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ABSTRACT

We propose Generative Pseudo-Inverse Memory (GPM), a class of deep generative
memory models that are fast to write in and read out. Memory operations are
recast as seeking robust solutions of linear systems, which naturally lead to the
use of matrix pseudo-inverses. The pseudo-inverses are iteratively approximated,
with practical computation complexity of almost O(1). We prove theoretically and
verify empirically that our model can retrieve exactly what have been written to
the memory under mild conditions. A key capability of GPM is iterative reading,
during which the attractor dynamics towards fixed points are enabled, allowing the
model to iteratively improve sample quality in denoising and generating. More
impressively, GPM can store a large amount of data while maintaining key abilities
of accurate retrieving of stored patterns, denoising of corrupted data and generating
novel samples. Empirically we demonstrate the efficiency and versatility of GPM
on a comprehensive suite of experiments involving binarized MNIST, binarized
Omniglot, FashionMNIST, CIFAR10 & CIFAR100 and CelebA.

1 INTRODUCTION

Memory is central to intelligence by facilitating information compression, reconstruction, manipula-
tion, and generation. The processing speed and storage capacity of the working memory are known
to correlate with reasoning capacity (Jensen and Munro, 1979; Kyllonen and Christal, 1990). Recent
work in machine learning has explored slot-based external memory to augment neural networks
(Graves et al., 2016; Le et al., 2019) in which memory reads and writes proceed sequentially through
attention mechanism, making training and pattern retrieval difficult for very long sequences. Global
self-attention techniques (Ramsauer et al., 2021) create short-cuts in information paths, hence are
easier to train, but require large memory and computation for long sequences.

Different from slot-based memories, Kanerva Machines (Wu et al., 2018a;b) are a class of gener-
ative memory inspired by Kanerva’s sparse distributed memory (Kanerva, 1984). Here memory
update/retrieval and addressing mechanism are treated as Bayesian inference where posteriors are
updated when a new data episode arrives. This iterative and dynamic inference handles noisy inputs
better due to the convergence of the attractor dynamics to fixed points (Wu et al., 2018b). However,
these models suffer from slow processing speed, which originates from the sequential writing mech-
anism. This slowness prevents the model to adapt to large batch of data, thus makes it difficult to
conduct experiments on memory storage capacity. On the other side, one cannot ensure theoretically
how well those models retrieve information. This creates an obstacle for theoretical research on the
efficiency of memory models.

To overcome these challenges we propose a new model called Generative Pseudo-Inverse Memory
(GPM), which is illustrated in Fig. 1. GPM reformulates the Bayesian updates of memory and address
as finding least-square solutions to linear systems. Among these solutions, the smallest norm is found
through applying the Moore-Penrose pseudo-inverse of matrices (Ben-Israel and Greville, 2001).
This helps us achieve rapid and accurate memory read/write. Moreover, our model is able to not only
store and retrieve information perfectly under ideal conditions but also generate new samples based
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Figure 1: (a) Folded writing-reading mechanism of GPM. Red arrows indicates operations of computing the
pseudo-inverses. The memory M, the weight W and the data Z interact in a dynamic way, where W is
dynamically computed based on Z and M and (assume that) Z depends linearly on W and M. (b) Unfolded
writing-reading mechanism of GPM. Orange boxes and circles contain trainable parameters of GPM. The
green circle consists of variational part for the generative scheme. Red arrows are operations of computing the
pseudo-inverses. During writing, the episode X is encoded as Z. Using Z and prior memory M0, we compute
the writing weight W0 and then use W0 to write Z into the memory. The result of writing phase is the posterior
memory M. In reading, the query Xq is encoded as Zq . Note that the encoder in the reading phase needs not be
identical to the encoder in writing phase. The reading weight W is computed based on Zq and the posterior
M. The memory read-out Zr is simply the matrix product between W and M. Finally, Zr goes through the
decoder to produce the output Xo of the reading phase. If iterative reading is included, Xo will become the next
query and be fed back to the encoder for next reading step. In training, we use the same encoder for writing and
reading, the query Xq is identical with X and reading is non-iterative.

on written data. This coincides with recent inspiring results from functional neuroimaging (Addis
et al., 2007; Okuda et al., 2003; Schacter et al., 2012), which showed that memory not only helps
us memorize but also supports imagining. We derive an energy function for GPM and show that its
updates seek to locate local minima of the energy. This dynamic enables GPM to perform iterative
reading to improve sample quality during denoising and generating. Finally, GPM can store a large
amount of data (up to a dataset) while still maintaining key capabilities. We validate these theoretical
insights through a comprehensive suite of experiments on binarized MNIST (LeCun et al., 2010) ,
binarized Omniglot (Burda et al., 2016), FashionMNIST (Xiao et al., 2017), CIFAR10 & CIFAR100
(Krizhevsky, 2009) and CelebA (Liu et al., 2015), demonstrating superior results.

2 MODEL

Consider a data episode of length T and let X denote the episode data matrix of T rows, where
the i-th row of X is the i-th item of the episode. Throughout this paper, we refer to the episode as
its associated episode matrix. We aim to compress the episode into a fixed-size memory for later
reconstruction and generation processes. We maintain a memory matrix M, which is a deterministic
real matrix of size K × C with trainable initialization M0. For convention, M0 may be considered
as the common prior memory containing information of the whole dataset while M is the posterior
memory dependent on the episode.
Remark. In this paper, we reuse classical terms "prior memory" and "posterior memory", which are
frequently used in prior works where the memory is modeled as a distribution. In this paper, however,
we only consider deterministic memories with an exception when we introduce the optimization
problem corresponding to the Bayesian inference (Eq. (3)). Hence, “prior memory” and “posterior
memory” should be interpreted as the memory before and after data arrive, respectively.

