
Searching Large Neighborhoods for
Integer Linear Programs with Contrastive Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Integer Linear Programs (ILPs) are powerful tools for modeling and solving many1

combinatorial optimization problems. Recently, it has been shown that Large2

Neighborhood Search (LNS), as a heuristic algorithm, can find high-quality so-3

lutions to ILPs faster than Branch and Bound. However, how to find the right4

heuristics to maximize the performance of LNS remains an open problem. In this5

paper, we propose a novel approach, CL-LNS, that delivers state-of-the-art anytime6

performance on several ILP benchmarks measured by metrics including the primal7

gap, the primal integral, survival rates and the best performing rate. Specifically,8

CL-LNS collects positive and negative solution samples from an expert heuristic9

that is slow to compute and learns a more efficient one with contrastive learning.10

1 Introduction11

Algorithm designs for combinatorial optimization problems (COPs) are important and challenging12

tasks. A wide variety of real-world problems are COPs, such as vehicle routing [73], path planning13

[61] and resource allocation [57] problems, and a majority of them are NP-hard to solve. In the14

past few decades, algorithms, including optimal algorithms, approximation algorithms and heuristic15

algorithms, have been studied extensively due to the importance of COPs. Those algorithms are16

mostly designed by humans through costly processes that often require a deep understanding of the17

problem domains and their underlying structures as well as considerable time and effort. Recently,18

there has been an increased interest in automating algorithm designs for COPs with machine learning19

(ML). Many ML approaches learn to either construct or improve solutions within an algorithmic20

framework, such as greedy search, local search or tree search, for a specific COP, such as the traveling21

salesman problem (TSP) [75, 80], vehicle routing problem (VRP) [45] or independent set problem22

[53], and are often not easily applicable to other COPs.23

In contrast, Integer Linear Programs (ILPs) can flexibly encode and solve a broad family of COPs,24

such as network design [39, 15, 32], mechanism design [14], facility location [28, 3] problems. ILPs25

can be solved by Branch and Bound (BnB) [48], an optimal tree search algorithm that can achieve26

state-of-the-art for ILPs. Over the past decades, BnB has been improved tremendously to become the27

core of many popular ILP solvers such as SCIP [8] and Gurobi [24]. However, due to its exhaustive28

search nature, it is hard for BnB to scale to large instances [40, 21].29

On the other hand, Large Neighborhood Search (LNS) has been shown to find high-quality solutions30

much faster than BnB for large ILP instances [68, 74, 69, 36]. LNS starts from an initial solution (i.e.,31

a feasible assignment of values to variables) and then improves the current best solution by iteratively32

picking a subset of variables to reoptimize while leaving others fixed. Picking which subset to33

reoptimize, i.e., the destroy heuristic, is a critical component in LNS. Hand-crafted destroy heuristics,34

such as the randomized heuristic [68, 69] and the Local Branching (LB) heuristic [20], are often35

either inefficient (slow to find good subsets) or ineffective (find subsets of bad quality). ML-based36

Submitted to ICML 2023 Workshop: Sampling and Optimization in Discrete Space. Do not distribute.

destroy heuristics have also been proposed and outperformed hand-crafted ones. State-of-the-art37

approaches include IL-LNS [69] that uses imitation learning (IL) to imitate the LB heuristic and38

RL-LNS [74] that uses a similar framework to IL-LNS but trained with reinforcement learning (RL).39

In this paper, we propose a novel ML-based LNS for ILPs, namely CL-LNS, that uses contrastive40

learning (CL) [10, 43] to learn efficient and effective destroy heuristics. Similar to IL-LNS [69], we41

learn to imitate the Local Branching (LB) heuristic, a destroy heuristic that selects the optimal subset42

of variables within the Hamming ball of the incumbent solutions. LB requires solving another ILP43

with the same size as the original problem and thus is computationally expensive. We not only use44

the optimal subsets provided by LB as the expert demonstration (as in IL-LNS) but also leverage45

intermediate solutions and perturbations. When solving the ILP for LB, intermediate solutions are46

found and those that are close to optimal in terms of effectiveness become positive samples. We also47

collect negative samples by randomly perturbing the optimal subset. With both positive and negative48

samples, instead of a classification loss as in IL-LNS, we use a contrastive loss that encourages the49

model to predict the subset similar to the positive samples but dissimilar to the negative ones with50

similarity measured by dot products [59, 26]. Finally, we also use a richer set of features and graph51

attention networks (GAT) instead of GCN to further boost performance.52

Empirically, we show that CL-LNS outperforms state-of-the-art ML and non-ML approaches at53

different runtime cutoffs ranging from a few minutes to an hour in terms of multiple metrics, including54

the primal gap, the primal integral, the best performing rate and the survival rate, demonstrating the55

effectiveness and efficiency of CL-LNS. In addition, CL-LNS shows great generalization performance56

on test instances two times larger than training instances.57

2 Background58

2.1 ILPs59

An integer linear program (ILP) is defined as min cTx s.t. Ax ≤ b and x ∈ {0, 1}n, where x =60

(x1, . . . , xn)
T denotes the n binary variables to be optimized, c ∈ Rn is the vector of objective61

coefficients, A ∈ Rm×n and b ∈ Rm specify m linear constraints. A solution to the ILP is a feasible62

assignment of values to the variables. In this paper, we focus on the formulation above that consists63

of only binary variables, but our methods can be applied to mixed integer linear programs with64

continuous variables and/or non-binary integer variables.65

2.2 LNS for ILP solving66

LNS is a heuristic algorithm that starts with an initial solution and then iteratively destroys and67

reoptimizes a part of the solution until a runtime limit is exceeded or some stopping condition is68

met. Let I = (A, b, c) be the input ILP, where A, b and c are the coefficients defined in Equation69

(??), and x0 be the initial solution (typically found by running BnB for a short runtime). In iteration70

t ≥ 0 of LNS, given the incumbent solution xt, defined as the best solution found so far, a destroy71

heuristic selects a subset of kt variables X t = {xi1 , . . . , xikt}. The reoptimization is done by solving72

a sub-ILP with X t being the variables while fixing the values of xj /∈ X t the same as in xt. The73

solution to the sub-ILP is the new incumbent solution xt+1 and then LNS proceeds to iteration t+ 1.74

Compared to BnB, LNS is more effective in improving the objective value cTx, especially on difficult75

instances [68, 69, 74]. Compared to other local search methods, LNS explores a large neighborhood76

in each step and thus, is more effective in avoiding local minima.77

Adaptive Neighborhood Size Adaptive methods are commonly used to set the neighborhood size78

kt in previous work [69, 36]. The initial neighborhood size k0 is set to a constant or a fraction of the79

number of variables. In this paper, we consider the following adaptive method [36]: in iteration t,80

if LNS finds an improved solution, we let kt+1 = kt, otherwise kt+1 = min{γ · kt, β · n} where81

γ > 1 is a constant and we upper bound kt to a constant fraction β < 1 of the number of variables to82

make sure the sub-ILP is not too large (thus, too difficult) to solve. Adaptively setting kt helps LNS83

escape local minima by expanding the search neighborhood when it fails to improve the solution.84

2

Figure 1: An overview of training and data collection for CL-LNS. For each ILP instance for training,
we run several LNS iterations with LB. In each iteration, we collect both positive and negative
neighborhood samples and add them to the training dataset, which is used in downstream supervised
contrastive learning for neighborhood selections.

2.3 LB Heuristic85

The LB Heuristic [20] is originally proposed as a primal heuristic in BnB but also applicable in LNS86

for ILP solving [69, 54]. Given the incumbent solution xt in iteration t of LNS, LB aims to find the87

subset of variables to destroy X t such that it leads to the optimal xt+1 that differs from xt on at most88

kt variables, i.e., it computes the optimal solution xt+1 that sits within a given Hamming ball of89

radius kt centered around xt. To find xt+1, the LB heuristic solves the LB ILP that is exactly the90

same ILP from input but with one additional constraint that limits the distance between xt and xt+1:91 ∑
i∈[n]:xt

i=0 x
t+1
i +

∑
i∈[n]:xt

i=1(1− xt+1
i) ≤ kt. The LB ILP is of the same size of the input ILP92

(i.e., it has the same number of variables and one more constraint), therefore, it is often too slow to be93

useful in practice.94

3 Related Work95

In this section, we summarize related work on LNS for ILPs and other COPs, learning to solve96

ILPs with BnB and contrastive learning for COPs. We also summarize additional related work on97

LNS-based primal heuristics for BnB and learning to solve other COPs in Appendix.98

3.1 LNS for ILPs and Other COPs99

A huge effort has been made to improve BnB for ILPs in the past decades, but LNS for ILPs has not100

been studied extensively. Recently, Song et al. [68] show that even a randomized destroy heuristic in101

LNS can outperform state-of-the-art BnB. They also show that an ML-guided decomposition-based102

LNS can achieve even better performance, where they apply RL and IL to learn destroy heuristics103

that decompose the set of variables into equally-sized subsets using a classification loss. Sonnerat104

et al. [69] learn to select variables by imitating LB. RL-LNS [74] uses a similar framework but105

trained with RL and outperforms Song et al. [68]. Both Wu et al. [74] and Sonnerat et al. [69] use the106

bipartite graph representations of ILPs to learn the destroy heuristics represented by GCNs. Another107

line of related work focuses on improving LB. Liu et al. [54] use ML to tune the runtime limit and108

neighborhood sizes for LB. Huang et al. [36] propose LB-RELAX to select variables by solving the109

LP relaxation of LB.110

Besides ILPs, LNS has been applied to solve many COPs, such as VRP [63, 5], TSP [67], scheduling111

[46, 81] and path planning problems [51, 50, 37]. ML methods have also been applied to improve112

LNS for those applications [11, 55, 30, 52, 35].113

3.2 Learning to Solve ILPs with BnB114

Several studies have applied ML to improve BnB. The majority of works focus on learning to either115

select variables to branch on [40, 21, 23, 78] or select nodes to expand [25, 47]. There are also works116

on learning to schedule and run primal heuristics [42, 12] and to select cutting planes [70, 60, 38].117

