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Abstract

Multi-spectral object Re-identification (ReID) aims to re-
trieve specific objects by leveraging complementary informa-
tion from different image spectra. It delivers great advantages
over traditional single-spectral ReID in complex visual en-
vironment. However, the significant distribution gap among
different image spectra poses great challenges for effective
multi-spectral feature representations. In addition, most of
current Transformer-based ReID methods only utilize the
global feature of class tokens to achieve the holistic retrieval,
ignoring the local discriminative ones. To address the above
issues, we step further to utilize all the tokens of Transform-
ers and propose a cyclic token permutation framework for
multi-spectral object ReID, dubbled TOP-ReID. More specif-
ically, we first deploy a multi-stream deep network based on
vision Transformers to preserve distinct information from dif-
ferent image spectra. Then, we propose a Token Permutation
Module (TPM) for cyclic multi-spectral feature aggregation.
It not only facilitates the spatial feature alignment across dif-
ferent image spectra, but also allows the class token of each
spectrum to perceive the local details of other spectra. Mean-
while, we propose a Complementary Reconstruction Mod-
ule (CRM), which introduces dense token-level reconstruc-
tion constraints to reduce the distribution gap across differ-
ent image spectra. With the above modules, our proposed
framework can generate more discriminative multi-spectral
features for robust object ReID. Extensive experiments on
three ReID benchmarks (i.e., RGBNT201, RGBNT100 and
MSVR310) verify the effectiveness of our methods. The code
is available at https://github.com/924973292/TOP-ReID.

Introduction
Object Re-identification (ReID) aims to retrieve specific ob-
jects from images or videos across non-overlapping cam-
eras, which has advanced significantly over the past decades.
In the traditional object ReID, researchers primarily utilize
single-spectral images (such as RGB, depth) to extract vi-
sual information of the targets. However, single-spectral im-
ages provide very limited representation abilities in scenar-
ios characterized by low resolution, darkness, glare, etc. As
illustrated in the top row of Fig. 1, the outlines of persons
are notably blurred, leading to an evident confusion between
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Figure 1: The top displays instances from RGBNT201 in
various challenges, while the bottom presents the object
ReID settings for multi-spectral and missing-spectral test.

persons and the background in the RGB image spectrum.
Hence, relying only on RGB images poses great challenges
for robust object ReID. Fortunately, other image spectra are
very useful to address above problems. In fact, Near In-
frared (NIR) imaging is unaffected by darkness and adverse
weather conditions (Li et al. 2020b). Thus, there have been
some efforts (Li et al. 2020a; Liu et al. 2021a; Zhang and
Wang 2023) to incorporate NIR images to enhance the per-
formance of object ReID. Nonetheless, NIR images retain
some limitations (Zheng et al. 2021), as depicted in Fig. 1.
For example, the details of persons in NIR images tend to be
substantially obscured in the presence of glare. Meanwhile,
Thermal Infrared (TIR) imaging is more robust to these sce-
narios (Zheng et al. 2021). As illustrated in Fig. 1, TIR im-
ages can highlight persons from the background and pre-
serve crucial details, such as glasses and backpacks. These
facts clearly show the information complementarity of dif-
ferent image spectra for object ReID. Based on the above
facts, multi-spectral object ReID aims to retrieve specific ob-
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jects by leveraging complementary information from differ-
ent image spectra, e.g., RGB, NIR, TIR etc. It delivers great
advantages over single-spectral ReID in complex visual en-
vironment. In fact, some methods (Zheng et al. 2021; Wang
et al. 2022b) have already tried to integrate multi-spectral
features with simple fusion methods. However, there are
significant distribution gaps among different image spectra.
Simple fusions can not well address the heterogenous chal-
lenges for effective feature representations. In addition, it
often involves the absence of image spectra in real world, as
shown in the “Missing-spectral Test” of Fig. 1. Thus, there
are much room for improving multi-spectral feature fusion.

