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Abstract001

In the digital era, understanding visually rich002
documents that combine text, complex layouts,003
and imagery is crucial. Traditional Key Infor-004
mation Extraction (KIE) methods rely on Opti-005
cal Character Recognition (OCR), which often006
incurs latency, computational overhead, and er-007
rors. Recent image-to-text approaches bypass008
OCR but typically yield plain text outputs with-009
out vision grounding. In this paper, we intro-010
duce STNet (See then Tell Net), an end-to-end011
model that jointly produces accurate textual an-012
swers and their corresponding vision grounding.013
At the core of STNet lies a novel <see> token,014
prepended to each response. During generation,015
<see> directs the model first to see — observ-016
ing the regions of the image related to the input017
question (decoded into physical coordinates) —018
and then to tell , emitting the textual answer. To019
enhance the model’s see capabilities, we collect020
extensive structured table recognition datasets021
and leverage GPT-4 to develop TVG (TableQA022
with Vision Grounding), a dataset of QA pairs023
annotated with vision grounding. Our approach024
demonstrates substantial advancements in KIE025
performance, achieving state-of-the-art results026
on publicly available datasets such as CORD,027
SROIE, and DocVQA. The code and dataset028
will be made publicly available.029

1 Introduction030

Visually rich document is a type of medium that031

centers around text while also incorporating the032

layout and related visual imagery. In the digital033

information age, many documents are digitized034

and saved as images. Understanding document im-035

ages plays a pivotal role across multiple domains036

such as document analysis (Cui et al., 2021), doc-037

ument retrieval (Mass and Roitman, 2020), and038

office robotic process automation (Axmann and039

Harmoko, 2020). This comprehension significantly040

bolsters the efficiency and accuracy of informa-041

tion processing. Key Information Extraction (KIE)042

Figure 1: The illustration of contemporary KIE
pipelines.

aims to locate, analyze, and extract key entities 043

(like names, dates, and numerical data) from docu- 044

ments. KIE has become a key part of the document 045

understanding field. 046

As illustrated in Figure 1, existing methods for 047

KIE can be broadly categorized into two groups. 048

Traditional methods (Xu et al., 2020, 2021; Huang 049

et al., 2022; Zhang et al., 2023b; Appalaraju 050

et al., 2021) rely on Optical Character Recognition 051

(OCR) engines to first extract text and coordinate 052

information from document images, which are then 053

fed into a document model for analysis and classifi- 054

cation. However, this pipeline is heavily dependent 055

on the OCR engine, resulting in additional latency 056

and computational costs. Furthermore, errors orig- 057

inating from the OCR step can propagate to the 058

document model, thereby deteriorating overall per- 059

formance. Recent advancements in document un- 060
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derstanding (Kim et al., 2022; Cao et al., 2023;061

