© ® N O o A~ W N =

o

Searching Large Neighborhoods for
Integer Linear Programs with Contrastive Learning

Anonymous Author(s)
Affiliation
Address

email

Abstract

Integer Linear Programs (ILPs) are powerful tools for modeling and solving many
combinatorial optimization problems. Recently, it has been shown that Large
Neighborhood Search (LNS), as a heuristic algorithm, can find high-quality so-
lutions to ILPs faster than Branch and Bound. However, how to find the right
heuristics to maximize the performance of LNS remains an open problem. In this
paper, we propose a novel approach, CL-LNS, that delivers state-of-the-art anytime
performance on several ILP benchmarks measured by metrics including the primal
gap, the primal integral, survival rates and the best performing rate. Specifically,
CL-LNS collects positive and negative solution samples from an expert heuristic
that is slow to compute and learns a more efficient one with contrastive learning.

1 Introduction

Algorithm designs for combinatorial optimization problems (COPs) are important and challenging
tasks. A wide variety of real-world problems are COPs, such as vehicle routing [73]], path planning
[61] and resource allocation [S7] problems, and a majority of them are NP-hard to solve. In the
past few decades, algorithms, including optimal algorithms, approximation algorithms and heuristic
algorithms, have been studied extensively due to the importance of COPs. Those algorithms are
mostly designed by humans through costly processes that often require a deep understanding of the
problem domains and their underlying structures as well as considerable time and effort. Recently,
there has been an increased interest in automating algorithm designs for COPs with machine learning
(ML). Many ML approaches learn to either construct or improve solutions within an algorithmic
framework, such as greedy search, local search or tree search, for a specific COP, such as the traveling
salesman problem (TSP) [75} [80], vehicle routing problem (VRP) [45]] or independent set problem
[S3], and are often not easily applicable to other COPs.

In contrast, Integer Linear Programs (ILPs) can flexibly encode and solve a broad family of COPs,
such as network design [39} [15) 32], mechanism design [[14], facility location [28| 3] problems. ILPs
can be solved by Branch and Bound (BnB) [48]], an optimal tree search algorithm that can achieve
state-of-the-art for ILPs. Over the past decades, BnB has been improved tremendously to become the
core of many popular ILP solvers such as SCIP [8]] and Gurobi [24]]. However, due to its exhaustive
search nature, it is hard for BnB to scale to large instances [40, 21].

On the other hand, Large Neighborhood Search (LNS) has been shown to find high-quality solutions
much faster than BnB for large ILP instances [68], (74169} [36]. LNS starts from an initial solution (i.e.,
a feasible assignment of values to variables) and then improves the current best solution by iteratively
picking a subset of variables to reoptimize while leaving others fixed. Picking which subset to
reoptimize, i.e., the destroy heuristic, is a critical component in LNS. Hand-crafted destroy heuristics,
such as the randomized heuristic [68, |69]] and the Local Branching (LB) heuristic [20], are often
either inefficient (slow to find good subsets) or ineffective (find subsets of bad quality). ML-based

Submitted to ICML 2023 Workshop: Sampling and Optimization in Discrete Space. Do not distribute.

37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57

58

59

60
61
62
63
64
65

66

67
68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84

destroy heuristics have also been proposed and outperformed hand-crafted ones. State-of-the-art
approaches include IL-LNS [69]] that uses imitation learning (IL) to imitate the LB heuristic and
RL-LNS [74] that uses a similar framework to IL-LNS but trained with reinforcement learning (RL).

In this paper, we propose a novel ML-based LNS for ILPs, namely CL-LNS, that uses contrastive
learning (CL) [10} 43] to learn efficient and effective destroy heuristics. Similar to IL-LNS [69], we
learn to imitate the Local Branching (LB) heuristic, a destroy heuristic that selects the optimal subset
of variables within the Hamming ball of the incumbent solutions. LB requires solving another ILP
with the same size as the original problem and thus is computationally expensive. We not only use
the optimal subsets provided by LB as the expert demonstration (as in IL-LNS) but also leverage
intermediate solutions and perturbations. When solving the ILP for LB, intermediate solutions are
found and those that are close to optimal in terms of effectiveness become positive samples. We also
collect negative samples by randomly perturbing the optimal subset. With both positive and negative
samples, instead of a classification loss as in IL-LNS, we use a contrastive loss that encourages the
model to predict the subset similar to the positive samples but dissimilar to the negative ones with
similarity measured by dot products [59} 26]. Finally, we also use a richer set of features and graph
attention networks (GAT) instead of GCN to further boost performance.

Empirically, we show that CL-LNS outperforms state-of-the-art ML and non-ML approaches at
different runtime cutoffs ranging from a few minutes to an hour in terms of multiple metrics, including
the primal gap, the primal integral, the best performing rate and the survival rate, demonstrating the
effectiveness and efficiency of CL-LNS. In addition, CL-LNS shows great generalization performance
on test instances two times larger than training instances.

2 Background

2.1 ILPs

An integer linear program (ILP) is defined as minc'x s.t. Ax < band = € {0,1}", where = =
(x1,...,2,)" denotes the n binary variables to be optimized, ¢ € R" is the vector of objective
coefficients, A € R™*™ and b € R™ specify m linear constraints. A solution to the ILP is a feasible
assignment of values to the variables. In this paper, we focus on the formulation above that consists
of only binary variables, but our methods can be applied to mixed integer linear programs with
continuous variables and/or non-binary integer variables.

2.2 LNS for ILP solving

LNS is a heuristic algorithm that starts with an initial solution and then iteratively destroys and
reoptimizes a part of the solution until a runtime limit is exceeded or some stopping condition is
met. Let Z = (A, b, ¢) be the input ILP, where A, b and c are the coefficients defined in Equation
(?2), and = be the initial solution (typically found by running BnB for a short runtime). In iteration
t > 0 of LNS, given the incumbent solution !, defined as the best solution found so far, a destroy
heuristic selects a subset of k' variables X* = {z;,, ..., x;,, }. The reoptimization is done by solving
a sub-ILP with X' being the variables while fixing the values of z; ¢ X the same as in z’. The
solution to the sub-ILP is the new incumbent solution 2'*! and then LNS proceeds to iteration ¢ + 1.
Compared to BnB, LNS is more effective in improving the objective value ¢z, especially on difficult
instances [68, 169} [74]. Compared to other local search methods, LNS explores a large neighborhood
in each step and thus, is more effective in avoiding local minima.

Adaptive Neighborhood Size Adaptive methods are commonly used to set the neighborhood size
k! in previous work [69} 36]. The initial neighborhood size k° is set to a constant or a fraction of the
number of variables. In this paper, we consider the following adaptive method [36]: in iteration ¢,
if LNS finds an improved solution, we let k**! = k?, otherwise k**! = min{vy - k%, 3 - n} where
~ > 11is a constant and we upper bound k' to a constant fraction 3 < 1 of the number of variables to
make sure the sub-ILP is not too large (thus, too difficult) to solve. Adaptively setting k? helps LNS
escape local minima by expanding the search neighborhood when it fails to improve the solution.

85

86
87
88
89
90
91
92

93
94

95

96
97
98

99

100
101
102
103
104
105
106
107
108
109
110

111
112
113

114

115
116
117

LNS iterations

ILP instances for training

Collect training data
min cTw For each

. M . 7
Az <b instance | Find an initial Solve the Local | Positive examples: :
s.t. r < solution Branching ILP Op.tlmal and sub-optAlmaI 1 | updte the
re {0’ 1}" neighborhoods obtained } | ncumbent sotution

] from Local Branching
_________)

with the optimal
neighborhood

rNegative examples: 1
Ineffective neighborhoods

Add t
dms:t | obtained by perturbing :
7 \I the optimal one 3

Supervised contrastive
learning to predict
good neighborhoods

Figure 1: An overview of training and data collection for CL-LNS. For each ILP instance for training,
we run several LNS iterations with LB. In each iteration, we collect both positive and negative
neighborhood samples and add them to the training dataset, which is used in downstream supervised
contrastive learning for neighborhood selections.

2.3 LB Heuristic

The LB Heuristic [20] is originally proposed as a primal heuristic in BnB but also applicable in LNS
for ILP solving [69} 54]]. Given the incumbent solution ! in iteration ¢ of LNS, LB aims to find the
subset of variables to destroy X'* such that it leads to the optimal =**" that differs from 2* on at most
k! variables, i.e., it computes the optimal solution 2t that sits within a given Hamming ball of
radius k* centered around x*. To find 2'*!, the LB heuristic solves the LB ILP that is exactly the
same ILP from input but with one additional constraint that limits the distance between x‘ and '*:
Zie[n]:ﬁ:o A Zie[n];z§:1(1 — x*1) < k'. The LB ILP is of the same size of the input ILP
(i.e., it has the same number of variables and one more constraint), therefore, it is often too slow to be
useful in practice.

3 Related Work

In this section, we summarize related work on LNS for ILPs and other COPs, learning to solve
ILPs with BnB and contrastive learning for COPs. We also summarize additional related work on
LNS-based primal heuristics for BnB and learning to solve other COPs in Appendix.

3.1 LNS for ILPs and Other COPs

A huge effort has been made to improve BnB for ILPs in the past decades, but LNS for ILPs has not
been studied extensively. Recently, Song et al. [68] show that even a randomized destroy heuristic in
LNS can outperform state-of-the-art BnB. They also show that an ML-guided decomposition-based
LNS can achieve even better performance, where they apply RL and IL to learn destroy heuristics
that decompose the set of variables into equally-sized subsets using a classification loss. Sonnerat
et al. [69]] learn to select variables by imitating LB. RL-LNS [74] uses a similar framework but
trained with RL and outperforms Song et al. [68]]. Both Wu et al. [74]] and Sonnerat et al. [69] use the
bipartite graph representations of ILPs to learn the destroy heuristics represented by GCNs. Another
line of related work focuses on improving LB. Liu et al. [54] use ML to tune the runtime limit and
neighborhood sizes for LB. Huang et al. [36] propose LB-RELAX to select variables by solving the
LP relaxation of LB.

Besides ILPs, LNS has been applied to solve many COPs, such as VRP [63 5], TSP [67], scheduling
[46,[81]] and path planning problems [51. 50} 37]. ML methods have also been applied to improve
LNS for those applications [[11} 155130, 152} 35].

3.2 Learning to Solve ILPs with BnB

Several studies have applied ML to improve BnB. The majority of works focus on learning to either
select variables to branch on [40} 21} 23| [78] or select nodes to expand [25|47]]. There are also works
on learning to schedule and run primal heuristics [42}[12] and to select cutting planes 70,60, 38].