Meanwhile, with the great advance of vision Transform-
ers (Dosovitskiy et al. 2020), some works (He et al. 2021;
Pan et al. 2022) have introduced Transformers for object
ReID. However, most of current Transformer-based ReID
methods only utilize the global feature of class tokens to
achieve the holistic retrieval, ignoring the local discrimina-
tive ones. To address the above issues, we step further to uti-
lize all the tokens of Transformers and propose a cyclic to-
ken permutation framework for multi-spectral object ReID,
dubbled TOP-ReID. Specifically, it consists of two key mod-
ules: Token Permutation Module (TPM) and Complemen-
tary Reconstruction Module (CRM). Technically, we first
deploy a multi-stream deep network based on vision Trans-
formers to preserve distinct information from different im-
age spectra. Then, TPM takes all the tokens from the multi-
stream deep network as inputs, and cyclically permutes the
specific class tokens and the corresponding patch tokens
from other spectra. In this way, it not only facilitates the
spatial feature alignment across different image spectra, but
also allows the class token of each spectrum to perceive the
local details of other spectra. Meanwhile, CRM is proposed
to facilitate local information interaction and reconstruction
across different image spectra. Through introducing token-
level reconstruction constraints, it can reduce the distribu-
tion gap across different image spectra. As a result, the CRM
can further handle the missing-spectral problem. With the
proposed modules, our framework can extract more discrim-
inative features from multi-spectral images for robust object
ReID. Comprehensive experiments are conducted on three
multi-spectral object ReID benchmarks, i.e., RGBNT201,
RGBNT100 and MSVR310. Experimental results clearly
show the effectiveness of our proposed methods.

In summary, our contributions can be stated as follows:

• We propose a novel feature learning framework named
TOP-ReID for multi-spectral object ReID. To our best
knowledge, our proposed TOP-ReID is the first work to
utilize all the tokens of vision Transformers to improve
the multi-spectral object ReID.

• We propose a Token Permutation Module (TPM) and a
Complementary Reconstruction Module (CRM) to facili-
tate multi-spectral feature alignment and handle spectral-
missing problems effectively.

• We perform comprehensive experiments on three multi-
spectral object ReID benchmarks, i.e., RGBNT201,
RGBNT100 and MSVR310. The results fully verify the
effectiveness of our proposed methods.

Related Work
Single-spectral Object ReID
Single-spectral object ReID focuses on extracting discrimi-
native features from single-spectral images. Typical single-
spectral forms include RGB, NIR, TIR and depth. Due to the
easy requirement, RGB images play a fundamental role in
the single-spectral object ReID. As for the techniques, most
of existing object ReID methods are based on Convolutional
Neural Networks (CNNs). For example, Luo et al. (Luo
et al. 2019) utilize a deep residual network and introduce
the BNNeck technique for object ReID. Furthermore, PCB
(Sun et al. 2018) and MGN (Wang et al. 2018) adapt a
stripe-based image division strategy to obtain multi-grained
representations. OSNet (Zhou et al. 2019) employs a uni-
fied aggregation gate for fusing omni-scale features. AGW
(Ye et al. 2021) incorporates non-local attention mecha-
nisms for fine-grained feature extraction. Nevertheless, due
to the limited receptive field, CNN-based methods(Qian
et al. 2017; Li, Zhu, and Gong 2018; Chang, Hospedales,
and Xiang 2018; Chen et al. 2019; Sun et al. 2020; Rao
et al. 2021; Zhao et al. 2021; Liu et al. 2021b) are not ro-
bust to complex scenarios. Inspired by the success of vision
Transformers (ViT) (Dosovitskiy et al. 2020), He et al. (He
et al. 2021) propose the first pure Transformer-based method
named TransReID for object ReID, yielding competitive re-
sults through the adaptive modeling of image patches. Af-
terwards, numerous Transformer-based methods (Zhu et al.
2021; Zhang et al. 2021; Chen et al. 2022; Wang et al. 2022a;
Liu et al. 2023) demonstrate their advantages in object ReID.
However, all these methods take single-spectral images as
inputs, providing limited representation abilities. Thus, they
can not handle the all-day object ReID problem.