Okamoto et al., 2024) have introduced end-to-end062

image-to-text paradigms. These methods enable063

document models to directly process document im-064

ages without explicit OCR. To achieve this, they065

leverage the Transformer architecture (Vaswani066

et al., 2017) to decode OCR results during the pre-067

training stage, endowing the document model with068

reading capabilities. These OCR-free approaches069

show strong performance across various document070

understanding tasks. Nevertheless, the KIE task071

differs from typical Visual Question Answering072

(VQA) tasks (Singh et al., 2019; Lu et al., 2022)073

due to the strong correspondence required between074

the extracted information and the visual content of075

the document. Therefore, it is essential to design a076

module that aligns the predicted plain text answers077

with the visual content.078

Currently, most document KIE datasets, such079

as DocVQA (Mathew et al., 2021) and WikiTable-080

Questions (Pasupat and Liang, 2015), purely of-081

fer simple plain text Question Answering (QA)082

pairs without vision grounding for each answer083

within the image context. With the rise of large084

language models (LLMs) like ChatGPT (Brown085

et al., 2020) and GPT-4 (OpenAI, 2023), recent086

work (Han et al., 2023; Zhang et al., 2023a) has087

explored using LLMs to generate domain-specific088

instruction tuning data. Inspired by this, we present089

an automated processing pipeline that leverages090

GPT-4 to generate KIE data with robust vision091

grounding for the document domain. This is ex-092

pected to enhance KIE performance by providing093

precise and dependable vision grounding.094

In this work, we introduce a novel end-to-end095

model named STNet (See then Tell Net), which can096

simultaneously provide answers and corresponding097

vision grounding. Unlike existing methods, we ex-098

plicitly design a <see> token to guide the model in099

identifying the relevant location within the image.100

Accordingly, we develop a specialized physical101

decoder to interpret the physical coordinate asso-102

ciated with the <see> token. In downstream tasks,103

we simply place the <see> token at the beginning104

of the answer text, thereby providing vision ground-105

ing for the answer. To further enhance the model’s106

see capabilities, we collect a substantial number of107

highly structured table recognition datasets, such108

as PubTables1M (Smock et al., 2022) and iFLY-109

TAB (Zhang et al., 2024). Leveraging the powerful110

text understanding capabilities of GPT-4, we con-111

struct a TVG (TableQA with Vision Grounding)112

dataset. This dataset not only provides the related 113

plain text QA pairs but also includes the specific 114

vision grounding of the QA pairs within the image. 115

We validate STNet on publicly available datasets 116

such as CORD (Park et al., 2019), SROIE (Huang 117

et al., 2021), and DocVQA (Mathew et al., 2021), 118

achieving state-of-the-art results. The main contri- 119

butions of this paper are as follows: 120

• We introduce STNet, a novel end-to-end 121

model that not only provides textual answers 122

but also excels in offering vision grounding, 123

enabled by our specially designed <see> to- 124

ken and specialized physical decoder. 125

• We introduce a GPT-4-driven automated QA 126

pair generation method, creating the TVG 127

dataset. This dataset comprises QA pairs with 128

precise vision grounding, essential for enhanc- 129

ing visual comprehension. 130

• Experimental results on publicly available 131

datasets such as CORD, SROIE, and DocVQA 132

demonstrate that our STNet model achieves 133

state-of-the-art performance. 134

2 Related Work 135

Early KIE algorithms used rule-based methods, 136

heavily relying on prior knowledge. These ap- 137

proaches were limited to fixed-format documents 138

and lacked robustness for diverse real-world appli- 139

cations. The rapid development of deep learning 140

has brought superior solutions to document under- 141

standing, which can be primarily categorized into 142

OCR-based and OCR-free methods. 143

2.1 OCR-based Methods 144

OCR-based methods require an OCR engine to 145

extract text and coordinate information from visu- 146

ally rich document images as input for document 147

models. The LayoutLM family (Xu et al., 2020) 148

introduces a pre-training framework that combines 149

text and layout features, with LayoutLMv2 (Xu 150

et al., 2021) enhancing representation capabili- 151

ties through spatial-aware self-attention and tasks 152

like text-image alignment and text-image match- 153

ing. LayoutLMv3 (Huang et al., 2022) further ad- 154

vances this approach by reducing visual feature 155

extraction costs with patch encoding and introduc- 156

ing masked image modeling and word-patch align- 157

ment tasks. DocFormer (Appalaraju et al., 2021) 158

integrates visual and spatial information into each 159

Transformer layer using a self-attention encoder. 160
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GraphDoc (Zhang et al., 2023b) employs BERT161