118

119
120
121
122
123

124

125
126
127
128
129
130
131
132

134
135
136

137

138
139
140
141
142
143

144

145
146
147
148
149
150
151
152
153
154
155

156
157

159
160
161
162
163
164
165
166
167

3.3 Contrastive Learning for COPs

While contrastive learning of visual representations [29, 26l [10] and graph representations [[76} [72]
have been studied extensively, it has not been explored much for COPs. Mulamba et al. [58]] derive a
contrastive loss for decision-focused learning to solve COPs with uncertain inputs that can be learned
from historical data, where they view non-optimal solutions as negative samples. Duan et al. [[16] use
contrastive pre-training to learn good representations for the boolean satisfiability problem.

4 Contrastive Learning for LNS

Our goal is to learn a policy, a destroy heuristic represented by an ML model, that selects a subset of
variables to destroy and reoptimize in each LNS iteration. Specifically, let st = (Z, x?) be the current
state in iteration ¢ of LNS where Z = (A, b, ¢) is the ILP and ' is the incumbent solution, the policy
predicts an action a’ = (a!, ..., al) € {0,1}", a binary representation of the selected variables X'*
indicating whether z; is selected (af = 1) or not (a! = 0). We use contrastive learning to learn to
predict high quality a® such that, after solving the sub-ILP derived from a’ (or X!), the resulting
incumbent solution 2*! is improved as much as possible. We use contrastive learning instead of
other approaches since it is shown to be effective theoretically [71] and has outperformed other
learning techniques empirically in other domains [18]]. Next, we describe our novel data collection
process, the policy network and the contrastive loss used in training. An overview of our training and
data collection pipeline is shown in Figure|[I] Finally, we introduce how the learned policy is used in
CL-LNS.

4.1 Data Collection

Following previous work by Sonnerat et al. [69]], we use LB as the expert policy to collect good
demonstrations to learn to imitate. Formally, for a given state s* = (Z,x!), we use LB to find
the optimal action a! that leads to the minimum c"z!*! after solving the sub-ILP. Different from
the previous work, we use contrastive learning to learn to make discriminative predictions of a®
by contrasting positive and negative samples (i.e., good and bad examples of actions a'). In the
following, we describe how we collect the positive sample set S; and the negative sample set S;.

Collecting Positive Samples 5! During data collection, given s* = (Z, x"), we solve the LB ILP

with the incumbent solution ' and neighborhood size k* to find the optimal «**!. LNS proceeds to
iteration ¢ 4+ 1 with /*! until no improving solution z**"' could be found by the LB ILP within a
runtime limit. In experiments, the LB ILP is solved with SCIP 8.0.1 [8]] with an hour runtime limit
and k! is fine-tuned for each type of instances. After each solve of the LB ILP, in addition to the
best solution found, SCIP records all intermediate solutions found during the solve. We look for
intermediate solutions =’ whose resulting improvements on the objective value is at least 0 < o, < 1
times the best improvement (i.e., ¢' (zt —2') > a,,-c" (! — ') and consider their corresponding
actions as positive samples. We limit the number of the positive samples |SI§\ to up. If more than u,
positive samples are available, we record the top u, ones to avoid large computational overhead with
too many samples when computing the contrastive loss (see Section @) ap and uy, are set to 0.5
and 10, respectively, in experiments.

Collecting Negative Samples S! Negative samples are critical parts of contrastive learning to
help distinguish between good and bad demonstrations. We collect a set of ¢!, negative samples S?,
where ¢!, = /@|S:§\ and & is a hyperparameter to control the ratio between the numbers of positive and
negative samples. Suppose X' is the optimal set of variables selected by LB. We then perturb Xt to
get Xt by replacing 5% of the variables in X'* with the same number of those not in X' uniformly at
random. We then solve the corresponding sub-ILP derived from X' to get a new incumbent solution
2T If the resulting improvement of 2" is less than 0 < oy, < 1 times the best improvement (i.e.,
c(x! — &™) < oy - €T (x! — x'1)), we consider its corresponding action as a negative sample.
We repeat this ¢!, times to collect negative samples. If less than ¢!, negative samples is collected, we
increase the perturbation rate from 5% to 10% and generate another ¢!, samples. We keep increasing
the perturbation rate at an increment of 5% until c{, negative samples are found or it reaches 100%.
In experiments, we set k = 9 and oy, = 0.05.

168

169
170
171
172
173
174
175
176
177

178
179
180
181
182
183
184
185
186
187
188

190
191
192

193

194

195

196
197
198
199
200
201
202
203
204

205

206

207
208

4.2 Policy Network

Following previous work on learning for ILPs [21} 169, [74]], we use a bipartite graph representation of
ILP to encode a state s¢. The bipartite graph consists of n + m nodes representing the n variables
and m constraints on two sides, respectively, with an edge connecting a variable and a constraint
if the variable has a non-zero coefficient in the constraint. Following Sonnerat et al. [69], we use
features proposed in Gasse et al. [21] for node features and edge features in the bipartite graph and
also include a fixed-size window of most recent incumbent values as variable node features with the
window size set to 3 in experiments. In addition to features used in Sonnerat et al. [69], we include
features proposed in Khalil et al. [40] computed at the root node of BnB to make it a richer set of
variable node features.

We learn a policy g (-) represented by a graph attention network (GAT) [9] parameterized by learnable
weights 8. The policy takes as input the state s and outputs a score vector mg(s) € [0,1]", one
score per variable. To increase the modeling capacity and to manipulate node interactions proposed
by our architecture, we use embedding layers to map each node feature and edge feature to space R.
Let vj,c;, e; ; € R? be the embeddings of the j-th variable, i-th constraint and the edge connecting
them output by the embedding layers. Since our graph is bipartite, following previous work [21]], we
perform two rounds of message passing through the GAT. In the first round, each constraint node
c; attends to its neighbors A; using an attention structure with H attention heads to get updated
constraint embeddings ¢} (computed as a function of Vj,¢;, €; ;). In the second round, similarly, each
variable node attends to its neighbors to get updated variable embeddings v’ (computed as a function
of v;, ¢}, e; ;) with another set of attention weights. After the two rounds of message passing, the
final representations of variables v’ are passed through a multi-layer perceptron (MLP) to obtain a
scalar value for each variable and, finally, we apply the sigmoid function to get a score between 0 and
1. Full details of the network architecture are provided in Appendix. In experiments, d and H are set
to 64 and 8, respectively.

4.3 Training with a Contrastive Loss

Given a set of ILP instances for training, we follow the expert’s trajectory to collect training data. Let
D = {(s,Sp,Sn) } be the set of states with their corresponding sets of positive and negative samples
in the training data. A contrastive loss is a function whose value is low when the predicted action
7o (s) is similar to the positive samples S, and dissimilar to the negative samples S,. With similarity
measured by dot products, a form of supervised contrastive loss, called InfoNCE [59} 26], is used in
this paper:

L£(0) = Z -1 Z log eXp(aTWB(S)/T)

(oseimen 1Sl 4G5, Lares,uray XP(@TT0(s)/7)

where 7 is a temperature hyperparameter set to 0.07 [26]] in experiments.

4.4 Applying Learned Policy 7o

During testing, we apply the learned policy 7g in LNS. In iteration ¢, let (vy, - - - ,v,) := 7g(s') be
the variable scores output by the policy. To select k? variables, CL-LNS greedily selects those with
the highest scores. Previous works [69} 74] use sampling methods to select the variables, but those
sampling methods are empirically worse than our greedy method in CL-LNS. However, when the
adaptive neighborhood size k? reaches its upper bound /3 - n, CL-LNS may repeat the same prediction
due to the deterministic selection process. When this happens, we switch to the sampling method
introduced in [69]]. The sampling method selects variables sequentially: at each step, a variable x;
that has not been selected yet is selected with probability proportional to v;', where 7 is a temperature
parameter set to 0.5 in experiments.

5 Empirical Evaluation

5.1 Setup

Instance Generation We evaluate on four NP-hard problem benchmarks that are widely used
in existing studies [[74, 168} 165], which consist of two graph optimization problems, namely the

209
210
211
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231
232

234
235

236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252
253
254

256
257

259
260

minimum vertex cover (MVC) and maximum independent set (MIS) problems, and two non-graph
optimization problems, namely the combinatorial auction (CA) and set covering (SC) problems. We
first generate a test set of 100 small instances for each problem, namely MVC-S, MIS-S, CA-S
and SC-S. MVC-S instances are generated according to the Barabasi-Albert random graph model
[2], with 1,000 nodes and an average degree of 70 following [68]]. MIS-S instances are generated
according to the Erdos-Renyi random graph model [17], with 6,000 nodes and an average degree of
5 following [[68]]. CA-S instances are generated with 2,000 items and 4,000 bids according to the
arbitrary relations in Leyton-Brown et al. [49]]. SC-S instances are generated with 4,000 variables and
5,000 constraints following Wu et al. [74]]. We then generate another test set of 100 large instances
for each problem by doubling the number of variables, namely MVC-L, MIS-L, CA-L and SC-L.
More details of instance generation are included in Appendix. For data collection and training, we
generate another set of 1,024 small instances for each problem. We split them into training and
validation sets, each consisting of 896 and 128 instances, respectively.

Baselines We compare CL-LNS with five baselines: (1) BnB: using SCIP (v8.0.1), the state-of-the-
art open-source ILP solver, with the aggressive mode fine-tuned to focus on improving the objective
value; (2) RANDOM: LNS which selects the neighborhood by uniformly sampling k! variables
without replacement; (3) LB-RELAX [36]]: LNS which selects the neighborhood with the LB-RELAX
heuristics; (4) IL-LNS [69]; (5) RL-LNS [[74]]. We compare with two more baselines in Appendix.
For each ML approach, a separate model is trained for each problem on the small training set and
tested on both small and large test sets. We implement IL-LNS and fine-tune its hyperparameters for
each problem since the authors do not fully open source the code. For RL-LNS, we use the code and
hyperparameters provided by the authors and train the models with five random seeds to select one
with the best performance on the validation sets. We do not compare to the approach by Song et al.
[68] since it performs worse than RL-LNS on multiple problems [74].

