
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Ada-iD: Active Domain Adaption for Intrusion Dection
Anonymous Authors

ABSTRACT
Vision-based intrusion detection has many applications in life en-
vironments, e.g., security, intelligent monitoring, and autonomous
driving. Previous works improve the performance of intrusion de-
tection under unknown environments by introducing unsupervised
domain adaption (UDA) methods. However, these works do not
fully fulfill the practical requirements due to the performance gap
between UDA and fully supervised methods. To address the prob-
lem, we develop a new and vital active domain adaption intrusion
detection task, namely ADA-ID. Our aim is to query and annotate
the most informative samples of the target domain at the lowest
possible cost, striving for a balance between achieving high per-
formance and keeping low annotation expenses. Specifically, we
propose a multi-task joint active domain adaption intrusion detec-
tion framework, namely ADAID-YOLO. It consists of a lower branch
for detection and an upper branch for segmentation. Further, three
effective strategies are designed to better achieve the ADA-ID task:
1) An efficientDynamicDiffusion Pseudo-Labeling method (DDPL)
is introduced to get Pseudo ground truth to help identify areas of
uncertainty in segmentation. 2) A Enhanced Region Impurity and
Prediction Uncertainty sampling strategy (Enhanced-RIPU) is pro-
posed to better capture the uncertainty of the segmentation region.
3) A Multi-Element Joint sampling strategy (MEJ) is designed to
calculate the uncertainty of the detection comprehensively. Finally,
comprehensive experiments and comparisons are conducted on
multiple dominant intrusion detection datasets. The results show
that our method can outperform other classic and promising active
domain adaption methods and reach current SOTA performance,
even surpassing the performance of UDA and full supervision on
Normal→Foggy with only 0.1% and 10% data annotation, respec-
tively. All the source codes, and trained models will be public.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding; Computer vision tasks.

KEYWORDS
Active domain adaption intrusion detection, Framework, Active
sampling strategy

1 INTRODUCTION
With the development of society, vision-based intrusion detection
has many applications in daily life, such as in security, autonomous

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(a) General Intrusion Detection

(b) UDA Intrusion Detection

(c) ADA Intrusion Detection

Target domain Oracle

Source domain

Shared Backbone

Annotate

Seg Head Mask In
tru

sio
n

 
J

u
d

g
e
m

e
n

t

Train

Probability Distribution

Sampling Strategy

Retrain

Det Head Bbox 0

1

B M P R

Prediction Mask

B
b

o
x

M
a
sk

In
tru

sio
n

 
J

u
d

g
e
m

e
n

t

Shared Backbone

FPN

Det Head

Seg Head

FPN

FPN

Fs
Ft

Source domain

Train

Source domain

Shared Backbone

Det Head

Seg Head

M
a
sk

In
tru

sio
n

 
J

u
d

g
e
m

e
n

t

B
b

o
xUDA

DL

GRL Domain Discriminator
GRL: Gradient Reversal Layer

DL: Domain Label
Target domain

Figure 1: The workflow and performance comparison of dif-
ferent intrusion detection paradigms. Here, we present three
different paradigms, general intrusion detection [30, 33], un-
supervised domain adaption (UDA) intrusion detection [10],
and active domain adaption (ADA) intrusion detection, re-
spectively. We can find that the UDA methods can help to
improve intrusion detection performance, N→F: +1.2%, N→R:
+7.5%. However, compared with fully supervised (Oracle), the
performance gap also exists, N→F: -7.0%, N→R: -9.3%. Inter-
estingly, our sampling approaches can effectively improve
the performance of intrusion detection, even surpassing the
performance of UDA and full supervision on Normal→Foggy
with only 0.1% and 10% data annotation.

driving, and intelligent video surveillance. Vision-based intrusion
detection revolves around the evaluation of whether a potential
object is present within a specific restricted area-of-interest (AoI).
Based on whether the camera is moving, intrusion detection can be
divided into static and dynamic intrusion detection. For static-view
intrusion detection, some promising works and algorithms, e.g., con-
ditional random field (CRF) [21], Histogram of Oriented Gradients
(HOG) [44] and background subtraction [24], are proposed. How-
ever, most of these works cannot meet the needs of real-time intru-
sion detection under dynamic view due to their simplicity. To tackle
the issue of real-time and accuracy in intrusion detection under
dynamic view, some encouraging works are designed and proposed.
PIDNet [33] and Cross-PIDNet [30], are first proposed to solve the
problem of pedestrian intrusion detection in dynamic view. These
encouraging works greatly boost the performance of dynamic-view
intrusion detection tasks to some extent. However, the performance
of intrusion detection will degrade when generalizing these well-
trained models in normal weather to an unknown environment or

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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domain e.g., Foggy, Rainy, Night. A significant reason is that the
domain shift remains between the normal weather (source domain)
and unknown environment (target domain) [4, 11, 18, 46].

Benefiting from unsupervised domain adaption (UDA), some
promising unsupervised domain adaption methods are proposed to
solve the problem of domain shift between source and target do-
main, e.g., DANN [9], CDAN [18], JAN [19]. Based on this method,
MMID-bench [10] proposes a Multi-domain, Multi-category intru-
sion detection task to solve the problem of multi-category intrusion
detection in challenging environments. These unsupervised adap-
tion methods effectively avoid the problem of data labeling and
improve the intrusion detection performance on unlabeled target
domains. As shown in Figure 1. Compared with source only, the
intrusion detection performance will boost when some promising
UDA methods are used, e.g., N→F: +1.2%, N→R: +7.5%. Never-
theless, compared with the Oracle (fully-supervised) result, the
intrusion detection performance largely falls behind, e.g., N→F:
-7.0%, N→R: -9.3%.