and Swin Transformer for semantic and visual en-162

coding, respectively, with an attention-based graph163

network for localized feature interaction. Despite164

their commendable performance, these models ex-165

hibit a significant reliance on OCR tools, making166

them vulnerable to cascading OCR errors that can167

severely degrade overall performance.168

2.2 OCR-free Methods169

OCR-free methods aim to remove reliance on170

OCR modules, enabling faster inference with fewer171

parameters. For example, Donut (Kim et al.,172

2022) uses the Swin Transformer to encode image173

patches and BART-like Transformers to generate174

text sequences, introducing a prompt mechanism175

to switch between tasks. This end-to-end approach176

simplifies the model architecture and achieves cost-177

effectiveness by directly mapping input images into178

structured outputs. Pix2Struct (Lee et al., 2023)179

extends these improvements by scaling up pre-180

training data and tasks, while SeRum (Cao et al.,181

2023) employs selective region concentration to en-182

hance precision and speed. These methods stream-183

line information processing and accelerate reason-184

ing, making them highly effective in KIE. Recently,185

some researchers have also attempted to provide vi-186

sion grounding for answers, further improving the187

effectiveness of these models. UNITS (Kil et al.,188

2023) outputs text coordinates as a part of the se-189

quence. However, this explicit approach results in190

overly long sequences and increased error accumu-191

lation. CREPE (Okamoto et al., 2024) employs a192

multi-head architecture, where a specialized head193

is designed to predict implicit text coordinates from194

the </ocr> token following the answer text. How-195

ever, using generated text to assist in location infer-196

ence (“tell then see") provides limited improvement197

for KIE itself, as will be validated through compar-198

isons with our “see then tell" approach.199

2.3 Leveraging LLMs for Datasets200

High-quality datasets are crucial for improving201

model performance, yet existing ones often fail202

to meet emerging needs, and manual annotation203

is costly. With the advent of LLMs like Chat-204

GPT (Brown et al., 2020) and GPT-4 (OpenAI,205

2023), researchers have begun leveraging their ro-206

bust linguistic and coding capabilities to efficiently207

process large volumes of data and construct new208

datasets. WizardLM (Xu et al., 2023) and GPT-4-209

LLM (Peng et al., 2023) have validated the effec-210

tiveness of using ChatGPT and GPT-4 to generate 211

instruction fine-tuning datasets. ChartLlama (Han 212

et al., 2023) utilizes GPT-4 to generate chart images 213

along with diverse and precise QA pairs, thereby 214

aiding in the training of models for comprehen- 215

sive chart understanding. TableLlama (Zhang et al., 216

2023a) has achieved similar advancements in the 217

domain of table data. However, the WizardLM 218

and GPT-4-LLM datasets are restricted to textual 219

data only. While TableLlama and ChartLlama are 220

multimodal, they lack spatial annotations for the 221

QA pairs, limiting their utility for vision grounding. 222

To address these limitations, we propose a novel 223

automated QA pair generation method to construct 224

the TVG dataset, which includes QA pairs along 225

with their corresponding spatial information. 226

3 Task Definition 227

Given a document image I and a question sequence 228

Q = {qi ∈ Rv | i = 1, . . . , Tq} as a prompt, our 229

objective is to enable the model to predict the an- 230

swer sequence A = {ai ∈ Rv | i = 1, . . . , Ta} 231

for completing KIE. Here, Tq denotes the length 232

of the question sequence, Ta denotes the length 233

of the answer sequence, and v is the size of the 234

token vocabulary. Previous methods have achieved 235

remarkable results using this format. In contrast, 236

we divide this process into two distinct phases: see 237

and tell. In the see phase, we output a <see> token 238

that implicitly encodes the physical coordinates 239

p = {pj ∈ N | j = 1, . . . , 8}, which represent a 240

four-point polygon, defining the physical location 241

in the document image associated with Q. This 242

differs from logical locations, such as row and col- 243

umn coordinates. We choose four-point polygons 244

over bounding boxes, as polygons more effectively 245

handle warped or rotated text. Subsequently, in 246

the tell phase, the model generates the answer text 247

following the <see> token. 248

4 Methodology 249

As illustrated in Figure 2, STNet is built on Donut 250

(Kim et al., 2022) and consists of two primary mod- 251

ules: a vision encoder and a text decoder. The 252

vision encoder is tasked with processing image fea- 253

tures which are subsequently interpreted by the text 254

decoder to formulate the answer sequence A. Our 255

model introduces a novel <see> token that implic- 256

itly encodes physical coordinates at the beginning 257

of A. Specifically, we design a dedicated physical 258

decoder to extract these coordinates and propose a 259
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Figure 2: The overall architecture of STNet. It mainly consists of a vision encoder and a text decoder. Our text
decoder’s output answer sequence includes a special <see> token. The physical decoder is designed to decode the
hidden states corresponding to the <see> token to obtain coordinates for vision grounding.

Figure 3: TVG dataset construction pipeline.

corresponding see loss to supervise this encoding.260

The <see> token with physical location informa-261

tion effectively guides the subsequent output of the262

answer text, ensuring “see then tell”. Due to the263

lack of suitable datasets to train <see>, we accumu-264

late a large amount of structured table recognition265

data and construct the TVG dataset utilizing GPT-4.266

More details are elaborated in subsequent sections.267

4.1 Vision Encoder268

The vision encoder transforms the input document269

image I into a feature map F ∈ RH×W×D. This270

feature map is subsequently serialized into a set271

of embeddings Z = {zi ∈ RD | i = 1, . . . , N},272

where N represents the size of the feature map273

and D is the dimension of the encoder’s latent vec-274

tors. Following Donut, we adopt the Swin Trans-275

former (Liu et al., 2021) as our primary vision back-276

bone due to its superior performance demonstrated277

in previous studies. Additionally, we incorporate278

positional encoding (Vaswani et al., 2017) into F to279

produce the final vision embeddings Z, enhancing280

the model’s perception of location.281

4.2 Text Decoder 282

Similar to Donut, we utilize the BART (Lewis et al., 283

2020) decoder to generate the answer sequence A, 284

which is conditioned on the Z and prompted by 285

the question sequence Q. Since STNet is trained to 286

predict the next token like LLMs (OpenAI, 2023), 287

the training objective is to minimize the negative 288

log-likelihood of the target sequence. 289

Llm = − 1

Ta

Ta∑
i=1

logP (ai | Z,Q,a1:i) (1) 290

4.3 Physical Decoder 291

We explore the fundamental human cognitive pro- 292

cess of “see then tell”, where individuals first see 293

— gathering visual information and contextual in- 294

sights — and then tell — constructing responses. 295

This sequence notably enhances the accuracy and 296

relevance of interactions. To effectively mirror this 297

intuitive cognitive pattern, our proposed method 298

adopts a two-phase output strategy. The <see> 299

token initiates the see phase to perceive location 300

information related to Q in the document image, 301

followed by the tell phase that outputs the answer 302

text. We design a physical decoder that decodes 303

the hidden states H = {hi ∈ RD | i = 1, . . . , T} 304

extracted from the final layer of our text decoder, 305

specifically corresponding to the <see> token, al- 306

lowing us to obtain the polygon coordinates p 307

within the image context for vision grounding. To 308

facilitate this prediction, we employ a quantization 309

strategy utilizing a specialized vocabulary com- 310

posed of 1,000 unique tokens, ranging from <0> 311

to <999>, collectively denoted as Loc ∈ R1000×D. 312
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For each coordinate pj within a polygon pi, its313

associated hidden state hi undergoes a linear trans-314

formation, producing h
pj
i as a query against the315

vocabulary Loc. The final determination of pj’s316

position is computed based on the expected loca-317

tion derived from the probability distribution over318

Loc, as provided by h
pj
i , divergent from previous319

direct classification methods (Chen et al., 2022)320

over a location vocabulary:321

h
pj
i = Linear (hi) (2)322

323

bpj = softmax
(
h
pj
i Loc⊤

)
(3)324

325

E (pj) =

999∑
i=0

i · bpji (4)326

Here, bpj ∈ R1000 represents the probability327

distribution for the position of pj . The polygon328

regression loss of see is defined as follows:329

Lsee =
1

8

8∑
j=1

(
E (pj)− p∗j

)2 (5)330

where p∗j represents the ground truth label.331

4.4 TVG Dataset332

Current document datasets, such as333

DocVQA (Mathew et al., 2021) and Wik-334

iTableQuestion (Pasupat and Liang, 2015),335

only offer plain text QA pairs, constraining the336

enhancement of STNet’s ability to see . Inspired by337

recent studies (Xu et al., 2023; Han et al., 2023;338

Zhang et al., 2023a) which leverage LLMs for339

dataset construction, we propose a comprehensive340

GPT-4-based method, as depicted in Figure 3, to341

automatically construct QA datasets for document342

images. Tables, as a special form of document343

image, can be described using structured markup344

such as HTML, and high-quality table data can be345

readily sourced from online resources. To this end,346

we have collected a number of table recognition347

datasets including PubTables1M (Smock et al.,348

2022) and iFLYTAB (Zhang et al., 2024), each349

sample containing both images and their corre-350

sponding structured annotation. We design prompt351

templates and feed structured markup into GPT-4352

to generate QA pairs, each with a logical location353

(row, column) of the answer. This location is used354

to retrieve the corresponding cell from annotations,355

and only QA pairs with answers matching the356

ground truth are retained. Finally, we map logical357

Figure 4: The illustration of the task design.