In order to write to and read from the memory, we additionally define the writing weight matrix W0

and reading weight matrix1 W, both of size T ×K. We treat the reading weight W as a random
variable, hence inducing the generative capability of the model. For simplicity, the prior p (vec(W))
of W is the standard Gaussian N (0, IT×K) while the posterior q (vec(W)) is N

(
W, σ2

WIT×K
)
,

where the mean W is adapted to each episode and σW is a learnable parameter. Read-outs from the
memory are matrix products between the reading weight and the posterior memory.

1We note that weights here are dynamic and unrelated to neural network parameters. The term “dynamic”
means the writing/reading weights of an input not only depend on its own but also the episode it belongs to.
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Let eθ(.) be the (neural) encoder and dθ(.) be the decoder parameterized by θ. In the following
we drop the explicit subscript θ for clarity. We further let Z denote the T × C encoding matrix of
the episode X, i.e. Z = e(X) where e(.) is applied to each row of X. During training, the model
can only observe a noisy version of Z, which we denote by Zξ. Specifically, Zξ=Z + ξ, where
ξ∼ N (0, σ2

ξI) is the observation noise. We assume that the observed data Zξ depends linearly on the
weights and the memories: Zξ = W0M0 and Zξ = WM, which we refer as linear assumptions
over Zξ.

2.1 OBJECTIVE FUNCTION

Given the memory M, we aim to maximize the conditional log-likelihood ln p(X|M). It is difficult
to maximize ln p(X|M) directly, so we instead maximize its evidence lower bound L, where

L = Eq(W) ln p(X|W,M)−DKL(q(W)||p(W)). (1)

The first term in L is usually called the negative reconstruction loss, while the second term is the
Kullback-Leibler divergence between the posterior q(W) and the prior p(W) of the reading weight.
Details of derivation will be given in Appendix I.

In our model, we use the encoding matrix Z as the data to be written to the memory instead of the
original episode X. Therefore, we would like Z to be a “good” representation of X. We quantify this
goodness by the usual auto-encoder loss LAE = EX∼data ln p (d (e(X))). Thus during training, we
will maximize the objective function:

O = L+ LAE. (2)

2.2 GENERATIVE PSEUDO-INVERSE MEMORY

In our model, the posterior memory, the writing weight and the reading weight are all dynamic (i.e.
depending on the data episode). Hence it is necessary to understand the motivations and computation
methods as introduced in the following.

Intuition

Only in this part, we will consider probabilistic memories to have unified settings with previous
Bayesian-based works such as the Kanerva Machines (Wu et al., 2018a;b; Marblestone et al., 2020).
When the observed data Zξ arrive, the Kanerva Machines apply the Bayesian inference process to
obtain the posterior memory from a given (trainable) prior distribution. It is well-known that the
posterior mean is the Bayes estimator with respect to the squared error risk (Jaynes, 2003). Formally,
given the observed data Zξ and the writing weight W0, the posterior memory mean M is the solution
of the optimization problem

min
M

E
(
‖M−M0‖2F

∣∣∣∣Zξ,W0

)
, (3)

where ‖.‖F is the Frobenius norm. With the linear assumption over Zξ and an additional linear
assumption over M, Eq. (3) has a unique and explicit solution (see Appendix H).

The solution M of Eq. (3) tends to preserve information from M0. However, in practice, what
appears in the prior memory might be blurry information. Forcing the short-term memory M to be
close to M0 may prevent M from storing sufficient information, leading to incorrect read-out.

Memory inference

From now on, we will only consider deterministic memories. We propose a weighted version of the
optimization problem (3) to help improve read-out accuracy. Our proposed optimization problem is

min
M
‖W0(M−M0)‖2F . (4)

Intuitively, if M is a solution of Eq. (4), then W0M is close to W0M0, which is equal to Zξ due to
the linear assumption over Zξ . In other words, the read-out after writing (i.e. W0M) is similar to the
data written to the memory (i.e. Zξ). Substitute W0M0 = Zξ, Eq. (4) becomes

min
M
‖W0M− Zξ‖2F . (5)
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Any solution of Eq. (5) is called the least-square solution of the linear system W0M = Zξ . However,
Eq. (5) may admit more than one least-square solution, thus we are interested in the least-square
solution that has the smallest norm, i.e. the minimum-norm least-square solution. The minimum-
norm condition may help to regularize in the sense that the posterior memory should contain as
little redundant information as possible. It can be proved that M = W+

0 Zξ is the minimum-norm
least-square solution of the system W0M = Zξ (Ben-Israel and Greville, 2001), where W+

0 is the
pseudo-inverse of W0. The pseudo-inverse of matrix is applicable to classical associative memory
which involves finding a linear mapping from input to output (Stiles and Denq, 1985; Yen and Michel,
1991). Readers are referred to Appendix D for more mathematical properties of the pseudo-inverse.

Computing writing and reading weights (dynamic addressing)

The discussion so far is about seeking the posterior memory M given the data Z and the writing
weight W0. In our settings, all weights are dynamic and they depend on either the prior memory
and data (during writing) or the posterior memory and the query (during reading). Formally written,
we need to determine the writing weight W0 (given prior memory M0 and noisy data Zξ) and
reading weight W (given posterior memory M and query Z)2. Ideally, W0 and W should satisfy
W0M0 = Zξ and WM = Zξ ≈ Z, according to the linear assumptions over Zξ. The minimum-
norm least-square solutions of those linear systems are W0 = ZξM

+
0 and W = ZM+, where

M+
0 and M+ are pseudo-inverses of M0 and M, respectively. While least-square condition is

obvious since we would like to find solutions W0 and W that best fit the systems, explanation for
the minimum-norm condition will be given in Appendix J.

Computing pseudo-inverses

We do not always have an explicit formula for the pseudo-inverse, and even in such cases, the
formula may consist of inverse matrices which are expensive to compute. Ben-Israel and Cohen
(1966) provide us with an iterative way to approximate the pseudo-inverse, as stated in the following
theorem:
Theorem 2.1. (Ben-Cohen algorithm) Given a real matrix D and an initial matrix D0 of the same size
with the transpose D>. The sequence {Di}i≥0 defined recursively as Di+1 = 2Di −DiDDi will
converge to the pseudo-inverse of D. With appropriate D0, the sequence will converge quadratically.