3

3.3 Contrastive Learning for COPs118

While contrastive learning of visual representations [29, 26, 10] and graph representations [76, 72]119

have been studied extensively, it has not been explored much for COPs. Mulamba et al. [58] derive a120

contrastive loss for decision-focused learning to solve COPs with uncertain inputs that can be learned121

from historical data, where they view non-optimal solutions as negative samples. Duan et al. [16] use122

contrastive pre-training to learn good representations for the boolean satisfiability problem.123

4 Contrastive Learning for LNS124

Our goal is to learn a policy, a destroy heuristic represented by an ML model, that selects a subset of125

variables to destroy and reoptimize in each LNS iteration. Specifically, let st = (I,xt) be the current126

state in iteration t of LNS where I = (A, b, c) is the ILP and xt is the incumbent solution, the policy127

predicts an action at = (at1, . . . , a
t
n) ∈ {0, 1}n, a binary representation of the selected variables X t128

indicating whether xi is selected (ati = 1) or not (ati = 0). We use contrastive learning to learn to129

predict high quality at such that, after solving the sub-ILP derived from at (or X t), the resulting130

incumbent solution xt+1 is improved as much as possible. We use contrastive learning instead of131

other approaches since it is shown to be effective theoretically [71] and has outperformed other132

learning techniques empirically in other domains [18]. Next, we describe our novel data collection133

process, the policy network and the contrastive loss used in training. An overview of our training and134

data collection pipeline is shown in Figure 1. Finally, we introduce how the learned policy is used in135

CL-LNS.136

4.1 Data Collection137

Following previous work by Sonnerat et al. [69], we use LB as the expert policy to collect good138

demonstrations to learn to imitate. Formally, for a given state st = (I,xt), we use LB to find139

the optimal action at that leads to the minimum cTxt+1 after solving the sub-ILP. Different from140

the previous work, we use contrastive learning to learn to make discriminative predictions of at141

by contrasting positive and negative samples (i.e., good and bad examples of actions at). In the142

following, we describe how we collect the positive sample set St
p and the negative sample set St

n.143

Collecting Positive Samples St
p During data collection, given st = (I,xt), we solve the LB ILP144

with the incumbent solution xt and neighborhood size kt to find the optimal xt+1. LNS proceeds to145

iteration t+ 1 with xt+1 until no improving solution xt+1 could be found by the LB ILP within a146

runtime limit. In experiments, the LB ILP is solved with SCIP 8.0.1 [8] with an hour runtime limit147

and kt is fine-tuned for each type of instances. After each solve of the LB ILP, in addition to the148

best solution found, SCIP records all intermediate solutions found during the solve. We look for149

intermediate solutions x′ whose resulting improvements on the objective value is at least 0 < αp ≤ 1150

times the best improvement (i.e., cT(xt−x′) ≥ αp ·cT(xt−xt+1)) and consider their corresponding151

actions as positive samples. We limit the number of the positive samples |St
p| to up. If more than up152

positive samples are available, we record the top up ones to avoid large computational overhead with153

too many samples when computing the contrastive loss (see Section 4.3). αp and up are set to 0.5154

and 10, respectively, in experiments.155

Collecting Negative Samples St
n Negative samples are critical parts of contrastive learning to156

help distinguish between good and bad demonstrations. We collect a set of ctn negative samples St
n,157

where ctn = κ|St
p| and κ is a hyperparameter to control the ratio between the numbers of positive and158

negative samples. Suppose X t is the optimal set of variables selected by LB. We then perturb X t to159

get X̂ t by replacing 5% of the variables in X t with the same number of those not in X t uniformly at160

random. We then solve the corresponding sub-ILP derived from X̂ t to get a new incumbent solution161

x̂t+1. If the resulting improvement of x̂t+1 is less than 0 ≤ αn < 1 times the best improvement (i.e.,162

cT(xt − x̂t+1) ≤ αn · cT(xt − xt+1)), we consider its corresponding action as a negative sample.163

We repeat this ctn times to collect negative samples. If less than ctn negative samples is collected, we164

increase the perturbation rate from 5% to 10% and generate another ctn samples. We keep increasing165

the perturbation rate at an increment of 5% until ctn negative samples are found or it reaches 100%.166

In experiments, we set κ = 9 and αn = 0.05.167

4

4.2 Policy Network168

Following previous work on learning for ILPs [21, 69, 74], we use a bipartite graph representation of169

ILP to encode a state st. The bipartite graph consists of n+m nodes representing the n variables170

and m constraints on two sides, respectively, with an edge connecting a variable and a constraint171

if the variable has a non-zero coefficient in the constraint. Following Sonnerat et al. [69], we use172

features proposed in Gasse et al. [21] for node features and edge features in the bipartite graph and173

also include a fixed-size window of most recent incumbent values as variable node features with the174

window size set to 3 in experiments. In addition to features used in Sonnerat et al. [69], we include175

features proposed in Khalil et al. [40] computed at the root node of BnB to make it a richer set of176

variable node features.177

We learn a policy πθ(·) represented by a graph attention network (GAT) [9] parameterized by learnable178

weights θ. The policy takes as input the state st and outputs a score vector πθ(s
t) ∈ [0, 1]n, one179

score per variable. To increase the modeling capacity and to manipulate node interactions proposed180

by our architecture, we use embedding layers to map each node feature and edge feature to space Rd.181

Let vj , ci, ei,j ∈ Rd be the embeddings of the j-th variable, i-th constraint and the edge connecting182

them output by the embedding layers. Since our graph is bipartite, following previous work [21], we183

perform two rounds of message passing through the GAT. In the first round, each constraint node184

ci attends to its neighbors Ni using an attention structure with H attention heads to get updated185

constraint embeddings c′i (computed as a function of vj , ci, ei,j). In the second round, similarly, each186

variable node attends to its neighbors to get updated variable embeddings v′ (computed as a function187

of vj , c
′
i, ei,j) with another set of attention weights. After the two rounds of message passing, the188

final representations of variables v′ are passed through a multi-layer perceptron (MLP) to obtain a189

scalar value for each variable and, finally, we apply the sigmoid function to get a score between 0 and190

1. Full details of the network architecture are provided in Appendix. In experiments, d and H are set191

to 64 and 8, respectively.192

4.3 Training with a Contrastive Loss193

Given a set of ILP instances for training, we follow the expert’s trajectory to collect training data. Let
D = {(s,Sp,Sn)} be the set of states with their corresponding sets of positive and negative samples
in the training data. A contrastive loss is a function whose value is low when the predicted action
πθ(s) is similar to the positive samples Sp and dissimilar to the negative samples Sn. With similarity
measured by dot products, a form of supervised contrastive loss, called InfoNCE [59, 26], is used in
this paper:

L(θ) =
∑

(s,Sp,Sn)∈D

−1

|Sp|
∑
a∈Sp

log
exp(aTπθ(s)/τ)∑

a′∈Sn∪{a} exp(a
′Tπθ(s)/τ)

where τ is a temperature hyperparameter set to 0.07 [26] in experiments.194

4.4 Applying Learned Policy πθ195

During testing, we apply the learned policy πθ in LNS. In iteration t, let (v1, · · · , vn) := πθ(s
t) be196

the variable scores output by the policy. To select kt variables, CL-LNS greedily selects those with197

the highest scores. Previous works [69, 74] use sampling methods to select the variables, but those198

sampling methods are empirically worse than our greedy method in CL-LNS. However, when the199

adaptive neighborhood size kt reaches its upper bound β ·n, CL-LNS may repeat the same prediction200

due to the deterministic selection process. When this happens, we switch to the sampling method201

introduced in [69]. The sampling method selects variables sequentially: at each step, a variable xi202

that has not been selected yet is selected with probability proportional to vηi , where η is a temperature203

parameter set to 0.5 in experiments.204

5 Empirical Evaluation205

5.1 Setup206

Instance Generation We evaluate on four NP-hard problem benchmarks that are widely used207

in existing studies [74, 68, 65], which consist of two graph optimization problems, namely the208

5

minimum vertex cover (MVC) and maximum independent set (MIS) problems, and two non-graph209

optimization problems, namely the combinatorial auction (CA) and set covering (SC) problems. We210

first generate a test set of 100 small instances for each problem, namely MVC-S, MIS-S, CA-S211

and SC-S. MVC-S instances are generated according to the Barabasi-Albert random graph model212

[2], with 1,000 nodes and an average degree of 70 following [68]. MIS-S instances are generated213

according to the Erdos-Renyi random graph model [17], with 6,000 nodes and an average degree of214

5 following [68]. CA-S instances are generated with 2,000 items and 4,000 bids according to the215

arbitrary relations in Leyton-Brown et al. [49]. SC-S instances are generated with 4,000 variables and216

5,000 constraints following Wu et al. [74]. We then generate another test set of 100 large instances217

for each problem by doubling the number of variables, namely MVC-L, MIS-L, CA-L and SC-L.218

More details of instance generation are included in Appendix. For data collection and training, we219

generate another set of 1,024 small instances for each problem. We split them into training and220

validation sets, each consisting of 896 and 128 instances, respectively.221

Baselines We compare CL-LNS with five baselines: (1) BnB: using SCIP (v8.0.1), the state-of-the-222

art open-source ILP solver, with the aggressive mode fine-tuned to focus on improving the objective223

value; (2) RANDOM: LNS which selects the neighborhood by uniformly sampling kt variables224

without replacement; (3) LB-RELAX [36]: LNS which selects the neighborhood with the LB-RELAX225

heuristics; (4) IL-LNS [69]; (5) RL-LNS [74]. We compare with two more baselines in Appendix.226

For each ML approach, a separate model is trained for each problem on the small training set and227

tested on both small and large test sets. We implement IL-LNS and fine-tune its hyperparameters for228

each problem since the authors do not fully open source the code. For RL-LNS, we use the code and229

hyperparameters provided by the authors and train the models with five random seeds to select one230

with the best performance on the validation sets. We do not compare to the approach by Song et al.231

[68] since it performs worse than RL-LNS on multiple problems [74].232

Metrics We use the following metrics to evaluate all approaches: (1) The primal bound is the233

objective value of the ILP; (2) The primal gap [6] is the normalized difference between the primal234

bound v and a precomputed best known objective value v∗, defined as |v−v∗|
max(v,v∗,ϵ) if v exists and235

v · v∗ ≥ 0, or 1 otherwise. We use ϵ = 10−8 to avoid division by zero; (3) The primal integral [1] at236

time q is the integral on [0, q] of the primal gap as a function of runtime. It captures the quality of and237

the speed at which solutions are found; (4) The survival rate to meet a certain primal gap threshold is238

the fraction of instances with primal gaps below the threshold [69]; Since BnB and LNS are both239

anytime algorithms, we show these metrics as a function of runtime or the number of iterations in240

