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Figure 1: ScalingConcept provides two key functionalities: (a) Automatic Concept Suggestions: It
leverages concepts automatically detected in the input, e.g., “fire,” “flowers,” and “rain” to generate
scaling results. This enables automatic editing suggestions, offering users intuitive guidance on
potential editing directions. (b) Continuous Concept Scaling: It supports slider-like functionality,
allowing users to seamlessly adjust the prominence of a concept across both the audio and image
domains.

ABSTRACT

Text-guided diffusion models have revolutionized generative tasks by producing
high-fidelity content based on text descriptions. Additionally, they have enabled
an editing paradigm where concepts can be replaced through text conditioning.
In this work, we explore a novel paradigm: instead of replacing a concept, can
we scale it? We conduct an empirical study to investigate concept decomposition
trends in text-guided diffusion models. Leveraging these insights, we propose a
simple yet effective method, ScalingConcept, designed to enhance or suppress
existing concepts in real input without introducing new ones. To systematically
evaluate our method, we introduce the WeakConcept-10 dataset. More importantly,
ScalingConcept enables a range of novel zero-shot applications across both image
and audio domains, including but not limited to canonical pose generation and
generative sound highlighting/removal.

1 INTRODUCTION

Derived from non-equilibrium thermodynamics, diffusion models (Sohl-Dickstein et al., 2015) have
shown great success in content generation tasks. By defining a Markov chain that gradually injects
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(a) Example of removal trend in text-guided diffusion models (b) CLIP Similarity
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Figure 2: (a) Illustration of concept removal capability observed in the sampling process of text-
guided diffusion models when conditioning on a conceptually different prompt compared to the
inversion process. (b) We compute the CLIP zero-shot classification results between the classes [“a
sky”, “a church”] and the reconstruction results at each inversion/sampling step (the total number of
sampling step is 50), and report the classification accuracy of the class “a church”. It’s observed that
the church object is removed from the removal branch even at the very early stages of sampling.

random noise into data and learning the reverse process, diffusion models generate new content
from random noise in an iterative manner. This new generation paradigm has been applied to
various domains, such as image generation (Nichol et al., 2022; Ramesh et al., 2022; Saharia et al.,
2022; Rombach et al., 2022), video generation (Ho et al., 2022; Singer et al., 2023; Wu et al.,
2022; Khachatryan et al., 2023; Guo et al., 2023; Chen et al., 2024; Brooks et al., 2024), and audio
generation (Yang et al., 2023; Liu et al., 2023a; Huang et al., 2023b; Ghosal et al., 2023; Liu et al.,
2023b; Huang et al., 2023a). Text-guided diffusion models, in particular, have garnered significant
attention due to their ability to control content through natural language guidance.

The advent of text-guided diffusion models has enabled text-guided content editing. Several works
(Hertz et al., 2023; Gal et al., 2022; Ruiz et al., 2023; Kumari et al., 2023; Brooks et al., 2023;
Dhariwal & Nichol, 2021; Song et al., 2020; Mokady et al., 2023) have adapted diffusion models for
this purpose. For instance, DreamBooth (Ruiz et al., 2023) fine-tunes a text-to-image diffusion model
using a few images of an object paired with a text prompt c that contains the class information of the
object. Null-text Inversion (Mokady et al., 2023) addresses the reconstruction error caused by DDIM
Inversion (Song et al., 2020) in editing by updating the null-text embedding. LEDITS++ (Brack
et al., 2024) improves the accuracy of text-guided editing and supports multiple simultaneous edits.
These methods typically focus on addressing a long-standing editing challenge of replacing concepts,
such as using an inversion prompt c = “a dog” and an editing prompt c′ = “a swimming dog.”
While replacement-based paradigms have achieved significant progress in enabling deterministic
editing based on clearly defined prompts c′, they may fall short in scenarios where users are uncertain
about how to specify c′. Additionally, certain editing effects are difficult to quantify through text
prompts. For example, an instruction such as “a river with more water” does not provide an exact
specification of the desired increase in water levels, leading to potential ambiguity. Such instructions
may correspond to a range of variations in the outcome, as text prompts inherently lack the precision
to represent these changes quantitatively.

In this work, we explore a new paradigm beyond the common editing pipeline, which typically
involves replacing one concept with another. Instead, we focus on the research question: Can we edit
the concept continuously without any extra human efforts on specifying a target? Specifically, this
requires methods capable of isolating concept representations from real input and performing targeted
edits on these representations. A surprising finding partially answers this question: text-guided image
diffusion models, such as Stable Diffusion (Rombach et al., 2022), exhibit the ability to remove
concepts through text prompts. As shown in Figure 2, applying the prompt c = “a church” during
inversion and the forward prompt c′ = “a sky” unexpectedly removes the church, while inpainting
its region with the neighboring regions. We further investigate this phenomenon by examining its
scalability and modality agnosticism, as detailed in Section 3.2. Through empirical analysis, we
observe that the concept removal trend exists on a scalable level, and is not limited to a single modality
(both image and audio), proving to be modality-agnostic.