Multi-spectral Object ReID
The robustness of multi-spectral data draws the attention
of numerous researchers. For multi-spectral person ReID,
Zheng et al. (Zheng et al. 2021) advance the field and design
a PFNet to learn robust RGB-NIR-TIR features. Then, Wang
et al. (Wang et al. 2022b) boost modality-specific represen-
tations with three learning strategies, named IEEE. Further-
more, Zheng et al. (Zheng et al. 2023) design a DENet to
address the spectral-missing problem. For multi-spectral ve-
hicle ReID, Li et al. (Li et al. 2020b) propose a HAMNet
to fuse different spectral features. Considering the relation-
ship between different image spectra, Guo et al. (Guo et al.
2022) propose a GAFNet to fuse the multiple data sources.
He et al. (He et al. 2023) propose a GPFNet to adaptively
fuse multi-spectral features. Zheng et al. (Zheng et al. 2022)
propose a CCNet to simultaneously overcome the discrepan-
cies from both modality and sample aspects. Pan et al. (Pan
et al. 2022) propose a HViT to balance modal-specific and
modal-shared information. Furthermore, they employ a ran-
dom hybrid augmentation and a feature hybrid mechanism
to improve the performance (Pan et al. 2023). Although ef-
fective, previous methods mainly treat the NIR and TIR as
an assistant to RGB, rather than adaptively fuse them with
multi-level spatial correspondences. In contrast, we facilitate
the spatial feature alignment across different image spectra.
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Figure 2: An illustration of the proposed TOP-ReID. First, deep features from RGB, NIR and TIR images are extracted by using
three independent ViT-B/16. Then, a Token Permutation Module (TPM) is proposed for cyclic multi-spectral feature aggregation
through three consecutive token permutations. Meanwhile, a Complementary Reconstruction Module (CRM) is used to achieve
token-level reconstruction constraints. When inference, we utilize the permutated features for ranking the person candidates.

Proposed Method
As illustrated in Fig. 2, our proposed TOP-ReID consists
of three main components: Multi-stream Feature Extraction,
Token Permutation Module (TPM) and Complementary Re-
construction Module (CRM).

Multi-stream Feature Extraction
In this work, we take images of three spectra for object
ReID, i.e., RGB, NIR and TIR. To capture the distinc-
tive characteristics of each spectrum, we follow previous
works (Li et al. 2020b; Zheng et al. 2021) and adopt three in-
dependent backbones. More specifically, vision Transform-
ers (ViT) can be deployed as the backbone in each stream.
Formally, the multi-stream features can be represented as

FR = ViTR (IR) , (1)

FN = ViTN (IN) , (2)

FT = ViTT (IT) , (3)

where IR ∈ RH×W×3, IN ∈ RH×W×3 and IT ∈ RH×W×3

denote the input RGB, NIR and TIR images, respectively.
Here, ViT can be any vision Transformers (e.g., ViT-
B/16 (Dosovitskiy et al. 2020), DeiT-S/16 (Touvron et al.
2021), T2T-ViT-24 (Yuan et al. 2021)). The token features
FR, FN, FT ∈ RD×(M+1) are extracted from the final
layer of ViT, respectively. Additional learnable class to-
ken is included. D denotes the embedding dimension while
M means the number of patch tokens. These independent

streams enable the extraction of spectral-specific features,
capturing rich information from different image spectra.

Token Permutation Module
To achieve the spatial feature alignment among different
image spectra and the effective aggregation of heteroge-
neous features, we introduce the Token Permutation Mod-
ule (TPM) with a cyclic token permutation mechanism, as
illustrated at the top right corner of Fig. 2.