To further reduce the intrusion performance between UDA and
fully supervised, the natural idea is that, like ImageNet [6], col-
lecting more data on different weather and labeling them. Then,
we can use these labeled data to retrain the model and improve
the model’s generalization performance for intrusion detection
in adverse weather. However, although this method is effective,
the way of collection and labeling is time-consuming and very
expensive. Based on these reasons, some promising active domain
adaption (ADA) methods are proposed to further improve the gener-
alization performance of the model under unknown environments
[13, 20, 26, 32, 34, 38, 39, 42]. The purpose of ADA is to reduce
the cost of labeling data and improve model generalization perfor-
mance by selectively querying the most informative samples [17].
Currently, ADA achieves encouraging performance in multiple mul-
timedia tasks, e.g., image classification [36], semantic segmentation
[23, 29, 37, 40], object detection [1, 5, 15, 25, 28, 41], image caption-
ing [43], refractive error detection [8] and autonomous driving [12].
However, for intrusion detection tasks, active domain adaption
still remains blank and unexplored. In this paper, we define this
new and important task as dynamic-view Active Domain Adaption
intrusion detection task, namely ADA-ID, for the first time.

To complete the dynamic-view ADA-ID task, a unified multi-task
active domain adaption method, including an efficient and effec-
tive framework and corresponding sampling strategies, is currently
lacking. Although some promising detection and segmentation net-
works are proposed [2, 3, 35, 45], these networks are not suitable
for our ADA-ID task. The biggest reason is that our ADA-ID task is
a joint task with detection and segmentation. To tackle the prob-
lem, we propose a unified, simple, yet efficient multi-task active
domain adaption framework, namely ADAID-YOLO, with a lower
branch for detection and an upper branch for segmentation. Be-
sides, in order to better accomplish the ADA-ID task, three effective
strategies are developed: 1) An efficient Dynamic Diffusion Pseudo-
Labeling method (DDPL) is introduced to get Pseudo ground truth
to help identify areas of uncertainty in segmentation. 2) AEnhanced
Region Impurity and Prediction Uncertainty sampling strategy
(Enhanced-RIPU) is proposed to better capture the uncertainty of
the segmentation region. 3) A Multi-Element Joint sampling strat-
egy (MEJ) is designed to calculate the uncertainty of the detection

comprehensively. Finally, the total uncertainty is calculated by fus-
ing the uncertainty of segmentation and detection. Experimental
results denote that the proposed framework and three strategies
are effective and can meet the requirements of the ADA-ID task.

In short, our main contributions are listed as follows:

• To the best of our knowledge, the task of Active Domain
Adaption intrusion detection (ADA-ID) is developed for the
first time. And a unified, simple, yet efficientmulti-task active
domain adaption end-to-end framework, ADAID-YOLO, is
proposed to accomplish the task for the first time.
• Three effective approaches, Dynamic Diffusion Pseudo-
Labeling (DDPL), EnhancedRegion Impurity and Prediction
Uncertainty sampling strategy (Enhanced-RIPU), and Multi-
Element Joint sampling strategy (MEJ) are proposed to cal-
culate the joint uncertainty of segmentation and detection
tasks of each sample for better achieving the ADA-ID task.
• The performance of various classic and state-of-the-art sam-
pling strategies on the ADA-ID task is tested and reported.
Comprehensive experiments and comparisons are conducted
to demonstrate the effectiveness of the proposed framework
and strategies. The results show that the proposed sampling
strategies can not only reach the level of current SOTA but
even surpass the performance of full supervision with only
10% data annotation.

2 RELATEDWORK
• Vision-Based Intrusion Detection. Intrusion detection mainly
focuses on two directions: static and dynamic view. For static intru-
sion detection, some promising works, i.e., Histogram of Oriented
Gradients (HOG) [44], adaptive background subtraction [31], con-
ditional random field (CRF) [21], background subtraction [24], are
proposed. However, most of these methods cannot meet the needs
of real-time intrusion detection under dynamic view. The biggest
reason is that intruding objects and cameras of dynamic view are
constantly moving, which poses higher requirements for intrusion
detection. Fortunately, with the rapid development of computer
vision, some promising works and networks for dynamic-view in-
trusion detection are proposed, e.g., PIDNet [33], and Cross-PIDNet
[30]. These two encouraging works improve the performance of
pedestrian intrusion detection under dynamic view greatly. How-
ever, the generalization, intrusion categories, and detection speed
of these two works are insufficient. To tackle this issue, MMID-
bench [10] first proposes a Multi-domain Multi-category intrusion
detection task to further solve the problem of multi-category intru-
sion detection in challenging environments with the unsupervised
domain adaption method. Nevertheless, compared with fully su-
pervised, previous works also remain shortcomings in two aspects,
inadequate generalization and low intrusion performance. Therefore,
in this paper, we develop a new active domain adaption intrusion
detection task for the first time to improve the generalization and
intrusion performance in unknown environments.
• Active Domain Adaption. Active Domain Adaptation (ADA)
aims to help improve the model’s generalization ability in the target
domain by selecting the most informative target instances for anno-
tation. Currently, some promising ADA methods are proposed and
bring significant performance improvements in various fields, e.g.,
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Figure 2: Overall Architecture of the proposed ADAID-YOLO. We first use the original source domain (Normal-CMC) to train
the model and validate its performance on the target domain (Target-CMC). Then, in every round, we utilize the proposed
DDPL strategy to get the segmentation pseudo-GT (𝐺𝑇 ) of target data. These 𝐺𝑇 are sent to the Enhanced-RIPU Module to
compute the uncertainty of the segmentation branch. In addition, an MEJ Module is designed to calculate the uncertainty of
the detection branch. Finally, the total uncertainty can be calculated by integrating the segmentation and detection uncertainty.
Similar to the previous work [10], segmentation and detection results are used to jointly determine the final intrusion result.
The categories and intrusion labels will be given.