Metrics We use the following metrics to evaluate all approaches: (1) The primal bound is the
objective value of the ILP; (2) The primal gap (6] is the normalized difference between the primal

bound v and a precomputed best known objective value v*, defined as rmlvfivl
ax(v,v*€)

if v exists and
v-v* >0, or 1 otherwise. We use e = 10~8 to avoid division by zero; (3) The primal integral 1] at
time ¢ is the integral on [0, g] of the primal gap as a function of runtime. It captures the quality of and
the speed at which solutions are found; (4) The survival rate to meet a certain primal gap threshold is
the fraction of instances with primal gaps below the threshold [69]]; Since BnB and LNS are both
anytime algorithms, we show these metrics as a function of runtime or the number of iterations in

LNS (when applicable) to demonstrate their anytime performance.

Hyperparameters We conduct experiments on 2.5GHz Intel Xeon Platinum 8259CL CPUs with
32 GB memory. Training is done on a NVIDIA A100 GPU with 40 GB memory. All experiments
use the hyperparameters described below unless stated otherwise. We use SCIP (v8.0.1) 8] to solve
the sub-ILP in every iteration of LNS. To run LNS, we find an initial solution by running SCIP for 10
seconds. We set the time limit to 60 minutes to solve each instance and 2 minutes for solving the
sub-ILP in every LNS iteration. All approaches require a neighborhood size k' in LNS, except for
BnB and RL-LNS (k! in RL-LNS is defined implicitly by how the policy is used). For LB-RELAX,
IL-LNS and CL-LNS, the initial neighborhood size kY is set to 100, 3000, 1000 and 150 for MVC,
MIS, CA and SC, respectively, except k0 is set to 150 for SC for IL-LNS; for RANDOM, it is set
to 200, 3000, 1500 and 200 for MVC, MIS, CA and SC, respectively. All approaches use adaptive
neighborhood sizes with v = 1.02 and $ = 0.5, except for BnB and RL-LNS. For IL-LNS, when
applying its learned policies, we use the sampling methods on MVC and CA instances and the
greedy method on SC and MIS instances. For CL-LNS, the greedy method is used on all instances.
Additional details on hyperparameter tunings are provided in Appendix.

For data collection, we use different neighborhood sizes k£ = 50, 500, 200 and 50 for MVC, MIS,
CA and SC, respectively, which we justify in Section[5.2] We set v = 1 and run LNS with LB until
no new incumbent solution is found. The runtime limit for solving LB in every iteration is set to 1
hour. For training, we use the Adam optimizer [44] with learning rate 10~2. We use a batch size of
32 and train for 30 epochs.

—— BnB —— RANDOM LB-RELAX IL-LNS —— RL-LNS —— CL-LNS
107!
——
510’2 §10-2 \\ § § 2
© S—— | 2 © 102 ©10
] © -]]
£ £ £ £
& - & &
-3 \
10 - 10-3
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(a) MVC-S (left) and MVC-L (right). (b) MIS-S (left) and MIS-L (right).
101 107
Q [=8 T Q Q
8 & 8]
<102 < & < \
0 1000 2000 3000 0 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

Runtime in Seconds

(c) CA-S (left) and CA-L (right).

Runtime in Seconds

Runtime in Seconds

Runtime in Seconds

(d) SC-S (left) and SC-L (right).

Figure 2: The primal gap (the lower the better) as a function of runtime, averaged over 100 test
instances. For ML approaches, the policies are trained on only small training instances but tested on
both small and large test instances.

Table 1: Primal gap (PG) (in percent), primal integral (PI) at 60 minutes runtime cutoff, averaged
over 100 test instances and their standard deviations. “|” means the lower the better. For ML
approaches, the policies are trained on only small training instances but tested on both small and
large test instances.

PG (%) | PI | PG (%) | PI | PG (%) | PI | PG (%) | PI |
MVC-S MIS-S CA-S SC-S
BnB 1.3240.43 66.1+13.1 5.1040.69 222.8+25.9 2.28+0.59 137.4425.9 1.1340.95 86.7+37.9
RANDOM 0.96+1.26 38.04+44.8 0.2440.14 22.145.0 5.90+1.02 235.6434.9 2.67+1.29 124.31+454
LB-RELAX | 1.38%1.51 57.0£51.2 0.65+0.20 46.9£6.5 1.65+£0.57 140.5+18.3 | 0.86+0.83 63.2+31.6
IL-LNS 0.2940.23 19.2410.2 0.2240.17 19.445.8 1.09+0.51 90.0+20.8 1.334+0.97 63.2434.3
RL-LNS 0.611+0.34 29.6+11.5 0.2240.14 17.24+5.2 6.32+1.03 249.2435.9 1.1040.77 77.81+28.9
CL-LNS 0.1710.09 8.7+6.7 0.154+0.15 12.8+5.4 0.65+0.32 50.7+22.7 0.50+0.58 26.21+12.8
MVC-L MIS-L CA-L SC-L
BnB 2.411+0.40 130.2%11.1 6.29+1.62 285.1+18.2 2.74+1.87 320.9483.1 1.5441.33 115.01+42.5
RANDOM 0.384+0.24 22.748.0 0.1140.08 19.043.1 5.37+0.75 229.2424.4 3.31+1.79 166.4+61.3
LB-RELAX 0.461+0.23 48.4+7.5 0.9140.16 68.6+5.5 1.614+1.50 153.0£50.3 1.914+1.42 88.31+48.9
IL-LNS 0.2740.23 21.248.1 0.2940.15 27.145.5 4.56+0.98 254.2433.4 1.724+1.19 79.1+42.4
RL-LNS 0.5940.30 37.34+9.6 0.1440.12 18.9+4.1 4.91+0.81 197.0428.5 0.661+0.72 116.24+27.1
CL-LNS 0.051+0.04 9.1+34 0.1240.11 12.9+4.4 0.09+0.10 116.1+18.0 0.581+0.45 39.2+23.2
—— BnB —— RANDOM LB-RELAX IL-LNS —— RL-LNS —— CL-LNS
" 1.0 o 1.0 B 1.0 7 o
£50s £50s f———""| £30s £50s
%\70.6 %V}o,s %'ﬁo.s %mo,s
5 L33 =5 g
5804 5804 5804 5804
gg 0.2 gg 0.2 gg 0.2 § E 0.2
g g nE g
0.0 0.0 0.0 0.0
0 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(a) MVC-S (left) and MVC-L (right). (b) MIS-S (left) and MIS-L (right).
" 1.0 o 1.0 " 1.0 o
géD.B %:30,8 géO.B %éo,s
%\70.6 %‘;:0,6 %;;0.6 %;:0.6
=5 =g =5 g
ng 0.4 EEOA r_gg 0.4 EEOA =
. I /,/ . N
g aF nE (2F
0.0 0.0 0.0 0.0
[2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

Runtime in Seconds

(c) CA-S (left) and CA-L (right).

Runtime in Seconds

Runtime in Seconds

Runtime in Seconds

(d) SC-S (left) and SC-L (right).

Figure 3: The survival rate (the higher the better) over 100 test instances as a function of runtime to
meet primal gap threshold 1.00%. For ML approaches, the policies are trained on only small training
instances but tested on both small and large test instances.

261

262
263
264
265

267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

291
292
293

294
295
296

MVC-S MIS-S CA-S SC-S
NH size Runtime | NHsize Runtime | NHsize Runtime NH size Runtime
LB 100 36000 3,000 36000 1,000 3600+0 100 3600+0
LB (data collection) 50 36000 500 36000 200 3600+0 50 36000
IL-LNS 100 2.1£0.1 3,000 1.3+£0.2 1,000 20.8413.1 150 120.9+1.3
CL-LNS 100 2.240.1 3,000 1.340.1 1,000 25.14+15.3 100 50.1+10.4
LB (data collection) LB IL-LNS = CL-LNS
460 ~1950 -950001 |
o o o \ 185
2 5_ S -100000{ | g
455 § 72000 | @ 180
é TE° —AE, -105000{ |\ TE°
£ 450 £ —2050 £ 110000 p £175
T
445 -2100 ~115000 170
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Number of Iterations Number of Iterations Number of Iterations Number of Iterations
(a) MVC-S (b) MIS-S (c) CA-S (d) SC-S

Figure 4: The primal bound as a function of number of iterations, averaged over 100 small test
instances. LB and LB (data collection) are LNS with LB using the neighborhood sizes fune-tunded
for CL-LNS and for data collection, respectively. The table shows the neighborhood size (NH size)
and the average runtime in seconds (with standard deviations) per iteration for each approach.

5.2 Results

Figure 2] shows the primal gap as a function of runtime. Table[I]presents the average primal gap and
primal integral at 60 minutes runtime cutoff on small and large instances, respectively (see results
at 15, 30 and 45 minutes runtime cutoff in Appendix). Note that we were not able to reproduce
the results on CA-S and CA-L reported in Wu et al. [74] for RL-LNS despite using their code and
repeating training with five random seeds. CL-LNS shows significantly better anytime performance
than all baselines on all problems, achieving the smallest average primal gap and primal integral.
It also demonstrates strong generalization performance on large instances unseen during training.
Figure shows the survival rate to meet the 1.00% primal gap threshold. CL-LNS achieves the best
survival rate at 60 minutes runtime cutoff on all instances, except that, on SC-L, its final survival rate
is slightly worse than RL-LNS but it achieves the rate with a much shorter runtime. On MVC-L,
MIS-S and MIS-L instances, several baselines achieve the same survival rate as CL-LNS but it always
achieves the rates with the shortest runtime. In Appendix, we present more results in comparison
with two more baselines.

Comparison with LB (the Expert) Both IL-LNS and CL-LNS learn to imitate LB. On the
small test instances, we run LB with two different neighborhood sizes, one that is fine-tuned in
data collection and the other the same as CL-LNS, for 10 iterations and compare its per iteration
performance with IL-LNS and CL-LNS. This allows us to compare the quality of the learned
policies to the expert independently of their speed. The runtime limit per iteration for LB is set
to 1 hour. Figure] shows the primal bound as a function of the number of iterations. The table
in the figure summarizes the neighborhood sizes and the average runtime per iteration. For LB,
the result shows that the neighborhood size affects the overall performance. Intuitively, using a
larger neighborhood size in LB allows LNS to find better incumbent solutions due to being able
to explore larger neighborhoods. However, in practice, LB becomes less efficient in finding good
incumbent solutions as the neighborhood size increases, sometimes even performs worse than using a
smaller neighborhood size (the one for data collection). The neighborhood size for data collection
is fine-tuned on validation sets to achieve the best primal bound upon convergences, allowing the
ML models to observe demonstrations that lead to as good primal bounds as possible in training.
However, when using the ML models in testing, we have the incentive to use a larger neighborhood
size and fine-tune it since we no longer suffer from the bottleneck of LB. Therefore, we fine-tune
the neighborhood sizes for IL-LNS and CL-LNS separately on validation sets. CL-LNS has a strong
per-iteration performance that is consistently better than IL-LNS. With the fine-tuned neighborhood
size, it even outperforms the expert that it learns from (LB for data collection) on MIS-S and CA-S.