Technically, TPM takes the token features FR, FN and
FT as inputs, and generates the fused feature ftp with three
consecutive token permutations. Without loss of general-
ity, we take the RGB stream as a starting example. As
shown in Fig. 3 (a), we utilize a Multi-Head Cross-Attention
(MHCA) (Dosovitskiy et al. 2020) with Nh heads to achieve
the token permutation. More specifically, the class token
f(R,0) ∈ RD from FR is passed into a linear transforma-
tion to generate a query matrix Q ∈ RD. The patch tokens
F patch
N ∈ RD×M from FN are passed into two linear trans-

formations to generate a key matrix K and a value matrix V ,
respectively. Thus, the interaction of FR and FN in the h-th
head is represented as

f̂h
(R,1) = σ(

QhKh⊤

√
d

)V h, (4)

where σ is the softmax function and (·)⊤ means the matrix
transposition. Here, Qh ∈ Rd, Kh, V h ∈ Rd×M , d = D

Nh
.
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Figure 3: Our token permutation and TransRe blocks with
the RGB stream. Other streams share a similar structure.

The outputs of Nh heads (f̂1
(R,1), · · · , f̂

h
(R,1), · · · , f̂

Nh

(R,1)) are

concatenated to be f̂(R,1) ∈ RD. Then, f̂(R,1) is passed
through a Feed-Forward Network (FFN) to generate a new
class token f(R,1),

f(R,1) = FFN(f̂(R,1)) + f̂(R,1). (5)

It serves as the initial spatial alignment of the RGB and
NIR image features. Similar operations can be performed
for other spectra,

f(R,1) = FFN(MHCA
(
LN(f(R,0)),LN(F

patch
N )

)
), (6)

f(N,1) = FFN(MHCA
(
LN(f(N,0)),LN(F

patch
T )

)
), (7)

f(T,1) = FFN(MHCA
(
LN(f(T,0)),LN(F

patch
R )

)
). (8)

As shown in Fig. 3 (a) and above equations, we additionally
introduce the LayerNorm (LN) (Ba, Kiros, and Hinton 2016)
to Q and K to ensure the numerical stability. Thus, the first
token permutation can be totally formulated as

f(R,1), f(N,1), f(T,1) = TPM1(FR, FN, FT), (9)

From the above equations, it can be observed that the to-
ken permutation enables the global class token from each
spectrum to interact with the local patch tokens of the next
spectrum, achieving the initial feature fusion and alignment.

Furthermore, the permutated class tokens f(R,1), f(N,1),
and f(T,1) are paired with their initial patch tokens to form
FR→N, FN→T, and FT→R, respectively. The class tokens
keep shifting to the next spectrum,

f(R,2), f(N,2), f(T,2) = TPM2(FR→N, FN→T, FT→R).
(10)

At this stage, each spectrum has already incorporated de-
tail information from other spectra. Similar to the previous
step, the permutated class tokens f(R,2), f(N,2), and f(T,2)

are paired with permutated patch tokens to form FRN→T,

FNT→R, and FTR→N, respectively. Finally, the token per-
mutation process ends with each class token interacting with
its own patch tokens,

f(R,3), f(N,3), f(T,3) = TPM3(FRN→T, FNT→R, FTR→N).
(11)

Through the above token permutation, the information from
all other spectra is conveyed to the patch tokens through the
class token, enabling robust feature alignment. Finally, we
concatenate the permutated class tokens to obtain the per-
mutated representation ftp ∈ R3D,

ftp = Concat
(
f(R,3), f(N,3), f(T,3)

)
. (12)

This cyclic token permutation enhances the spatial fusion
and implicit alignment of deep features across spectra, im-
proving the ability of inter-spectral dependencies.

Complementary Reconstruction Module
There are significant distribution gaps among different im-
age spectra. In addition, it often involves the absence of cer-
tain image spectra in real world. Inspired by the image gen-
eration (Zhu et al. 2017), we propose a Complementary Re-
construction Module (CRM) to reduce the distribution gap
across different image spectra. The key is to incorporate
dense token-level reconstruction constraints.