LNS (when applicable) to demonstrate their anytime performance.241

Hyperparameters We conduct experiments on 2.5GHz Intel Xeon Platinum 8259CL CPUs with242

32 GB memory. Training is done on a NVIDIA A100 GPU with 40 GB memory. All experiments243

use the hyperparameters described below unless stated otherwise. We use SCIP (v8.0.1) [8] to solve244

the sub-ILP in every iteration of LNS. To run LNS, we find an initial solution by running SCIP for 10245

seconds. We set the time limit to 60 minutes to solve each instance and 2 minutes for solving the246

sub-ILP in every LNS iteration. All approaches require a neighborhood size kt in LNS, except for247

BnB and RL-LNS (kt in RL-LNS is defined implicitly by how the policy is used). For LB-RELAX,248

IL-LNS and CL-LNS, the initial neighborhood size k0 is set to 100, 3000, 1000 and 150 for MVC,249

MIS, CA and SC, respectively, except k0 is set to 150 for SC for IL-LNS; for RANDOM, it is set250

to 200, 3000, 1500 and 200 for MVC, MIS, CA and SC, respectively. All approaches use adaptive251

neighborhood sizes with γ = 1.02 and β = 0.5, except for BnB and RL-LNS. For IL-LNS, when252

applying its learned policies, we use the sampling methods on MVC and CA instances and the253

greedy method on SC and MIS instances. For CL-LNS, the greedy method is used on all instances.254

Additional details on hyperparameter tunings are provided in Appendix.255

For data collection, we use different neighborhood sizes k0 = 50, 500, 200 and 50 for MVC, MIS,256

CA and SC, respectively, which we justify in Section 5.2. We set γ = 1 and run LNS with LB until257

no new incumbent solution is found. The runtime limit for solving LB in every iteration is set to 1258

hour. For training, we use the Adam optimizer [44] with learning rate 10−3. We use a batch size of259

32 and train for 30 epochs.260

6

BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

10−2
Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−3

10−2

Pr
im

al
 G
ap

(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−3

10−2

10−1

Pr
im

al
 G
ap

(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

0

10−2

10−1

Pr
im

al
 G
ap

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

(d) SC-S (left) and SC-L (right).

Figure 2: The primal gap (the lower the better) as a function of runtime, averaged over 100 test
instances. For ML approaches, the policies are trained on only small training instances but tested on
both small and large test instances.

Table 1: Primal gap (PG) (in percent), primal integral (PI) at 60 minutes runtime cutoff, averaged
over 100 test instances and their standard deviations. “↓” means the lower the better. For ML
approaches, the policies are trained on only small training instances but tested on both small and
large test instances.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓ PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
MVC-S MIS-S CA-S SC-S

BnB 1.32±0.43 66.1±13.1 5.10±0.69 222.8±25.9 2.28±0.59 137.4±25.9 1.13±0.95 86.7±37.9
RANDOM 0.96±1.26 38.0±44.8 0.24±0.14 22.1±5.0 5.90±1.02 235.6±34.9 2.67±1.29 124.3±45.4
LB-RELAX 1.38±1.51 57.0±51.2 0.65±0.20 46.9±6.5 1.65±0.57 140.5±18.3 0.86±0.83 63.2±31.6

IL-LNS 0.29±0.23 19.2±10.2 0.22±0.17 19.4±5.8 1.09±0.51 90.0±20.8 1.33±0.97 63.2±34.3
RL-LNS 0.61±0.34 29.6±11.5 0.22±0.14 17.2±5.2 6.32±1.03 249.2±35.9 1.10±0.77 77.8±28.9
CL-LNS 0.17±0.09 8.7±6.7 0.15±0.15 12.8±5.4 0.65±0.32 50.7±22.7 0.50±0.58 26.2±12.8

MVC-L MIS-L CA-L SC-L
BnB 2.41±0.40 130.2±11.1 6.29±1.62 285.1±18.2 2.74±1.87 320.9±83.1 1.54±1.33 115.0±42.5

RANDOM 0.38±0.24 22.7±8.0 0.11±0.08 19.0±3.1 5.37±0.75 229.2±24.4 3.31±1.79 166.4±61.3
LB-RELAX 0.46±0.23 48.4±7.5 0.91±0.16 68.6±5.5 1.61±1.50 153.0±50.3 1.91±1.42 88.3±48.9

IL-LNS 0.27±0.23 21.2±8.1 0.29±0.15 27.1±5.5 4.56±0.98 254.2±33.4 1.72±1.19 79.1±42.4
RL-LNS 0.59±0.30 37.3±9.6 0.14±0.12 18.9±4.1 4.91±0.81 197.0±28.5 0.66±0.72 116.2±27.1
CL-LNS 0.05±0.04 9.1±3.4 0.12±0.11 12.9±4.4 0.09±0.10 116.1±18.0 0.58±0.45 39.2±23.2

BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(d) SC-S (left) and SC-L (right).

Figure 3: The survival rate (the higher the better) over 100 test instances as a function of runtime to
meet primal gap threshold 1.00%. For ML approaches, the policies are trained on only small training
instances but tested on both small and large test instances.

7

MVC-S MIS-S CA-S SC-S
NH size Runtime NH size Runtime NH size Runtime NH size Runtime

LB 100 3600±0 3,000 3600±0 1,000 3600±0 100 3600±0
LB (data collection) 50 3600±0 500 3600±0 200 3600±0 50 3600±0

IL-LNS 100 2.1±0.1 3,000 1.3±0.2 1,000 20.8±13.1 150 120.9±1.3
CL-LNS 100 2.2±0.1 3,000 1.3±0.1 1,000 25.1±15.3 100 50.1±10.4

LB (data collection) LB IL-LNS CL-LNS

0 2 4 6 8 10
Number of Iterations

445

450

455

460

Pr
im

al
 B
ou

nd

(a) MVC-S

0 2 4 6 8 10
Number of Iterations

−2100

−2050

−2000

−1950

Pr
im

al
 B
ou

nd
(b) MIS-S

0 2 4 6 8 10
Number of Iterations

−115000

−110000

−105000

−100000

−95000

Pr
im

al
 B
ou

nd

(c) CA-S

0 2 4 6 8 10
Number of Iterations

170

175

180

185

Pr
im

al
 B
ou

nd

(d) SC-S

Figure 4: The primal bound as a function of number of iterations, averaged over 100 small test
instances. LB and LB (data collection) are LNS with LB using the neighborhood sizes fune-tunded
for CL-LNS and for data collection, respectively. The table shows the neighborhood size (NH size)
and the average runtime in seconds (with standard deviations) per iteration for each approach.

5.2 Results261

Figure 2 shows the primal gap as a function of runtime. Table 1 presents the average primal gap and262

primal integral at 60 minutes runtime cutoff on small and large instances, respectively (see results263

at 15, 30 and 45 minutes runtime cutoff in Appendix). Note that we were not able to reproduce264

the results on CA-S and CA-L reported in Wu et al. [74] for RL-LNS despite using their code and265

repeating training with five random seeds. CL-LNS shows significantly better anytime performance266

than all baselines on all problems, achieving the smallest average primal gap and primal integral.267

It also demonstrates strong generalization performance on large instances unseen during training.268

Figure 3 shows the survival rate to meet the 1.00% primal gap threshold. CL-LNS achieves the best269

survival rate at 60 minutes runtime cutoff on all instances, except that, on SC-L, its final survival rate270

is slightly worse than RL-LNS but it achieves the rate with a much shorter runtime. On MVC-L,271

MIS-S and MIS-L instances, several baselines achieve the same survival rate as CL-LNS but it always272

achieves the rates with the shortest runtime. In Appendix, we present more results in comparison273

with two more baselines.274

Comparison with LB (the Expert) Both IL-LNS and CL-LNS learn to imitate LB. On the275

small test instances, we run LB with two different neighborhood sizes, one that is fine-tuned in276

data collection and the other the same as CL-LNS, for 10 iterations and compare its per iteration277

performance with IL-LNS and CL-LNS. This allows us to compare the quality of the learned278

policies to the expert independently of their speed. The runtime limit per iteration for LB is set279

to 1 hour. Figure 4 shows the primal bound as a function of the number of iterations. The table280

in the figure summarizes the neighborhood sizes and the average runtime per iteration. For LB,281

the result shows that the neighborhood size affects the overall performance. Intuitively, using a282

larger neighborhood size in LB allows LNS to find better incumbent solutions due to being able283

to explore larger neighborhoods. However, in practice, LB becomes less efficient in finding good284

incumbent solutions as the neighborhood size increases, sometimes even performs worse than using a285

smaller neighborhood size (the one for data collection). The neighborhood size for data collection286

is fine-tuned on validation sets to achieve the best primal bound upon convergences, allowing the287

ML models to observe demonstrations that lead to as good primal bounds as possible in training.288

However, when using the ML models in testing, we have the incentive to use a larger neighborhood289

size and fine-tune it since we no longer suffer from the bottleneck of LB. Therefore, we fine-tune290

the neighborhood sizes for IL-LNS and CL-LNS separately on validation sets. CL-LNS has a strong291

per-iteration performance that is consistently better than IL-LNS. With the fine-tuned neighborhood292

size, it even outperforms the expert that it learns from (LB for data collection) on MIS-S and CA-S.293

Ablation Study We evaluate how contrastive learning and two enhancements contribute to CL-294

LNS’s performance. Compared to IL-LNS, CL-LNS uses (1) addition features from Khalil et al.295

[40] and (2) GAT instead of GCN. We denote by “FF” the full feature set used in CL-LNS and “PF”296

8

IL-LNS(-GCN-PF)
IL-LNS-GAT-FF

CL-LNS-GCN-PF
CL-LNS-GAT-PF

CL-LNS(-GAT-FF)

0 1000 2000 3000
Runtime in Seconds

10−2
Pr
im

al
 G
ap

(a) MVC-S

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

(b) CA-S

Figure 6: Ablation study: The primal gap as
a function of time, averaged over 100 test in-
stances.