Ablation Study We evaluate how contrastive learning and two enhancements contribute to CL-
LNS’s performance. Compared to IL-LNS, CL-LNS uses (1) addition features from Khalil et al.
[40] and (2) GAT instead of GCN. We denote by “FF” the full feature set used in CL-LNS and “PF”

297

299
300
301
302
303
304
305
306
307

308

309
310
311
312
313
314
315
316
317

319

320

321
322

323
324

326

327
328

329
330

331
332

IL-LNS(-GCN-PF) -+ CL-LNS-GCN-PF —— CL-LNS(-GAT-FF)
IL-LNS-GAT-FF —== CL-LNS-GAT-PF

-
=)
|

Primal Gap
Primal Gap

Table 2: Ablation study: Primal gap (PG) (in per-
cent) and primal integral (PI) at 60 minutes runtime
cutoff, averaged over 100 small test instances and
their standard deviations. “}” means the lower the

1o better.
0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds PG (%) iMVC—S PLL PG (%) l’CA—S PLY
TL-LNSCGCN-PF) | 0294023 192£102 | T.09E051 90.0£208
(@) MVC-S (b) CA-S IL-LNS-GAT-FF | 024+0.17 153473 | 1134063 7894227
i) i CLLLNS-GCN-PF | 0.I7£0.10 114%88 | 0.75£040 579%212
Figure 6: Ablation study: The primal gap as CLLNS-GAT-PF | 0.16+0.09 101406 | 076+0.39 53.84+22.1
CL-LNS(GAT-FF) | 0174009 87467 | 0.65+032 5074227

a function of time, averaged over 100 test in-
stances.

the partial feature set in IL-LNS. We also evaluate the performance of IL-LNS with FF and GAT
(denoted by IL-LNS-GAT-FF), CL-LNS with GCN and PF (denoted by CL-LNS-GCN-PF) as well as
CL-LNS with GAT and PF (denoted by CL-LNS-GAT-PF) on MVC-S and CA-S. Figure[6|shows the
primal gap as a function of runtime. Table[2|presents the primal gap and primal integral at 60 minutes
runtime cutoff. The result shows that IL-LNS-GAT-FF, imitation learning with the two enhancements,
still performs worse than CL-LNS-GCN-PF without any enhancements. CL-LNS-GCN-PF and
CL-LNS-GAT-PF perform similarly in terms of the primal gaps but CL-LNS-GAT-PF has better
primal integrals, showing the benefit of replacing GCN with GAT. On MVC-S, three variants of
CL-LNS have similar average primal gaps and on CA-S, CL-LNS has better average primal gap than
the other two variants. But adding the two enhancements helps improve the primal integral, leading
to the overall best performance of CL-LNS on both MVC-S and CA-S.

6 Conclusion

We proposed CL-LNS, which uses a contrastive loss to learn efficient and effective destroy heuristics
in LNS for ILPs. We presented a novel data collection process tailored for CL-LNS and used GAT
with a richer set of features to further improve its performance. Empirically, CL-LNS significantly
outperformed state-of-the-art approaches on four ILP benchmarks w.r.t. to the primal gap, the primal
integral, the best performing rate and the survival rate. CL-LNS achieved good generalization
performance on out-of-distribution instances that are two times larger than those used in training.
It is future work to learn policies that can generalize across problem domains. CL-LNS does not
guarantee optimality and it is also interesting future work to integrate it in BnB for which many other
learning techniques are developed. Our approach is closely related to and could be useful for many
problems of identifying substructures in combinatorial searches, for example, identifying backdoor
variables in ILPs [19] and selecting neighborhoods in LNS for other COPs.

References

[1] T. Achterberg, T. Berthold, and G. Hendel. Rounding and propagation heuristics for mixed
integer programming. In Operations research proceedings 2011, pages 71-76. Springer, 2012.

[2] R. Albert and A.-L. Barabdsi. Statistical mechanics of complex networks. Reviews of modern
physics, 74(1):47, 2002.

[3] A.R. Amaral. An exact approach to the one-dimensional facility layout problem. Operations
research, 56(4):1026—-1033, 2008.

[4] S. Amizadeh, S. Matusevych, and M. Weimer. Learning to solve circuit-sat: An unsupervised
differentiable approach. In International Conference on Learning Representations, 2018.

[5] N. Azi, M. Gendreau, and J.-Y. Potvin. An adaptive large neighborhood search for a vehicle
routing problem with multiple routes. Computers & Operations Research, 41:167-173, 2014.

[6] T. Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(Z1B), 2006.

333

334
335
336
337
338
339
340

341
342

343
344
345

346
347

349
350

351
352

353
354

355
356

357
358
359

360
361

362
363
364

365
366
367

368

369
370
371

372
373

374
375

376
377

378
379

[7] T. Berthold. Rens. Mathematical Programming Computation, 6(1):33-54, 2014.

[8] K. Bestuzheva, M. Besangcon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen,
L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen,
C. Hojny, R. van der Hulst, T. Koch, M. Liibbecke, S. J. Maher, F. Matter, E. Mithmer, B. Miiller,
M. E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlosser, F. Serrano, Y. Shinano, B. Sofranac,
M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and J. Witzig. The SCIP
Optimization Suite 8.0. Technical report, Optimization Online, December 2021. URL http:
//www.optimization-online.org/DB_HTML/2021/12/8728.html,

[9] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? International
conference on learning representations, 2022.

[10] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597-1607.
PMLR, 2020.

[11] X. Chen and Y. Tian. Learning to perform local rewriting for combinatorial optimization.
Advances in Neural Information Processing Systems, 32, 2019.

[12] A. Chmiela, E. Khalil, A. Gleixner, A. Lodi, and S. Pokutta. Learning to schedule heuristics
in branch and bound. Advances in Neural Information Processing Systems, 34:24235-24246,
2021.

[13] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods to improve
mip solutions. Mathematical Programming, 102(1):71-90, 2005.

[14] S. De Vries and R. V. Vohra. Combinatorial auctions: A survey. INFORMS Journal on
computing, 15(3):284-309, 2003.

[15] B. Dilkina and C. P. Gomes. Solving connected subgraph problems in wildlife conservation. In
CPAIOR, volume 6140, pages 102—116. Springer, 2010.

[16] H.Duan, P. Vaezipoor, M. B. Paulus, Y. Ruan, and C. Maddison. Augment with care: Contrastive
learning for combinatorial problems. In International Conference on Machine Learning, pages
5627-5642. PMLR, 2022.

[17] P. Erdos, A. Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17-60, 1960.

[18] B. Eysenbach, T. Zhang, S. Levine, and R. R. Salakhutdinov. Contrastive learning as goal-
conditioned reinforcement learning. Advances in Neural Information Processing Systems, 35:
35603-35620, 2022.

[19] A. Ferber, J. Song, B. Dilkina, and Y. Yue. Learning pseudo-backdoors for mixed integer
programs. In International Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, pages 91-102. Springer, 2022.

[20] M. Fischetti and A. Lodi. Local branching. Mathematical programming, 98(1):23-47, 2003.

[21] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization

with graph convolutional neural networks. Advances in Neural Information Processing Systems,
32,2019.

[22] S. Ghosh. Dins, a mip improvement heuristic. In International Conference on Integer Program-
ming and Combinatorial Optimization, pages 310-323. Springer, 2007.

[23] P. Gupta, M. Gasse, E. Khalil, P. Mudigonda, A. Lodi, and Y. Bengio. Hybrid models for
learning to branch. Advances in neural information processing systems, 33:18087-18097, 2020.

[24] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www,
gurobi.com.

[25] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

10

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com

380
381
382

383
384

385
386

387
388
389

390
391

392
393

395
396

397
398
399

400
401
402

403
404

406
407
408

410
411

412
413
414

415
416

417
418
419

420
421

422
423

424
425
426

[26] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9729-9738, 2020.

[27] G. Hendel. Adaptive large neighborhood search for mixed integer programming. Mathematical
Programming Computation, 14(2):185-221, 2022.

[28] S.S. Heragu and A. Kusiak. Efficient models for the facility layout problem. European Journal
of Operational Research, 53(1):1-13, 1991.

[29] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and
Y. Bengio. Learning deep representations by mutual information estimation and maximization.
International conference on learning representations, 2019.

[30] A. Hottung and K. Tierney. Neural large neighborhood search for the capacitated vehicle routing
problem. In ECAI 2020, pages 443-450. 10S Press, 2020.

[31] Y. Hu, Y. Yao, and W. S. Lee. A reinforcement learning approach for optimizing multiple
traveling salesman problems over graphs. Knowledge-Based Systems, 204:106244, 2020.

[32] T. Huang and B. Dilkina. Enhancing seismic resilience of water pipe networks. In Proceedings
of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies, pages 44-52,
2020.

[33] T. Huang, B. Dilkina, and S. Koenig. Learning node-selection strategies in bounded subopti-
mal conflict-based search for multi-agent path finding. In International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2021.

[34] T. Huang, S. Koenig, and B. Dilkina. Learning to resolve conflicts for multi-agent path finding
with conflict-based search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 11246-11253, 2021.

[35] T. Huang, J. Li, S. Koenig, and B. Dilkina. Anytime multi-agent path finding via machine
learning-guided large neighborhood search. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 9368-9376, 2022.

[36] T.Huang, A. Ferber, Y. Tian, B. Dilkina, and B. Steiner. Local branching relaxation heuristics for
integer linear programs. In International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pages 96—113. Springer, 2023.

[37] T. Huang, V. Shivashankar, M. Caldara, J. Durham, J. Li, B. Dilkina, and S. Koenig. Deadline-
aware multi-agent tour planning. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2023.

[38] Z. Huang, K. Wang, F. Liu, H.-L. Zhen, W. Zhang, M. Yuan, J. Hao, Y. Yu, and J. Wang.
Learning to select cuts for efficient mixed-integer programming. Pattern Recognition, 123:
108353, 2022.

[39] D. S. Johnson, J. K. Lenstra, and A. R. Kan. The complexity of the network design problem.
Networks, 8(4):279-285, 1978.

[40] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in
mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

[41] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

[42] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao. Learning to run heuristics
in tree search. In Jjcai, pages 659-666, 2017.