Energy-based [38], Transferable Query Selection [7], Distinctive
Margin [39], RIPU [37], and Bi3D [42]. However, for the ADA tasks,
these methods seem inappropriate. The main reason is that our
ADA-ID task is a joint multi-task. Besides, although active domain
adaption has made promising progress in various fields, for intru-
sion detection tasks, active domain adaption still remains blank
and unexplored. In this paper, we develop a new and vital active
domain adaption intrusion detection task, namely ADA-ID, to im-
prove intrusion detection performance in unknown environments.
• Effective Design and Strategies. To better accomplish our ADA-
ID task, three effective sampling approaches are designed. 1) An
efficientDynamicDiffusion Pseudo-Labeling strategy is introduced
to get Pseudo ground truth to help identify areas of uncertainty in
segmentation. Note that our method of generating pseudo ground
truth is low cost and high performance. 2) To make up for RIPU
work [37], a EnhancedRegion Impurity and PredictionUncertainty
strategy is proposed to better capture the uncertainty of the seg-
mentation region. 3) Different from previous works [15, 28, 41], a
Multi-Element Joint sampling strategy is designed to calculate the
uncertainty of the detection comprehensively. Multiple informative
factors of affecting intrusion detection are considered , e.g., inter
similarity, categories imbalance, and tiny object.

3 APPROACH
3.1 Preliminary
ProblemDefinition. In active domain adaption intrusion detection
(ADA-ID) task, given a labeled source domain set (Normal weather),
i.e., D𝑠 =

{(
𝑥𝑠
𝑖
, 𝑦𝑠

𝑖

)}𝑛𝑠
𝑖=1

, and unlabeled target domain set (Adverse

weather), i.e., D𝑡 =

{
𝑥𝑡
𝑗

}𝑛𝑡
𝑗=1

. where 𝑛𝑠 , 𝑛𝑡 denotes the number of

labeled images and unlabeled images in the source/target domain,
respectively. 𝑦 denotes the label of source domain images. Besides,
we assume the annotation budget is B and B ≪ 𝑛𝑡 . Like the active
domain adaption paradigm, we set an initially empty labeled target
dataset (Z̄𝑡 ). The Z̄𝑡 will be updated in the R round of the sampling
process. In the 𝑞-th sampling round where 𝑞 ≤ R, a subset △D𝑞

𝑡

is selected from D𝑡/Z̄𝑡 and labeled by an Oracle (human expert).
Then, Z̄𝑡 will be updated as Z̄𝑡 ← Z̄𝑡 ∪ △D𝑞

𝑡 . After R rounds of
sampling, the number of data in Z̄𝑡 reaches the upper limit of an-
notation budget B, i.e.,

��Z̄𝑡 �� = B. In our ADA-ID task, Our aim is
to query and annotate the most informative samples (Z̄) from the
unlabeled target pooling (D𝑡 ) at the lowest possible cost, striving
for a balance between achieving high performance and keeping
low annotation expenses.
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3.2 Motivation
Before diving into the details of the method we propose, we first
explore a basic yet important question as motivates of our approach.
In the ADA-ID task, what are the key factors improving intrusion
detection performance? To get the answer, we rethink and analyze
the reason from the intrusion definition. In the intrusion detection
task, the final intrusion judgment is calculated by pixel points
[10, 30, 33], the judgment way can be described as

J𝑠 =

{
Intrusion if B

⋂
S > 𝑡

No-Intrusion if B
⋂

S ≤ 𝑡 ,
(1)

where J𝑠 denotes the final results of intrusion judgment. B denotes
the prediction bounding box of the detection branch. Differently,
to calculate the final intrusion results, we set all the pixels in the
detection bounding box to 1. S denotes the segmentation results of
the restricted area-of-interest (AoI). In our paper, the AoI denotes
road. 𝑡 denotes the setting threshold. Inspired by previous works
[10, 30, 33], we set the threshold as 20, i.e., when the intersection of
B and S is greater than the threshold, it is judged as an Intrusion (‘Y’).
Otherwise, it is judged as No-intrusion (‘N’). From the intrusion
detection definition view, we know that final intrusion detection
performance is affected by two key factors, the accuracy of the
detection bounding box and AoI segmentation, respectively. Thus,
in the ADA-ID task, a valuable sample should be able to greatly
improve both aspects of performance. Inspired by previous related
work [25], [15], we define these two factors as Detection Uncertainty
(DU) and AoI Segmentation Uncertainty (SU). In the ADA-ID task,
for every image (I𝑡 ) of unlabeled target pooling, we can define its
total uncertainty as

M𝑡 (U𝑡
𝑑

;U𝑡
𝑠 | I𝑡 ,Θ𝑛) =M(U𝑡

𝑑
| I𝑡 ,Θ𝑛) · M(U𝑡

𝑠 | I𝑡 ,Θ𝑛), (2)

where Θ denotes the using multi-task framework, i.e., proposed
ADAID-YOLO, shwon in Figure 2. Note that the 𝑛 denotes the
sampling round, e.g., 1𝑠𝑡 , 2𝑛𝑑 , 3𝑟𝑑 , · · · . The sampling round is de-
termined by annotation budget B.M𝑡 (U𝑡

𝑑
;U𝑡

𝑠 ) denotes the total
uncertainty of image (I𝑡 ) in our ADA-ID task.M(U𝑡

𝑑
),M(U𝑡

𝑠 ) de-
notes the uncertainty of invader detection and AoI segmentation,
respectively. Based on the above analysis, to get the uncertainty of
detection and segmentation, three efficient approaches, including
DDPL, Enhanced-RIPU sampling strategy, and MEJ sampling strat-
egy, are proposed to calculate the joint uncertainty of each sample
for better achieving the proposed ADA-ID task.