coordinates to physical locations (cell polygon 358

boxes) using the original annotations, linking each 359

answer to its position in the image. Consequently, 360

we construct the TVG dataset, which includes 361

table images I and the QA pairs with physical 362

location annotations {Q,A,p}. More details can 363

be found in our Appendix. 364

5 Implementation Details 365

5.1 Pre-training Tasks 366

To bolster STNet’s capability to perceive text loca- 367

tions — essentially, its ability to see — we have 368

integrated a multi-task pre-training strategy encom- 369

passing three distinct sub-tasks: OCR, Document 370

Read, and VQA, as illustrated in Figure 4. 371

5.2 Training Strategy 372

In the initial pre-training phase, in addition to 373

the previously constructed TVG dataset and its 374

data sources — the training sets from PubTa- 375

bles1M (Smock et al., 2022) and iFLYTAB (Zhang 376

et al., 2024) — we also employ a synthetic dataset 377

comprising 2.2 million entries in both Chinese and 378

English from SynthDog (Kim et al., 2022). Pub- 379

Tables1M, iFLYTAB, and SynthDog are used for 380

OCR and document read training, while TVG is 381

utilized for OCR and VQA tasks. 382

After pre-training, STNet is fine-tuned on spe- 383

cialized datasets for KIE. Each dataset is tailored to 384

meet the VQA task specifications and is combined 385

with TVG at a 1:1 ratio, with consistent supervision 386

of the see loss on TVG. It ensures that the output 387

<see> token retains its physical location perception 388

ability to guide the output of answer text, even with- 389

out see loss supervision on downstream datasets. 390

STNet utilizes two types of loss: Llm and Lsee. 391

The total loss is computed as a weighted sum of 392

these components. 393

Ltotal = Llm + λLsee (6) 394
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After extensive evaluation, we set λ = 0.001.395