[43] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and
D. Krishnan. Supervised contrastive learning. Advances in Neural Information Processing
Systems, 33:18661-18673, 2020.

11

427

428
429

431
432

433
434

435
436

437
438
439

440
441
442

443
444
445

446
447

448
449

450
451

452
453

454
455

457
458
459
460

461
462

463
464

466

467

468

470
471

[44] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2015.

[45] W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

[46] A. A.Kovacs, S. N. Parragh, K. F. Doerner, and R. F. Hartl. Adaptive large neighborhood search
for service technician routing and scheduling problems. Journal of scheduling, 15(5):579-600,
2012.

[47] A. G. Labassi, D. Chételat, and A. Lodi. Learning to compare nodes in branch and bound with
graph neural networks. Advances in neural information processing systems, 2022.

[48] A.H. Land and A. G. Doig. An automatic method for solving discrete programming problems.
In 50 Years of Integer Programming 1958-2008, pages 105-132. Springer, 2010.

[49] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combinatorial
auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce, pages
66-76, 2000.

[50] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig. Anytime multi-agent path finding via
large neighborhood search. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 41274135, 2021.

[51] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig. MAPF-LNS2: Fast repairing for
multi-agent path finding via large neighborhood search. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 10256-10265, 2022.

[52] S. Li, Z. Yan, and C. Wu. Learning to delegate for large-scale vehicle routing. Advances in
Neural Information Processing Systems, 34:26198-26211, 2021.

[53] Z.Li, Q. Chen, and V. Koltun. Combinatorial optimization with graph convolutional networks
and guided tree search. Advances in neural information processing systems, 31, 2018.

[54] D. Liu, M. Fischetti, and A. Lodi. Learning to search in local branching. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 3796-3803, 2022.

[55] H. Lu, X. Zhang, and S. Yang. A learning-based iterative method for solving vehicle routing
problems. In International conference on learning representations, 2020.

[56] S.J.Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald, G. Hendel, T. Koch,
M. Liibbecke, M. Miltenberger, et al. The scip optimization suite 4.0. 2017.

[57] A.S.Manne. On the job-shop scheduling problem. Operations research, 8(2):219-223, 1960.

[58] M. Mulamba, J. Mandi, M. Diligenti, M. Lombardi, V. B. Lopez, and T. Guns. Contrastive
losses and solution caching for predict-and-optimize. In 30th International Joint Conference
on Artificial Intelligence, page 2833. International Joint Conferences on Artificial Intelligence,
2021.

[59] A.v.d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[60] M. B. Paulus, G. Zarpellon, A. Krause, L. Charlin, and C. Maddison. Learning to cut by looking
ahead: Cutting plane selection via imitation learning. In International conference on machine
learning, pages 17584-17600. PMLR, 2022.

[61] 1. Pohl. Heuristic search viewed as path finding in a graph. Artificial intelligence, 1(3-4):
193-204, 1970.

[62] A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi. Ecole: A
gym-like library for machine learning in combinatorial optimization solvers. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020. URL https://openreview.net/forum?
1d=IVcShqgibyB.

12

https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB

472
473

474
475

476
477

478
479

480
481

482
483
484

485
486

487

489
490

491
492

494
495

496
497
498

499
500

501
502

503

505

506
507
508

509
510
511

512
513
514

[63] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation science, 40(4):455-472, 2006.

[64] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534-541, 2007.

[65] L. Scavuzzo, F. Y. Chen, D. Chételat, M. Gasse, A. Lodi, N. Yorke-Smith, and K. Aardal.
Learning to branch with tree mdps. arXiv preprint arXiv:2205.11107, 2022.

[66] D. Selsam, M. Lamm, B. Biinz, P. Liang, L. de Moura, and D. L. Dill. Learning a sat solver
from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

[67] S. L. Smith and F. Imeson. Glns: An effective large neighborhood search heuristic for the
generalized traveling salesman problem. Computers & Operations Research, 87:1-19, 2017.

[68] J. Song, Y. Yue, B. Dilkina, et al. A general large neighborhood search framework for solving
integer linear programs. Advances in Neural Information Processing Systems, 33:20012-20023,
2020.

[69] N. Sonnerat, P. Wang, 1. Ktena, S. Bartunov, and V. Nair. Learning a large neighborhood search
algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201, 2021.

[70] Y. Tang, S. Agrawal, and Y. Faenza. Reinforcement learning for integer programming: Learning
to cut. In International conference on machine learning, pages 9367-9376. PMLR, 2020.

[71] Y. Tian. Understanding deep contrastive learning via coordinate-wise optimization. In Advances
in Neural Information Processing Systems, 2022.

[72] Z. Tong, Y. Liang, H. Ding, Y. Dai, X. Li, and C. Wang. Directed graph contrastive learning.
Advances in Neural Information Processing Systems, 34:19580-19593, 2021.

[73] P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002.

[74] Y. Wu, W. Song, Z. Cao, and J. Zhang. Learning large neighborhood search policy for integer
programming. Advances in Neural Information Processing Systems, 34:30075-30087, 2021.

[75] L. Xin, W. Song, Z. Cao, and J. Zhang. Neurolkh: Combining deep learning model with lin-
kernighan-helsgaun heuristic for solving the traveling salesman problem. Advances in Neural
Information Processing Systems, 34:7472-7483, 2021.

[76] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive learning with
augmentations. Advances in Neural Information Processing Systems, 33:5812-5823, 2020.

[77] C.Yu, Q.Li, S. Gao, and A. Prorok. Accelerating multi-agent planning using graph transformers
with bounded suboptimality. arXiv preprint arXiv:2301.08451, 2023.

[78] G. Zarpellon, J. Jo, A. Lodi, and Y. Bengio. Parameterizing branch-and-bound search trees
to learn branching policies. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 3931-3939, 2021.

[79] S.Zhang, J. Li, T. Huang, S. Koenig, and B. Dilkina. Learning a priority ordering for prioritized
planning in multi-agent path finding. In Proceedings of the International Symposium on
Combinatorial Search, volume 15, pages 208-216, 2022.

[80] J. Zheng, K. He, J. Zhou, Y. Jin, and C.-M. Li. Combining reinforcement learning with lin-
kernighan-helsgaun algorithm for the traveling salesman problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 12445-12452, 2021.

[81] L Zulj, S. Kramer, and M. Schneider. A hybrid of adaptive large neighborhood search and tabu

search for the order-batching problem. European Journal of Operational Research, 264(2):
653-664, 2018.

13

515

516

517

519
520
521
522
523
524
525

526

527
528
529

530
531
532

533
534

535
536

538
539

541

542
543
544

545

546
547
548

549

550
551
552
553

Appendix
A Additional Related Work

A.1 LNS-Based Primal Heuristics in BnB

LNS-based primal heuristics is a family of primal heuristics in BnB and have been studied extensively
in past decades. With the same purpose of improving primal bounds, the main differences between
the LNS-based primal heuristics in BnB and LNS for ILPs are: (1) LNS-based primal heuristics are
executed periodically at different search tree nodes during the search and the execution schedule
is itself dynamic, because they are often more expensive to run than the other primal heuristics in
BnB; (2) the destroy heuristics in LNS-based primal heuristics are often designed to use information
specific to BnB, such as the dual bound and the LP relaxation at a search tree node, and they are not
directly applicable in LNS for ILPs in our setting.

Next, we briefly summarize the destroy heuristics in LNS-based primal heuristics:

* Crossover heuristics [[64]: it destroys variables that have different values in a set of selected
known solutions (typically two). The Mutation heuristics [64] destroys a random subset of
variables.

 Relaxation Induced Neighborhood Search (RINS) [13]]: it destroys variables whose values
disagree in the solution of the LP relaxation at the search tree node and the incumbent
solution.

 Relaxation Enforced Neighborhood Search (RENS) [7]: it restricts the neighborhood to be
the feasible roundings of the LP relaxation at the current search tree node.

¢ Local Branching (LB)[20]: it restricts the neighborhood to a ball around the current incum-
bent solution.

* Distance Induced Neighborhood Search (DINS) [22]: it takes the intersection of the neigh-
borhoods of the Crossover, Local Branching and Relaxation Induced Neighborhood Search
heuristics.

* Graph-Induced Neighborhood Search (GINS) [56]: it destroys the breadth-first-search
neighborhood of a variable in the bipartite graph representation of the ILP.

Recently, an adaptive LNS primal heuristic [27] has been proposed to combine the power of these
heuristics, where it essentially solves a multi-armed bandit problem to choose which heuristic to

apply.
A.2 Learning to Solve Other COPs

ML has been applied to solve a number of COPs, including TSP [31} 75/ 80]], vehicle routing [45} 155,
boolean satisfiability [66, 4], general graph optimization problems [41, [53]] and multi-agent path
finding [331 134 79, [77].

B Network Architecture

We give full details of the GAT architecture described in Section[d.2] The policy takes as input the
state s’ and output a score vector mg(s') € [0, 1]™, one score per variable. We use 2-layer MLPs with
64 hidden units per layer and ReLU as the activation function to map each node feature and edge
feature to R? where d = 64.

Let vj,c;, e; ; € R? be the embeddings of the j-th variable, i-th constraint and the edge connecting
them output by the embedding layers. We perform two rounds of message passing through the GAT.
In the first round, each constraint node c; attends to its neighbors A; using an attention stucture with
H = 8 attention heads:

H
1 h) o(h h) o(h
= 13 (otioen X adtott
h=1 JEN;

14

554
555

557

558

559
560
561
562
563
564

565

566
567
568

569

570
571

where 6!") € R?*4 and H(h) R?*4 are learnable weights. The updated constraint embeddings c/
are averaged across H attentlon heads using attention weights [9]

h h
(h) exp(w-lrp([eﬁ,l)cue(1Vj79£ :[)el,j}))
ij,l =
T Yhen exp(w] p(10Vci, 001 vi, 0V e; 4]))

where the attention coefficients w; € R3¢ and 0() € R?*4 are both learnable weights and p(-)

refers to the LeakyReLU activation function with negatlve slope 0.2. In the second round, similary,
each variable node attends to its neighbors to get updated variable node embeddings

H
1 h h h
v =13~ (ot + 3 athotie
h=1 iENj

with attention weights

h
w expwlp(8el,00)v; 0"e; 1))
1,2 h 3
" Yhew, oxp(wlp((00¢;. 015, 00 i)

where wy € R3? and 0&2), 05}}2), 092) € R%*4 are learnable weights. After the two rounds of message
passing, the final representations of variables v’ are passed through a 2-layer MLP with 64 hidden
units per layer to obtain a scalar value for each variable. Finally, we apply the sigmoid function to get
a score between 0 and 1.