Table 2: Ablation study: Primal gap (PG) (in per-
cent) and primal integral (PI) at 60 minutes runtime
cutoff, averaged over 100 small test instances and
their standard deviations. “↓” means the lower the
better.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
MVC-S CA-S

IL-LNS(-GCN-PF) 0.29±0.23 19.2±10.2 1.09±0.51 90.0±20.8
IL-LNS-GAT-FF 0.24±0.17 15.3±7.3 1.13±0.63 78.9±22.7

CL-LNS-GCN-PF 0.17±0.10 11.4±8,8 0.75±0.40 57.9±21.2
CL-LNS-GAT-PF 0.16±0.09 10.1±0.6 0.76±0.39 53.8±22.1

CL-LNS(-GAT-FF) 0.17±0.09 8.7±6.7 0.65±0.32 50.7±22.7

the partial feature set in IL-LNS. We also evaluate the performance of IL-LNS with FF and GAT297

(denoted by IL-LNS-GAT-FF), CL-LNS with GCN and PF (denoted by CL-LNS-GCN-PF) as well as298

CL-LNS with GAT and PF (denoted by CL-LNS-GAT-PF) on MVC-S and CA-S. Figure 6 shows the299

primal gap as a function of runtime. Table 2 presents the primal gap and primal integral at 60 minutes300

runtime cutoff. The result shows that IL-LNS-GAT-FF, imitation learning with the two enhancements,301

still performs worse than CL-LNS-GCN-PF without any enhancements. CL-LNS-GCN-PF and302

CL-LNS-GAT-PF perform similarly in terms of the primal gaps but CL-LNS-GAT-PF has better303

primal integrals, showing the benefit of replacing GCN with GAT. On MVC-S, three variants of304

CL-LNS have similar average primal gaps and on CA-S, CL-LNS has better average primal gap than305

the other two variants. But adding the two enhancements helps improve the primal integral, leading306

to the overall best performance of CL-LNS on both MVC-S and CA-S.307

6 Conclusion308

We proposed CL-LNS, which uses a contrastive loss to learn efficient and effective destroy heuristics309

in LNS for ILPs. We presented a novel data collection process tailored for CL-LNS and used GAT310

with a richer set of features to further improve its performance. Empirically, CL-LNS significantly311

outperformed state-of-the-art approaches on four ILP benchmarks w.r.t. to the primal gap, the primal312

integral, the best performing rate and the survival rate. CL-LNS achieved good generalization313

performance on out-of-distribution instances that are two times larger than those used in training.314

It is future work to learn policies that can generalize across problem domains. CL-LNS does not315

guarantee optimality and it is also interesting future work to integrate it in BnB for which many other316

learning techniques are developed. Our approach is closely related to and could be useful for many317

problems of identifying substructures in combinatorial searches, for example, identifying backdoor318

variables in ILPs [19] and selecting neighborhoods in LNS for other COPs.319

References320

[1] T. Achterberg, T. Berthold, and G. Hendel. Rounding and propagation heuristics for mixed321

integer programming. In Operations research proceedings 2011, pages 71–76. Springer, 2012.322

[2] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of modern323

physics, 74(1):47, 2002.324

[3] A. R. Amaral. An exact approach to the one-dimensional facility layout problem. Operations325

research, 56(4):1026–1033, 2008.326

[4] S. Amizadeh, S. Matusevych, and M. Weimer. Learning to solve circuit-sat: An unsupervised327

differentiable approach. In International Conference on Learning Representations, 2018.328

[5] N. Azi, M. Gendreau, and J.-Y. Potvin. An adaptive large neighborhood search for a vehicle329

routing problem with multiple routes. Computers & Operations Research, 41:167–173, 2014.330

[6] T. Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin331

(ZIB), 2006.332

9

[7] T. Berthold. Rens. Mathematical Programming Computation, 6(1):33–54, 2014.333

[8] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen,334

L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen,335

C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S. J. Maher, F. Matter, E. Mühmer, B. Müller,336

M. E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac,337

M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and J. Witzig. The SCIP338

Optimization Suite 8.0. Technical report, Optimization Online, December 2021. URL http:339

//www.optimization-online.org/DB_HTML/2021/12/8728.html.340

[9] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? International341

conference on learning representations, 2022.342

[10] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning343

of visual representations. In International conference on machine learning, pages 1597–1607.344

PMLR, 2020.345

[11] X. Chen and Y. Tian. Learning to perform local rewriting for combinatorial optimization.346

Advances in Neural Information Processing Systems, 32, 2019.347

[12] A. Chmiela, E. Khalil, A. Gleixner, A. Lodi, and S. Pokutta. Learning to schedule heuristics348

in branch and bound. Advances in Neural Information Processing Systems, 34:24235–24246,349

2021.350

[13] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods to improve351

mip solutions. Mathematical Programming, 102(1):71–90, 2005.352

[14] S. De Vries and R. V. Vohra. Combinatorial auctions: A survey. INFORMS Journal on353

computing, 15(3):284–309, 2003.354

[15] B. Dilkina and C. P. Gomes. Solving connected subgraph problems in wildlife conservation. In355

CPAIOR, volume 6140, pages 102–116. Springer, 2010.356

[16] H. Duan, P. Vaezipoor, M. B. Paulus, Y. Ruan, and C. Maddison. Augment with care: Contrastive357

learning for combinatorial problems. In International Conference on Machine Learning, pages358

5627–5642. PMLR, 2022.359

[17] P. Erdos, A. Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,360

5(1):17–60, 1960.361

[18] B. Eysenbach, T. Zhang, S. Levine, and R. R. Salakhutdinov. Contrastive learning as goal-362

conditioned reinforcement learning. Advances in Neural Information Processing Systems, 35:363

35603–35620, 2022.364

[19] A. Ferber, J. Song, B. Dilkina, and Y. Yue. Learning pseudo-backdoors for mixed integer365

programs. In International Conference on Integration of Constraint Programming, Artificial366

Intelligence, and Operations Research, pages 91–102. Springer, 2022.367

[20] M. Fischetti and A. Lodi. Local branching. Mathematical programming, 98(1):23–47, 2003.368

[21] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization369

with graph convolutional neural networks. Advances in Neural Information Processing Systems,370

32, 2019.371

[22] S. Ghosh. Dins, a mip improvement heuristic. In International Conference on Integer Program-372

ming and Combinatorial Optimization, pages 310–323. Springer, 2007.373

[23] P. Gupta, M. Gasse, E. Khalil, P. Mudigonda, A. Lodi, and Y. Bengio. Hybrid models for374

learning to branch. Advances in neural information processing systems, 33:18087–18097, 2020.375

[24] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.376

gurobi.com.377

[25] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound algorithms.378

Advances in neural information processing systems, 27, 2014.379

10

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com

[26] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual380

representation learning. In Proceedings of the IEEE/CVF conference on computer vision and381

pattern recognition, pages 9729–9738, 2020.382

[27] G. Hendel. Adaptive large neighborhood search for mixed integer programming. Mathematical383

Programming Computation, 14(2):185–221, 2022.384

[28] S. S. Heragu and A. Kusiak. Efficient models for the facility layout problem. European Journal385

of Operational Research, 53(1):1–13, 1991.386

[29] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and387

Y. Bengio. Learning deep representations by mutual information estimation and maximization.388

International conference on learning representations, 2019.389

[30] A. Hottung and K. Tierney. Neural large neighborhood search for the capacitated vehicle routing390

problem. In ECAI 2020, pages 443–450. IOS Press, 2020.391

[31] Y. Hu, Y. Yao, and W. S. Lee. A reinforcement learning approach for optimizing multiple392

traveling salesman problems over graphs. Knowledge-Based Systems, 204:106244, 2020.393

[32] T. Huang and B. Dilkina. Enhancing seismic resilience of water pipe networks. In Proceedings394

of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies, pages 44–52,395

2020.396

[33] T. Huang, B. Dilkina, and S. Koenig. Learning node-selection strategies in bounded subopti-397

mal conflict-based search for multi-agent path finding. In International Joint Conference on398

Autonomous Agents and Multiagent Systems (AAMAS), 2021.399

[34] T. Huang, S. Koenig, and B. Dilkina. Learning to resolve conflicts for multi-agent path finding400

with conflict-based search. In Proceedings of the AAAI Conference on Artificial Intelligence,401

volume 35, pages 11246–11253, 2021.402

[35] T. Huang, J. Li, S. Koenig, and B. Dilkina. Anytime multi-agent path finding via machine403

learning-guided large neighborhood search. In Proceedings of the AAAI Conference on Artificial404

Intelligence (AAAI), pages 9368–9376, 2022.405

[36] T. Huang, A. Ferber, Y. Tian, B. Dilkina, and B. Steiner. Local branching relaxation heuristics for406

integer linear programs. In International Conference on Integration of Constraint Programming,407

Artificial Intelligence, and Operations Research, pages 96–113. Springer, 2023.408

[37] T. Huang, V. Shivashankar, M. Caldara, J. Durham, J. Li, B. Dilkina, and S. Koenig. Deadline-409

aware multi-agent tour planning. In Proceedings of the International Conference on Automated410

Planning and Scheduling (ICAPS), 2023.411

[38] Z. Huang, K. Wang, F. Liu, H.-L. Zhen, W. Zhang, M. Yuan, J. Hao, Y. Yu, and J. Wang.412

Learning to select cuts for efficient mixed-integer programming. Pattern Recognition, 123:413

108353, 2022.414

[39] D. S. Johnson, J. K. Lenstra, and A. R. Kan. The complexity of the network design problem.415

Networks, 8(4):279–285, 1978.416

[40] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in417

mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,418

volume 30, 2016.419

[41] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization420

algorithms over graphs. Advances in neural information processing systems, 30, 2017.421

[42] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao. Learning to run heuristics422

in tree search. In Ijcai, pages 659–666, 2017.423

[43] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and424

D. Krishnan. Supervised contrastive learning. Advances in Neural Information Processing425

Systems, 33:18661–18673, 2020.426

11

[44] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2015.427

[45] W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve routing problems! arXiv428

preprint arXiv:1803.08475, 2018.429

[46] A. A. Kovacs, S. N. Parragh, K. F. Doerner, and R. F. Hartl. Adaptive large neighborhood search430

for service technician routing and scheduling problems. Journal of scheduling, 15(5):579–600,431