Ben-Cohen algorithm allows us to compute the matrix pseudo-inverse efficiently with nearly O(1)
time complexity in practice (see Section 3.5 for experimental results). For simplicity, we set the
initial term D0 = αD>, where α is a hyper-parameter dependent on the dataset. Deeper analysis of
the initial condition for Ben-Cohen algorithm will be given in Appendix G.

Algorithm We are now ready to present the Generative Pseudo-Inverse Memory (GPM) in full.
Assume that the observation noise ξ is sampled from N (0, σ2

ξI). Algorithm 1 illustrates a single
training step of GPM. All pseudo-inverses are approximated by the Ben-Cohen algorithm.

2.2.1 REMARK: RELATION WITH EXISTING ALGORITHMS

Several properties of GPM are worth highlighting. GPM can be viewed as 2-step EM algorithm
(Dempster et al., 1977). Details are given in Appendix J. Moreover, in noiseless setting, i.e., ξ → 0,
GPM and Dynamic Kanerva Machine (DKM) (Wu et al., 2018b) coincide. In DKM, solving W is
related to minimizing DKL (q(W)||p(W|X,M)), which is equivalent to the optimization problem

min
W

(
‖Z−WM‖2F + σ2

ξ‖W‖2F
)
. (6)

This problem has a solution Wσξ
= ZM>(MM> + σ2

ξI)
−1. According to Theorem D.5, Wσξ

converges to W
∗

= ZM+ as σξ → 0. Note that W
∗

is actually the reading weight of GPM.

2.3 ERROR BOUND

Using pseudo-inverses in Algorithm 1, we establish an error bound for the memory read-out, as stated
in the following theorem:

2In general case (e.g. when the query is a noisy version of Z), the same dynamic addressing holds.
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Algorithm 1 Single training step of Generative Pseudo-Inverse Memory
Sample an episode X of length T .
Writing

1. Compute episode embedding Z = e(X).
2. Randomize noise ξ from N (0, σ2

ξI). // simulate observed data
3. Compute weight W0 = ZξM

+
0 . // dynamic addressing

4. Compute posterior memory M = W+
0 Zξ. // complete writing phase

Reading
1. Compute episode embedding Z = e(X). // similar role with Zq in Figure 1b
2. Compute weight mean W = ZM+. // dynamic addressing
3. Sample W ∼ N (W, σ2

WI). // variational schema for generating samples
4. Compute read-out Zread-out = WM. // similar role with Zr in Figure 1b
5. Compute reconstruction X̂ = d (Zread-out). // complete reading phase, no iterative reading

Updating model parameters
1. Compute the objective O = L+ LAE using obtained terms from previous steps.
2. Update parameters via gradient ascent to maximize O.

Theorem 2.2. Let ‖.‖2 denote the spectral norm. Suppose there exist α, β ∈ [0, 1) such that

‖I− ZξZ
>
ξ ‖2 ≤ α and ‖I− ZξZ

+
ξ ‖2 ≤ β.

Then WM = Z(I + E), where E is the error matrix satisfying

‖E‖2 ≤ β + ‖I−W0W
+
0 ‖2

√
1+α
1−α .

Corollary 2.3. Assume that rank W0 = rank Zξ = T , i.e. rows of W0 and Z are linearly
independent. Then WM = Z.

Proofs are given in Appendix E. Theorem 2.2 and Corollary 2.3 establish that the error of memory
retrieval can be bounded by other errors only dependent on the data Z and writing weight W0. When
rows of W0 and Zξ are linearly independent, the retrieval is perfect. The trainable prior memory
M0 helps the model balance approximation errors when ideal conditions are not met.

Corollary 2.3 also suggests that retrieval may be still accurate if rows of W0 and Z are sufficiently
linearly independent. A well-known property on high dimensional space is that two arbitrary vectors
are likely to be orthogonal (Gorban and Tyukin, 2018). Thus we can expect that GPM will still
work fairly well when T � max{K,C}, i.e. the episode length is much greater than the number of
memory slots and size of embedding vectors. Empirical evidences will be given in Section 3.4.

2.4 ATTRACTOR DYNAMICS

We demonstrate that GPM inherits properties of energy-based models. The key property of models
induced from dynamical systems is iterative reading, i.e. to iteratively reproduce the correct pattern
from a partially broken query. With fixed memory M, the energy function of GPM can be defined as
a function of two variables x and w:

E(x,w) : = − ln p(x|w,M) = −p(x|M) +
‖e(x)−wM‖2F

2σ2
ξ

+ r. (7)

Here we replaced z by e(x) and note that the residual r is constant after training. Denote (wi,xi)
the pair of weight and reading output of the i-th iterative reading step. The output xi is iteratively
fed back to the model until convergence. With xi as the query for (i+ 1)-th step, solving for wi+1

minimizes ‖e(x)−wM‖2F ,which indicates E(xi,wi+1) > E(xi,wi). With wi+1 in hand, the way
we train the model encourages xi+1 to maximize the likelihood p(x|wi+1,M). If it is the case,
E(xi+1,wi+1) > E(xi,wi+1) and therefore E(xi+1,wi+1) > E(xi,wi). In ideal cases, {xi}i≥0
will converge to a local minimum associated with a stored pattern in the energy landscape.
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Binarized
MNIST

Binarized
Omniglot

CIFAR10

28× 28 28× 28 32× 32
Method (nats/image) (nats/image) (bits/dim)