3.3 Dynamic Diffusion Pseudo-Labeling
To get Pseudo-Labelling (𝐺𝑇 ) to help identify areas of uncertainty
in segmentation, we propose a new efficient and low-cost pseudo-
labeling generation strategy, namely Dynamic Diffusion Pseudo-
Labeling (DDPL). The special process is shown in Figure 3. Our
DDPL strategy can divided into three steps. Specifically, we first
design and train a condition diffusion model using source/target
domain (D𝑠

⋃
D𝑡 ). The aim is to transform the target domain into

the source domain (Source-like target data) and then use the pre-
trained ADAID-YOLOmodel for inference (D𝑡 ) to obtain our pseudo
ground truth. Note that our pre-trained ADAID-YOLO is trained in
the source domain (D𝑡 ). To evaluate the superiority of our proposed
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Figure 3: The detailed pipeline of our DDPL strategy. Our
DDPL strategy can be described as two main steps. Step 1: We
train a well-designed condition diffusion model for learn-
ing the translation of the source domain (D𝑠 ) and the target
domain (D𝑡 ). Step2: We use the pre-trained Denoising UNet
model to infer input data from the target domain for obtain-
ing the source-like target data, and use it to obtain the 𝐺𝑇 .

strategy, we compared our DDPL strategy with other methods, i.e.,
larger UDA [10], promising zero-shot segmentation model: SAM
[16]. The results of the ablation experiments show the effectiveness
of our method, which not only generates correct pseudo ground
truth but maintains a high inference speed. Detailed comparison
experiment results can be seen in subsection 4.3.

3.4 Enhanced Region Impurity and Prediction
Uncertainty sampling strategy

In our ADA-ID task, the segmentation branch aims to obtain accu-
rate mask images of the restricted area-of-interest (AoI). However,
the segmentation performance of the AoI is not ideal due to domain
shifts (gaps) between the source domain (D𝑠 ) and the target domain
(D𝑡 ). These domain shift can cause two phenomena: 1) when the
invader encounters the AoI, it will be judged as non-intrusion (‘N’)
due to inferior segmentation. But, the fact is that the intruder may
caused a serious intrusion (‘Y’). 2) Since the ADA-ID task is very
sensitive to pixels, some erroneous judgments are exited in the edge
region. These erroneous samples is defined as ‘difficult samples’,
which are important factors hindering the intrusion performance.
Therefore, the sampling strategy is to select informative samples
that can improve the performance of ‘difficult samples’. In order to
query the informativeness, we propose a Enhanced Region Impurity
and Prediction Uncertainty sampling strategy to better capture the
uncertainty of the segmentation region.

Given an input image I𝑡 , and I𝑡 ∈ RH×W×C , where H ,W
and C denotes the width, height and channel dimension of in-
put image I𝑡 , respectively. We define the segmentation branch
model in our ADAID-YOLO as Θ𝑠 . Then, the prediction matrix
can be expressed as P𝑡 . We can know that P𝑡 = Θ𝑠 (I𝑡 ), and
P𝑡 ∈ RH×W×N , where H ,W, and N denote the width, height,
and number of classes, respectively. To obtain our probability dis-
tribution, we conduct normalization for all pixels of P𝑡 , shown as
P̃𝑡=softmax(P𝑡 ). Besides, we can get the prediction pseudo label
matrix by P̂(𝑖, 𝑗 )𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑛∈{1,· · ·𝑁 } P̃

(𝑖, 𝑗,𝑛)
𝑡 . where 𝑛 denotes the

category. In our ADA-ID task, our segmentation task is to segment
the restricted area-of-interest (AoI). Therefore, two classes exist for
the segmentation branch, Class 0: background and Class 1: road. In
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our work, to calculate our input image I𝑡 uncertainty, we need to
divide the input image I𝑡 into multiple regions. As shown in Figure
4. The pixel region is defined as

M𝑧 (𝑖, 𝑗) = {(𝑥,𝑦) | |𝑥 − 𝑖 | ≤ 𝑧, |𝑦 − 𝑗 | ≤ 𝑧} , (3)

where 𝑧 denotes the size of the defined region and pixel region
complies with k-square-neighbors, i.e., (2𝑧+1,2𝑧+1). Then, the region
impurity can be expressed as

Q (𝑖, 𝑗 ) = −
N∑︁
𝑛=1

��M𝑛
𝑧 (𝑖, 𝑗)

��
|M𝑧 (𝑖, 𝑗) |

𝑙𝑜𝑔

��M𝑛
𝑧 (𝑖, 𝑗)

��
|M𝑧 (𝑖, 𝑗) |

, (4)

where
��M𝑛

𝑧 (𝑖, 𝑗)
�� denotes the piexl number of category 𝑛 in the set.