Motivated by the concept removal and reconstruction branches demonstrated in Figure 2, we propose
to model the difference between these two branches as a proxy for representing the concept itself,
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introducing our method, ScalingConcept. Specifically, given the concept c to be scaled, we apply
an inversion technique using text-guided diffusion models to obtain the concept-sensitive latent
variable xT . During the sampling process, we model the difference between the noise predictions
of the reconstruction and removal branches. A scaling factor is integrated to control the modeling
process across different diffusion time steps. Additionally, we introduce a noise regularization term
to better balance the fidelity and concept scaling. As shown in Figure 1, our method specializes in
the pipeline by modifying the existing concepts in the input, providing editing suggestions without
specifying new concepts. Also, by scaling the concept, our method demonstrates a continuous editing
capability, such as gradually increasing the water level or making stones disappear progressively.
Additionally, our approach interacts solely with the input and output of diffusion models, avoiding
intricate modifications to the network’s architecture. This design ensures that our approach can be
seamlessly applied to diffusion models across various modalities, including audio. Experiments on
the public editing dataset TEdBench (Kawar et al., 2023) and our WeakConcept-10 dataset show that
our method outperforms baseline methods in concept scaling, with detailed analysis of the effect of
different components.

Interestingly, our zero-shot ScalingConcept method unlocks several downstream applications (as
shown in Figure 1) without additional cost. Scaling up a concept standardizes its representation
while scaling down tends to remove it. In the image domain, this enables tasks, e.g., canonical pose
generation, object stitching, weather manipulation, and creative enhancement. Scaling up adjusts
non-standard object poses, completes stitched objects, and harmonizes them with the background.
It also allows for altering weather effects, such as deraining or dehazing. In the audio domain, we
achieve sound highlighting by amplifying text-indicated sounds and suppressing others, as well as
generative sound removal by decomposing audio mixtures into individual components.

In all, our contributions can be summarized as follows:

• We formulate the research question on concept scaling and propose ScalingConcept, which
has two features: (1) editing the inherent concepts within the input, reducing the effort
required for laborious specification of a target, and (2) continuously scaling the concepts
along a spectrum, from removal to enhancement.

• To quantitatively validate the effectiveness of ScalingConcept, we introduce a new dataset,
WeakConcept-10, specifically designed to benchmark concept scaling. We also evaluate its
concept suppression capability on the TEdBench (Kawar et al., 2023) dataset. Experimental
results demonstrate that our training-free ScalingConcept outperforms baselines across
multiple metrics.

• The proposed ScalingConcept showcases its versatility through a variety of zero-shot
applications across image and audio domains, such as canonical pose generation, object
stitching, weather manipulation, sound highlighting, and generative sound removal, all
achieved without additional training. This approach serves as a valuable complement to
existing replacement-based editing methods.

2 RELATED WORKS

2.1 TEXT-GUIDED DIFFUSION MODELS

Text-guided diffusion models have set a new standard for realistic content generation across multiple
domains, including images (Nichol et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Rombach
et al., 2022), videos (Ho et al., 2022; Singer et al., 2023; Wu et al., 2022; Khachatryan et al., 2023;
Guo et al., 2023; Tang et al., 2024; Brooks et al., 2024), and audio (Yang et al., 2023; Liu et al.,
2023a; Huang et al., 2023b; Ghosal et al., 2023; Liu et al., 2023b; Huang et al., 2023a). A major
factor contributing to their success is the deep integration of language understanding into the content
generation process. For instance, the GLIDE model (Nichol et al., 2022) introduced text-conditional
diffusion models that enable controlled image synthesis, while DALL-E 2 (Ramesh et al., 2022)
employed a two-stage approach leveraging joint CLIP embeddings (Radford et al., 2021) to capture
semantic information from text inputs. Similarly, Imagen (Saharia et al., 2022) showcased the efficacy
of large pre-trained language models like T5 (Raffel et al., 2020) in encoding text prompts for image
generation tasks. Latent Diffusion Models, such as Stable Diffusion (Rombach et al., 2022), further
optimized the diffusion process by performing it in the latent space, enhancing both efficiency and
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generation quality. The success observed in the image domain has extended to other modalities. For
instance, methods like the Video Diffusion Model (VDM)(Ho et al., 2022), Make-A-Video(Singer
et al., 2023), AnimateDiff (Guo et al., 2023), and VideoCrafter (Chen et al., 2023) adapted these
models to generate videos from text. In the audio domain, works such as AudioLDM (Liu et al.,
2023a), Make-An-Audio (Huang et al., 2023b), and TANGO (Ghosal et al., 2023) have achieved
promising results, illustrating the adaptability of diffusion models to various modalities. The success
of these models across domains is underpinned by their ability to learn robust text-to-modality
associations, proving that textual concepts can be effectively mapped to different types of content. In
our work, we build upon these associations, introducing a novel approach to leverage text-guided
diffusion models across multiple modalities for the purpose of concept scaling.