VAE (Kingma and Welling, 2014) 87.86 104.75 6.3
IWAE (Burda et al., 2016) 85.32 103.38 -
Improved decoders
PixelVAE++ (Sadeghi et al., 2019) 78.00 - 2.90
MAE (Ma et al., 2019) 77.98 89.09 2.95
DRAW (Gregor et al., 2015) 87.4 96.5 3.58
MatNet (Bachman, 2016) 78.5 89.5 3.24
Richer priors
Ordered ACN (Graves et al., 2018) 73.9 - 3.07
VLAE (Chen et al., 2017) 78.53 102.11 2.95
VampPrior (Tomczak and Welling, 2018) 78.45 89.76 -
Memory models
VMA (Bornschein et al., 2017) - 103.6 -
KM (Wu et al., 2018a) - 68.3 4.37∗
DNC (Graves et al., 2016) - 100 -
DKM (Wu et al., 2018b) 75.3 77.2 4.79
Kanerva++ (Ramapuram et al., 2021) 41.58 66.24 3.28
GPM (ours) 31.48 25.68 4.03

Table 1: Negative evidence lower bound of test likelihood (lower is better). ∗ Training ELBO, estimated from
Figure 12 in Wu et al. (2018a).

In practice, the system might not converge to a stored pattern but a spurious state, which is a local
minimum different from stored patterns. Even with simple neural networks in low dimensional space,
spurious local minima also exist (Safran and Shamir, 2018). This phenomenon is not expected when
retrieving, but it may help generate new images as demonstrated in Section 3.3.

3 EXPERIMENTS

We examine GPM on common generative memory benchmarking datasets including binarized
MNIST (LeCun et al., 2010), binarized Omniglot (Burda et al., 2016), FashionMNIST (Xiao et al.,
2017), CIFAR10, CIFAR100 (Krizhevsky, 2009) and CelebA (Liu et al., 2015). To prove the
effectiveness of our memory model, we only use simple encoders and decoders. The details of image
preprocessing, network architecture and training procedure are given in Appendix C. Codes are
available at https://github.com/phamtienkha/generative-pseudoinverse-memory.

We compare our model to recent generative memory models such as Kanerva Machine (KM),
Dynamic Kanerva Machine (DKM) and Kanerva++. In GPM, most of the parameters come from
the encoder and the decoder since the trainable prior memory M0 and the weight variance σ2

W only
account for only KC + 1 parameters. Hence, the number of parameters of GPM is comparable to
other baselines with similar architectures of encoder and decoder.

3.1 RECONSTRUCTION

In this task, we validate the memory model’s ability to reconstruct image data. For each dataset, we
sample 32 images to form the episode as the input to the memory models during both encoding and
decoding phases. We then train all the models to optimize the objective in Eq. (2) for 10,000-15,000
iterations, depending on the dataset. Table 1 reports the negative evidence lower bound (Eq. (1)) of
GPM and that of other baselines on 3 datasets, including the binarized MNIST, binarized Omniglot
and CIFAR10. Results for the FashionMNIST, CIFAR100 and CelebA datasets are reported in
Table 3 in Appendix A. For binarized datasets, we see a significant improvement in the ELBO:
31.48 nats/image compared to current state-of-the-art 41.58 nats/images on MNIST dataset and
25.68 nats/image compared to current state-of-the-art 66.24 nats/image on Omniglot dataset. On
RGB datasets, GPM shows competitive result. We note that for complex image data, the role of
the encoder and decoder is very important and GPM’s ones are simpler than those of Kanerva++.
Hence, we underperform Kanerva++ on CIFAR10 dataset. However, compared to models with similar
encoder-decoder like KM and DKM, GPM performs much better, which indicates the benefit of our
pseudo-inverse memory mechanisms.

To verify that our GPM supports exact memory retrieval, we measure the cosine similarity between
the data written to the memory and memory read-out’s of GPM in Omniglot task (see Fig. 6 of
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salt & pepper noise (15%) block noise (12× 12) rotation noise (30◦)
T = 4 T = 8 T = 16 T = 4 T = 8 T = 16 T = 4 T = 8 T = 16

GPM (ours) 40.59% 37.75% 16.89% 57.42% 40.10% 18.69% 66.09% 57.55% 39.98%
DKM (Wu et al., 2018b) 5.20% 1.24% 0.61% 7.18% 2.10% 1.18% 7.67% 4.33% 1.79%

Table 2: Denoising success rate on binarized Omniglot dataset. A denoising process is successful if it can
retrieve the original image with at most 1% error, which is equivalent to 7 pixels.

Appendix). As expected, GPM almost retrieves exactly what was written to the memory (average
similarity ≈ 1), which is much better than that of Dynamic Kanerva Machine (0.82).

3.2 DENOISING

The denoising capability of a memory model resembles human’s ability to retrieve old memories
with blurry clues. This process can be implemented using iterative reading, where in each step the
model adds some more details to the image to reconstruct the original picture from a noisy query
image. Illustration for the denoising process of GPM is given in Appendix B.

To measure the denoising capability of GPM and DKM, we run denoising experiments with different
episode lengths, types of noise and levels of noise on the binarized Omniglot dataset. We use the
Hamming distance to measure the error between denoised images and correct ones. In all experiments,
we run iterative reading for 20 steps. We report results for the case T = 16 in Fig. 2, while results
for other cases can be found in Fig. 8 of Appendix. Overall, GPM achieves a significantly better
performance than that of DKM. Remarkably, GPM maintains a clear performance gap when the
episode lengths or the level of noise vary. To better quantify the difference, we reported the denoising
success rate of GPM and DKM in Table 2. Here we consider a denoising process to be successful if it
can recover the original image with at most 1% error, which is equivalent to at most 7 pixels for the
Omniglot dataset. The results show that GPM also outperforms DKM in all cases with a performance
gap ranging from 15% to 58%.

salt & pepper noise block noise rotation noise

H
am

m
in

g 
er

ro
r

Figure 2: Hamming error measuring the denoising capibility of GPM and DKM (lower is better) with T = 16
on Omniglot dataset. We test denoising capability of both models with different types of noise (salt & pepper
noise, block noise, rotation noise) and levels of noise (5%− 20% salt & pepper noise, block noise with block
size from 6× 6 to 15× 15, rotation noise with rotation angle from 15◦ to 45◦).