Besides, the region prediction uncertainty can be written as

U (𝑖, 𝑗 ) = 1
|M𝑧 (𝑖, 𝑗) |

∑︁
(𝑥,𝑦) ∈M𝑧 (𝑖, 𝑗 )

S (𝑥,𝑦) , (5)

where S (𝑖, 𝑗 ) = −∑N
𝑛=1P

(𝑖, 𝑗,𝑛)
𝑡 logP(𝑖, 𝑗,𝑛)𝑡 . Based on the above anal-

ysis, to measure the uncertainty of input image I𝑡 , we proposed
the Region difference to guide the calculation of region uncertainty
and difference. Region difference denotes the difference between
prediction and the pseudo ground truth. As shown in Figure 4. The
calculation method is defined as

D (𝑖, 𝑗 ) =
{
(𝑥,𝑦) ∈ M𝑧 (𝑖, 𝑗) |

〈
P̂(𝑥,𝑦)𝑡 ≠ G̃T

(𝑥,𝑦) 〉} , (6)

where G̃T denotes the generated pseudo ground truth by DDPL
strategy. ⟨·⟩ denotes the calculation way of difference. Finally, the
total uncertainty of input image I𝑡 is written as

M(U𝑡
𝑠 | I𝑡 ,Θ𝑛) = 1

H ×W

H∑︁
𝑖=1

W∑︁
𝑗=1
Q (𝑖, 𝑗 ) ⊙ U (𝑖, 𝑗 ) ⊙ D (𝑖, 𝑗 ) , (7)

where H , W denotes the width and height of predicted mask
images. ⊙ denotes the dot product.

3.5 Multi-Element Joint sampling strategy
The detection branch provides accurate localization and category
identification in intrusion detection tasks. Although previous works
involved Class imbalance [15, 28, 41], the Inter-class similarity and
Tiny objects still are not considered. To solve the issue, we propose
the Multi-Element Joint sampling strategy to calculateM(U𝑑 ). We
first define the prediction matrix of detection branch as X, where
X ⊂ RB×N×D , B,N , 𝑎𝑛𝑑D denotes batch_size, the number of
samples, the feature dimension [14]. And N can be express as

N =

3∑︁
𝑖=1

H𝑠 ·W𝑠

R2
𝑖

· Nf, (8)

where H𝑠 andW𝑠 denote the reshaped height and width of input
images. R𝑖 denotes the three different downsampling rates, 8, 16,
and 32, respectively. Nf denotes the number of anchors in every
grid cell. Therefore, we can describe the final results matrix X as

X =


b1,1 . . . b1,4 c1,5 p1,6 . . . p1,9
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

b𝑛,1 . . . b𝑛,4 c𝑛,5 p𝑛,6 . . . p𝑛,9

 , (9)

  

  

  

  

Prediction Mask Ground truth

 Region Difference: 0

   Region Difference: 2
 Region Difference: 4

 Region Difference: 0

  

 
Region Difference: 9

(Region Impurity：0)

AoI AoI
Edge Edge

z=1(3x3) z=1(3x3)

Labels 1 (Road)

Labels 0 (Bg)
Labels 1 (Road)

Labels 0 (Bg)

Figure 4: We show some cases between prediction mask and
GT. Here, ‘Bg’ denotes background. 1○, 2○, 3○, 4○ denote four
different cases, namely no intersection, partial intersection,
the center point is on edge, and inside, respectively. We can
find that the ‘region difference’ between the prediction mask
and GT exists. This ‘region difference’ is one of the keys for
measuring region uncertainty. Specifically, when the ‘region
difference’ does not exist between them, we think the region
is well-predicted and contains low uncertainty. The reverse
is also true. In particular, for case 5○, we find that, although
the region impurity is zero [37], the region contains large
uncertain information due to region difference (9). In fact,
the region needs to be labeled and given a larger weight.

where the b𝑖, 𝑗 represents the prediction bbox coordinates, the c𝑖, 𝑗
represents the confidence score c, and the p𝑖, 𝑗 represent the proba-
bilities distribution of the four different classes. In object detection,
tiny objects usually present low confidence due to the difficulty of
detection [35]. Besides, similar probabilities indicate high uncer-
tainty.We extract confidence scores (c) and probability distributions
(p) fromX and express them as F𝑖 =

{
F𝑐 , F𝑝

}
. Then the initial clus-

ter assignments (G) is calculated by spectral clustering [22] and is
expressed as

G = S
(
N𝑘 | F𝑐 , F𝑝

)
, (10)

where S denotes the spectral clustering. N𝑘 denotes the cluster
number of confidence score and probabilities distribution. The de-
tailed process can be found in Appendix A. To counteract the
effects of class imbalance and enhance the subsequent uncertainty
calculations, we employ a resampling method. The resampled rep-
resentation, G′, is generated by adjusting the sample distribution
within each cluster, as expressed by G′ = R𝑠 (G). R𝑠 denotes the
resampling. Building on the resampled dataset G′, we compute
the within-cluster confidence uncertainty, denoted as C𝑘 , for each
cluster 𝑘 . This uncertainty is quantified by the standard deviation
of the resampled confidence scores:

C𝑘 =

√√√
1

N𝑘 − 1

N𝑘∑︁
𝑖=1

(
C𝑖
𝑘
− C𝑖

)2
, (11)

where C𝑘 denotes the confidence uncertainty. C𝑖 and C𝑖
𝑘
denotes

the confidence average and 𝑖-th resampled samples confidence
scores in 𝑘-th cluster. Besides, the class probability distribution
uncertainty can be calculated by
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P𝑘 = − 1
|N𝑘 |

∑︁
𝑖∈N𝑘

4∑︁
𝑗=1

P𝑖 𝑗 𝑙𝑜𝑔 P𝑖 𝑗 , (12)

where N𝑘 is the number of re-samples in cluster 𝑘 . P𝑖 𝑗 denotes the
the probability of the 𝑗-th category of the 𝑖-th samples. Therefore,
the overall uncertainty score of input image I𝑡 is the expressed as:

M(U𝑡
𝑑
| I𝑡 ,Θ𝑛 ) = 1

N𝑘

N𝑘∑︁
𝑘=1
(C𝑡

𝑘
+ P𝑡

𝑘
) , (13)

where C𝑡
𝑘
, 𝑎𝑛𝑑 P𝑡

𝑘
denotes uncertainty of confidence, probability

distribution and tiny object of image I𝑡 , respectively.