2.2 TEXT-GUIDED EDITING WITH DIFFUSION MODELS

Text-guided content editing using diffusion models has seen rapid development in recent years.
Approaches such as DreamBooth (Ruiz et al., 2023), Null-text Inversion (Mokady et al., 2023), and
InstructPix2Pix (Brooks et al., 2023) have introduced techniques to fine-tune and control diffusion
models for specific editing tasks. These works focus on replacing or modifying objects within an im-
age by manipulating inversion techniques and null-text embeddings. For instance, DreamBooth (Ruiz
et al., 2023) allows for text-guided personalization of diffusion models by fine-tuning them with
a small number of images. Null-text Inversion (Mokady et al., 2023) resolves issues related to
reconstruction errors when editing specific concepts through prompt-guided inversion. InfEdit (Xu
et al., 2023) introduces an inversion-free editing framework that accelerates the editing process while
ensuring faithful results. PnP Inversion (Ju et al., 2024) leverages the source diffusion branch to
correct inversion deviations, enhancing the accuracy of edits. A recent method LEDITS++ (Brack
et al., 2024) provides a novel inversion approach to produce high-fidelity results with a few diffusion
steps and supports multiple simultaneous edits. PromptFix (Yu et al., 2024) enhances diffusion
models by improving their ability to follow diverse, low-level image editing instructions, while
FineMatch (Hua et al., 2024) introduces fine-grained evaluation for text-image alignment, focusing
on mismatch detection and correction. In contrast to these methods, which primarily focus on concept
replacement, we explore a specific editing paradigm: concept scaling. This approach eliminates the
need for explicitly defining instructions, enabling automatic editing suggestions for real-world inputs.
Furthermore, it supports continuous editing for scenarios where target instructions are difficult to
quantify, offering a more flexible and intuitive editing framework.

3 METHOD

In this section, we first review the foundational concepts of text-guided diffusion models and diffusion
inversion techniques in Section 3.1, which form the basis of our analysis. Next, we provide an
empirical analysis of the trend of concept decomposition observed in text-guided diffusion models in
Section 3.2. Finally, in Section 3.3, we introduce our novel approach, ScalingConcept, which allows
flexible control over the strength of the target concept in real input data.

3.1 PRELIMINARY

Text-guided Diffusion Models. Text-guided diffusion models have gained significant attention for
their success in generating realistic images, audio, and video from text prompts. Their key strength
lies in accurately capturing text-to-X associations, where X refers to any modality. Taking an image
as an example, the process typically begins using an autoencoder such as VQ-GAN (Esser et al.,
2021) to project an input into a latent vector x0. During diffusion, Gaussian noise is progressively
added to the latent feature, resulting in a random noise vector xT . In the denoising phase, a noise
prediction network ϵθ learns to estimate the noise added at each step. Text-guided diffusion models
use a text condition c, usually derived from text embeddings like CLIP (Radford et al., 2021), to
guide the sequential denoising process. The learning objective is defined as:

ℓsimple = ||ϵ− ϵθ(xt, c, t)||, (1)

where ϵ is the Gaussian noise added at timestep t.

Inversion Technique. Inversion techniques are commonly used in generative models to enable the
editing of real content (Xia et al., 2022; Gal et al., 2022; Mokady et al., 2023). Typical inversion
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Figure 3: Analysis of the trend of concept removal. We erase target concepts from given images and
audio clips using the proposed inversion and sampling process. We report the number of samples
with target concepts before and after concept removal.

methods, such as DDIM inversion (Dhariwal & Nichol, 2021; Song et al., 2020), convert an input
latent x0 into a noisy latent variable xT , which can then be used to reconstruct x0 or perform edits.
Specifically, DDIM inversion leverages its deterministic sampling process:

xt−1 =

√
¯αt−1

ᾱt
xt +

(√
1

¯αt−1
− 1−

√
1

ᾱt
− 1

)
ϵθ(xt, c, t), (2)

with {ᾱt}Tt=0 as a predefined noise schedule. This process iteratively denoises xT to recover x0.
Due to ODE formulation, it can be reversed, with small steps, to obtain the inversion (denoted as
f inv(xt, c, t)):

xt+1 =

√
¯αt+1

ᾱt
xt +

(√
1

¯αt+1
− 1−

√
1

ᾱt
− 1

)
ϵθ(xt, c, t), (3)

thereby estimating the noisy latent xT from x0. Starting with xT , the sampling process can be
guided by arbitrary text conditions. However, DDIM inversion is limited by cumulative errors at
each step, which deviate the path toward the correct latent noise. Several methods, such as DDPM
inversion (Huberman-Spiegelglas et al., 2024) and ReNoise (Garibi et al., 2024), have been proposed
to improve the inversion process.

3.2 EMPIRICAL ANALYSIS ON THE CONCEPT REMOVAL

Equation (3) and Equation (2) define a pair of destruction and reconstruction processes. In prior
research, this framework has been successfully utilized for concept editing. Given an input x0, the
inversion process extracts the latent variable xT . The reverse process generates an edited output
where the original concept c is modified to c̃, enabling various forms of editing such as object or style
changes (e.g., “a photo of a dog” → “a photo of a horse”). While previous work has focused on
replacing the concept with a new one, our research asks a different question: can the existing concept
be enhanced or suppressed?