3.3 GENERATION

We illustrate the ability to generate new images of GPM using Omniglot and CIFAR10 images in
Fig. 3a. The generation process consists of 2 main steps: (1) sample images to form an episode and
write it to the memory; (2) sample w ∼ p(w) (w is a vector of size 1 ×K) and take z = wM to
be the read-out vector. The generated images will be improved via iterative reading. We observe
that GPM can generate images that do not appear in the written episode. This phenomenon can be
viewed in Fig. 3a-left, where we compare generated patterns with their most similar ones in terms of
Hamming distance. Here the generated images with additional details are generally different from
their nearest neighbors. More interestingly, in Fig. 3a-right, we can see a generated aircraft image that
inherits the background of the frog image (the 3rd row). Theoretically speaking, these new images
are formed from spurious local minima, as discussed in Section 2.4.

3.4 GPM AS A HUGE STORAGE

We conduct experiments to test the memory capacity of GPM. The experiments still revolve around
reconstructing, denoising and generating images, yet on larger episode length. We use the whole
Omniglot dataset with 24, 345 training images to train GPM for around 24, 000 iterations for all
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Figure 3: (a) GPM’s generated samples. Images in the box are nearest images in the episode compared with
final generated images on their left. Left: Omniglot patterns. Distance between images is measured by the
Hamming distance. Right: CIFAR10 images. Images in the leftmost are the episode written to memory. Each
image is repeated 3 times to help the generations better. We use Euclidean metric to measure distance between
images. (b) Running time per iteration. Left: Running time per iteration comparison between GPM and DKM.
GPM has a time complexity of almost O(1) with respect to the episode size and memory size. Right: Running
time per iteration of GPM with different number of pseudo-inverse approximation steps.

experiments. For convention, we denote the T -GPM as the GPM trained on episodes of length T .
Results are shown in Fig. 4.

In the reconstruction experiment, we keep the memory size fixed and increase the episode length from
minimum (equivalent to the number of memory slots) to maximum (24, 345, which is the whole set
of training images). We run the experiment with two memory configurations: 8× 100 and 32× 100.
With the same episode length, the 32×100 memory always performs better, which is reasonable since
bigger memory enables better storage capability. We also observe a more interesting phenomenon in
both configurations: from a certain point, the reconstruction loss seems to be stable even when we
double the episode length. This agrees with earlier discussion in Section 2.2, where we argue that
GPM can handle big episodes thanks to the orthogonality of random vectors in high-dimensional
space.

We also test the denoising and generating capabilities of GPM when trained with a large episode
size. We are curious whether GPM can keep these abilities (to some extent) when storing lots of
information. We use the 24, 345-GPM with 32× 100 memory in these experiments. At test time, we
first write the whole test set of 8070 images to the memory and keep this posterior memory fixed,
then we either input noisy queries for denoising or sample from the memory for generating images.
Despite the huge amount of information compressed into the memory, the model can still denoise
and generate images with moderate quality. The average Hamming error when denoising is 97.08,
which is approximately 12.4% of the total pixels.

We note that other baselines such as KM and DKM are inapplicable to such a large-scale scenario due
to their slow memory mechanisms. In contrast, GPM can be trained efficiently even with episodes of
24, 345 images. More experiments regarding this point are conducted in the next section.

(a) (c)(b)

iterations iterations

log2(episode length)

re
co

n.
 lo

ss

Figure 4: (a) Reconstruction loss of GPM with fixed memory size and increasing episode length. (b) Denoising
salt and pepper noise (5%) of the 24, 345-GPM with 32× 100 memory. Patterns in the first column are original
ones; patterns in the blue box are noisy queries; following columns are denoising process during iterative reading.
(c) Generated patterns of the 24, 345-GPM with 32 × 100 memory. Patterns in the orange box are closest
patterns written to the memory compared with generated patterns on their left.

3.5 ABLATION: RUNNING TIME

GPM is designed to avoid the computation complexity O(K3) of inverting matrices and O(T ) of
online Bayesian inference. We conduct experiments to show the time efficiency of GPM compared to
DKM in practice. All operations are computed on a single GPU. We use the inverse function of
Pytorch 1.8.0 (Paszke et al., 2017) for batch matrix inverse. Results are shown in Fig. 3b.
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In the first experiment, we run GPM with 7 approximation steps for the pseudo-inverses and compare
the running time against DKM in different cases of episode and memory size. As expected, the
running time of DKM increases as the memory size K increases while GPM maintains almost the
same performance. Moreover, we can see a problem of Bayesian update on the running time: if we
double the episode size and keep the same memory size, the running time also doubles. In contrast, it
only yields a modest increase in the running time of GPM.

In the second experiment, we would like to see how the number of pseudo-inverse approximation
steps affects the running time of GPM in two cases: T = 64,K = 64 and T = 128,K = 64. The
running time curves in the two cases share a similar trend: they depend linearly on the number of
approximation steps. Hence, it is important to choose an appropriate initial term for the approximation
sequence to reduce the number of approximation steps. More discussion is given in Appendix G.

4 RELATED WORK

Memories are known to be critical to tasks that demand long-term dependencies (Hochreiter and
Schmidhuber, 1997; Graves et al., 2016; Santoro et al., 2016; Vaswani et al., 2017; Le et al., 2019;
Munkhdalai et al., 2019). When all stored data are available to retrieve through attention mechanism
(Sukhbaatar et al., 2015; Vaswani et al., 2017), we indeed perform retrieval over a content-addressable
memory such as Hopfield networks (Hopfield, 1982; Ramsauer et al., 2021) and Kanerva’s sparse
distributed memory (SDM) (Kanerva, 1984; Bricken and Pehlevan, 2021).