Without loss of generality, we take the RGB stream as
an example and consider the NIR and TIR spectra miss-
ing. To reconstruct the missing tokens, we pass FR through
a Transformer-based Reconstruction (TransRe) block (See
Fig. 3 (b)) and generate the corresponding tokens by

FR2N = TransRe(FR), (13)

FR2T = TransRe(FR), (14)

where FR2N, FR2T ∈ RD×(M+1) are the reconstructed to-
kens. The reconstructed tokens FR2N and FR2T are con-
strained by the real token features FN and FT using the
Mean Squared Error (MSE) loss:

LR2N =
1

M + 1

M+1∑
i=1

||FR2N − FN||22, (15)

LR2T =
1

M + 1

M+1∑
i=1

||FR2T − FT||22, (16)

LR = LR2N + LR2T. (17)
Through the above token-level reconstruction constraints,
the distribution gap between RGB and other spectra is re-
duced. To improve the reconstruction ability, we introduce
similar constraints to all the image spectra and achieve a
multi-spectral complementary reconstruction. The comple-
mentary reconstruction loss Lcr can be expressed as the sum
of the individual losses for each spectrum:

Lcr = LR + LN + LT. (18)

By introducing token-level constraints, our CRM effectively
reduces the distribution gap among different image spectra.
Moreover, it can generate corresponding tokens of missing
spectra, ensuring a unified learning framework even in sce-
narios where one or more spectra are absent.
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Dynamic Cooperation Between CRM and TPM

In this work, we further introduce the dynamic cooperation
between the CRM and TPM to handle the absence of any im-
age spectrum. For example, when the RGB image spectrum
is missing, the token features FN and FT will activate their
reconstruction blocks to generate the corresponding RGB to-
ken features FN2R and FT2R, respectively. Then, the recon-
structed RGB token features can be represented as

F̄R =
(FN2R + FT2R)

2
. (19)

Then, F̄R, FN and FT can be fed into the TPM to perform
the token permutation as normal. Hence, our CRM can dy-
namically cooperate with TPM, ensuring that the missing
spectrum can still participate in the permutation process.

Objective Function

As illustrated in Fig. 2, our objective function comprises
three components: loss for the ViT backbone, loss for the to-
ken permutation and loss for the CRM. As for the ViT back-
bone and the token permutation, they are both supervised by
the label smoothing cross-entropy loss (Szegedy et al. 2016)
and triplet loss (Hermans, Beyer, and Leibe 2017). Finally,
the total loss in our framework can be defined by

Ltotal = LV iT
tri + LV iT

ce + LTP
tri + LTP

ce + Lcr. (20)

Experiments
Dataset and Evaluation Protocols

To evaluate the performance, we adopt three multi-spectral
object ReID datasets. RGBNT201 (Zheng et al. 2021) is the
first multi-spectral person ReID dataset with RGB, NIR and
TIR spectra. RGBNT100 (Li et al. 2020b) is a large-scale
multi-spectral vehicle ReID dataset. MSVR310 (Zheng et al.
2022) is a small-scale multi-spectral vehicle ReID dataset
with more complex scenarios. Following previous works, we
adopt the mean Average Precision (mAP) and Cumulative
Matching Characteristics (CMC) at Rank-K (K = 1, 5, 10)
as our evaluation metrics.

Implementation Details

Our model is implemented with the PyTorch toolbox. We
conduct experiments with one NVIDIA A800 GPU. We
use pre-trained Transformers on the ImageNet classification
dataset (Deng et al. 2009) as our backbones. All images are
resized to 256×128×3 pixels. When training, random hor-
izontal flipping, cropping and erasing (Zhong et al. 2020)
are used as data augmentation. We set the mini-batch size to
128. Each mini-batch consists of 8 randomly selected object
identities, and 16 images are sampled for each identity. We
use the Stochastic Gradient Descent (SGD) optimizer with a
momentum coefficient of 0.9 and a weight decay of 0.0001.
Furthermore, the learning rate is initialized as 0.009. The
warmup strategy and cosine decay are used during training.

