parison, we follow previous work by filtering out
samples where a single entity corresponds to multi-
ple values. All evaluations are performed using the
ANLS metric. Examples of the prompt formats and
the text coordinates predicted by Qwen2-VL-2B
with see are shown in Figure 7.

C TVG Dataset

As illustrated in Figure 3, we propose a comprehen-
sive GPT-4-based method for the automatic con-
struction of the TVG dataset. Each step of this
process is detailed below.

C.1 Details of Data Source

Tables, as a unique form of document image, can
be described using structured languages such as
HTML. High-quality table data can be readily
sourced from online resources. To this end, we
have compiled several table recognition datasets,
including PubTables1M (Smock et al., 2022) and
iFLYTAB (Zhang et al., 2024).

C.1.1 PubTables1M.

PubTables1M is a large-scale table recognition
dataset sourced from the PubMed Central Open
Access (PMCOA) database. This dataset includes
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detailed annotations for projected row headers and
bounding boxes for all rows, columns, and cells,
including blank cells. Additionally, it introduces
a novel canonicalization procedure aimed at cor-
recting over-segmentation. This procedure ensures
that each table is presented with a unique and un-
ambiguous structural interpretation. Through these
detailed annotations, we transform the tables into
structured sequences in HTML format.

C.1.2 iFLYTAB.

The iIFLYTAB dataset comprises 12,104 training
samples and 5,187 testing samples. It offers com-
prehensive annotations for each table image, includ-
ing both physical coordinates and detailed struc-
tural information. This dataset includes not only
axis-aligned digital documents but also images cap-
tured by cameras, which present more significant
challenges than PubTables1M due to their complex
backgrounds and non-rigid image deformations.
Although it lacks textual annotations, we have ad-
dressed this limitation by using PaddleOCR (Li
et al., 2022) for text recognition, subsequently con-
verting the tables into HTML format.

C.2 Generation Prompt

As shown in Figure 8, we present a standardized
prompt template designed for QA data generation
using GPT-4, which requires structured HTML ta-
ble sequences as input. The text in black represents
fixed components of the prompt, and the text within
red brackets requires specific input. For example,
[Language] specifies the language in which the
QA pairs should be generated. We instruct GPT-4
to generate five types of questions: specific extrac-
tion, simple reasoning, complex reasoning, numeri-
cal questions, and content summary.

C.2.1 Specific Extraction.

Each specific extraction question should target a
specific cell in the table. The answer should indi-
cate the row <tr> and column <td> of the cell.

C.2.2 Simple Reasoning.

Each simple reasoning question should have an
answer derived by reasoning from fewer than three
cells in the table.

C.2.3 Complex Reasoning.

Each complex reasoning question should have an
answer that requires reasoning from three or more
cells in the table.
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Figure 7: The results of acquiring text coordinates by Qwen2-VL-2B with see. a* refer to SROIE, b* refer to
CORD, and c* refer to DocVQA. Different colors of the polygon boxes represent answers to different questions.

C.2.4 Numerical Questions.

Each numerical question should involve numerical
calculations, such as sum, maximum, average, and
minimum values. Provide the calculation process
and the final result.

C.2.5 Content Summary.

Each content summary needs to provide a summary
that describes the main content of the table and
matches the table’s content.

C.3 Post Process

As described in the aforementioned prompt tem-
plate, for specific extraction questions, we require
GPT-4 to provide not only the specific value from
the cell but also the logical location of the cell, in-
dicating its row and column numbers within the
table. The detailed annotations in these table recog-
nition datasets enable us to accurately locate the
corresponding cell’s real information, including its
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content and polygon box, based on the logical lo-
cation. We only retain the QA pair when the value
provided by GPT-4 matches the content of the lo-
cated cell, with the cell polygon box serving as the
required physical location p. This process ensures
the generation of high-quality QA data {Q, A, p}.
Ultimately, the TVG dataset we construct com-
prises 958,000 questions derived from 65,000 ta-
ble images. It includes 244k specific extraction
questions, 293k simple reasoning questions, 191k
complex reasoning questions, 166k numerical ques-
tions, and 64k content summary. Some examples
of them are illustrated in Figure 9 and released in
supplementary material. The whole dataset will be
made publicly available.



GPT-4 for QA Data Generation

Please generate a structured QA dataset based on the provided HTML table content. The dataset should include the following types of questions: specific
extraction questions, simple reasoning questions, complex reasoning questions, and numerical calculation questions. When generating questions, adapt them to
the language of the table content. If the table is in Chinese, all questions should be in Chinese; if the table is in English, all questions should be in English. For
each category, please provide approximately 5 QA pairs and ensure the returned Python dictionary is complete. If a category is not applicable or cannot be
generated based on the table content, please skip that category to maintain the quality of the dataset. Additionally, provide a content summary that captures the
main content of the table and matches the table's content.

Below are the requirements for constructing the QA dataset, the detailed Python dictionary template, and the HTML table content:

1.Specific Extraction Questions: Each question should target a specific cell in the table. The answer should indicate the row <tr> and column <td> of the cell.
2.Simple Reasoning Questions: Each question should have an answer derived by reasoning from fewer than three cells in the table.

3.Complex Reasoning Questions: Each question should have an answer that requires reasoning from three or more cells in the table.

4.Numerical Calculation Questions: Each question should involve numerical calculations, such as sum, maximum, average, and minimum values. Provide the
calculation process and the final result.

5.Content Summary: Provide a summary that describes the main content of the table and matches the table's content.

Ensure all QA pairs are precise and clearly indicate the row and column numbers as well as their specific content. Use the following Python dictionary structure
to return the dataset:

qa_dataset = {
"specific_extraction": [

{
"question": "What is the data in <tr> X, <td>Y of the table?",
"answer": {
"tr'": X, # X must be int type
"td": Y, #Y must be int type
"value": "Specific value from the cell"
}
b
# ... Additional specific extraction questions in [Language]
1
"simple_reasoning": [
{
"question": "What can be inferred about item A considering the data in cells B and C?",
"answer": "Inferred answer based on reasoning"
1
# ... Additional simple reasoning questions in [Language]
I3
"complex_reasoning": [
{
"question": "Considering the data from cells X, Y, Z, what conclusion can we draw about the subject?",
"answer": "Answer derived from complex reasoning"
b
# ... Additional complex reasoning questions in [Language]
1
"numerical_questions": [
{
"question": "What is the sum of the values in column A?",
"answer": "The numerical sum of column A, the final result is 1000"
}s
# ... Additional numerical calculation questions in [Language]
1

"content_summary": "The table primarily discusses topics related to [Topic], covering aspects like [Aspect 1], [Aspect 2], etc."

HTML table content:[HTML-formatted table]

Figure 8: The prompt template for QA data generation.
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Figure 9: Some examples of the TVG dataset. a* refer to specific extraction, where L indicates the logical location

and its text color corresponds to the coordinate box in the table image. b* refer to simple reasoning, c* refer to
complex reasoning, d* refer to numerical questions, and e* refer to content summary.
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