2012.432

[47] A. G. Labassi, D. Chételat, and A. Lodi. Learning to compare nodes in branch and bound with433

graph neural networks. Advances in neural information processing systems, 2022.434

[48] A. H. Land and A. G. Doig. An automatic method for solving discrete programming problems.435

In 50 Years of Integer Programming 1958-2008, pages 105–132. Springer, 2010.436

[49] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combinatorial437

auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce, pages438

66–76, 2000.439

[50] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig. Anytime multi-agent path finding via440

large neighborhood search. In Proceedings of the International Joint Conference on Artificial441

Intelligence (IJCAI), pages 4127–4135, 2021.442

[51] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig. MAPF-LNS2: Fast repairing for443

multi-agent path finding via large neighborhood search. In Proceedings of the AAAI Conference444

on Artificial Intelligence (AAAI), pages 10256–10265, 2022.445

[52] S. Li, Z. Yan, and C. Wu. Learning to delegate for large-scale vehicle routing. Advances in446

Neural Information Processing Systems, 34:26198–26211, 2021.447

[53] Z. Li, Q. Chen, and V. Koltun. Combinatorial optimization with graph convolutional networks448

and guided tree search. Advances in neural information processing systems, 31, 2018.449

[54] D. Liu, M. Fischetti, and A. Lodi. Learning to search in local branching. In Proceedings of the450

AAAI Conference on Artificial Intelligence, volume 36, pages 3796–3803, 2022.451

[55] H. Lu, X. Zhang, and S. Yang. A learning-based iterative method for solving vehicle routing452

problems. In International conference on learning representations, 2020.453

[56] S. J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald, G. Hendel, T. Koch,454

M. Lübbecke, M. Miltenberger, et al. The scip optimization suite 4.0. 2017.455

[57] A. S. Manne. On the job-shop scheduling problem. Operations research, 8(2):219–223, 1960.456

[58] M. Mulamba, J. Mandi, M. Diligenti, M. Lombardi, V. B. Lopez, and T. Guns. Contrastive457

losses and solution caching for predict-and-optimize. In 30th International Joint Conference458

on Artificial Intelligence, page 2833. International Joint Conferences on Artificial Intelligence,459

2021.460

[59] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.461

arXiv preprint arXiv:1807.03748, 2018.462

[60] M. B. Paulus, G. Zarpellon, A. Krause, L. Charlin, and C. Maddison. Learning to cut by looking463

ahead: Cutting plane selection via imitation learning. In International conference on machine464

learning, pages 17584–17600. PMLR, 2022.465

[61] I. Pohl. Heuristic search viewed as path finding in a graph. Artificial intelligence, 1(3-4):466

193–204, 1970.467

[62] A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi. Ecole: A468

gym-like library for machine learning in combinatorial optimization solvers. In Learning Meets469

Combinatorial Algorithms at NeurIPS2020, 2020. URL https://openreview.net/forum?470

id=IVc9hqgibyB.471

12

https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB

[63] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and472

delivery problem with time windows. Transportation science, 40(4):455–472, 2006.473

[64] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.474

INFORMS Journal on Computing, 19(4):534–541, 2007.475

[65] L. Scavuzzo, F. Y. Chen, D. Chételat, M. Gasse, A. Lodi, N. Yorke-Smith, and K. Aardal.476

Learning to branch with tree mdps. arXiv preprint arXiv:2205.11107, 2022.477

[66] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. Learning a sat solver478

from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.479

[67] S. L. Smith and F. Imeson. Glns: An effective large neighborhood search heuristic for the480

generalized traveling salesman problem. Computers & Operations Research, 87:1–19, 2017.481

[68] J. Song, Y. Yue, B. Dilkina, et al. A general large neighborhood search framework for solving482

integer linear programs. Advances in Neural Information Processing Systems, 33:20012–20023,483

2020.484

[69] N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, and V. Nair. Learning a large neighborhood search485

algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201, 2021.486

[70] Y. Tang, S. Agrawal, and Y. Faenza. Reinforcement learning for integer programming: Learning487

to cut. In International conference on machine learning, pages 9367–9376. PMLR, 2020.488

[71] Y. Tian. Understanding deep contrastive learning via coordinate-wise optimization. In Advances489

in Neural Information Processing Systems, 2022.490

[72] Z. Tong, Y. Liang, H. Ding, Y. Dai, X. Li, and C. Wang. Directed graph contrastive learning.491

Advances in Neural Information Processing Systems, 34:19580–19593, 2021.492

[73] P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002.493

[74] Y. Wu, W. Song, Z. Cao, and J. Zhang. Learning large neighborhood search policy for integer494

programming. Advances in Neural Information Processing Systems, 34:30075–30087, 2021.495

[75] L. Xin, W. Song, Z. Cao, and J. Zhang. Neurolkh: Combining deep learning model with lin-496

kernighan-helsgaun heuristic for solving the traveling salesman problem. Advances in Neural497

Information Processing Systems, 34:7472–7483, 2021.498

[76] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive learning with499

augmentations. Advances in Neural Information Processing Systems, 33:5812–5823, 2020.500

[77] C. Yu, Q. Li, S. Gao, and A. Prorok. Accelerating multi-agent planning using graph transformers501

with bounded suboptimality. arXiv preprint arXiv:2301.08451, 2023.502

[78] G. Zarpellon, J. Jo, A. Lodi, and Y. Bengio. Parameterizing branch-and-bound search trees503

to learn branching policies. In Proceedings of the AAAI Conference on Artificial Intelligence,504

volume 35, pages 3931–3939, 2021.505

[79] S. Zhang, J. Li, T. Huang, S. Koenig, and B. Dilkina. Learning a priority ordering for prioritized506

planning in multi-agent path finding. In Proceedings of the International Symposium on507

Combinatorial Search, volume 15, pages 208–216, 2022.508

[80] J. Zheng, K. He, J. Zhou, Y. Jin, and C.-M. Li. Combining reinforcement learning with lin-509

kernighan-helsgaun algorithm for the traveling salesman problem. In Proceedings of the AAAI510

Conference on Artificial Intelligence, volume 35, pages 12445–12452, 2021.511

[81] I. Žulj, S. Kramer, and M. Schneider. A hybrid of adaptive large neighborhood search and tabu512

search for the order-batching problem. European Journal of Operational Research, 264(2):513

653–664, 2018.514

13

Appendix515

A Additional Related Work516

A.1 LNS-Based Primal Heuristics in BnB517

LNS-based primal heuristics is a family of primal heuristics in BnB and have been studied extensively518

in past decades. With the same purpose of improving primal bounds, the main differences between519

the LNS-based primal heuristics in BnB and LNS for ILPs are: (1) LNS-based primal heuristics are520

executed periodically at different search tree nodes during the search and the execution schedule521

is itself dynamic, because they are often more expensive to run than the other primal heuristics in522

BnB; (2) the destroy heuristics in LNS-based primal heuristics are often designed to use information523

specific to BnB, such as the dual bound and the LP relaxation at a search tree node, and they are not524

directly applicable in LNS for ILPs in our setting.525

Next, we briefly summarize the destroy heuristics in LNS-based primal heuristics:526

• Crossover heuristics [64]: it destroys variables that have different values in a set of selected527

known solutions (typically two). The Mutation heuristics [64] destroys a random subset of528

variables.529

• Relaxation Induced Neighborhood Search (RINS) [13]: it destroys variables whose values530

disagree in the solution of the LP relaxation at the search tree node and the incumbent531

solution.532

• Relaxation Enforced Neighborhood Search (RENS) [7]: it restricts the neighborhood to be533

the feasible roundings of the LP relaxation at the current search tree node.534

• Local Branching (LB)[20]: it restricts the neighborhood to a ball around the current incum-535

bent solution.536

• Distance Induced Neighborhood Search (DINS) [22]: it takes the intersection of the neigh-537

borhoods of the Crossover, Local Branching and Relaxation Induced Neighborhood Search538

heuristics.539

• Graph-Induced Neighborhood Search (GINS) [56]: it destroys the breadth-first-search540

neighborhood of a variable in the bipartite graph representation of the ILP.541

Recently, an adaptive LNS primal heuristic [27] has been proposed to combine the power of these542

heuristics, where it essentially solves a multi-armed bandit problem to choose which heuristic to543

apply.544

A.2 Learning to Solve Other COPs545

ML has been applied to solve a number of COPs, including TSP [31, 75, 80], vehicle routing [45, 55],546

boolean satisfiability [66, 4], general graph optimization problems [41, 53] and multi-agent path547

finding [33, 34, 79, 77].548

B Network Architecture549

We give full details of the GAT architecture described in Section 4.2. The policy takes as input the550

state st and output a score vector πθ(s
t) ∈ [0, 1]n, one score per variable. We use 2-layer MLPs with551

64 hidden units per layer and ReLU as the activation function to map each node feature and edge552

feature to Rd where d = 64.553

Let vj , ci, ei,j ∈ Rd be the embeddings of the j-th variable, i-th constraint and the edge connecting
them output by the embedding layers. We perform two rounds of message passing through the GAT.
In the first round, each constraint node ci attends to its neighbors Ni using an attention stucture with
H = 8 attention heads:

c′i =
1

H

H∑
h=1

α
(h)
ii,1θ

(h)
c,1ci +

∑
j∈Ni

α
(h)
ij,1θ

(h)
v,1vj


14

where θ
(h)
c,1 ∈ Rd×d and θ

(h)
v,1 ∈ Rd×d are learnable weights. The updated constraint embeddings c′i

are averaged across H attention heads using attention weights [9]