Algorithm 1 Ada-iD Sampling Strategy
Require: Multi-task network ADAID-YOLO: 𝚯. Segementation

branch 𝚯𝑠 . Detection branch 𝚯𝑑 . The 𝑡-th unlabeled sample I𝑡
from unlabeled pooling D𝑡 , Labeled source domain D𝑠 , and the
sub-round of 𝑞-th, max annotation budget B.

Ensure: The selected target set Δ𝐷𝑞
𝑡

1: for cycle← 1 to B do
2: Δ𝐷

𝑞
𝑡 ← ∅

3: Trian multi-task network 𝚯 with source domain D𝑠 .
4: for 𝑡 = 1 to D𝑡 do
5: Infer the target domain data D𝑡 using the Pre-train 𝚯.
6: Segmentation branch prediction results: P𝑡 .
7: Detection barch prediction results: X.
8: Divide P𝑡 into multiple region according to Eq. (3).
9: CalculateM(U𝑡

𝑠 ) according to Eq. (4)-Eq. (7).
10: CalculateM(U𝑡

𝑑
) using Eq. (10)-Eq. (13).

11: Calculate total uncertaintyM(U𝑡
𝑑

;U𝑡
𝑠 ) using Eq. (2).

12: end for
13: Sort the resulting uncertainties.
14: Selection of labels for informative samples.
15: end for
16: return Selected target subset Δ𝐷𝑞

𝑡

4 EXPERIMENTS AND ANALYSES
4.1 Experimental Settings
4.1.1 Implementation Details. We conduct all the experiments
on a computer with 8 NVIDIA GeForce RTX 2080Ti GPUs. For
fairness, the epoch and batch size of all experiments are set to
150 and 24, respectively. The initial learning rate, momentum, and
optimizer weight decay are set to 0.01, 0.937, and 5e−4, respectively.
Note that because the number of our original unlabeled target
samples is 2502, thus, when using the ‘0.1%’ annotation budgets,
we can inquiry 2502 × 0.1% ≈ 3 (1𝑠𝑡 ) the target images. More
implementation details can be found in the Appendix B.

4.1.2 Datasets. We evaluate/report the performance of our strate-
gies on four dominant intrusion detection datasets [10]. In these
intrusion datasets, multiple different intrusion categories are pro-
vided, e.g., Pedestrian (P), Bicycle (B), Motorcycle (M), and Rider (R),
and multiple common adverse weathers (domains), e.g., Normal (N),
Rainy (R), Foggy (F), and Night (Ng). More details and visualization
results are presented in the Appendix C.

4.1.3 Metrics. To conduct a comprehensive performance evalua-
tion and comparison experiments, five different metrics are used to
evaluate the effectiveness of the proposed strategy, mIOU [3, 45],
mAP [2, 35], AccY, AccN, and Acc [10], respectively. In addition,
inspired by Bi3D [42], we also report the Closed Gap. The Closed
Gap can be expressed as △𝐶𝐺 =

|P𝑜−P𝑠 |− |P𝑜−P |
|P𝑜−P𝑠 | , where P𝑜 , P𝑠 , P

denotes the performance of Oracle (Fully-supervised), Source only
and different sampling strategies, respectively.

4.1.4 Baseline/ComparisonModels. To verify the effectiveness
of the proposed strategies, we conduct comparisons experiments
with multiple typical methods, including classic strategies (e.g.,
Random Sampling (RS), Least Confident (LC) [36], Margin Sam-
pling (MS) [27], Entropy Sampling (ES) [36]), promising sampling
strategies, e.g., RIPU [37], and UDA methods, i.e., JAN [19]. More
descriptions of these methods can be found in the Appendix D.

4.2 Main Results
4.2.1 Compared with classic and promising works. We first
compare our methods with promising active sampling strategies
and report the detailed results. As shown in Table 1. From Table
1, we can find that: 1) for intrusion detection performance, com-
pared with source only, our strategies can surpass 8.1% (N→R),
1.5% (N→F), and 3.6% (N→Ng) in different cross-domain tasks. 2)
Compared with the promising strategy (RIPU [37]), the intrusion
performance is improved by 2.7% (N→R). 3) Compared with some
classic sampling strategies, our sampling approaches present even
better performance. In addition, our sampling strategies also can
improve the detection performance greatly in some cross-domain
tasks, e.g., 1.8% (N→F), 1.9% (N→Ng), which denotes the effective-
ness of the proposed strategies. More comparison results in different
datasets, e.g. BDD-intrusion, can be seen in Appendix E.