Methods RGBNT201
mAP R-1 R-5 R-10

Single

HACNN 21.3 19.0 34.1 42.8
MUDeep 23.8 19.7 33.1 44.3
OSNet 25.4 22.3 35.1 44.7
MLFN 26.1 24.2 35.9 44.1
CAL 27.6 24.3 36.5 45.7
PCB 32.8 28.1 37.4 46.9

Multi

HAMNet 27.7 26.3 41.5 51.7
PFNet 38.5 38.9 52.0 58.4
DENet 42.4 42.2 55.3 64.5
IEEE 47.5 44.4 57.1 63.6

TOP-ReID* 72.3 76.6 84.7 89.4

Table 1: Performance comparison on RGBNT201. The best
and second results are in bold and underlined, respectively.
* signifies Transformer-based approaches, while others are
CNN-based ones.

Methods RGBNT100 MSVR310
mAP R-1 mAP R-1

Single

DMML 58.5 82.0 19.1 31.1
Circle Loss 59.4 81.7 22.7 34.2

PCB 57.2 83.5 23.2 42.9
MGN 58.1 83.1 26.2 44.3
BoT 78.0 95.1 23.5 38.4

HRCN 67.1 91.8 23.4 44.2
OSNet 75.0 95.6 28.7 44.8
AGW 73.1 92.7 28.9 46.9

TransReID* 75.6 92.9 18.4 29.6

Multi

GAFNet 74.4 93.4 - -
GPFNet 75.0 94.5 - -
PHT* 79.9 92.7 - -
PFNet 68.1 94.1 23.5 37.4

HAMNet 74.5 93.3 27.1 42.3
CCNet 77.2 96.3 36.4 55.2

TOP-ReID* 81.2 96.4 35.9 44.6

Table 2: Performance on RGBNT100 and MSVR310.

Comparison with State-of-the-Art Methods
Multi-spectral Person ReID. In Tab. 1, we compare our
TOP-ReID with both single-spectral methods and multi-
spectral methods on RGBNT201. The results indicate that
single-spectral methods generally achieve lower perfor-
mance compared with multi-spectral methods. It demon-
strates the effectiveness of utilizing complementary infor-
mation from different image spectra. Among the single-
spectral methods, PCB achieves the highest performance,
attaining the mAP and Rank-1 accuracy of 32.8% and
28.1%, respectively. As for the multi-spectral methods, our
TOP-ReID achieves remarkable performance. Specifically,
it achieves a mAP that is 24.8% higher and a Rank-1 ac-
curacy that surpasses IEEE by 32.2%. These performance
gains provide strong evidences for our TOP-ReID in tack-
ling the challenges of multi-spectral person ReID.

Multi-spectral Vehicle ReID. As shown in Tab. 2, single-
spectral methods such as OSNet (Zhou et al. 2019), AGW
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Methods M (RGB) M (NIR) M (TIR) M (RGB+NIR) M (RGB+TIR) M (NIR+TIR)
mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1

Single

HACNN 12.5 11.1 20.5 19.4 16.7 13.3 9.2 6.2 6.3 2.2 14.8 12.0
MUDeep 19.2 16.4 20.0 17.2 18.4 14.2 13.7 11.8 11.5 6.5 12.7 8.5
OSNet 19.8 17.3 21.0 19.0 18.7 14.6 12.3 10.9 9.4 5.4 13.0 10.2
MLFN 20.2 18.9 21.1 19.7 17.6 11.1 13.2 12.1 8.3 3.5 13.1 9.1
CAL 21.4 22.1 24.2 23.6 18.0 12.4 18.6 20.1 10.0 5.9 17.2 13.2
PCB 23.6 24.2 24.4 25.1 19.9 14.7 20.6 23.6 11.0 6.8 18.6 14.4

Multi
PFNet - - 31.9 29.8 25.5 25.8 - - - - 26.4 23.4
DENet - - 35.4 36.8 33.0 35.4 - - - - 32.4 29.2

TOP-ReID 54.4 57.5 64.3 67.6 51.9 54.5 35.3 35.4 26.2 26.0 34.1 31.7

Table 3: Experimental results of missing-spectral tasks on RGBNT201. “M (X)” stands for missing the X image spectra.