We explore the first question through a case study illustrated in Figure 2. We perform an inversion
with the prompt “a church,” which branches into two sampling paths: (1) using the same prompt, “a
church,” to reconstruct the image as expected, and (2) using the prompt “a sky.” Interestingly, on
the second path, the church is removed, and the vacated area is inpainted with content related to the
surrounding context, even from the first sampling step. We hypothesize that this removal effect is due
to the interplay between cross- and self-attention mechanisms in diffusion models. During inversion,
the noise estimator ϵθ relies heavily on cross-attention to incorporate context from c, leading to the
strongest modification in regions associated with the concept c. However, during sampling, when
the prompt “a sky” provides no useful context for reconstructing the church, self-attention becomes
dominant, leading to the church’s removal.

Does the Concept Removal Trend Appear on Scale? To determine if the concept removal phe-
nomenon is isolated or consistent across a broader dataset, we replicate the process from Figure 2
using more samples from the COCO (Lin et al., 2014) dataset. For each image x0, we apply the
DDIM inversion with the prompt “[class].” After obtaining the noisy latent variable xT , we use a
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null prompt ∅ for the sampling process to convert xT back into an image x̂0. Note that we use the
null prompt for all images as a versatile solution for the removal branch. However, the null prompt
can be automatically replaced, as described in Section 3.3. This process mirrors that in Figure 2,
aiming to remove the concept of “[class]” from the input image. To assess whether the concept was
successfully removed, we used Grounding DINO (Liu et al., 2023c) to detect the presence of the
“[class]” object in both x0 and x̂0. The results, shown in Figure 3, indicate that the target concept
corresponding to “[class]” is successfully removed in 80% of the images. This confirms that the
concept removal capability exists at scale, rather than being limited to a single sample.

Does the Concept Removal Apply to Other Modality? To explore this, we conduct a similar
experiment with audio. Using the AVE dataset (Tian et al., 2018), an audio event classification
dataset containing clips from 28 sound classes, we randomly sampled 5 audio clips from each class.
We employ AudioLDM 2 (Liu et al., 2023b) to perform the same process as in the image-based
experiment. To determine whether the concept was removed from the original audio clip, we use
EnCLAP (Kim et al., 2024), an audio captioning framework, to generate captions for both x0 and x̂0.
We then check whether the word “[class]” appeared in the captions. As shown in Figure 3, the same
trend of concept removal was observed in audio, despite its fundamentally different nature compared
to images.

Discussions. From the empirical analysis above, we observe that starting from the same latent
variable xT obtained by inversion, we can define both a reconstruction branch and a removal branch.
This implicitly suggests that text-guided diffusion models possess the ability to extract a concept.
Building on these findings, an important research question emerges: can we control the divergence
between these two branches to achieve concept scaling?

3.3 OUR METHOD: SCALINGCONCEPT

Motivated by the difference between the removal and reconstruction branches, we propose Scal-
ingConcept, a method designed to decompose the concept from real input and scale it up or down,
effectively enhancing or suppressing the corresponding representation in the input. Our method
consists of the following steps:

Step 0 (Optional): Concept Parsing. To facilitate the scaling of embedded concepts in real-world
inputs, an optional preliminary step involves parsing concepts from the input (e.g., an image) using
off-the-shelf vision-language models. The parsed concepts can then be leveraged to automatically
construct the reconstruction and removal branches. In the removal branch, we utilize the null prompt
as a baseline example, as described in the subsequent notation. Additionally, Figure 17 provides
an analysis of replacing the null prompt with parsed non-c concepts, highlighting its impact on the
editing process.

Step 1: Generating Scaling Startpoint xT . Given a real input x0 and a concept c to scale,
represented by a text prompt such as “fire hydrant,” we use a pre-trained text-guided diffusion model
ϵθ to perform sequential inversion functions as described in Equation (3):

xT = f inv(x0, c, 0) ◦ ... ◦ f inv(xT−1, c, T − 1). (4)

In our experiment, we use ReNoise Garibi et al. (2024) as the inversion technique.

Step 2: Concept Scaling. Starting from xT , we define two prompts: the first is the text prompt c used
during inversion, corresponding to the reconstruction branch, and the second is the null-text prompt
∅, representing the removal branch. The noise predictions from the two branches are denoted as
ϵ∅t = ϵθ(xt, ∅, t) and ϵrt = ϵθ(xt, c, t), where the superscript r stands for reconstruction. We model
the difference between these two branches by capturing the difference in their noise predictions.

ϵ̂t = ϵ∅t + ωt · (ϵrt − ϵ∅t ). (5)

We introduce a scaling factor ωt to control the magnitude of the difference at each step t. Note
that when ωt = 1, Equation (5) degrades to the vanilla reconstruction branch. A value of ωt < 1
suppresses the concept, while ωt > 1 enhances it. Intuitively, during the early steps of inference, the
model captures coarse-grained details such as global structure and shape, whereas in the final steps, it
focuses on refining high-frequency details (Si et al., 2024). To explore the impact of different designs
for ωt, we express it as ωt = ωbase ∗ β(t), where ωbase controls the overall strength of scaling, and
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Figure 4: Overview of the ScalingConcept framework. Our method consists of three steps: 0)
(Optional) Extracting the embedded concepts from the input by prompting off-the-shelf vision-
language models, 1) extracting the latent variable from x0, and 2) constructing different sampling
branches and modeling the difference between them.