5.3 Inference396

During the inference phase, we feed the question397

sequence Q to STNet as a prompt, guiding it to398

output the answer sequence A. Utilizing the hidden399

states H from the text decoder’s last layer, we400

can decode the polygon information p, associated401

with the <see> token preceding each response in A.402

Through the visualization of this vision grounding,403

we can enhance the interpretability of the answers.404

6 Experiments405

6.1 Evaluation Benchmarks and Metrics406

To fully demonstrate the effectiveness of STNet, we407

conduct experiments on three benchmark datasets.408

The SROIE (Huang et al., 2021) dataset con-409

tains 973 scanned receipts, annotated with four410

fields. Performance is measured using field-level411

F1 (Hwang et al., 2019) and TED accuracy (Zhong412

et al., 2020). The CORD (Park et al., 2019) dataset413

includes 1,000 receipts with 30 entity types, and414

uses the same evaluation metrics as SROIE. The415

DocVQA (Mathew et al., 2021) dataset comprises416

50,000 QA pairs from over 12,000 document pages.417

Due to missing ground truth in the test set, eval-418

uations are performed on the validation set using419

ANLS (Average Normalized Levenshtein Similar-420

ity). More details can be found in the Appendix.421

6.2 Results422

As shown in Table 1, we compare our approach423

with various prior methods. The STNet* model424

employs supervised training on the see process for425

downstream datasets by mapping answer texts to426

corresponding coordinates. Conversely, the orig-427

inal STNet omits this step and infers answer co-428

ordinates using the physical decoder pre-trained429

on TVG, ensuring a fair comparison. OCR-430

based methods are evaluated using text and bound-431

ing boxes extracted by OCR engines, following432

the approach in Donut (Kim et al., 2022) and433

SeRum (Cao et al., 2023), ensuring fair model com-434

parisons. LayoutLMv3* (Huang et al., 2022) de-435

notes results from its original paper, which uses436

ground-truth annotations for OCR during evalua-437

tion. More details can be found in the Appendix.438

Our approach achieves state-of-the-art perfor-439

mance on both SROIE and CORD datasets. While440

LayoutLMv3* performs well using ground-truth441

annotations for OCR, its performance degrades sig-442

nificantly due to cascading OCR errors when using 443

real OCR outputs, as shown in the LayoutLMv3 444

results. In contrast, STNet’s end-to-end design 445

eliminates reliance on OCR modules and costly 446

high-precision annotations, making it more effi- 447

cient for training and inference. 448

On the DocVQA dataset, where answer text lo- 449

cation information is unavailable, we report re- 450

sults only for the original STNet. It achieves the 451

second-best performance, trailing the OCR-based 452

LayoutLMv2 (Xu et al., 2021). This dataset’s com- 453

plex and densely packed text makes model perfor- 454

mance highly sensitive to resolution. Our STNet 455

standardizes input image resolution to 1280× 960 456

for consistent processing, whereas LayoutLMv2 457

leverages the advanced Microsoft Read API1 to 458

extract text and bounding boxes. 459

STNet not only achieves state-of-the-art results 460

among OCR-free methods but also provides vi- 461

sion grounding for the answers, interacting better 462

with the real world. This is particularly notable in 463

datasets like DocVQA, which lack answer text loca- 464

tion information. Figure 5 showcases the outcomes 465

of text coordinates acquisition by our model. 466

6.3 Generalization to Advanced MLLMs 467

To assess the generalizability of our approach, we 468

apply it to advanced multimodal large language 469

models (MLLMs) such as Qwen2-VL (Wang et al., 470

2024). We integrate our vision grounding mod- 471

ule into the MLLM architecture and augment the 472

prompt with the <see> token. The model is trained 473

on the TVG dataset with explicit see supervision 474

on <see> to acquire see capabilities. During eval- 475

uation, we follow the zero-shot prompt setting 476

adopted in prior MLLM-based KIE studies (Luo 477

et al., 2024). Specifically, for key-value annota- 478

tions in CORD, we prompt the model with ques- 479

tions in the form of “Q: What is the ‘key’? <see> 480

A: ‘value’”. To ensure fair comparison, we adopt 481

the same filtering strategy as previous work, re- 482

moving samples where a single entity corresponds 483

to multiple values. Evaluation is conducted using 484

ANLS. More details can be found in the Appendix. 485

As shown in Table 2, our method yields con- 486

sistent performance gains on both Qwen2-VL- 487

2B and Qwen2-VL-7B, surpassing the improve- 488

ments achieved by previous methods such as 489

RIDGE (Jiang et al., 2025). These results demon- 490

strate the strong generalizability of our approach. 491

1https://docs.microsoft.com/en-us/azure/cognitive-
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Method OCR CORD SROIE DocVQA
F1 Acc. F1 Acc. ANLS

BROS (Hong et al., 2022) ✔ 74.7 70.0 - - -
LayoutLMv2 (Xu et al., 2021) ✔ 78.9 82.4 61.0 91.1 74.2
LayoutLMv3 (Huang et al., 2022) ✔ 80.5 87.8 65.0 92.7 -
LayoutLMv3* (Huang et al., 2022) ✔ 96.6 - - - -

Donut (Kim et al., 2022) ✘ 84.1 90.9 83.2 92.8 59.7
SeRum (Cao et al., 2023) ✘ 84.9 91.5 85.8 95.4 -
CREPE (Okamoto et al., 2024) ✘ 85.0 - - - 58.4
STNet ✘ 88.1 92.3 87.8 97.1 63.7
STNet* ✘ 88.8 93.5 88.3 97.4 -

Table 1: Comparison with SOTA methods across different datasets. The field-level F1 scores and tree-edit-distance-
based accuracies are reported. Bold indicates the best result. Underline indicates the second best. LayoutLMv3*
represents the results reported in the original paper, where ground-truth annotations for OCR are used during
evaluation. More details can be found in the Appendix.

Model CORD SROIE DocVQA
Qwen2-VL-7B 80.40 97.50 91.66
+ RIDGE 85.53 97.74 -
+ see 85.83 97.92 91.97
Qwen2-VL-2B 76.76 92.64 84.80
+ see 79.59 93.79 86.80

Table 2: Performance improvements in zero-shot KIE
for MLLMs. All results are evaluated using ANLS.

λ 1e−1 1e−2 1e−3 1e−4

F1 86.4 88.0 88.3 88.0

Table 3: Comparison of STNet’s performance under
different see loss weights λ.

6.4 Ablation Study492

To validate the effectiveness of each of our contri-493

butions, we build systems T1 through T4 based on494

STNet, which is built on the Donut architecture.495

We evaluate all systems on the SROIE dataset.496

6.4.1 Impact of See Loss Weight.497

During STNet training, the total loss is computed498

as a weighted combination of Llm and Lsee, which499

differ significantly in scale. Determining the opti-500

mal weight λ for the see loss is crucial for balanc-501

ing these losses. As shown in Table 3, λ = 0.001502

achieves the best performance.503

6.4.2 The Effectiveness of the TVG Dataset.504

The TVG dataset is designed to enhance the train-505

ing efficacy of our models. To determine whether506

performance improvements stem solely from ex-507

services/computer-vision/concept-recognizing-text

System TVG See SS F1 Acc.
T1 ✘ ✘ ✘ 84.7 94.1
T2 ✔ ✘ ✘ 86.2 96.3
T3 ✔ ✔ ✘ 87.8 97.1
T4 ✔ ✔ ✔ 88.3 97.4

Table 4: Results of the evaluation for the STNet model
on the SROIE dataset. “TVG” denotes the use of the
TVG dataset. See indicates the inclusion of the <see>
token, and “SS” signifies the use of see supervision on
SROIE. “F1” and “Acc.” correspond to the performance
metrics on the SROIE test set.

tended pre-training, we conduct two experimental 508

setups, T1 and T2, as detailed in Table 4. The re- 509

sults show that T2 significantly outperforms T1, 510

validating the effectiveness of the TVG dataset. 511

6.4.3 The Effectiveness of “See then Tell”. 512

As shown in Figure 5, our STNet is capable of 513

providing vision grounding for the answers, high- 514

lighting its ability to see . To evaluate whether this 515

ability results in improved extraction accuracy, we 516

compare the performance of T2 and T3, as shown 517

in Table 4. The results indicate a marked improve- 518

ment in T3 over T2, which doesn’t generate <see> 519

embedded with text coordinates for physical loca- 520

tion perception to guide the output of answer text. 521

This validates the effectiveness of “see then tell”. 522

6.4.4 Impact of See Supervision. 523

The calculation of see loss requires answer loca- 524

tion information, which is unavailable in many 525

document datasets, such as DocVQA. To assess 526

the model’s reliance on see supervision for down- 527

stream datasets, we conduct a comparative analysis 528

between T3 and T4. As shown in Table 4, T3 per- 529
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Figure 5: The results of acquiring text coordinates. a* refer to SROIE from STNet*, b* refer to CORD from STNet*,
and c* refer to DocVQA from STNet. For SROIE and CORD, different colors of the polygon boxes represent
various categories. Each dataset has a different color bar, but both use green to indicate the ground truth. For
DocVQA, different colors of the polygon boxes represent answers to different questions.