These works are primarily designed for storing and retrieval of patterns, mostly in a deterministic
manner, and thus less concerned about noise and data generation (Le et al., 2018). Kanerva machines
(Wu et al., 2018a), inspired by the addressing mechanism of SDM, are generative memory models
which fill these gaps. Here memory update/retrieval and addressing mechanism are treated as
Bayesian inference where posteriors are updated when a new data episode arrives. This iterative and
dynamic inference handles noisy inputs better due to the convergence of the attractor dynamics to
fixed points (Wu et al., 2018b). The Kanerva machines thus belong to a class of latent variable models
with a very expressive latent prior. These generalize Variational AutoEncoders (VAE) (Kingma and
Welling, 2014), deep encoder-decoder neural networks that can generate high-quality data in high
dimensional space. VAEs are very powerful when equipped with a high-capacity decoder (Gregor
et al., 2015; Bachman, 2016; Ma et al., 2019; Sadeghi et al., 2019) and a expressive prior (Chen
et al., 2017; Graves et al., 2018; Tomczak and Welling, 2018). Here memory-based priors in Kanerva
machines offer a systematic approach to bring more representation power to VAEs.

However, Bayesian inference in the original Kanerva machines is expensive. To address this drawback,
Marblestone et al. (2020) introduced the Product Kanerva Machine to reduce the heavy cost of
inverting matrices in the original model. An enhanced variant known as Kanerva++ (Ramapuram
et al., 2021) uses a more powerful encoder and regional memory writing-reading to help improve
both the retrieval accuracy and training time.

Our work takes a radically alternative view in that we treat memory update as seeking least-square
solutions to linear systems. This permits the use of fast matrix pseudo-inverse for the memory
operations (Ben-Israel and Greville, 2001). Indeed the pseudo-inverse has been studied in the
associative memory literature. Examples include Kohohen-type linear associative memory, which can
be referred as a pseudo-inverse neural network (Kohonen, 2012). Personnaz et al. (1986) proposed
the projection rule (other than Hebb’s learning rule in standard Hopfield Network) involving matrix
pseudo-inverses to guarantee perfect storage and retrieval. However, the equilibrium point produced
by the projection rule may not be asymptotically stable in the sense that adding new vectors may
affect the existing equilibria in the network. To overcome this problem, Yen and Michel (1991)
introduced a learning and forgetting algorithm with efficient computation. As far as we are aware, the
pseudo-inverse is not commonly used in deep memory networks partly because of the difficulty to
compute it exactly, although several attempts have been made to improve the computation efficiency
(Greville, 1960; Ben-Israel and Cohen, 1966; Courrieu, 2008; Toutounian and Ataei, 2009).

5 DISCUSSION

We have proposed Generative Pseudo-Inverse Memory (GPM) to overcome crucial limitations of
previous generative memory models. GPM is not only able to operate fast but also store a large
amount of data at a time while maintaining abilities of denoising corrupted patterns and generating
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novel patterns. We derived an associated energy function and showed that iterative updates in GPM
induce attractor dynamics converging toward fixed points. We demonstrated these capacities on an
extensive set of experiments, obtaining superior results.

These new capacities of GPM as a generative memory open up new exciting rooms of investigation.
A primary direction is positioning GPM as working memory whose size and processing speed are
known to be critical for high-level reasoning (Kyllonen and Christal, 1990), i.e., the capacity to
deduce new knowledge through manipulating the old. Here the query encoder will support arbitrary
query format, and the decoder will support answer generation. As GPM is designed for episodic
handling, streaming data can be periodically cached through local registers before sending to GPM,
as suggested in slot-based memories (Le et al., 2019). Finally, GPM may offer fast episodic learning
and generative exploration in RL agents.
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APPENDIX

A RECONSTRUCTIONS

We provide visualizations for the reconstructions of GPM on numerous datasets in Figure 5. We also
provide empirical evidence to show that the optimization problem associated with GPM (Eq. (4))
is more direct than DKM (Eq. (3)) in Figure (6): the cosine similarity between stored vectors and
read-out’s of GPM is nearly 1, which is much better than DKM (around 0.82). We report the ELBO
of DKM and GPM over 3 datasets, including FashionMNIST, CIFAR100 and CelebA in Table 3.

Figure 5: Reconstructions of GPM. Left: original images. Right: reconstructions. (a) Omniglot (b) CIFAR10
(c) CIFAR100 (d) CelebA

B DENOISING

We demonstrate denoising capibility of GPM in Fig. 7. The denoising process consists of two steps:
we first write the correct patterns into the memory, then read from the memory using noisy queries.
The image will be completed during iterative reading. We also report the full results of the denoising
experiment described in Section 3.2 in Figure 8.
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Figure 6: Average cosine similarity between exact data and read-out’s in DKM and GPM. Train and test on
Omniglot dataset.

FashionMNIST CIFAR100 CelebA
28× 28 32× 32 192× 192

Method (bits/dim) (bits/dim) (bits/dim)
DKM (Wu et al., 2018b) 3.97† 4.88 4.71†
Kanerva++ (Ramapuram et al., 2021) 3.40 - -
GPM (ours) 3.96 4.05 4.63

Table 3: Negative evidence lower bound of test likelihood (lower is better) on FashionMNIST, CIFAR100 and
CelebA datasets. † Our implementation.

C TRAINING DETAILS

The encoder consists of 4 layers, each of which is a convolution layer with 4× 4 filter with stride 2
followed by a Resnet block with bottleneck (He et al., 2016). The decoder is simply a mirror of the
encoder with transpose convolutional layer. We use the swish activation function (Ramachandran
et al., 2017) non-linear layers. For binarized datasets, we use 16 filters for all convnets; for real-valued
datasets, we use 256 filters to adapt with the complexity of the data.