Modules RGBNT201
BL AL TPM CRM mAP R-1 R-5 R-10

A ✓ ✕ ✕ ✕ 55.9 54.9 70.8 77.6
B ✕ ✓ ✕ ✕ 62.9 64.5 77.4 82.7
C ✕ ✓ ✓ ✕ 67.8 69.4 83.3 88.8
D ✕ ✓ ✓ ✓ 72.3 76.6 84.7 89.4

Table 4: Performance comparison with different modules.

(Ye et al. 2021) and TransReID (He et al. 2021), stand out for
their competitive performance. For multi-spectral methods,
CCNet achieves remarkable results across both datasets. On
the RGBNT100 dataset, our TOP-ReID outperforms CC-
Net with a 4.0% higher mAP. On the small-scale MSVR310
dataset, our TOP-ReID maintains competitive performance,
showing its versatility and robustness.

Evaluation on Missing-spectral Scenarios. As shown
in Tab. 3, all single-spectral methods suffer from per-
formance degradations when image spectra are missing.
Multi-spectral methods demonstrate better robustness com-
pared with single-spectral methods. Our proposed TOP-
ReID achieves remarkable performance even in the presence
of missing spectra. It consistently outperforms both single-
spectral and multi-spectral methods in all missing-spectral
scenarios, indicating its effectiveness in handling the spec-
tral incompleteness. In addition, compared with PFNet and
DENet, our TOP-ReID is a more flexible and diverse frame-
work to address any spectra missing.

Ablation Studies
To investigate the effect of different components, we further
perform a scope of ablation studies on RGBNT201.

Effects of Key Modules. Tab. 4 illustrates the perfor-
mance comparison with different modules. The Model A is
the baseline which utilizes the multi-stream ViT-B/16 back-
bones. BL means the triplet loss and cross-entropy loss are
added before the concatenation of multi-spectral features,
while AL means these losses are employed after the fea-
ture concatenation. It can be observed that the AL setting
shows better results. The main reason is that the fused multi-
spectral features is more powerful than the simple feature
concatenation. Furthermore, by integrating our TPM, the
Model C yields higher performance with mAP of 67.8% and
Rank-1 of 69.4%. By introducing CRM, the final model can
achieve the best performance with mAP of 72.3% and Rank-
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Figure 4: Performance of deploying TPM at different layers.
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Figure 5: Effects of different depths of TransRe blocks.

1 of 76.6%. These improvements validate the effectiveness
of our key modules in handling complex ReID scenarios.

TPM at Different Layers. In fact, our TPM is a plug-
and-play module. We explore the effect of TPM at different
layers of the ViT backbone. Fig. 4 shows the performance
of TPM at different layers. We observe that as the plugged
depth of TPM increases, the performance greatly improves.
When deployed in the last layer, it achieves the best perfor-
mance. This indicates that our TPM is more pronounced in
deep layers, capturing more discriminative representations.

Effects of TransRe Blocks in CRM. The depth of Tran-
sRe blocks may impact the reconstruction ability. As illus-
trated in Fig. 5, the ReID performance is relatively con-
sistent when using different depths of TransRe blocks. In
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Methods ViT-B/16 DeiT-S/16 T2T-ViT-24
mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

RGB 29.0 26.2 44.5 56.1 33.3 30.6 49.5 58.0 30.1 30.3 47.2 56.6
NIR 18.7 14.0 31.1 44.9 22.7 21.4 39.4 47.6 15.8 15.3 27.0 36.8
TIR 33.4 32.3 52.4 63.3 27.1 26.3 41.3 51.4 34.0 36.2 52.0 62.0