Figure 6: Comparison of text coordinates acquired by
T3 and T4. a* refer to SROIE, b* refer to CORD. (a1)
and (b1) refer to T3, (a2) and (b2) refer to T4. For
clarity, some polygon boxes have been omitted.

forms only slightly worse than T4. Figure 6 illus-530

trates that while T3’s predicted coordinates are less531

precise, they still encompass the correct answers.532

This indicates that our approach performs well even533

without precise location information. An IoU test534

on predicted boxes (Table 5) further demonstrates535

that T3 can locate the approximate position of the536

answer. Additionally, T4 provides more precise537

boxes for the answer locations, which correspond538

to its more accurate predictions of the answer text,539

validating the alignment between text and boxes.540

Threshold 1e−3 1e−2 1e−1 3e−1

T3 86.3 85.5 80.6 58.7
T4 97.6 97.6 97.0 96.5

Table 5: Accuracy results for polygon box predictions.
A prediction is considered correct if the IoU exceeds the
defined threshold.

7 Conclusion 541

In this work, we introduce STNet, a novel end-to- 542

end model that not only provides textual answers 543

but also excels in offering vision grounding. STNet 544

employs a “see then tell" strategy, first outputting 545

a special <see> token that encodes the answer’s 546

coordinates within the image as vision grounding 547

to guide subsequent text generation. A dedicated 548

physical decoder and a corresponding see loss are 549

designed to decode and supervise these coordinates. 550

To effectively train <see>, we collect a number of 551

table recognition datasets and develop a GPT-4- 552

driven automated QA pair generation method, re- 553

sulting in the TVG dataset, which comprises QA 554

pairs with precise vision grounding. Experimen- 555

tal results on publicly available datasets such as 556

CORD, SROIE, and DocVQA demonstrate that our 557

STNet model achieves state-of-the-art performance 558

in Key Information Extraction. 559

8



8 Limitations560

Our “see then tell” approach improves model per-561

formance on KIE tasks and achieves significant562

gains across multiple benchmarks. However, KIE563

is a relatively simple visual information extraction564

task, where inserting the <see> token at the end565

of the prompt or the beginning of the response al-566

ready allows the model to utilize vision grounding567

effectively to generate the desired answer. In con-568

trast, complex multi-step reasoning tasks require569

not only vision grounding but also strong textual570

inference capabilities. In such cases, how to en-571

able the model to actively invoke visual perception572

by generating the <see> token at appropriate posi-573

tions during reasoning remains an open problem574

for future exploration.575
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A Implementation Details767