α
(h)
ij,1 =

exp(wT
1 ρ([θ

(h)
c,1ci,θ

(h)
v,1vj ,θ

(h)
e,1ei,j]))∑

k∈Ni
exp(wT

1 ρ([θ
(h)
c,1ci,θ

(h)
v,1vk,θ

(h)
e,1ei,k]))

where the attention coefficients w1 ∈ R3d and θ
(h)
e,1 ∈ Rd×d are both learnable weights and ρ(·)

refers to the LeakyReLU activation function with negative slope 0.2. In the second round, similary,
each variable node attends to its neighbors to get updated variable node embeddings

v′
j =

1

H

H∑
h=1

α
(h)
jj,2θ

(h)
v,2vj +

∑
i∈Nj

α
(h)
ji,2θ

(h)
c,2c

′
i


with attention weights

α
(h)
ji,2 =

exp(wT
2 ρ([θ

(h)
c,2c

′
i,θ

(h)
v,2vj ,θ

(h)
e,2ei,j]))∑

k∈Nj
exp(wT

2 ρ([θ
(h)
c,2c

′
i,θ

(h)
v,2vj ,θ

(h)
e,2ei,k]))

where w2 ∈ R3d and θ
(h)
c,2 ,θ

(h)
v,2,θ

(h)
e,2 ∈ Rd×d are learnable weights. After the two rounds of message554

passing, the final representations of variables v′ are passed through a 2-layer MLP with 64 hidden555

units per layer to obtain a scalar value for each variable. Finally, we apply the sigmoid function to get556

a score between 0 and 1.557

B.1 Features558

We use features proposed in Gasse et al. [21] for node features and edge features in the bipartite559

graph and also include a fixed-size window of most recent incumbent values as variable node features560

with the window size set to 3 in experiments. In addition, we include features proposed in Khalil561

et al. [40] computed at the root node of BnB to make it a richer set of variable node features. The full562

list of features can be found in Table 2 in Appendix of Gasse et al. [21] and Table 1 in Khalil et al.563

[40]. In our implementation, we compute them using the APIs provided by the Ecole library [62]1.564

C Additional Details of Instance Generation565

We present the ILP formulations for the minimum vertex cover (MVC), maximum independent set566

(MIS), set covering (SC) and combinatorial auction (CA) problems. For each test set, Table 3 shows567

its average numbers of variables and constraints.568

Table 3: Names and the average numbers of variables and constraints of the test instances.

Small Instances Large Instances
Name MVC-S MIS-S CA-S SC-S MVC-L MIS-L CA-L SC-L

#Variables 1,000 6,000 4,000 4,000 2,000 12,000 8,000 8,000
#Constraints 65,100 23,977 2,675 5,000 135,100 48,027 5,353 5,000

C.1 MVC569

In an MVC instance, we are given an undirected graph G = (V,E). The goal is to select the smallest570

subset of nodes such that at least one end point of every edge in the graph is selected:571

min
∑

v∈V xv

s.t. xu + xv ≥ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

1More details and the source code can be found at https://doc.ecole.ai/py/en/stable/reference/
observations.html.

15

https://doc.ecole.ai/py/en/stable/reference/observations.html
https://doc.ecole.ai/py/en/stable/reference/observations.html

C.2 MIS572

In an MIS instance, we are given an undirected graph G = (V,E). The goal is to select the largest573

subset of nodes such that no two nodes in the subsets are connected by an edge in G:574

min−
∑

v∈V xv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

C.3 SC575

In an SC instance, we are given m elements and a collection S of n sets whose union is the set of all576

elements. The goal is to select a minimum number of sets from S such that the union of the selected577

set is still the set of all elements:578

min
∑

s∈S xs

s.t.
∑

s∈S:i∈s xs ≥ 1, ∀i ∈ [m],

xs ∈ {0, 1}, ∀s ∈ S.

C.4 CA579

In a CA instance, we are given n bids {(Bi, pi) : i ∈ [n]} for m items, where Bi is a subset of items580

and pi is its associated bidding price. The objective is to allocate items to bids such that the total581

revenue is maximized:582

min−
∑

i∈[n] pixi

s.t.
∑

i:j∈Bi
xi ≤ 1, ∀j ∈ [m],

xi ∈ {0, 1}, ∀i ∈ [n].

D Additional Details on Hyperparameter Tuning583

For RL-LNS, we use all the hyperparameters provided in their code [74] in our experiments. For the584

other LNS methods, all hyperparameters used in experiments are fine-tuned on the validation set and585

the hyperparameter tunings are described in the following.586

For β, which upper bounds the neighborhood size, we tried values from {0.25, 0.5, 0.6, 0.7}. β =587

0.25 is the worst for all approaches, resulting in the highest gap. For LB-RELAX, IL-LNS and588

CL-LNS, all values perform similarly (because they select effective neighborhoods early in the search589

and their neighborhood sizes either do not reach the upper bound or they already converge to good590

solutions before reaching it). For RANDOM and GRAPH, β = 0.5 is the best for them. So we set591

β = 0.5 consistently for all approaches.592

For initial neighborhood sizes k0, we observe that the best values are sensitive for approaches that593

need longer runtime to select variables, such as LB-RELAX, IL-LNS and CL-LNS, thus they need the594

right k0 from the beginning and we fine-tune it for them. For RANDOM and GRAPH, their runtime595

for selecting variables is short, and with the adaptive neighborhood size mechanism, they could very596

quickly find the right neighborhood size and are insensitive to k0. They converge to the same primal597

gaps (< 1% relative differences) with similar primal integrals (< 2% relative differences) using598

different k0. Despite the differences being small, we still use the best k0 for them.599

For γ that controls the rate at which kt increases, we tried values from {1, 1.01, 1.02, 1.05}. Overall,600

γ does not have a big impact on the performance if γ > 1, however γ = 1 is far worse than the601

others.602

For the runtime limit for each repair operation, we tried different limits of 0.5, 1, 2 and 5 minutes.603

All approaches are not sensitive to it since most repairs are finished within 20 seconds. Except for604

IL-LNS on the SC instances, it selects neighborhoods that require a longer time to repair and a605

2-minute runtime limit is necessary. Therefore, we use 2 minutes consistently.606

16

Table 4: Hyperparameters with their notations and values used.

Hyperparameter Notation Value
Suboptimality threshold to determine positive samples αp 0.5
Upper bound on the number of positive samples up 10
Suboptimality threshold to determine negative samples αn 0.05
Ratio between the numbers of positive and negative samples κ 9
Feature embedding dimension d 64
Window size of the most recent incumbent values in variable features 3
Number of attention heads in the GAT H 8
Temperature parameter in the contrastive loss τ 0.07
Rate at which kt increases γ 1.02
Upper bound on kt as a fraction of number of variables β 0.5
Temperature parameter for sampling variables in IL-LNS η 0.5
Initial neighborhood size k0 Fine-tuned for each case
Runtime for finding initial solution 10 seconds
Runtime limit for each reoptimization 2 minutes
Learning rate (CL-LNS and IL-LNS) 10−3

Batch size (CL-LNS and IL-LNS) 32
Number of training epochs (CL-LNS and IL-LNS) 30

For BnB, the aggressive mode is fine-tuned for each problem on the validation set. With the aggressive607

mode turned on, BnB (SCIP) does not always deliver better anytime performance than having it608

turned off. Based on the validation results, the aggressive mode is turned on for MVC and SC609

instances and turned off for CAT and MIS instances.610

For IL-LNS, it uses the same training dataset as CL-LNS but uses only the positive samples. We611

fine-tune its hyperparameters for each problem on the validation set, resulting in a different k0 on612

the SC instance from CL-LNS. Also in Sonnerat et al. [69], they use sampling methods to select613

variables when using the learned policy. For the temperature parameter η in the sampling method, we614

tried values from {1/2, 2/3, 1} and η = 0.5 performs the best overall. However, in our experiment,615

we observe that our greedy method described in Section 4.4 works better for IL-LNS on SC and MIS616

instances, thus, CL-LNS is compared against the corresponding results on SC and MIS instances.617

For LB-RELAX, there are three variants of it presented in Huang et al. [36]. We present only the best618

of the three variants for each problem in the paper for simplicity.619

In Table 4, we summarize all the hyperparameters with their notations and values used in our620

experiments.621

E Additional Experimental Results622

In this section, we add two more baselines and evaluate all approaches on one more metric. We show623

that CL-LNS outperforms all approaches in terms of all metrics.624

We establish two additional baselines:625

• LB: LNS which selects the neighborhood with the LB heuristics. We set the time limit to 10626

minutes for solving the LB ILP in each iteration;627

• GRAPH: LNS which selects the neighborhood based on the bipartite graph representation of628

the ILP similar to GINS [56]. A bipartite graph representation consists of nodes representing629

the variables and constraints on two sides, respectively, with an edge connecting a variable630

and a constraint if a variable has a non-zero coefficient in the constraint. It runs a breadth-631

first search starting from a random variable node in the bipartite graph and selects the first632

kt variable nodes expanded.633

Figure 7 shows the full results on the primal gap as a function of runtime. Figure 8 shows the full634

results on the survival rate as a function of runtime. Figure 9 shows the full results on the primal635

bound as a function of runtime. Tables 5, 6, 7 and 8 present the average primal bound, primal gap636

and primal integral at 15, 30, 45 and 60 minutes runtime cutoff, respectively, on the small instances.637

Tables 9, 10, 11 and 12 present the average primal bound, primal gap and primal integral at 15, 30,638

45 and 60 minutes runtime cutoff, respectively, on the large instances.639

17

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

10−2
Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−3

10−2

Pr
im

al
 G
ap

(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−3

10−2

10−1

Pr
im

al
 G
ap

(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

0

10−2

10−1

Pr
im

al
 G
ap

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

(d) SC-S (left) and SC-L (right).

Figure 7: The primal gap (the lower the better) as a function of time, averaged over 100 instances.
For ML approaches, the policies are trained on only small training instances but tested on both small
and large test instances.

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%
(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(d) SC-S (left) and SC-L (right).

Figure 8: The survival rate (the higher the better) over 100 instances as a function of time to meet
primal gap threshold 1.00%. For ML approaches, the policies are trained on only small training
instances but tested on both small and large test instances.

Next, we evaluate the performance with one additional metric: The gap to virtual best at time q for640

an approach is the normalized difference between its best primal bound found up to time q and the641

best primal bound found up to time q by any approach in the portfolio.642

Figure 10 shows the full results on the best performing rate as a function of runtime. Figure 11 shows643

the full results on the gap to virtual best as a function of runtime.644

18

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

445

450

455

460

Pr
im

al
 B
ou

nd

0 1000 2000 3000
Runtime in Seconds

890

900

910

920

Pr
im

al
 B
ou

nd
(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

−2100

−2050

−2000

−1950

Pr
im

al
 B
ou

nd

0 1000 2000 3000
Runtime in Seconds

−4200

−4100

−4000

−3900

Pr
im

al
 B
ou

nd

(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

−115000

−110000

−105000

−100000

−95000

Pr
im

al
 B
ou

nd

0 1000 2000 3000
Runtime in Seconds

−230000

−220000

−210000

−200000

−190000

Pr
im

al
 B
ou

nd

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

170

175

180

185

Pr
im

al
 B
ou

nd

0 1000 2000 3000
Runtime in Seconds

107.5

110.0

112.5

115.0

117.5

120.0

Pr
im

al
 B
ou

nd

(d) SC-S (left) and SC-L (right).