β(t) is a scheduling function within the range 0 to 1. We propose a dynamic schedule β(t) =
(

t
T

)γ
,

where γ controls the sharpness of the scaling. This approach supports three common schedules: 1)
Constant (γ = 0), treats the difference equally across all steps, similar to classifier-free guidance in
diffusion models. 2) Linear (γ = 1), reflects a linear change in the concept’s impact. 3) Non-linear
(γ ̸= 0 or 1), allows for dynamic adjustments of the concept’s influence, depending on the value of γ.

Noise Regularization. When ωt is set to a very large value, the noise prediction ϵ̂t in Equation (5)
can deviate significantly from the real input, leading to dissimilar content despite the concept being
scaled—an undesired effect. Our goal is to scale the concept while preserving the context of the
original input. To address this, we introduce a noise regularization term. At each timestep t, we
retrieve the corresponding noisy latent generated during the inversion process from the memory
bank. We combine this with the current noisy latent, adjust the noise predictions using an averaging
operation, and then reintroduce them into Equation (6) using the same scaling factor. Additionally,
since the forward noisy latents deviate further from the inversion latents in the later steps, we apply
an early exit method to stop noise regularization when necessary. The regularized noise prediction is
defined as:

ϵ̂t = ϵ∅t + ωt · (ϵrt − ϵ∅t ) + ω
′

t · (ϵ̄t − ϵrt ), (6)

ω
′

t :=

{
0 if t < texit,

ωt otherwise.
(7)

In our experiment, texit is empirically set to 35, out of a total of 50 sampling steps.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

WeakConcept-10 Dataset. To effectively test concept scaling, it is essential to have a dataset that
supports the measurement of concept strength. However, evaluating whether a concept has been
enhanced or suppressed in real inputs poses a significant challenge. To address this, we leverage
Stable-Diffusion-3 (SD3) (Esser et al., 2024), a recently released and powerful text-guided image
diffusion model, to generate images exhibiting weak concepts. We begin by selecting 10 categories
that cover a diverse range of aspects, including sofa, banana, cat, flower, Van Gogh, ship, Statue
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Table 1: Comparison of different methods for concept enhancement. Results are grouped by dataset:
WeakConcept-10 and TEdBench (Kawar et al., 2023). Our method (ScalingConcept) achieves the
best performance across multiple metrics.

Method WeakConcept-10 TEdBench (Kawar et al., 2023)

FID ↓ CLIP (%) ↑ LPIPS ↓ FID ↓ CLIP (%) ↓ SR ↑ (%)

Input 313.4 26.9 - - 27.3 -
Instruct Pix2Pix 312.0 27.8 0.312 322.1 25.5 38.4
LEDITS++ 274.4 28.6 0.321 316.6 22.6 58.9
Ours 272.2 28.6 0.291 315.3 22.6 69.2

Instruct Pix2Pix Instruct Pix2PixInput InputLEDITS++ LEDITS++Ours Ours

Figure 5: Qualitative comparison with baseline methods. We display the input images with weak
concepts from our dataset, the enhanced results of two baseline approaches, and those of our
ScalingConcept method. The concepts being scaled up are “cat,” “ship,” “sofa,” and “flowers”,
arranged from top-left to bottom-right.

of Liberty, fruits, forest, and horse. For each category, we generate 10 images using the prompt
“[class_name]” while setting the guidance scale to 1, ensuring that the generated images reflect
weak representations of the target concept. As illustrated in Figure 18, the generated images display
indistinct structures and missing details of the specified concept, making them suitable candidates
for improvement through concept scaling. This dataset is particularly for evaluating the concept
enhancing (scaling up) performance. We utilize three metrics to evaluate performance: CLIP score
(Radford et al., 2021), FID (Heusel et al., 2017), and LPIPS (Zhang et al., 2018). The CLIP score
assesses whether the target concept has been successfully enhanced, while FID evaluates the overall
image quality after concept enhancement. Finally, LPIPS measures the perceptual similarity between
the enhanced output and the original weak input.

TEdBench (Kawar et al., 2023) Dataset. We further evaluate the concept scaling-down performance
using the public image editing dataset TEdBench (Kawar et al., 2023), which comprises 39 images
from diverse categories. For each image, we specify a concept to be scaled down, as detailed in
Table 3. To assess performance, we use FID to evaluate the overall image quality after scaling down
the concept, CLIP score to measure whether the specified concept has been successfully scaled down,
and Success Rate (SR) to quantify the percentage of images where the concept has been successfully
scaled down. A common failure mode involves returning the original, unmodified image, which is
considered unsuccessful.

4.2 MAIN COMPARISON

To evaluate the effectiveness of our ScalingConcept method, we compare it against Instruct Pix2Pix
(Brooks et al., 2023), which enhances the concept by using the prompt “enhance the [concept]”.
Additionally, we adapt another editing method, LEDITS++ (Brack et al., 2024), for our experiment.
While LEDITS++ is capable of both adding and removing concepts, in our case, we use it to add the
concept again, as the input already contains the concept, effectively simulating concept enhancement.
The comparison results are presented in Table 1. Both LEDITS++ and our method achieve comparable
concept strength, as indicated by similar CLIP scores. However, our method produces superior image
quality, reflected by a lower FID score, while also preserving the original context of the input. This
demonstrates the effectiveness of ScalingConcept in both enhancing the concept and maintaining
image fidelity. For a qualitative comparison, see Figure 5, where our method clearly enhances the
weak concept while preserving fine details in the image. Similarly, we evaluate the scaling-down
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Table 2: Ablation studies of our method design. We set ωbase = 5 for all experiments. We test the
performance with various values of γ and examine the impacts of noise regularization and early exit.