4.2.2 Compared with UDA works. We deeply review some
cross-domain intrusion detection works, and find that previous
works of solving intrusion detection under adverse weather mainly
focus on UDA methods [10]. We compare our strategy with the
classic UDA methods, e.g., JAN [19]. From Tabel 1, we can see that
the performance of our strategy can surpass the promising UDA
method when using only 0.1% (3/2502) samples of the manually la-
beled target data (N→F: 29.7%→30.0%, N→R: 27.5%→28.1%), which
demonstrates the superiority of our sampling approach. More com-
parative results with UDA methods are shown in Appendix E.

4.2.3 Visualisation Comparisons. Further, we present some
visualization results to validate the effectiveness of our methods.
As shwon in Figure 5. From Figure 5, we can see that our sampling
strategies can help ourmodel to recognize themost typical intrusion
behaviors, and the performance of our strategies is better than other
methods. More visualization results are shown in the Appendix E.

4.3 Ablation Experiment
We conduct sufficient experiments and provide analyses to further
explore the effectiveness of proposed strategies.
4.3.1 Dynamic Diffusion Pseudo-Labeling. We first compare
our DDPL method with some common and effective methods, e.g.,
Larger UDA model [10], SAM [16], to evaluate the effectiveness of
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Task
(Source→Target) AL Strategy

Framework: ADAID-YOLO

Annotation budget: 0.1% (3/2502), 1𝑠𝑡

mIOU(%) mAP@.5(%) mAP@.5:.95(%) AccY(%) AccN(%) Acc(%) Closed Gap
ΔmIOU(%) ↑ / ΔmAP@.5(%) ↑ / ΔAcc(%) ↑

N→R

Source Only 78.3 23.8 10.4 21.3 19.7 20.0 –

Random 84.1 26.0 10.7 28.6 21.0 22.6 +32.4% / +11.6% / +15.5%

Entropy [36] 88.7 27.1 11.0 37.1 20.0 23.7 +58.1% / +17.5% / +22.0%

Margin Sampling [27] 87.5 26.2 11.1 33.5 21.1 23.7 +51.4% / +12.7% / +22.0%

Least Confident [36] 87.9 26.0 11.0 27.6 23.7 24.5 +53.6% / +11.6% / +26.8%

RIPU [37] 88.6 28.3 12.1 38.4 21.9 25.4 +57.5% / +23.8% / +32.1%

JAN (UDA) [19] 89.4 30.4 12.9 36.4 25.1 27.5 +62.0% / +34.9% / +44.6%

Ours 90.6 28.9 12.6 36.8 25.7 28.1 +68.7% / +27.0% / +48.2%

Oracle (Fully-Supervised) 96.2 42.7 18.3 40.9 35.7 36.8 –

N→F

Source Only 96.0 33.8 16.6 43.2 24.6 28.5 –

Entropy [36] 96.1 34.6 16.6 41.6 25.5 28.9 +14.3% / +9.2% / +4.9%

Random 95.8 33.9 16.2 42.5 25.5 29.1 -28.6% / +11.5% / +7.3%

RIPU [37] 95.9 35.2 16.7 40.8 26.3 29.4 -14.3% / +16.1% / +11.0%

JAN (UDA) [19] 96.1 33.8 16.6 42.6 26.2 29.7 +14.3% / +0.0% / +14.6%

Margin Sampling [27] 96.2 34.5 16.8 42.4 26.5 29.9 +28.6% / +8.0% / +17.1%

Least Confident [36] 95.9 35.4 17.0 42.8 26.4 29.9 -14.3% / +18.4% / +17.1%

Ours 96.1 37.2 18.0 42.7 26.6 30.0 +14.3% / +39.1% / +18.3%

Oracle (Fully-Supervised) 96.7 42.5 19.9 43.2 34.9 36.7 –

N→Ng

Source Only 94.0 36.3 15.7 42.3 26.7 30.0 –

Margin Sampling [27] 94.3 37.6 16.3 47.3 25.3 30.0 +11.5% / +16.0% / +0.0%

Random 94.8 37.3 16.6 46.5 26.7 30.9 +30.8% / +12.3% / +11.8%

Least Confident [36] 94.2 37.1 16.4 40.6 28.3 30.9 +7.7% / +9.9% / +11.8%

Entropy [36] 94.5 37.3 15.8 41.9 28.8 31.6 +19.2% / +12.3% / +21.1%

RIPU [37] 94.8 37.8 16.9 47.9 28.9 32.9 +30.8% / +18.5% / +38.2%

Ours 94.5 39.7 17.6 44.4 30.7 33.6 +19.2% / +42.0% / +47.4%

JAN (UDA) [19] 95.0 37.7 17.1 47.2 32.3 35.5 +38.5% / +17.3% / +72.4%

Oracle (Fully-Supervised) 96.6 44.4 20.2 45.1 35.6 37.6 –

Table 1: The quantitative results on different adaptation scenarios under 0.1% (1𝑠𝑡 ) annotation budget. Here, ‘N’, ‘R’, ‘F’, and ‘Ng’
denote using different datasets: Normal-CMC, Rainy-CMC, Foggy-CMC, and Night-CMC, respectively. Source only denotes the
training on the source domain and inference on the target domain. Oracle denotes training and inference on the target domain.

the proposed DDPL strategies. (Our detailed comparison of three dif-
ferent methods is shown in theAppendix F). The results are shown
in Table 2. From Table 2, we can find that our DDPL strategy can
show the best performance (Pixel Accuracy: 97.68%) and maintain
the faster inference speed. Note that although SAM [16] presents
an excellent ability of zero-shot for obtaining the pseudo-labeling,
the effect of pseudo-labeling is not the best. The main reason is that
extra prompts, e.g., location of points or boxes are needed, and SAM
has a slow inference speed, which is time-consuming. Besides, the
edge segmentation effect is not very good. For our ADA-ID task,
the edge segmentation of restricted AoI is quite essential.