The Omniglot is a dataset with great diversity, consists of 1623 different classes and 20 images in
each class. Following settings in (Burda et al., 2016), the dataset is splitted into 24,345 training and
8,070 test examples. We use a 32 × 100 memory for this dataset. The data noise when writing is
sampled fromN (0, 0.52I). At each training step, we randomly sample 32 images to form an episode.
We run the Ben-Cohen algorithm for 7 steps to approximate the pseudo-inverses, with the initial term
is 10−3 times the transpose of the matrix which we want to calculate the pseudo-inverse. We use the
Bernoulli likelihood for all binarized datasets.

For real-valued datasets, we use a 128× 512 memory with data noise sampled fromN (0, 0.52I). All
other settings are the same with the Omniglot dataset, except for the initial terms of the Ben-Cohen
algorithm: 10−4 times the transpose of the matrix when approximating pseudo-inverse of the weight
matrix and 5 · 10−5 times the transpose of the matrix when approximating pseudo-inverse of the
memory. We use the discretized mixture of logistics (Salimans et al., 2017) for the output distribution.

In all experiments, we use the Adam optimizer with learning rate varying from 5 · 10−5 to 5 · 10−4

depending on the dataset. We use weight decay of 10−3 along with gradient clipping at threshold 10.
For real-valued datasets, we additionally use a scheduler to reduce the learning rate by 0.99995 after
each training epoch. We train all models for 500-1000 epochs with exception 30 epochs for CelebA
dataset.

D PROPERTIES OF PSEUDO-INVERSE

In this section, we outline the definition and some important properties of the pseudo-inverse of a
matrix. Most of the proofs of following propositions and theorems can be found in (Ben-Israel and
Greville, 2001).
Definition D.1. For every real matrix A (square or rectangular), there is a unique matrix Y satisfying
all following conditions: AYA = A,YAY = Y, (AY)> = AY and (YA)> = YA, where >
denotes the transpose of a matrix. The matrix Y is called the pseudo-inverse of A, denoted by A+.

If A is a square matrix and non-singular, then A+ is the inverse A−1 of A. If A is rectangular of
size m× n, then A+ is of size n×m. The following propositions shows some important relations
between A and A+.
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Figure 7: Retrieving pattern with noisy query during iterative reading. Top rows are correct patterns; rows in
the boxes are corrupted patterns; following rows are retrieval process with iterative reading. (a) Salt and pepper
noise (15%). (b) Block noise (12× 12 block) to cover a part of the correct pattern. (c) Rotation noise (rotation
angle uniformly selected from -45 to 45 degrees). (d) Gaussian noise with standard deviation 0.5. (e) Illustration
of energy decrease during retrieving Omniglot patterns. Although sometimes the energy diverges and iterative
reading leads to a meaningless pattern, overall, the energy decreases during iterations.
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Figure 8: Hamming error measuring the denoising capibility of GPM and DKM (lower is better). Experiments
are conducted on binarized Omniglot dataset. We test denoising capability of both models with different types
of noise (salt & pepper noise, block noise, rotation noise) and levels of noise (5%− 20% salt & pepper noise,
block noise with block size from 6× 6 to 15× 15, rotation noise with rotation angle from 15◦ to 45◦).

Proposition D.2. Let A be a m× n real matrix. Then
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1. A+A = In if and only if rankA = n (i.e. columns of A are linearly independent), where
In is the n× n identity matrix;

2. AA+ = Im if and only if rankA = m (i.e. rows of A are linearly independent), where Im
is the m×m identity matrix.

Proposition D.3. For every real matrix A:

1. (A+)
+

= A;
2.
(
A>
)+

= (A+)
>

;

3. A+ =
(
A>A

)+
A> = A>

(
AA>

)+
.

If A and B are square invertible matrices such that AB is also invertible, then we have the well-
known property (AB)

−1
= B−1A−1. The same property does not always hold for pseudo-inverse.

However, with some sufficient condition of independence, we will get the desired property.
Proposition D.4. If A has linearly independent columns or B has linearly independent rows, then
(AB)

+
= B+A+.

Theorem D.5. For any real matrix A of size m × n, the limit lim
σ↘0

A>(AA> + σIm)−1 always

exists. Moreover, lim
σ↘0

A>(AA> + σIm)−1 = A+.

The concept of pseudo-inverse arose when ones tried to solve the linear system Ax = b, where
b is some vector with appropriate size. When the system has no solution, it is reasonable to find
some vector x that minimizes the Euclidean norm of the residual r = b −Ax. Any solution of
the optimization problem minx ‖b−Ax‖F (where ‖.‖F is the Frobenius norm) is called the least-
square solution of the system Ax = b. It can be proven that x = A+b is a least-square solution.
Moreover, among the least-square solutions of system Ax = b, x = A+b is the one of minimum
Euclidean norm, i.e. the minimum-norm least-square solution. This result can be generalized as in
the following proposition.
Proposition D.6. Let A,B,D be real matrices with appropriate size. The minimum-norm least-
square solution of the system AXB = D is X = A+DB+.

E PROOFS OF THEORETICAL RESULTS ON ERROR BOUNDS

We provide the proofs for Theorem 2.2 and Corollary 2.3.

Proof of Theorem 2.2. For convention, let us denote EW0
= W0W

+
0 − I. Following Algorithm 1,

we get
WM = ZZ+

ξ W0W
+
0 Zξ

= ZZ+
ξ (I + EW0)Zξ

= Z
[
I + (Z+

ξ Zξ − I) + Z+
ξ EW0

Zξ

]
.

Since ‖I− ZξZ
>
ξ ‖2 ≤ α, by (Rump, 2011, Lemma 2.2), it follows ‖Zξ‖2 ≤

√
1 + α and ‖Z+

ξ ‖2 ≤
1√
1−α . Since ‖.‖2 is a multiplicative norm, we finally have∥∥∥(Z+

ξ Zξ − I) + Z+
ξ EW0

Zξ

∥∥∥
2
≤
∥∥∥Z+

ξ Zξ − I
∥∥∥
2

+
∥∥∥Z+

ξ EW0
Wξ

∥∥∥
2

≤ β + ‖EW0
‖2

√
1 + α

1− α
,

which is our desired result.