A.1 Model Architecture768

Our proposed STNet utilizes specific hyperpa-769

rameters: We set the input image resolution to770

1280×960 and use random padding to maintain the771

original aspect ratio. The visual backbone’s down-772

sampling factor is configured to 32. The feature773

dimension D is established at 1024. The decoders774

consist of a stack of 4 identical layers, and the775

number of multi-heads is set to 16.776

A.2 Pre-training Tasks777

To bolster STNet’s capability to perceive text loca-778

tions — essentially, its ability to see — we have779

integrated a multi-task pre-training strategy encom-780

passing three distinct sub-tasks: OCR, Document781

Read, and VQA, as illustrated in Figure 4.782

A.2.1 OCR.783

We represent locations using polygons defined by784

four coordinate points, with each point mapped to785

a token ranging from <0> to <999> in Loc. STNet786

is designed to output text relevant to these loca-787

tions based on such prompts, thereby emulating the788

process of an OCR engine.789

A.2.2 Document Read.790

This task improves the model’s ability to under-791

stand document structures by training it to generate792

text sequences in the conventional reading order.793

Each text block in the sequence is prefaced by a794

<see> token. The physical coordinates of the text795

are obtained by decoding the hidden states using a796

specialized physical decoder.797

A.2.3 VQA.798

Expanding beyond conventional VQA tasks, STNet799

is designed to not only generate a plaintext re-800

sponse but also identify the relevant text coordi-801

nates using the <see> token for vision ground-802

ing. This approach aligns with the requirements of803

downstream KIE tasks.804

A.3 Training Strategy805

In the initial pre-training phase, in addition to806

the previously constructed TVG dataset and its807

data sources — the training sets from PubTa-808

bles1M (Smock et al., 2022) and iFLYTAB (Zhang809

et al., 2024) — we also employ a synthetic dataset810

comprising 2.2 million entries in both Chinese and811

English from SynthDog (Kim et al., 2022). Pub-812

Tables1M, iFLYTAB, and SynthDog are used for813

OCR and document read training, while TVG is 814

utilized for OCR and VQA tasks. 815

After pre-training, STNet is fine-tuned on spe- 816

cialized datasets for KIE. Each dataset is tailored to 817

meet the VQA task specifications and is combined 818

with TVG at a 1:1 ratio, with consistent supervision 819

of the see loss on TVG. It ensures that the output 820

<see> token retains its physical location perception 821

ability to guide the output of answer text, even with- 822

out see loss supervision on downstream datasets. 823

We use the Adam optimizer (Kingma and Ba, 824

2015) with a learning rate of 5×10−5. The learning 825

rate is linearly warmed up during the first 10% of 826

the steps and then linearly decayed. The training 827

is conducted on 4 Tesla V100 48GB GPUs with 828

a total batch size of 28. The model is trained for 829

250 epochs on the SROIE (Huang et al., 2021) and 830

CORD (Park et al., 2019) datasets, and extended to 831

300 epochs for DocVQA (Mathew et al., 2021). 832

STNet utilizes two types of loss: Llm and Lsee. 833

The total loss is computed as a weighted sum of 834

these components. 835

Ltotal = Llm + λLsee (7) 836

After extensive evaluation, we set λ = 0.001. 837

B Experiments 838

B.1 Evaluation Benchmarks and Metrics 839

To fully demonstrate the effectiveness of STNet, we 840

conduct experiments on three benchmark datasets. 841

B.1.1 SROIE. 842

The SROIE (Huang et al., 2021) dataset consists 843

of 973 scanned receipt images. They are divided 844

into two subsets: 626 images for training and 347 845

for testing. Each receipt is annotated with four pre- 846

defined target fields: company, date, address, and 847

total. Segment-level text bounding boxes and their 848

corresponding transcripts are provided to facilitate 849

the extraction tasks. The primary objective is to ac- 850

curately map each word to its field. To achieve this, 851

we have formulated four distinct queries, each ad- 852

dressing a specific target field: “What is the name 853

of the company that issued this receipt?" for com- 854

pany,“Where was this receipt issued?" for address, 855

“When was this receipt issued?" for date, and “What 856

is the total amount on this receipt?" for total. 857

For evaluating model performance on the test 858

set, we employ two metrics: the field-level 859

F1 score (Hwang et al., 2019) and Tree Edit 860

Distance (TED)-based accuracy (Zhong et al., 861
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Method OCR CORD SROIE

F1 F1

BROS (Hong et al., 2022) ✔ 74.7 -
LayoutLM (Xu et al., 2020) ✔ 78.4 -
LayoutLMv2 (Xu et al., 2021) ✔ 78.9 61.0
LayoutLMv3 (Huang et al., 2022) ✔ 80.5 65.0

BROS* (Hong et al., 2022) ✔ 96.5 96.3
LayoutLM* (Xu et al., 2020) ✔ - 94.0
LayoutLMv2* (Xu et al., 2021) ✔ 95.0 96.3
LayoutLMv3* (Huang et al., 2022) ✔ 96.6 -

STNet ✘ 88.1 87.8

Table 6: Comparison with OCR-based SOTA methods across different datasets. The field-level F1 scores are
reported. Models marked with * utilize the ground truth of text strings and coordinates as inputs during evaluation.

2020). F1 score is a harmonic mean of pre-862

cision and recall of a classification task. A863

high F1 score indicates strong performance in864

both accuracy and precision in classifying pos-865

itive cases. However, it can not effectively re-866

flect the prediction accuracy at the character level.867

TED measures the minimum number of single-868

character edit operations required to transform869

one string into another. The TED score is com-870

puted as max (0 , 1 − TED(pr , gt)/TED(ϕ, gt)),871

where gt represents the ground truth, pr denotes872

the predicted string, and ϕ corresponds to an empty873

string.874

B.1.2 CORD.875

The CORD (Park et al., 2019) dataset serves as876

a public benchmark comprising 800 training, 100877

validation, and 100 testing receipts. The receipts878

are annotated with 30 types of entities under 4 cate-879

gories: menu, void menu, subtotal, and total. A list880

of text lines with bounding boxes is provided. The881

evaluation task and metrics for the CORD dataset882

align with those used for the SROIE dataset. As it883

features an intricate nested structure, we use “parse884

the receipt" as a prompt, following the answer out-885

put format pioneered by Donut (Kim et al., 2022),886

and prepend a <see> token to each answer text.887

B.1.3 DocVQA.888

The DocVQA (Mathew et al., 2021) dataset com-889

prises 50,000 Question Answering (QA) pairs de-890

rived from over 12,000 pages across a wide array of891

documents. The pages are allocated into training,892

validation, and test sets with an approximate ratio893

of 8:1:1. Due to the absence of ground truth in the894

test set, evaluations are performed on the validation 895

set using the ANLS (Average Normalized Leven- 896

shtein Similarity), an edit-distance based metric. 897

B.2 Comparison with OCR-based Methods 898

OCR-based methods, such as the LayoutLM fam- 899

ily (Xu et al., 2020, 2021; Huang et al., 2022), 900

typically use the ground truth of text strings and 901

coordinates during evaluation, as highlighted in 902

their respective papers. This approach simplifies 903

the task to a token classification problem based 904

purely on textual content. To ensure a fair compar- 905

ison, Donut (Kim et al., 2022) and SeRum (Cao 906

et al., 2023) re-evaluated these models using state- 907

of-the-art publicly available OCR engines to ex- 908

tract text and corresponding bounding boxes. Fol- 909

lowing this standard practice, we adopt the results 910

reported in Donut and SeRum and re-evaluate Lay- 911

outLMv3 (Huang et al., 2022) under the same con- 912

ditions. 913

As shown in Table 6, we compare the perfor- 914

mance of these models under two evaluation set- 915

tings. Notably, models marked with * utilize the 916

ground truth of text strings and coordinates as in- 917

puts during evaluation. 918

It can be observed that these OCR-based meth- 919

ods can achieve satisfactory results when the OCR 920

outputs are entirely accurate. However, producing 921

such precise annotations is costly, and the cascad- 922

ing effects of OCR errors significantly impact the 923

model’s performance. In scenarios where only text 924

and bounding boxes extracted by OCR engines are 925

provided, our STNet demonstrates superior perfor- 926

mance compared to these methods. 927
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B.3 Generalization to Advanced MLLMs928