Configuration Noise Regularization Early Exit FID CLIP (%) LPIPS

γ = 0 (Constant) ✗ ✗ 232.9 28.6 0.397
γ = 0.5 (Non-linear) ✗ ✗ 238.6 28.7 0.380
γ = 1 (Linear) ✗ ✗ 242.0 28.7 0.368
γ = 3 (Non-linear) ✗ ✗ 258.1 28.5 0.324

γ = 3
✓ ✗ 282.6 28.5 0.260
✓ ✓ 272.2 28.6 0.291

Instruct Pix2Pix Instruct Pix2PixInput InputLEDITS++ LEDITS++Ours Ours

Figure 6: Qualitative comparison with baseline methods on concept scaling-down. We present the
real input images from the TEdBench dataset alongside the scaling-down results of two baseline
approaches and our ScalingConcept method. The concepts being scaled down are “open book,” “cat,”
“horse,” and “checkered hoodies”, arranged from top-left to bottom-right.

performance, where the goal is to suppress the concept using the TEdBench dataset (Kawar et al.,
2023). Our method achieves a lower FID score and a higher success rate (approximately 10%
improvement) compared to the strong baseline LEDITS++. Visualization results in Figure 6 further
demonstrate that our ScalingConcept method delivers superior concept removal effects. Notably,
while LEDITS++ uses a mask to constrain the editing area, this technique can also be incorporated
into our method to achieve better region-specific control.

4.3 ABLATION STUDIES

In Table 2, we analyze the trade-off between fidelity and generation quality by varying the value
of γ and introducing noise regularization. We set ωbase = 5 for all the ablations. The CLIP score
for all variants remains similar (28.5 - 28.7), which demonstrates that ωbase effectively controls the
strength of concept scaling. Overall, our goal is to achieve a better balance between concept scaling
and content preservation.

Effect of Different γ. As we gradually increase γ, the FID score rises, indicating that the generated
results are shifting from pure generation to a balance between preserving the original content and
enhancing the concept (as reflected by the corresponding improvement in the LPIPS score). In this
work, we aim to scale the concept, with a focus on achieving a better balance between these factors.
Therefore, we select a relatively large value for γ, such as 3.

Effect of Noise Regularization and Early Exit. Introducing the noise regularization term into the
method significantly improves the LPIPS score from 0.324 to 0.260, indicating better preservation
of the original content. However, this introduces a constraint on concept enhancement. When
incorporating early exit, both the FID and CLIP scores improve, while content preservation is slightly
compromised, leading to a better overall balance.

4.4 ZERO-SHOT APPLICATIONS WITH SCALINGCONCEPT

Our method provides continuous concept scaling up or down for real inputs, making it applicable to a
variety of real-world applications. In the audio domain, the continuous scaling capability enables

9
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“cat”

Input Image
Background

copy-pasted

“rain”

Input Image

Canonical Pose Generation Object Stitching

“guitar”

Input AudioInput Image

Input Image Output Image:

Input Image

“candle”

Input Image
Creative Enhancement Weather Manipulation Generative Sound Modulation

“plane”

Figure 7: Applications of ScalingConcept. We showcase various zero-shot applications across
image and audio modalities, highlighting the surprising effects of scaling concepts up or down,
including non-trivial tasks like canonical pose generation.
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Figure 8: Qualitative comparison on sound separation. Our method enables zero-shot sound removal
through a generative model.

sound highlighting, as illustrated in Figure 1. This involves increasing the volume of a target sound
by scaling the concept of the corresponding sound category using our approach. Another audio
application is sound separation, achieved through a generative model. In Figure 8, we demonstrate
this by using a mixture of sounds as input and scaling down the concept of a non-target sound
by specifying its class as the inversion prompt. We provide a comparison with the ground truth,
showcasing that our method achieves effective sound removal results. In the image domain, our
method can also perform a variety of tasks, such as manipulating weather conditions and, intriguingly,
adjusting poses, among others. We present a preview of these diverse tasks across different domains in
Figure 7. Additional applications can be explored in the Application Zoo, as detailed in Appendix A.1.

5 CONCLUSION AND DISCUSSION

We propose ScalingConcept, a zero-shot concept scaling method that focuses on enhancing or
suppressing existing concepts in real input data. Our method allows for user-friendly adjustments
by freely tuning the scaling strength ωbase and the scaling schedule γ, to achieve a diverse range
of effects. More importantly, ScalingConcept unlocks a variety of non-trivial applications across
different modalities, including canonical pose generation and sound removal or highlighting. This
approach has the potential to serve as a powerful tool within the growing family of diffusion models.
This new method complements existing diffusion-based editing approaches while introducing new
challenges, particularly in scaling multiple concepts simultaneously and minimizing unintended
effects on other concepts. Existing editing methods have benefited from years of advancements to
address similar challenges, such as incorporating attention control. We expect that future work will
build on these developments to effectively tackle these challenges for ScalingConcept.
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A APPENDIX

A.1 APPLICATION ZOO

In this section, we present the application zoo, demonstrating several applications enabled by our
ScalingConcept method. Notably, all results are achieved in a zero-shot manner, highlighting the
versatility and value of our approach. Additionally, these applications are non-trivial and span across
both image and audio domains. For image tasks, we use SDXL Podell et al. (2023) as our base model,
while for audio tasks, we employ AudioLDM 2 (Liu et al., 2023b).