B.1 Features

We use features proposed in Gasse et al. [21] for node features and edge features in the bipartite
graph and also include a fixed-size window of most recent incumbent values as variable node features
with the window size set to 3 in experiments. In addition, we include features proposed in Khalil
et al. [40] computed at the root node of BnB to make it a richer set of variable node features. The full
list of features can be found in Table 2 in Appendix of Gasse et al. [21] and Table 1 in Khalil et al.
[40]. In our implementation, we compute them using the APIs provided by the Ecole library [62ﬂ

C Additional Details of Instance Generation
We present the ILP formulations for the minimum vertex cover (MVC), maximum independent set
(MIS), set covering (SC) and combinatorial auction (CA) problems. For each test set, Table [3] shows

its average numbers of variables and constraints.

Table 3: Names and the average numbers of variables and constraints of the test instances.

Small Instances Large Instances
Name MVC-S MIS-S CA-S SC-S | MVC-L MIS-L CA-L SC-L
#Variables 1,000 6,000 4,000 4,000 2,000 12,000 8,000 8,000
#Constraints 65,100 23,977 2,675 5,000 | 135100 48,027 5353 5,000

Cl1 MVC

In an MVC instance, we are given an undirected graph G = (V, E). The goal is to select the smallest
subset of nodes such that at least one end point of every edge in the graph is selected:

min) o 2,
st xy+x, > 1, V(u,v) € E,
x, € {0,1}, Vo e V.

"More details and the source code can be found at https://doc.ecole.ai/py/en/stable/reference/
observations.html.

15

https://doc.ecole.ai/py/en/stable/reference/observations.html
https://doc.ecole.ai/py/en/stable/reference/observations.html

572

573
574

575

576
577
578

579

580
581
582

583

584
585
586

587
588
589
590
591
592

593
594
595
596
597
598
599

600
601
602

603

605
606

C.2 MIS

In an MIS instance, we are given an undirected graph G = (V, E). The goal is to select the largest
subset of nodes such that no two nodes in the subsets are connected by an edge in G-

min—) .y 7,
stz +x, <1,V(u,v) € E,
z, € {0,1}, Vo € V.

C3 SC

In an SC instance, we are given m elements and a collection .S of n sets whose union is the set of all
elements. The goal is to select a minimum number of sets from .S such that the union of the selected
set is still the set of all elements:

min) ¢,
St Y ecgics Ts = 1, Vi € [m],
zs €{0,1}, Vs € S.

C4 CA

In a CA instance, we are given n bids {(B;,p;) : ¢ € [n]} for m items, where B; is a subset of items
and p; is its associated bidding price. The objective is to allocate items to bids such that the total
revenue is maximized:

min — -, Piti
st Yijep i <1,Vj € [m],
T; € {07 1}7 Vi € [n]

D Additional Details on Hyperparameter Tuning

For RL-LNS, we use all the hyperparameters provided in their code [[74] in our experiments. For the
other LNS methods, all hyperparameters used in experiments are fine-tuned on the validation set and
the hyperparameter tunings are described in the following.

For 3, which upper bounds the neighborhood size, we tried values from {0.25,0.5,0.6,0.7}. 8 =
0.25 is the worst for all approaches, resulting in the highest gap. For LB-RELAX, IL-LNS and
CL-LNS, all values perform similarly (because they select effective neighborhoods early in the search
and their neighborhood sizes either do not reach the upper bound or they already converge to good
solutions before reaching it). For RANDOM and GRAPH, 3 = 0.5 is the best for them. So we set
B = 0.5 consistently for all approaches.

For initial neighborhood sizes k°, we observe that the best values are sensitive for approaches that
need longer runtime to select variables, such as LB-RELAX, IL-LNS and CL-LNS, thus they need the
right £Y from the beginning and we fine-tune it for them. For RANDOM and GRAPH, their runtime
for selecting variables is short, and with the adaptive neighborhood size mechanism, they could very
quickly find the right neighborhood size and are insensitive to k°. They converge to the same primal
gaps (< 1% relative differences) with similar primal integrals (< 2% relative differences) using
different k°. Despite the differences being small, we still use the best k9 for them.

For ~y that controls the rate at which k* increases, we tried values from {1,1.01,1.02,1.05}. Overall,
~ does not have a big impact on the performance if v > 1, however v = 1 is far worse than the
others.

For the runtime limit for each repair operation, we tried different limits of 0.5, 1, 2 and 5 minutes.
All approaches are not sensitive to it since most repairs are finished within 20 seconds. Except for
IL-LNS on the SC instances, it selects neighborhoods that require a longer time to repair and a
2-minute runtime limit is necessary. Therefore, we use 2 minutes consistently.

16

607
608
609
610

611
612
613
614
615
616
617

619

620
621

622

623
624

625

626
627

629
630
631
632
633

634
635
636

638
639

Table 4: Hyperparameters with their notations and values used.

Hyperparameter Notation Value
Suboptimality threshold to determine positive samples ap 0.5
Upper bound on the number of positive samples Up 10
Suboptimality threshold to determine negative samples Qn 0.05
Ratio between the numbers of positive and negative samples K 9
Feature embedding dimension d 64
Window size of the most recent incumbent values in variable features 3
Number of attention heads in the GAT H 8
Temperature parameter in the contrastive loss T 0.07
Rate at which k' increases o' 1.02
Upper bound on k? as a fraction of number of variables B8 0.5
Temperature parameter for sampling variables in IL-LNS n 0.5
Initial neighborhood size E° Fine-tuned for each case
Runtime for finding initial solution 10 seconds
Runtime limit for each reoptimization 2 minutes
Learning rate (CL-LNS and IL-LNS) 1073
Batch size (CL-LNS and IL-LNS) 32
Number of training epochs (CL-LNS and IL-LNS) 30

For BnB, the aggressive mode is fine-tuned for each problem on the validation set. With the aggressive
mode turned on, BnB (SCIP) does not always deliver better anytime performance than having it
turned off. Based on the validation results, the aggressive mode is turned on for MVC and SC
instances and turned off for CAT and MIS instances.

For IL-LNS, it uses the same training dataset as CL-LNS but uses only the positive samples. We
fine-tune its hyperparameters for each problem on the validation set, resulting in a different £° on
the SC instance from CL-LNS. Also in Sonnerat et al. [69], they use sampling methods to select
variables when using the learned policy. For the temperature parameter 7 in the sampling method, we
tried values from {1/2,2/3, 1} and nn = 0.5 performs the best overall. However, in our experiment,
we observe that our greedy method described in Section[4.4] works better for IL-LNS on SC and MIS
instances, thus, CL-LNS is compared against the corresponding results on SC and MIS instances.

For LB-RELAX, there are three variants of it presented in Huang et al. [[36]]. We present only the best
of the three variants for each problem in the paper for simplicity.

In Table 4] we summarize all the hyperparameters with their notations and values used in our
experiments.

E Additional Experimental Results

In this section, we add two more baselines and evaluate all approaches on one more metric. We show
that CL-LNS outperforms all approaches in terms of all metrics.

‘We establish two additional baselines:

* LB: LNS which selects the neighborhood with the LB heuristics. We set the time limit to 10
minutes for solving the LB ILP in each iteration;

* GRAPH: LNS which selects the neighborhood based on the bipartite graph representation of
the ILP similar to GINS [56]. A bipartite graph representation consists of nodes representing
the variables and constraints on two sides, respectively, with an edge connecting a variable
and a constraint if a variable has a non-zero coefficient in the constraint. It runs a breadth-
first search starting from a random variable node in the bipartite graph and selects the first
Kkt variable nodes expanded.

Figure [7]shows the full results on the primal gap as a function of runtime. Figure [§]shows the full
results on the survival rate as a function of runtime. Figure 9] shows the full results on the primal
bound as a function of runtime. Tables [5} [6] [7]and [§] present the average primal bound, primal gap
and primal integral at 15, 30, 45 and 60 minutes runtime cutoff, respectively, on the small instances.
Tables [0} [I0] [TT] and [T2] present the average primal bound, primal gap and primal integral at 15, 30,
45 and 60 minutes runtime cutoff, respectively, on the large instances.

17

640
641
642

643
644

—— BnB —— RANDOM LB-RELAX ~ —— GRAPH — LB ILLLNS ~—— RL-LNS —— CL-LNS

— —

e ——

107t 107t

Primal Gap
=
o
N
Primal Gap
= =
< <
Primal Gap
=
o
o
Primal Gap
=
Q

1073
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(a) MVC-S (left) and MVC-L (right). (b) MIS-S (left) and MIS-L (right).
107! 107!
101 107 (S
=% a - a \ =%
© ® -2 © ©
102 10 102 \
0 1000 2000 3000 0 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(c) CA-S (left) and CA-L (right). (d) SC-S (left) and SC-L (right).

Figure 7: The primal gap (the lower the better) as a function of time, averaged over 100 instances.
For ML approaches, the policies are trained on only small training instances but tested on both small
and large test instances.

—— BnB —— RANDOM LB-RELAX —— GRAPH

LB IL-LNS —— RL-LNS —— CL-LNS

1.0

"""

Survival Rate with
Primal Gap = 1.00%
o o o o o &
o N B o © o
Survival Rate with
Primal Gap = 1.00%
o © o 0o o ¢
o N S o =] o
Survival Rate with
Primal Gap = 1.00%
o o o o o &
o N B & ® o
|
Survival Rate with
Primal Gap = 1.00%

o o o o o
o 8N ® o ®

J 4I—’7

0 1000 2000 3000 0 1000 2000 3000) 0 1000 2000 3000 ’ 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(a) MVC-S (left) and MVC-L (right). (b) MIS-S (left) and MIS-L (right).
o 1.0 o 1.0 o 1.0 o 1.0
N = x X
280.3 280.8 28_08 ggo.a
Vo6 £Vo6 Vo6 ZVoe
=5 <5 =5 3
§904 EEO.A §904 590.4 -l
cEo2 tEo2 /,/ ¢Eo02 €02
AL Ak A& 7 s
0.0 0.0 0.0 0.0
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(c) CA-S (left) and CA-L (right). (d) SC-S (left) and SC-L (right).

Figure 8: The survival rate (the higher the better) over 100 instances as a function of time to meet
primal gap threshold 1.00%. For ML approaches, the policies are trained on only small training
instances but tested on both small and large test instances.