To assess the generalizability of our approach, we929

apply it to advanced multimodal large language930

models (MLLMs) such as Qwen2-VL (Wang et al.,931

2024). We integrate our vision grounding mod-932

ule into the MLLM architecture and augment the933

prompt with the <see> token. The model is trained934

on the TVG dataset with explicit see supervision935

on <see> to acquire see capabilities. We adopt936

the Adam optimizer (Kingma and Ba, 2015) with a937

learning rate of 1×10−5, which is linearly warmed938

up over the first 5% of training steps and then de-939

cayed linearly. Training is performed on 4 Tesla940

V100 GPUs (48GB each) with a total batch size941

of 128 for 3 epochs. To support full-parameter942

fine-tuning under memory constraints, we employ943

ZeRO optimization (Rajbhandari et al., 2020).944

During evaluation, we follow the zero-shot945

prompt setting adopted in prior MLLM-based946

KIE studies (Luo et al., 2024). For SROIE and947

DocVQA, we adopt the same prompt format as948

used in STNet, with the <see> token appended at949

the end of the prompt. For key-value annotations950

in CORD, we format the queries as: “Q: What is951

the ‘key’? <see> A: ‘value’”. To ensure a fair com-952

parison, we follow previous work by filtering out953

samples where a single entity corresponds to multi-954

ple values. All evaluations are performed using the955

ANLS metric. Examples of the prompt formats and956

the text coordinates predicted by Qwen2-VL-2B957

with see are shown in Figure 7.958

C TVG Dataset959

As illustrated in Figure 3, we propose a comprehen-960

sive GPT-4-based method for the automatic con-961

struction of the TVG dataset. Each step of this962

process is detailed below.963

C.1 Details of Data Source964

Tables, as a unique form of document image, can965

be described using structured languages such as966

HTML. High-quality table data can be readily967

sourced from online resources. To this end, we968

have compiled several table recognition datasets,969

including PubTables1M (Smock et al., 2022) and970

iFLYTAB (Zhang et al., 2024).971

C.1.1 PubTables1M.972

PubTables1M is a large-scale table recognition973

dataset sourced from the PubMed Central Open974

Access (PMCOA) database. This dataset includes975

detailed annotations for projected row headers and 976

bounding boxes for all rows, columns, and cells, 977

including blank cells. Additionally, it introduces 978

a novel canonicalization procedure aimed at cor- 979

recting over-segmentation. This procedure ensures 980

that each table is presented with a unique and un- 981

ambiguous structural interpretation. Through these 982

detailed annotations, we transform the tables into 983

structured sequences in HTML format. 984

C.1.2 iFLYTAB. 985

The iFLYTAB dataset comprises 12,104 training 986

samples and 5,187 testing samples. It offers com- 987

prehensive annotations for each table image, includ- 988

ing both physical coordinates and detailed struc- 989

tural information. This dataset includes not only 990

axis-aligned digital documents but also images cap- 991

tured by cameras, which present more significant 992

challenges than PubTables1M due to their complex 993

backgrounds and non-rigid image deformations. 994

Although it lacks textual annotations, we have ad- 995

dressed this limitation by using PaddleOCR (Li 996

et al., 2022) for text recognition, subsequently con- 997

verting the tables into HTML format. 998

C.2 Generation Prompt 999

As shown in Figure 8, we present a standardized 1000

prompt template designed for QA data generation 1001

using GPT-4, which requires structured HTML ta- 1002

ble sequences as input. The text in black represents 1003

fixed components of the prompt, and the text within 1004

red brackets requires specific input. For example, 1005

[Language] specifies the language in which the 1006

QA pairs should be generated. We instruct GPT-4 1007

to generate five types of questions: specific extrac- 1008

tion, simple reasoning, complex reasoning, numeri- 1009

cal questions, and content summary. 1010

C.2.1 Specific Extraction. 1011

Each specific extraction question should target a 1012

specific cell in the table. The answer should indi- 1013

cate the row <tr> and column <td> of the cell. 1014

C.2.2 Simple Reasoning. 1015

Each simple reasoning question should have an 1016

answer derived by reasoning from fewer than three 1017

cells in the table. 1018

C.2.3 Complex Reasoning. 1019

Each complex reasoning question should have an 1020

answer that requires reasoning from three or more 1021

cells in the table. 1022
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Figure 7: The results of acquiring text coordinates by Qwen2-VL-2B with see. a* refer to SROIE, b* refer to
CORD, and c* refer to DocVQA. Different colors of the polygon boxes represent answers to different questions.

C.2.4 Numerical Questions.1023

Each numerical question should involve numerical1024

calculations, such as sum, maximum, average, and1025

minimum values. Provide the calculation process1026

and the final result.1027

C.2.5 Content Summary.1028

Each content summary needs to provide a summary1029

that describes the main content of the table and1030

matches the table’s content.1031

C.3 Post Process1032

As described in the aforementioned prompt tem-1033

plate, for specific extraction questions, we require1034

GPT-4 to provide not only the specific value from1035

the cell but also the logical location of the cell, in-1036

dicating its row and column numbers within the1037

table. The detailed annotations in these table recog-1038

nition datasets enable us to accurately locate the1039

corresponding cell’s real information, including its1040

content and polygon box, based on the logical lo- 1041

cation. We only retain the QA pair when the value 1042

provided by GPT-4 matches the content of the lo- 1043

cated cell, with the cell polygon box serving as the 1044

required physical location p. This process ensures 1045

the generation of high-quality QA data {Q,A,p}. 1046

Ultimately, the TVG dataset we construct com- 1047

prises 958,000 questions derived from 65,000 ta- 1048

ble images. It includes 244k specific extraction 1049

questions, 293k simple reasoning questions, 191k 1050

complex reasoning questions, 166k numerical ques- 1051

tions, and 64k content summary. Some examples 1052

of them are illustrated in Figure 9 and released in 1053

supplementary material. The whole dataset will be 1054

made publicly available. 1055
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Figure 8: The prompt template for QA data generation.
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Figure 9: Some examples of the TVG dataset. a* refer to specific extraction, where L indicates the logical location
and its text color corresponds to the coordinate box in the table image. b* refer to simple reasoning, c* refer to
complex reasoning, d* refer to numerical questions, and e* refer to content summary.
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