Proof of Corallary 2.3: This is a special case of Theorem 2.2. When rows of W0 and Z are
independent, W0W

+
0 = I and ZξZ

+
ξ = I, which leads to EW0 = 0 and β = 0.

F ITERATIVE READING FROM THE VIEW OF FIXED POINT

In addition to the discussion in Section 2.4, we can alternatively think about the attractor as the fixed
point of the reading operation. Assume that the current query is qt and the next query is determined
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by qt+1 = f(qt), where f represents for the reading operation. If {qt} converges to some q∗, then
q∗ = f(q∗), which means q∗ is a fixed point of f . If the model is well-trained, stored patterns are
fixed points of f . (Banach, 1922) provides a sufficient condition for an iterative sequence to converge
to a fixed point. Roughly speaking, if q∗ is a fixed point of f such that ‖J(q∗)‖2 < 1 (where J is the
Jacobian of f ) and the whole sequence {qt}t≥0 locates in a small neighborhood of q∗, then qt → q∗.
This result demonstrates the ability to converge to a correct pattern given a good enough initial query.
Similar to spurious local minima in the energy landscape, there also exists many spurious fixed points
in the f landscape (see Fig. 9). This phenomenon is not expected when retrieving, but it may be
helpful in case we want to generate new images as demonstrated in Section 3.3.

Figure 9: The three cases of fixed points. (a) Fixed point is single pattern: patterns are stored if they are
well separated. Each pattern xi has a single fixed point x∗i close to it. (b) Fixed point is average of similar
patterns: xi and xj are similar to each other and not well separated. The fixed point m∗x is a spuruous fixed
point that is close to the mean mx of the similar patterns. (c) Fixed point is average of all patterns: no pattern
is well separated from the others. A single global fixed point m∗x exists that is close to the arithmetic mean mx

of all patterns. Images and caption are taken from (Ramsauer et al., 2020).

G INITIAL CONDITION FOR BEN-COHEN ALGORITHM

Suppose A is a real matrix. With 0 < α < 2
σ2
1

, where σ1 is the largest eigenvalue of AA>, the

sequence defined as A0 = αA>, Ai+1 = 2Ai − AiAAi will converge to A+ (Ben-Israel and
Cohen, 1966). This choice of initial term may lead to slow convergence when the condition number
κ(A) = ‖A‖2‖A+‖2 is large (Söderström and Stewart, 1974). If we start with an A0 such that
A0A = (A0A)> and A0 is already close to A+, for example A0 = A>(AA> + δI)−1 where
δ > 0 and small enough, then {Ai}i≥0 converges quadratically to A+. However, this requires us to
calculate the inverse of AA> + δI, which we tend to completely avoid in GPM. Therefore we keep
the original setting of Ben-Cohen for the initial term and let the model adapt with the approximation
error.

H SOLUTION OF BAYESIAN UPDATE OPTIMIZATION PROBLEM

Let M0,M denote random variables of the prior and posterior memory, respectively, and suppose that
both have matrix Gaussian distributions. Specifically, M0 ∼ N (R0,U0, I) and M ∼ N (R,U, I).
Given the prior M0, the to-be-written data Z and the writing weight W0, the optimization problem

min
A,B

E
(
‖M−M0‖2F

)
s.t. M = AZ + B and Z = W0M0 + ξ

has a unique solution M ∼ N (R,U, I), where

R = R0 + U>0 W
>
0

(
W0U0W

>
0 + Σξ

)−1
(Z−WR)

and U = U0 −U>0 W
>
0

(
W0U0W

>
0 + Σξ

)−1
W0U0,

where Σξ is diagonal matrix whose diagonal elements are σ2
ξ .

I DERIVATION FOR EVIDENCE LOWER BOUND

The evidence lower bound of the conditional log-likelihood p(X|M) can be derived as
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ln p(X|M) = Eq(W)

[
ln
p(X|M)q(W)

q(W)

]
= Eq(W)

[
ln
p(X|W,M)p(W|M)q(W)

p(W|X,M)q(W)

]
= L+DKL(q(W)||p(W|X,M)).

J RELATION WITH EM ALGORITHM

We show that GPM can be viewed as 2-step EM algorithm (Dempster et al., 1977). Let us remind
ourselves the log-likelihood approximation derived in Section 2.1:

ln p(X|M) = Eq(W) ln p(X|W,M)−DKL(q(W)||p(W)) +DKL(q(W)||p(W|X,M)). (8)

Keeping p (vec(W)) ∼ N (0, I) in mind, we can rewrite the conditional log-likelihood as

ln p(X|M) = Eq(W) ln p(X|W,M) +
‖Z−WM‖2F

2σ2
ξ

+ R, (9)

where R is residual term that is independent of W. From the perspective of EM algorithm and
Eq. ((9)), Algorithm 1 can be thought as a 2-step process to maximize the log-likelihood:

1. Keeping the likelihood unchanged and tightening the bound by minimizing ‖Z−WM‖2F ;
2. Maximizing Eq(W) ln p(X|W,M), i.e. the negative reconstruction loss.

Note that in training, we maximize the evidence lower bound LT = Eq(W) ln p(X|W,M) −
DKL(q(W)||p(W)) instead of Eq(W) ln p(X|W,M). Therefore, for the maximum values of
LT and Eq(W) ln p(X|W,M) to be as close as possible, we look for W that minimizes
DKL(q(W)||p(W)). Since p (vec(W)) ∼ N (0, I), this is equivalent to seeking W with mini-
mum norm. This fits with the step of finding the weight matrix W in the reading phase, where
we determine W = ZM+, which is the least-square minimum-norm solution of the linear system
WM = Z.
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