Next, we evaluate the performance with one additional metric: The gap to virtual best at time q for
an approach is the normalized difference between its best primal bound found up to time g and the
best primal bound found up to time ¢ by any approach in the portfolio.

Figure 10| shows the full results on the best performing rate as a function of runtime. Figure[TT] shows
the full results on the gap to virtual best as a function of runtime.

18

—— BnB —— RANDOM LB-RELAX ~—— GRAPH —— LB IL-LNS =—— RL-LNS —— CL-LNS

460 920
—1950 —3900
2 Bo10 - -
3 3 A § 2000 5 -4000
® % 900 2 2
E£450 £ £ —2050 g —4100
o ~ 2 890 -~ £ &
445 -2100 — —-4200
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(a) MVC-S (left) and MVC-L (right). (b) MIS-S (left) and MIS-L (right).
120.0
—95000 —190000 o 185 S 1175
K T 3 5
5 ~100000 S 200000 @ 180 381150
o 3] o p—
3 —105000 E —210000 £ \ g1125
E _— | £ &£ 175 =
£ -110000 £ ~220000 \ | * \ S110.0f A\ SO
~115000 230000 T 170 107.5
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(¢) CA-S (left) and CA-L (right). (d) SC-S (left) and SC-L (right).

Figure 9: The primal bound (the lower the better) as a function of time, averaged over 100 instances.
For ML approaches, the policies are trained on only small training instances but tested on both small
and large test instances.

- BnB = RANDOM LB-RELAX = GRAPH — | B IL-LNS = RL-LNS = CL-LNS

1.0 o 1.0 210 o 1.0

© ‘T] k]

208 0.8 \/\\ 208 0.8

2 k g 2 g

£0.6 £06 £0.6 £06

204 204 204 204

& & & &

$0.2 0.2 <_/_(4 0.2 0.2

(] L3 (] Q

“0.0 0.0 0.0 ©0.0
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds

(a) MVC-S (left) and MVC-L (right). (b) MIS-S (left) and MIS-L (right).

1.0 o 1.0 10 o 1.0

© ‘T T T

20.8 \ 208 osl~— | 208

o o o =

2 2 2 2

£0.6 £06 £0.6 £06

204 204 204 204

& & & &

% 0.2 4 0.2 4 0.2 0.2 ==

3 3 s |2 8 =

0.0 0.0 0.0 0.0
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(c) CA-S (left) and CA-L (right). (d) SC-S (left) and SC-L (right).

Figure 10: The best performing rate (the higher the better) as a function of runtime over 100 test
instances. For ML approaches, the policies are trained on only small training instances but tested on
both small and large test instances.

19

—— BnB —— RANDOM LB-RELAX GRAPH — LB IL-LNS ~ =—— RL-LNS =—— CL-LNS

107t 107t 107t 107t
3 D [——— —
N NS — - T ~—————| §. _ g
@10 @ 10 o 01072 ® 1072
5 |3 | 5 |\ E
g 1073 g 1072 E 1073 § 1073
I
al0 210 1074 al0
T © ? @
o o (U] O
0
1000 2000 3000 0 1000 2000 3000 ° 1000 2000 3000 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(a) MVC-S (left) and MVC-L (right). (b) MIS-S (left) and MIS-L (right).
107t 107t
2101 L\ 4107 # T —
INT—=! |© o e P —
S107? 1072 B ~—F""—| 8
E £
21073 21073 8 2
a 210 5107 2107
8 8 It 8
1078 103 0 0
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
(c) CA-S (left) and CA-L (right). (d) SC-S (left) and SC-L (right).

Figure 11: The gap to virtual best (the lower the better) as a function of runtime, averaged over 100
test instances. For ML approaches, the policies are trained on only small training instances but tested
on both small and large test instances.

Table 5: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 15 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS
BnB 45041£9.85 1712048 25.7%33 | -1,981.72£2349 6.661089 742+44
LB 456.78+1122 3.07£1.00 329451 | -2,047.01+£18.76 3.58+0.60 62.443.8
RANDOM 4473341133 1.024128 1154113 | -2,110.73+11.86 0.58+0.19 12.8+1.6
GRAPH 4479841130 1.16£128 14.0+£10.6 | -2,104.62+12.23 0.87+0.17 18.5+1.7
LB-RELAX 44923+1149 143£151 19.6+£109 | -2,093.80+£12.07 138+023 22.942.1
IL-LNS 444.5049.69 0.4040.28 102455 | -2,111.49+12.10 0.544+020 10.5+1.8
RL-LNS 446.12+10.10 076036 119429 | -2,113.48+11.72 0.45+0.17 9.5+1.7
CL-LNS 443.514+9.58 0.18--0.10 4.04+2.1 | -2,114.66+12.42 0.3940.19 6.4+1.6
CA SC
BnB 112,703E£1,682 3.06£0.70 674L166 173.26E£13.00 228+134 459E13.0
LB -108,6474£2,227 6554142 140.749.9 173.83+12.93 2.60+131 70.6+15.6
RANDOM | -108,576+1,709 6.61£1.12 69.1£8.5 1756141276 3.60+£1.44 4364138
GRAPH -107,189:£1,977 7.81+1.15 84.7+9.8 187.69+14.24 9.7742.17 89.9+19.9
LB-RELAX | -107,133%1,816 7.86+£0.76 89.5+6.2 172.79+12.76 2.024+121 30.0+11.4
IL-LNS -113,501£1,611 2.38+0.66 52.4+10.9 1717241242 1434£1.00 26.9+9.2
RL-LNS -108,1204+1,906 7.01+£1.10 71.849.3 1723541245 1794096 41.4+8.2
CL-LNS -115,499+1,626 0.66+0.33 33.3+6.8 1702741221 0.59+0.67 117474

Table 6: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 30 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI

MVC MIS
BnB 449.67+9.69 1.55+0.44 40.246.6 | -2,004.24+2621 5.60+1.00 127.1+12.4
LB 454.89+11.55 2.66+1.16 58.2£14.1 -2,064.30£16.40 2.77£0.51 89.9+7.3
RANDOM 447.16+£11.22 0.98+1.26 20.6+22.5 | -2,11523£11.82 0.37£0.16 16.9+2.7
GRAPH 447751139 1.11£1.30 2424221 | -2,111.84£12.06 0.53£0.16 244427
LB-RELAX 449.02+11.53 1.38£1.51 32.14+£242 | -2,102.85£11.97 0.95+0.19 33.0+3.6
IL-LNS 444.27+9.61 0.3540.25 13.54£6.9 | -2,115.30+£12.04 0.36£0.18 14.4+£32
RL-LNS 44571£9.98 0.67£0.35 182457 | -2,116.64£11.53 0.30£0.15 127429
CL-LNS 443.48+9.56 0.17+0.09 55+3.6 | -2,117.58+11.86 0.26+0.17 9.3+3.0

CA SC
BnB -113,068+1,595 2.75+0.62 93.5£18.6 172.09£12.65 1.63+1.20 62.9£22.5
LB -110,303+2,001 5.13+1.08 191.6+16.9 172.37£12.71 1.79£1.11 89.4+22.3
RANDOM -109,040+1,685 6.21+1.05 126.8+17.6 174.70+12.75 3.10+1.38 73.4£24.6
GRAPH -107,802+1,892 7.28+1.07 152.2+18.9 186.79+14.13 9.33+2.28 175.7+38.8
LB-RELAX | -114,103%1,521 1.86£0.57 109.5+9.4 171.60412.43 1.36£1.02 44.6+19.3
IL-LNS -114,621+1638 1.41£0.58 68.1£13.9 171.59+12.45 1.35+1.00 39.3+17.4
RL-LNS -108,562+1,854 6.63+1.05 132.9+18.2 171.70+£12.30 1.42+0.88 55.7£15.6
CL-LNS -115,513+1,621 0.654-0.32 39.1+11.6 170.16+12.13 0.531-0.63 16.7+12.3

20

Table 7: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 45 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI

MVC MIS
BnB 449.28+£9.77 1.46£0.42 53.7£9.9 | -2,010.68+21.72 5.2940.79 176.0£19.7
LB 453.84+11.65 2.44+1.26 80.7+24.6 | -2,075.43£14.84 2.24+0.46 111.6+10.5
RANDOM 447.09+£11.21 0.96+1.26 2944336 | -2,116.96£11.54 0.29+£0.15 19.8+3.9
GRAPH 447.42+11.19 1.04+1.27 33.9+33.4 | -2,11442£11.74 0.41£0.16 28.6+3.8
LB-RELAX 449.01£11.53 1.38+1.51 44.6£37.6 | -2,106.88+11.40 0.7640.20 40.6£5.0
IL-LNS 444.13+£9.68 0.32£0.26 16.5£8.5 | -2,11743+11.79 0.2640.17 17.2+4.5
RL-LNS 445544998 0.63£0.34 24.0+£8.6 | -2,117.794+11.34 0.2540.14 15.2+4.1
CL-LNS 443.48+9.56 0.17+0.09 71451 | -2,119.04+11.98 0.19+0.16 11.3+4.2

CA SC
BnB -113,421+£1,599 2.45+0.62 116.3+£22.0 171.47£12.67 1.27£1.01 75.9£30.6
LB -111,113+1,835 4.43+0.81 233.3+22.3 171.54+12.85 1.30+0.98 102.4+28.5
RANDOM -109,253+1,697 6.03+1.02 181.94+26.2 174.15+£12.94 2.78+1.30 99.8£35.3
GRAPH -108,169+1,834 6.96+£1.06 216.2+27.8 186.124+14.24 9.004£2.23 258.1458.1
LB-RELAX | -114,268+1,512 1.72+0.57 125.3+13.6 170.984+12.38 1.00+0.88 54.8£25.6
IL-LNS -114,871+£1,602 1.20+0.56 79.7£17.3 171.55+12.47 1.33£0.97 51.24£25.7
RL-LNS -108,776+1,813 6.44+1.04 191.7+27.0 171.35+£1229 1.224+0.85 67.5£22.6
CL-LNS -115,513+1,621 0.65+0.32 44.9£17.0 170.15+12.12 0.53+0.62 21.5£17.5