Figure 9: The primal bound (the lower the better) as a function of time, averaged over 100 instances.
For ML approaches, the policies are trained on only small training instances but tested on both small
and large test instances.

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(a) MVC-S (left) and MVC-L (right).

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(b) MIS-S (left) and MIS-L (right).

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(c) CA-S (left) and CA-L (right).

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(d) SC-S (left) and SC-L (right).

Figure 10: The best performing rate (the higher the better) as a function of runtime over 100 test
instances. For ML approaches, the policies are trained on only small training instances but tested on
both small and large test instances.

19

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

(a) MVC-S (left) and MVC-L (right).

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

(b) MIS-S (left) and MIS-L (right).

1000 2000 3000
Runtime in Seconds

010−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

1000 2000 3000
Runtime in Seconds

010−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

(c) CA-S (left) and CA-L (right).

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

(d) SC-S (left) and SC-L (right).

Figure 11: The gap to virtual best (the lower the better) as a function of runtime, averaged over 100
test instances. For ML approaches, the policies are trained on only small training instances but tested
on both small and large test instances.

Table 5: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 15 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 450.41±9.85 1.71±0.48 25.7±3.3 -1,981.72±23.49 6.66±0.89 74.2±4.4
LB 456.78±11.22 3.07±1.00 32.9±5.1 -2,047.01±18.76 3.58±0.60 62.4±3.8

RANDOM 447.33±11.33 1.02±1.28 11.5±11.3 -2,110.73±11.86 0.58±0.19 12.8±1.6
GRAPH 447.98±11.30 1.16±1.28 14.0±10.6 -2,104.62±12.23 0.87±0.17 18.5±1.7

LB-RELAX 449.23±11.49 1.43±1.51 19.6±10.9 -2,093.80±12.07 1.38±0.23 22.9±2.1
IL-LNS 444.50±9.69 0.40±0.28 10.2±5.5 -2,111.49±12.10 0.54±0.20 10.5±1.8
RL-LNS 446.12±10.10 0.76±0.36 11.9±2.9 -2,113.48±11.72 0.45±0.17 9.5±1.7
CL-LNS 443.51±9.58 0.18±0.10 4.0±2.1 -2,114.66±12.42 0.39±0.19 6.4±1.6

CA SC
BnB -112,703±1,682 3.06±0.70 67.4±16.6 173.26±13.00 2.28±1.34 45.9±13.0
LB -108,647±2,227 6.55±1.42 140.7±9.9 173.83±12.93 2.60±1.31 70.6±15.6

RANDOM -108,576±1,709 6.61±1.12 69.1±8.5 175.61±12.76 3.60±1.44 43.6±13.8
GRAPH -107,189±1,977 7.81±1.15 84.7±9.8 187.69±14.24 9.77±2.17 89.9±19.9

LB-RELAX -107,133±1,816 7.86±0.76 89.5±6.2 172.79±12.76 2.02±1.21 30.0±11.4
IL-LNS -113,501±1,611 2.38±0.66 52.4±10.9 171.72±12.42 1.43±1.00 26.9±9.2
RL-LNS -108,120±1,906 7.01±1.10 71.8±9.3 172.35±12.45 1.79±0.96 41.4±8.2
CL-LNS -115,499±1,626 0.66±0.33 33.3±6.8 170.27±12.21 0.59±0.67 11.7±7.4

Table 6: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 30 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 449.67±9.69 1.55±0.44 40.2±6.6 -2,004.24±26.21 5.60±1.00 127.1±12.4
LB 454.89±11.55 2.66±1.16 58.2±14.1 -2,064.30±16.40 2.77±0.51 89.9±7.3

RANDOM 447.16±11.22 0.98±1.26 20.6±22.5 -2,115.23±11.82 0.37±0.16 16.9±2.7
GRAPH 447.75±11.39 1.11±1.30 24.2±22.1 -2,111.84±12.06 0.53±0.16 24.4±2.7

LB-RELAX 449.02±11.53 1.38±1.51 32.1±24.2 -2,102.85±11.97 0.95±0.19 33.0±3.6
IL-LNS 444.27±9.61 0.35±0.25 13.5±6.9 -2,115.30±12.04 0.36±0.18 14.4±3.2
RL-LNS 445.71±9.98 0.67±0.35 18.2±5.7 -2,116.64±11.53 0.30±0.15 12.7±2.9
CL-LNS 443.48±9.56 0.17±0.09 5.5±3.6 -2,117.58±11.86 0.26±0.17 9.3±3.0

CA SC
BnB -113,068±1,595 2.75±0.62 93.5±18.6 172.09±12.65 1.63±1.20 62.9±22.5
LB -110,303±2,001 5.13±1.08 191.6±16.9 172.37±12.71 1.79±1.11 89.4±22.3

RANDOM -109,040±1,685 6.21±1.05 126.8±17.6 174.70±12.75 3.10±1.38 73.4±24.6
GRAPH -107,802±1,892 7.28±1.07 152.2±18.9 186.79±14.13 9.33±2.28 175.7±38.8

LB-RELAX -114,103±1,521 1.86±0.57 109.5±9.4 171.60±12.43 1.36±1.02 44.6±19.3
IL-LNS -114,621±1638 1.41±0.58 68.1±13.9 171.59±12.45 1.35±1.00 39.3±17.4
RL-LNS -108,562±1,854 6.63±1.05 132.9±18.2 171.70±12.30 1.42±0.88 55.7±15.6
CL-LNS -115,513±1,621 0.65±0.32 39.1±11.6 170.16±12.13 0.53±0.63 16.7±12.3

20

Table 7: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 45 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 449.28±9.77 1.46±0.42 53.7±9.9 -2,010.68±21.72 5.29±0.79 176.0±19.7
LB 453.84±11.65 2.44±1.26 80.7±24.6 -2,075.43±14.84 2.24±0.46 111.6±10.5

RANDOM 447.09±11.21 0.96±1.26 29.4±33.6 -2,116.96±11.54 0.29±0.15 19.8±3.9
GRAPH 447.42±11.19 1.04±1.27 33.9±33.4 -2,114.42±11.74 0.41±0.16 28.6±3.8

LB-RELAX 449.01±11.53 1.38±1.51 44.6±37.6 -2,106.88±11.40 0.76±0.20 40.6±5.0
IL-LNS 444.13±9.68 0.32±0.26 16.5±8.5 -2,117.43±11.79 0.26±0.17 17.2±4.5
RL-LNS 445.54±9.98 0.63±0.34 24.0±8.6 -2,117.79±11.34 0.25±0.14 15.2±4.1
CL-LNS 443.48±9.56 0.17±0.09 7.1±5.1 -2,119.04±11.98 0.19±0.16 11.3±4.2

CA SC
BnB -113,421±1,599 2.45±0.62 116.3±22.0 171.47±12.67 1.27±1.01 75.9±30.6
LB -111,113±1,835 4.43±0.81 233.3±22.3 171.54±12.85 1.30±0.98 102.4±28.5

RANDOM -109,253±1,697 6.03±1.02 181.9±26.2 174.15±12.94 2.78±1.30 99.8±35.3
GRAPH -108,169±1,834 6.96±1.06 216.2±27.8 186.12±14.24 9.00±2.23 258.1±58.1

LB-RELAX -114,268±1,512 1.72±0.57 125.3±13.6 170.98±12.38 1.00±0.88 54.8±25.6
IL-LNS -114,871±1,602 1.20±0.56 79.7±17.3 171.55±12.47 1.33±0.97 51.2±25.7
RL-LNS -108,776±1,813 6.44±1.04 191.7±27.0 171.35±12.29 1.22±0.85 67.5±22.6
CL-LNS -115,513±1,621 0.65±0.32 44.9±17.0 170.15±12.12 0.53±0.62 21.5±17.5

Table 8: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 60 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC-S MIS-S

BnB 448.63±9.58 1.32±0.43 66.1±13.1 -2,014.85±20.04 5.10±0.69 222.8±25.9
LB 453.45±11.81 2.35±1.30 102.2±35.9 -2,079.07±14.34 2.07±0.44 130.9±13.6

RANDOM 447.06±11.21 0.96±1.26 38.0±44.8 -2,117.92±11.31 0.24±0.14 22.1±5.0
GRAPH 447.14±10.83 0.98±1.20 42.9±44.0 -2,116.15±11.58 0.32±0.15 31.8±5.0

LB-RELAX 449.01±11.53 1.38±1.51 57.0±51.2 -2,109.17±11.17 0.65±0.20 46.9±6.5
IL-LNS 444.00±9.73 0.29±0.23 19.2±10.2 -2,118.38±11.77 0.22±0.17 19.4±5.8
RL-LNS 445.45±9.99 0.61±0.34 29.6±11.5 -2,118.44±11.36 0.22±0.14 17.2±5.2
CL-LNS 443.48±9.56 0.17±0.09 8.7±6.7 -2,119.78±12.14 0.15±0.15 12.8±5.4

CA-S SC-S
BnB -113,608±1,611 2.28±0.59 137.4±25.9 171.22±12.50 1.13±0.95 86.7±37.9
LB -111,342±1,732 4.23±0.75 272.1±26.9 171.39±12.81 1.22±0.97 113.7±35.2

RANDOM -109,397±1,684 5.90±1.02 235.6±34.9 173.95±12.98 2.67±1.29 124.3±45.4
GRAPH -108,422±1,775 6.74±1.03 277.7±36.5 185.57±14.17 8.74±2.13 337.8±76.4

LB-RELAX -114,348±1,516 1.65±0.57 140.5±18.3 170.74±12.35 0.86±0.83 63.2±31.6
IL-LNS -115,001±1,564 1.09±0.51 90.0±20.8 171.55±12.47 1.33±0.97 63.2±34.3
RL-LNS -108,920±1,816 6.32±1.03 249.2±35.9 171.14±12.30 1.10±0.77 77.8±28.9
CL-LNS -115,513±1,621 0.65±0.32 50.7±22.7 170.11±12.10 0.50±0.58 26.2±12.8