Input InputInput

Input Input Input

”clock” ”bear””cat”

”monkey” ”backpack” ”dog”

Figure 9: Canonical pose generation. By scaling up the concept of an object, our model adjusts its
pose to be more complete and visible.

Canonical pose generation. We identify an interesting and non-trivial task enabled by our Scal-
ingConcept method — adjusting the pose of the subject in the image by scaling up the concept. In
Figure 9, we demonstrate the canonical pose generation effect. In the original input images, the
concepts to be scaled up, such as the cat, clock, and backpack, are depicted in different poses. After
applying concept scaling, the cat and backpack are adjusted to face forward, and the clock’s occlusion
by a hand is mitigated, resulting in a more complete expression of the concept. Across all results,
scaling up the concept enables seamless and faithful pose adjustments, a task that is challenging even
in the 3D domain, yet is effectively addressed by our method. From a high-level perspective, scaling
up the concept strengthens its completeness and visibility, often resulting in front-facing orientations.
This technique has potential applications in 3D tasks such as novel-view synthesis.

Copy-PasteBackground Image Background Image Copy-Paste“Dog” “Car”

Figure 10: Object stitching. By enhancing an object’s concept, we successfully stitch the object and
the background together, completing and harmonizing the whole image.

Object stitching. Another straightforward application is object stitching. When we copy and paste
an object into a background image, we scale up the concept in the copy-paste image, which results
in making the object more complete. For example, this can be seen in Figure 10, where the dog is
completed, the lighting is adjusted, and the shadow of the car is added.

Creative Enhancement. A more open-ended application, as shown in Figure 11, is creative enhance-
ment. In this case, the effect of scaling up the concept is dependent on the actual content of the image,
often producing surprising “growing” effects. For example, when scaling up the concept, the “couple”
transitions from standing separately to holding hands; and the “pizza” gains additional toppings. This
application is particularly useful when users have an arbitrary image and want to enhance the concept
to explore different effects.

Weather Manipulation. Since our method supports both scaling up and down concepts, a practical
application is weather manipulation (as shown in Figure 12). Scaling down corresponds to classic

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

“Door” “Banana”“Sneaker” “Pizza” “Couple”

Figure 11: Creative enhancement. ScalingConcept surprisingly produces “growing” effects based on
the content of input images.

Real InputReal Input FogRain FogRain

Figure 12: Weather manipulation. Our method enables both weather suppression, similar to deraining
and dehazing tasks, and weather enhancement.

weather mitigation tasks, such as deraining or dehazing, while scaling up the weather is useful in
scenarios such as movie production, where specific weather conditions are needed. For example, in
the movie “The Mist”, there is no need to wait for naturally heavy fog—our method can faithfully
enhance the fog to achieve the desired effect.

Figure 13: The top row shows screenshots from the anime “Arknights” (Left) and “Blue archive”
(Middle & Right).The bottom row displays the images after scaling up the “anime” concept, which
mitigates the fuzziness and blurriness issues commonly encountered in the anime production process.

Anime Skectch Enhancement. During the photography and post-production stages of anime making,
cumulative errors in line processing often result in blurred lines, making the image appear fuzzy.
Filters for scenes like sunsets exacerbate this issue, which cannot be resolved simply by increasing
the resolution or bitrate of the anime. Using our ScalingConcept method, we process images with
such issues by applying "anime" as the concept to scale up. This enhances the sketches in the image
as shown in Fig. 13, leading to an overall improvement in visual clarity.
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Real Input

Real Input

Smile

young face

Smile

old face

Real Input Hair

Figure 14: We present a random batch of 3 samples from CelebA-HQ Karras (2017), without cherry-
picking, to demonstrate our method’s versatility in scaling different face attribute concepts.

Face Attribute Scaling. We extend our method to face images. In Figure 14, we showcase popular
face attribute editing tasks on examples from the CelebA-HQ Karras (2017) dataset, such as adjusting
age, smile, and hair. Each of these edits can be achieved by scaling the corresponding concepts,
demonstrating the versatility of our method.

A.2 IS CANONICAL POSE GENERATION EASY TO ACHIEVE?

Input

Input Instruct Pix2Pix: “Turn 
the monkey’s head 

forward”

LEDITS++: “+monkey”

LEDITS++: “+cat”Instruct Pix2Pix: “Turn 
the cat’s head forward”

”cat”

”monkey”

Figure 15: Given the canonical pose generation effect, we attempt to use Instruction Pix2Pix and
LEDITS++ to achieve similar results; however, both approaches failed, demonstrating the challenge
of this task.