Table 8: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 60 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC-S MIS-S
BnB 1486319058 1324043 66.1LI3.1 | 20148542004 5104060 22285250
LB 45345£11.81 2354130 10224359 | -2,079.0741434 2.074£044 130.9413.6
RANDOM 447061121 0964126 38.0+44.8 | -2,117.92+1131 0.24-0.14 22.145.0
GRAPH 447.144£10.83 0984120 4294440 | -2,116.15+1158 0.324£0.15 31.845.0
LB-RELAX 449.01£11.53 1.38+151 57.04£512 | -2,109.1711.17 0.6540.20 46.9+6.5
IL-LNS 444004973 0294023 1924102 | -2,118.384+11.77 0.2240.17 19.445.8
RL-LNS 445454999 0612034 29.6+11.5 | -2,118444+1136 0.2240.14 172452
CL-LNS 443.48+£9.56 0.172-0.09 87467 | -2,119.78+12.14 0.15+0.15 12.84+5.4
CA-S SC-S
BnB 113,608L1,611 2284059 1374L259 1712251250 1132005 86.7L379
LB S11134241,732 4234075 272.14£269 171.394£12.81 1224097 113.74352
RANDOM | -109,39741,684 5.904+1.02 235.6-34.9 173.954£12.98 2674129 124.34454
GRAPH -10842241,775 674+1.03 27774365 185.57+14.17 8.74+2.13 337.8+76.4
LB-RELAX | -114348+1516 1.65+0.57 140.5+18.3 170.74£12.35 0.86+:0.83 6324316
IL-LNS -115,00121,564 1.0940.51 90.04£20.8 1715541247 1332097 6324343
RL-LNS -108,92041,816 63241.03 24924359 1711441230 1.10£0.77 77.84289
CL-LNS | -115513+£1,621 0.65+032 50.74+22.7 170.11+12.10 0.50+£0.58 2624128

Table 9: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent),
primal integral (PI) at 15 minutes time cutoff, averaged over 100 instances and their standard

deviations.
PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 919.96+12.38 4.06£0.38 368134 | 38883912062 8241031 763%28

LB 907.06+12.46 2.69+0.36 327432 | -3.959.15+59.75 6.57+134 70.0+3.6
RANDOM 886.97+£12.69 0.49:+0.25 1154220 | -421532+1586 0524012 12.4+1.0
GRAPH 888.28+£12.61 0.64-:0.26 18.042.3 | -4,18596+£17.29 1.2240.17 232415
LB-RELAX 901.37£12.66 2.08-:0.30 301428 | -4,148.06+£19.51 2114020 332418
IL-LNS 886.324+12.63 0.42+0.26 12.6+1.8 | -4203.74+16.80 0.80+0.17 14.8+1.7
RL-LNS 890.78+12.34 0.92-£0.30 18.7425 | -4215.17+£1597 0.5340.14 11.5+1.2
CL-LNS 883.18+12.52 0.06--0.05 77415 | -422096::15.68 0.39+0.14 6.8+1.5

CA SC

BnB 194128114403 15431620 1644L118 11042E744 292E£149 6331122
LB 20387244522 11.18+1.72 149.9+8.6 117.36£8.84 8.58+2.85 89.3+19.3
RANDOM 215,1834£2,670 6.26+0.74 75.8+6.0 11291+£7.72 5.0442.03 59.94+16.8
GRAPH 210,15742,697 8444085 108.86.9 116.2847.84 7.81+1.86 89.2:£19.6
LB-RELAX | -222,638+4,846 3.01+1.78 102.5+123 109.66+7.24 225+1.51 3624133
IL-LNS 211,93843,323 7.67+1.22 89.948.9 109.1246.97 1.79+1.26 3244107
RL-LNS 216,78842,730 5.56+0.85 58.1+6.9 109.38£6.89 2.03+1.08 83.6+88
CL-LNS 218,51042,980 4.81+0.81 61.3+7.1 107.95+6.78 0.73+0.57 23.1+8.6

21

Table 10: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent),
primal integral (PI) at 30 minutes time cutoff, averaged over 100 instances and their standard

deviations.
PB PG (%) PI PB PG (%) PI
MVC MIS
BnB 919.06+12.38 4.0620.38 734168 | -3,888.391£2062 8241031 1505556
LB 900.15+12.32 1.9540.35 52660 | -4,009.23+71.94 539+159 123.1+15.1
RANDOM 886.39+12.71 0.43+0.25 156:£3.9 | -422574+1563 0.2820.10 15.8+1.8
GRAPH 886.89+12.79 0.48:+0.23 229439 | -420629+16.76 0.74-0.16 31.6+2.7
LB-RELAX 887.64+1221 0.5740.23 394444 | -4,177.14+1822 1.42+0.16 48.5£3.0
IL-LNS 885.58+12.65 0.33+0.26 159440 | -421632+£17.30 0.5040.17 20.443.0
RL-LNS 888.890+12.64 0.71:£0.30 258448 | -4224374+1579 0.3140.13 15.142.2
CL-LNS 883.07£12.61 0.05+0.04 8.1:+2.1 | -4,226.65+15.56 0.26:0.13 9.7+£2.6
CA SC

BnB 216,772E13,060 5.58+542 257.14564 109391726 2.02£136 844+222
LB 206,52643,750 10.03+£1.39 245.1£19.2 11643+£8.97 7.842.88 162.6+39.2
RANDOM 216,32642,603 5764074 129.4-12.1 111.71+£7.65 4.0241.86 100.6:£32.0
GRAPH 213,14242,713 7.14+£078 177.6£132 112.74£7.64 4914180 141.7431.1
LB-RELAX | -225,154+4,366 1.91+1.60 12194239 109.26+7.07 1914142 53.9+245
IL-LNS 214,495+3,148 6.56+£1.01 154.0+17.9 109.044+6.94 1.72+£1.19 48.14+213
RL-LNS 217,60042,705 5.20+0.84 106.3£14.2 108.66£6.83 1384099 98.1+15.1
CL-LNS 22325742667 2744071 950125 107.7846.64 0.58+045 28.6:12.6

Table 11: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent),
primal integral (PI) at 45 minutes time cutoff, averaged over 100 instances and their standard

deviations.
PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 907.44E12.77 2.73+£043 1072194 | -3,913.0314693 7.66E£1.06 222.619.1

LB 8947741241 1.36+0.30 66.3482 | -4,063.18+54.80 4.11+1.18 16524257
RANDOM 886.15+12.71 0.4040.24 192459 | -423024+1556 0.17-£0.09 17.8+2.5
GRAPH 886.53+12.72 0.44-:0.23 270457 | -421585+16.16 0.510.16 37.1439
LB-RELAX 887.00+12.32 0.49+0.23 441458 | -4,191.17+£17.76 1.0940.16 59.74+4.2
IL-LNS 885.234+12.65 0.29+0.24 18.746.0 | -4222.04+16.64 0.36%0.16 242443
RL-LNS 888.25412.70 0.63+0.31 31.8472 | -4228.78+15.68 0.2040.12 17.343.1
CL-LNS 883.07£12.61 0.05--0.04 8.6::2.7 | -4,230.20+£15.19 0.1740.11 11.6+3.6

CA SC

BnB 221424E7,149 3541283 293.0L713 100.02£739 1.67£138 100.7E32.1

LB 20829443906 9.26+1.42 330.9+27.6 115.6748.66 7.25+£2.68 230.3260.0
RANDOM | -21681942,611 5544073 180.1£18.1 111244754 3.63£181 134.9+4638
GRAPH 2143314+2,641 6.63+0.83 239.2419.7 111.96+7.60 4.25+1.78 182.5+43.6
LB-RELAX | 22564144235 1.70+£1.53 138.14+37.1 109.26+7.07 1.91£142 71.1+365
IL-LNS 216,70543,062 5.59+0.97 208.7+25.7 109.04£6.94 1724119 63.6+318
RL-LNS 21798742711 5034081 152.3+21.4 108.22+6.75 0.99+£0.87 108.6421.2
CL-LNS 22723542,698 1.01+0.54 111.7+16.6 107.784+6.64 0.58+£0.45 33.9+17.6

Table 12: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent)
and primal integral (PI) at 60 minutes time cutoff, averaged over 100 instances and their standard

deviations.
PB PG (%) PI PB PG (%) PI
MVC-L MIS-L
BnB 0044111295 2411040 1302E11.1 | -3,970.78E71.54 629E1.62 285.1L18.2
LB 893.56+12.62 1224030 77.8410.1 | -4,079.76:£43.09 3.724+0.87 200.7+32.5
RANDOM 886.00£12.74 0.38-£0.24 227480 | -4,232.68+1542 0.11::0.08 19.0+3.1
GRAPH 886.34412.67 0.4240.23 30947.6 | -422089+1642 0.3940.15 41.145.1
LB-RELAX 886.68+12.33 0.46:+0.23 484475 | -4,199.04+17.54 0.9140.16 68.645.5
IL-LNS 885.00+12.56 0.27+0.23 212481 | -422528+1625 0.2940.15 27.145.5
RL-LNS 887.90+12.67 0.59-0.30 373496 | -4231.52+1597 0.1420.12 18.9+4.1
CL-LNS 883.07£12.61 0.05--0.04 9.1+3.4 | -4232.50+£14.86 0.1220.11 12.9+4.4
CAL SCL

BnB 223,22515,106 274187 320.9L83.1 108871735 154E133 1150%425

LB 208,50043,976 9.17+1.43 414.0+£36.9 115.1248.77 6.80£2.73 293.54+79.7
RANDOM | -217.204£2,612 5374075 229.2424.4 110.88+£7.55 3314179 16644613
GRAPH 21492642649 6374086 297.54+26.9 111494751 3.85+1.74 218.9+56.7
LB-RELAX | -225.8484+4201 1.61£1.50 153.0+50.3 109.26+7.07 1.91+142 88.3+489
IL-LNS 219,0744+3278 4564098 254.2433.4 109.0446.94 1724119 79.14+42.4
RL-LNS 21827342725 4914081 197.04£28.5 107.874£6.74 0.66£0.72 116.2427.1
CL-LNS | -229,331+£2,800 0.0940.10 116.14-18.0 107.7846.64 0.58£0.45 3924232

22

	Introduction
	Background
	ILPs
	LNS for ILP solving
	LB Heuristic

	Related Work
	LNS for ILPs and Other COPs
	Learning to Solve ILPs with BnB
	Contrastive Learning for COPs

	Contrastive Learning for LNS
	Data Collection
	Policy Network
	Training with a Contrastive Loss
	Applying Learned Policy bold0mu mumu

	Empirical Evaluation
	Setup
	Results

	Conclusion
	Additional Related Work
	LNS-Based Primal Heuristics in BnB
	Learning to Solve Other COPs

	Network Architecture
	Features

	Additional Details of Instance Generation
	MVC
	MIS
	SC
	CA

	Additional Details on Hyperparameter Tuning
	Additional Experimental Results