Table 9: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent),
primal integral (PI) at 15 minutes time cutoff, averaged over 100 instances and their standard
deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 919.96±12.38 4.06±0.38 36.8±3.4 -3,888.39±20.62 8.24±0.31 76.3±2.8
LB 907.06±12.46 2.69±0.36 32.7±3.2 -3,959.15±59.75 6.57±1.34 70.0±3.6

RANDOM 886.97±12.69 0.49±0.25 11.5±2.0 -4,215.32±15.86 0.52±0.12 12.4±1.0
GRAPH 888.28±12.61 0.64±0.26 18.0±2.3 -4,185.96±17.29 1.22±0.17 23.2±1.5

LB-RELAX 901.37±12.66 2.08±0.30 30.1±2.8 -4,148.06±19.51 2.11±0.20 33.2±1.8
IL-LNS 886.32±12.63 0.42±0.26 12.6±1.8 -4,203.74±16.80 0.80±0.17 14.8±1.7
RL-LNS 890.78±12.34 0.92±0.30 18.7±2.5 -4,215.17±15.97 0.53±0.14 11.5±1.2
CL-LNS 883.18±12.52 0.06±0.05 7.7±1.5 -4,220.96±15.68 0.39±0.14 6.8±1.5

CA SC
BnB -194,128±14,403 15.43±6.20 164.4±11.8 110.42±7.44 2.92±1.49 63.3±12.2
LB -203,872±4,522 11.18±1.72 149.9±8.6 117.36±8.84 8.58±2.85 89.3±19.3

RANDOM -215,183±2,670 6.26±0.74 75.8±6.0 112.91±7.72 5.04±2.03 59.9±16.8
GRAPH -210,157±2,697 8.44±0.85 108.8±6.9 116.28±7.84 7.81±1.86 89.2±19.6

LB-RELAX -222,638±4,846 3.01±1.78 102.5±12.3 109.66±7.24 2.25±1.51 36.2±13.3
IL-LNS -211,938±3,323 7.67±1.22 89.9±8.9 109.12±6.97 1.79±1.26 32.4±10.7
RL-LNS -216,788±2,730 5.56±0.85 58.1±6.9 109.38±6.89 2.03±1.08 83.6±8.8
CL-LNS -218,510±2,989 4.81±0.81 61.3±7.1 107.95±6.78 0.73±0.57 23.1±8.6

21

Table 10: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent),
primal integral (PI) at 30 minutes time cutoff, averaged over 100 instances and their standard
deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 919.96±12.38 4.06±0.38 73.4±6.8 -3,888.39±20.62 8.24±0.31 150.5±5.6
LB 900.15±12.32 1.95±0.35 52.6±6.0 -4,009.23±71.94 5.39±1.59 123.1±15.1

RANDOM 886.39±12.71 0.43±0.25 15.6±3.9 -4,225.74±15.63 0.28±0.10 15.8±1.8
GRAPH 886.89±12.79 0.48±0.23 22.9±3.9 -4,206.29±16.76 0.74±0.16 31.6±2.7

LB-RELAX 887.64±12.21 0.57±0.23 39.4±4.4 -4,177.14±18.22 1.42±0.16 48.5±3.0
IL-LNS 885.58±12.65 0.33±0.26 15.9±4.0 -4,216.32±17.30 0.50±0.17 20.4±3.0
RL-LNS 888.89±12.64 0.71±0.30 25.8±4.8 -4,224.37±15.79 0.31±0.13 15.1±2.2
CL-LNS 883.07±12.61 0.05±0.04 8.1±2.1 -4,226.65±15.56 0.26±0.13 9.7±2.6

CA SC
BnB -216,772±13,060 5.58±5.42 257.1±56.4 109.39±7.26 2.02±1.36 84.4±22.2
LB -206,526±3,750 10.03±1.39 245.1±19.2 116.43±8.97 7.84±2.88 162.6±39.2

RANDOM -216,326±2,603 5.76±0.74 129.4±12.1 111.71±7.65 4.02±1.86 100.6±32.0
GRAPH -213,142±2,713 7.14±0.78 177.6±13.2 112.74±7.64 4.91±1.80 141.7±31.1

LB-RELAX -225,154±4,366 1.91±1.60 121.9±23.9 109.26±7.07 1.91±1.42 53.9±24.5
IL-LNS -214,495±3,148 6.56±1.01 154.0±17.9 109.04±6.94 1.72±1.19 48.1±21.3
RL-LNS -217,600±2,705 5.20±0.84 106.3±14.2 108.66±6.83 1.38±0.99 98.1±15.1
CL-LNS -223,257±2,667 2.74±0.71 95.0±12.5 107.78±6.64 0.58±0.45 28.6±12.6

Table 11: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent),
primal integral (PI) at 45 minutes time cutoff, averaged over 100 instances and their standard
deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 907.44±12.77 2.73±0.43 107.2±9.4 -3,913.03±46.93 7.66±1.06 222.6±9.1
LB 894.77±12.41 1.36±0.30 66.3±8.2 -4,063.18±54.80 4.11±1.18 165.2±25.7

RANDOM 886.15±12.71 0.40±0.24 19.2±5.9 -4,230.24±15.56 0.17±0.09 17.8±2.5
GRAPH 886.53±12.72 0.44±0.23 27.0±5.7 -4,215.85±16.16 0.51±0.16 37.1±3.9

LB-RELAX 887.00±12.32 0.49±0.23 44.1±5.8 -4,191.17±17.76 1.09±0.16 59.7±4.2
IL-LNS 885.23±12.65 0.29±0.24 18.7±6.0 -4,222.04±16.64 0.36±0.16 24.2±4.3
RL-LNS 888.25±12.70 0.63±0.31 31.8±7.2 -4,228.78±15.68 0.20±0.12 17.3±3.1
CL-LNS 883.07±12.61 0.05±0.04 8.6±2.7 -4,230.20±15.19 0.17±0.11 11.6±3.6

CA SC
BnB -221,424±7,149 3.54±2.83 293.0±71.3 109.02±7.39 1.67±1.38 100.7±32.1
LB -208,294±3,906 9.26±1.42 330.9±27.6 115.67±8.66 7.25±2.68 230.3±60.0

RANDOM -216,819±2,611 5.54±0.73 180.1±18.1 111.24±7.54 3.63±1.81 134.9±46.8
GRAPH -214,331±2,641 6.63±0.83 239.2±19.7 111.96±7.60 4.25±1.78 182.5±43.6

LB-RELAX -225,641±4,235 1.70±1.53 138.1±37.1 109.26±7.07 1.91±1.42 71.1±36.5
IL-LNS -216,705±3,062 5.59±0.97 208.7±25.7 109.04±6.94 1.72±1.19 63.6±31.8
RL-LNS -217,987±2,711 5.03±0.81 152.3±21.4 108.22±6.75 0.99±0.87 108.6±21.2
CL-LNS -227,235±2,698 1.01±0.54 111.7±16.6 107.78±6.64 0.58±0.45 33.9±17.6

Table 12: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent)
and primal integral (PI) at 60 minutes time cutoff, averaged over 100 instances and their standard
deviations.

PB PG (%) PI PB PG (%) PI
MVC-L MIS-L

BnB 904.41±12.95 2.41±0.40 130.2±11.1 -3,970.78±71.54 6.29±1.62 285.1±18.2
LB 893.56±12.62 1.22±0.30 77.8±10.1 -4,079.76±43.09 3.72±0.87 200.7±32.5

RANDOM 886.00±12.74 0.38±0.24 22.7±8.0 -4,232.68±15.42 0.11±0.08 19.0±3.1
GRAPH 886.34±12.67 0.42±0.23 30.9±7.6 -4,220.89±16.42 0.39±0.15 41.1±5.1

LB-RELAX 886.68±12.33 0.46±0.23 48.4±7.5 -4,199.04±17.54 0.91±0.16 68.6±5.5
IL-LNS 885.00±12.56 0.27±0.23 21.2±8.1 -4,225.28±16.25 0.29±0.15 27.1±5.5
RL-LNS 887.90±12.67 0.59±0.30 37.3±9.6 -4,231.52±15.97 0.14±0.12 18.9±4.1
CL-LNS 883.07±12.61 0.05±0.04 9.1±3.4 -4,232.50±14.86 0.12±0.11 12.9±4.4

CA-L SC-L
BnB -223,225±5,106 2.74±1.87 320.9±83.1 108.87±7.35 1.54±1.33 115.0±42.5
LB -208,500±3,976 9.17±1.43 414.0±36.9 115.12±8.77 6.80±2.73 293.5±79.7

RANDOM -217,204±2,612 5.37±0.75 229.2±24.4 110.88±7.55 3.31±1.79 166.4±61.3
GRAPH -214,926±2,649 6.37±0.86 297.5±26.9 111.49±7.51 3.85±1.74 218.9±56.7

LB-RELAX -225,848±4,201 1.61±1.50 153.0±50.3 109.26±7.07 1.91±1.42 88.3±48.9
IL-LNS -219,074±3,278 4.56±0.98 254.2±33.4 109.04±6.94 1.72±1.19 79.1±42.4
RL-LNS -218,273±2,725 4.91±0.81 197.0±28.5 107.87±6.74 0.66±0.72 116.2±27.1
CL-LNS -229,331±2,800 0.09±0.10 116.1±18.0 107.78±6.64 0.58±0.45 39.2±23.2

22

	Introduction
	Background
	ILPs
	LNS for ILP solving
	LB Heuristic

	Related Work
	LNS for ILPs and Other COPs
	Learning to Solve ILPs with BnB
	Contrastive Learning for COPs

	Contrastive Learning for LNS
	Data Collection
	Policy Network
	Training with a Contrastive Loss
	Applying Learned Policy bold0mu mumu

	Empirical Evaluation
	Setup
	Results

	Conclusion
	Additional Related Work
	LNS-Based Primal Heuristics in BnB
	Learning to Solve Other COPs

	Network Architecture
	Features

	Additional Details of Instance Generation
	MVC
	MIS
	SC
	CA

	Additional Details on Hyperparameter Tuning
	Additional Experimental Results