NIR-TIR 45.9 43.4 59.9 69.4 40.6 40.9 54.3 61.0 40.9 40.7 56.3 64.2
RGB-NIR 39.0 40.2 56.6 65.7 46.7 45.0 62.6 70.0 36.3 35.2 53.8 66.3
RGB-TIR 52.6 53.8 69.0 78.2 49.3 47.8 64.1 72.8 49.9 51.7 66.7 73.8

RGB-TIR-NIR 55.9 54.9 70.8 77.6 55.1 53.3 67.3 76.2 52.2 51.3 64.1 74.3
Baseline (AL) 62.9 64.5 77.4 82.7 59.9 61.1 73.9 80.9 56.2 60.4 73.0 78.6

Baseline (AL) + TPM 67.8 69.4 83.3 88.8 63.0 63.9 78.1 83.9 58.2 60.8 74.9 81.4
Baseline (AL) + CRM + TPM 72.3 76.6 84.7 89.4 69.0 73.6 81.8 84.7 60.0 61.6 76.2 82.3

Table 5: Performance comparison of different backbones with different spectra and modules on RGBNT201.

(a) RGB-TIR-NIR (b) Baseline  (AL)

(c) Baseline  (AL) + TPM (d) Baseline  (AL) + CRM +TPM

RGB NIR TIR

Figure 6: Comparison of feature distributions by using t-
SNE. Different colors represent different identities.

Fig. 5, we also provide the comparison results with missing-
spectral cases. It can be observed that the overall perfor-
mance is acceptable when only using one block. Thus, we
utilize one TransRe block to reduce the computation.

Effects of Different Transformer-based Backbones.
To verify the generalization of our TOP-ReID, we adopt
three different Transformer-based backbones, i.e., ViT-B/16,
DeiT-S/16 and T2T-ViT-24. Tab. 5 illustrates the perfor-
mance comparison. As can be observed, the ViT-B/16 de-
livers the best results. With more image spectra, different
backbones can consistently improve the performance. Our
proposed TPM and CRM can improve the performance with
different backbones. We believe that the performance can be
further improved by using more powerful backbones.

Visualization Analysis
To clarify the learning ability, we present visual results on
the feature distributions and discriminative attention maps.

Multi-spectral Feature Distributions. Fig. 6 illustrates
the feature distributions of different models by using t-
SNE (Van der Maaten and Hinton 2008). In Fig. 6 (a), it rep-
resents the direct concatenation of single-spectral features,
where each stream is individually trained. It can be observed
that the AL setting can effectively align the features of dif-

RGB

NIR

TIR

(g) (c) (h)(f) (d) (e)(b)  (a)

Figure 7: Discriminative attention maps. (a) Input images;
(b) Full; (c) M (RGB); (d) M (NIR); (e) M (TIR); (f) M
(NIR+TIR); (g) M (RGB+TIR); (h) M (RGB+NIR);

ferent spectra with a better ID consistence. With our TPM,
the features of the same ID across different spectra are more
concentrated, and the gaps between different IDs are more
distinct. Furthermore, with CRM, the feature distribution be-
comes more compact, and the number of outliers for each ID
is reduced. This visualization provides strong evidences for
the effectiveness of our proposed methods.

Discriminative Attention Maps. As shown in Fig. 7, we
utilize Grad-CAM (Selvaraju et al. 2017) to visualize the
discriminative attention maps with different image spectra.
Obviously, there are discriminative differences between dif-
ferent image spectra. Our model is powerful and can high-
light discriminative regions when missing image spectra.

Conclusion
In this work, we propose a novel feature learning frame-
work based on token permutations for multi-spectral object
ReID. Our approach incorporates a Token Permutation Mod-
ule (TPM) for spatial feature alignment and a Complemen-
tary Reconstruction Module (CRM) for reducing the distri-
bution gap across different image spectra. Through the dy-
namic cooperation between TPM and CRM, it can handle
the missing-spectral problem, which is more flexible than
previous methods. Extensive experiments on three bench-
marks clearly demonstrate the effectiveness of our methods.
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