As demonstrated in Fig. 9, our ScalingConcept method can achieve surprising canonical pose
generation effects. To further investigate the difficulty of this task, we employ two popular image
editing methods: Instruct Pix2Pix Brooks et al. (2023), which follows instructions for editing, and
LEDITS++, which adds or removes concepts from the input. Specifically, we instruct Instruct
Pix2Pix to “turn the monkey’s head forward,” but the method fails to produce the desired effect.
Similarly, when attempting to add the same concept to the input, LEDITS++ does not achieve the
pose generation effect, indicating that this task is non-trivial.
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Input +noise regularization +early exit

Figure 16: Visualization of ablation studies. We present the results of concept scaling with different
method variants.

A.3 VISUALIZATION OF ABLATION STUDIES

To illustrate the effects of different components of our method, we visualize the results in Fig. 16,
which scales up the concepts of “cat” and “fruits” with ωbase = 5. The results demonstrate that our
non-linear schedule achieves a better trade-off between fidelity and content preservation. Moreover,
adding noise regularization helps preserve more fine-grained details, while the introduction of early
exit further improves the trade-off.

Input

-3 -1 1 3

Inversion  prompt: “lion”, forward prompt: “field”

Inversion  prompt: “lion”, forward prompt: “”

Figure 17: We set γ = 3 and vary ωbase to investigate its effect. Additionally, we change the prompt
from ∅ to “field” to examine the impact of the forward prompt.

A.4 EFFECT OF ωbsae

In the previous experiments, we fix ωbase to investigate the effectiveness of other components. In
Fig. 17, we showcase the effects of varying ωbase, with values ranging from -3 to 3, while fixing
γ = 3. The figure demonstrates that reducing ωbase corresponds to the removal of the concept,
whereas increasing it enhances the concept. However, we found that the removal effect is not as
satisfactory as the enhancement, which highlights a limitation related to text-to-image association.

A.5 DOES FORWARD PROMPT MATTER?

In Fig. 17, changing the forward prompt from ∅ to “field,” another concept present in the original
input, improves the removal effect, as the region left by the null prompt is inpainted with the concept
of “field.” This demonstrates the importance of selecting the correct concept to serve as the removal
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helper. However, this approach requires additional effort to label the concepts instead of simply
using the versatile null prompt. This suggests an advanced setting for the method, where providing
coarse-level annotations for an additional concept can lead to significant improvements.

Figure 18: Overview of the WeakConcept-10 dataset. The images exhibit weak and incomplete
representations of the target concepts, making them ideal candidates for testing concept scaling
methods.

A.6 DATASET DETAILS

We provide a visualization of the images in our generated WeakConcept-10 dataset in Figure 18.
These generated images exhibit indistinct structures and missing details of the specified concepts,
making them ideal candidates for improvement through concept scaling.

For experiments involving concept scaling down on TEdBench, we select one concept from each
image as the scaling-down candidate. The mapping of images to their corresponding concepts is
detailed in Table 3, covering a diverse range of concepts.

A.7 LIMITATIONS AND FUTURE WORKS

Despite our method presenting a zero-shot approach to scaling concepts in real inputs and achieving
promising results, there are several limitations to the current method.

Choice of Hyperparameters. In our current method, we split the scaling factor ωt into two
controlling factors: ωbase and the schedule β(t) =

(
t
T

)γ
. Users can adjust ωbase and γ to control

the scaling strength. Although we demonstrate the effects of different components in Table 2, the
optimal combination varies depending on the task, making user input non-trivial. To address this, a
potential future direction is to design an automatic scaling factor that adapts to the target concept’s
strength, thus eliminating the need for extensive hyperparameter tuning.

Dependence on Text-to-X Association. While our method enables concept scaling with text-guided
diffusion models for any modality (X), its effectiveness relies heavily on the text-to-X association. If
the text prompt is not sensitive to the diffusion model – meaning the information about the concept is
not captured effectively – the method may fail. To address this issue, incorporating concept-specific
fine-tuning may be beneficial for certain edge cases.
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Image File Concept to be Scaled Down
teddy_1.jpeg teddy bear
flamingo.jpeg beach
dog_with_shirt.jpg shirt
cake_1.jpeg chocolate shavings
chibi.jpeg cat
zebra.jpeg stripes
cat_3.jpeg cat
empty_street.jpeg Concrete barriers
couple_beach.jpeg couple
bird.jpeg wood
dog_01.jpeg sand
white_horse2.png horse
road1.png road
new_cat_3.jpeg Long fur
bird-g83440b9c4_1920.jpg rope
black_shirt.jpeg watch
milk_cookie.jpeg milk
door.jpeg door
giraffe.jpeg giraffe
goat_and_cat.jpg cat
elephant.jpeg elephant
bear3.jpeg bear
two_dogs_with_checkered_shirts1.jpg checkered hoodies
drinking_horse.png horse
tennis_ball.jpeg ball
bird.png beak
egg_tree.jpeg Nest
prague.png building
banana_1.jpeg banana
dog2_standing.png Green grass
chair_1.jpeg chair
box.jpeg knifes
tree_1.jpeg tree
cat.jpeg cat
vase_01.jpeg flowers
apples.jpeg apples
open_book.jpeg book
white_horse1.png horse
red_car.jpeg Black top
pizza1.png Red pepper

Table 3: Mapping between image files and the concepts to be scaled down.
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