4.3.2 Enhanced Region Impurity and PredictionUncertainty
sampling strategy. We further test the effectiveness of Enhanced-
RIPU. As shown in Table 3. Firstly, we compare our strategy with
the baseline (S), original RIPU [37], and Enhanced-RIPU (Larger
UDA) method. We can find that our Enhanced-GIPU strategy can
achieve the best intrusion detection performance, 27.9% Acc, and
can surpass them by 7.9%, 2.5%, and 1.1%, respectively. Besides, we

Method Model Inference times
(per images, s)

Information Leakage
(Extra prompt) Pixel Accuracy

SAM [16] Transformer (Vit) 0.231 ! 90.55%

Larger UDA Model [10] CNN (w/DANN) 0.009 % 95.10%

DDPL (Ours) Transformer+CNN 0.006 % 97.68%

Table 2: The comparison of different strategies of obtaining
Pseudo-Labelling. Pixel accuracy denotes the proportion of
correct pixels (predicted) of the total pixels.

explore the impact of different pixel region z on our ADA-ID task
comprehensively. We can see that the best intrusion performance
can be reached when pixel region is set to z = 2(5 × 5). The main
reason is that the larger z can not capture the feature details of
mask images, while the smaller z fails to recognize the image edges.

4.3.3 Multi-Element Joint sampling strategy. We further test
the effectiveness of the proposed MEJ sampling strategy and report
the performance. As are shown in Table 4. From Table 4, we can find
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Figure 5: Some comparison of intrusion detection results. We can find that our strategy can help the model to detect the most
typical intrusion behaviors and give correct labels. More visualization results are shown in the Appendix E.

Methods Metrics (Annotation budget: 0.1%, 1𝑠𝑡 )

Baseline Enhanced-RIPU FT # z mIOU(%) mAP@.5(%) AccY(%) AccN(%) Acc(%)

!(S) % % - 78.3 23.8 21.3 19.7 20.0

!(R) % % - 84.1 26.0 28.6 21.0 22.6

![37] % ⊙ z=2(5×5) 88.6 28.3 38.4 21.9 25.4

! !† ⊙ z=2(5×5) 89.8 28.7 33.1 25.1 26.8

! !ours ⊙ z=2(5×5) 89.3 29.4 31.3 27.0 27.9

! !ours ⊙ z=3(7×7) 89.1 28.0 27.3 26.0 26.3

! !ours ⊙ z=1(3×3) 89.4 28.2 32.3 25.2 26.7

! !ours ⊙ z=2(5×5) 89.3 29.4 31.3 27.0 27.9

Oracle (Fully-Supervised) 96.4 41.9 39.9 36.3 37.0

Table 3: The quantitative results of Enhanced-RIPU strategy.
Task: N→R. ‘S’ and ‘R’ denote the results of the Source only
and Random strategy. ‘FT’ denotes Fusion Type. † denotes
the pseudo-labeling generated by the Larger UDA model.

that, compared with baseline models (S) and (R), the MEJ strategy
can surpass them by 6.4% and 3.8%, respectively. Besides, when
different strategies are added, the performance of the intrusion will
be improved, which proves the effectiveness of our MEJ strategy.

Methods Metrics (Annotation budget: 0.1%, 1𝑠𝑡 )

Baseline C𝑘 P𝑘 R𝑠 mIOU(%) mAP@.5(%) AccY(%) AccN(%) Acc(%)

!(S) 78.3 23.8 21.3 19.7 20.0

!(R) 84.1 26.0 28.6 21.0 22.6

! ! 84.7 26.5 35.8 20.1 23.4

! ! ! 86.8 26.2 28.2 24.0 24.9

! ! ! ! 87.9 28.6 33.2 24.6 26.4

Table 4: The quantitative results of MEJ strategy. Task: N→R.
R𝑠 denotes the resample strategy. ‘S’ and ‘R’ denote the results
of the Source only and Random strategy, respectively.

4.4 More Insightful Experiment
4.4.1 Various target annotation budgets. We present some
comparison results with various target annotation budgets to vali-
date the superiority of our method. As shown in Figure 6. We can
find that the performance of intrusion detection continues to rise

Figure 6: The comparison results using different target an-
notation budgets. Task: N→F. We can find that our strategy
outperforms the classical approach and can surpass fully su-
pervised performance when annotation budgets reach 10%.

as annotation budgets increase. Besides, our strategy consistently
outperforms the classical approach for intrusion performance.

4.4.2 Compared with fully-supervised method. We also fur-
ther explore the relationship between our method and fully super-
vised methods. The results are shown in Figure 6. From Figure 6,
we can find that when the manually labeled target data reaches 10%
of the total number of unlabeled samples, our strategy can signifi-
cantly improve the cross-domain intrusion detection accuracy of
the ADAID-YOLO detector, even surpassing the fully-supervised
results with 100% labeled target data.

5 CONCLUSION
In this paper, we develop a new active domain adaption intrusion de-
tection task, ADA-ID, for the first time. To accomplish this particular
task, we first propose a multi-task active domain adaption frame-
work, ADAID-YOLO. Besides, three effective methods, Dynamic
Diffusion Pseudo-Labeling (DDPL), Enhanced Region Impurity and
Prediction Uncertainty sampling strategy (Enhanced RIPU), and
Multi-Element Joint sampling strategy (MEJ), are designed to better
achieve the performance of the ADA-ID task. Comprehensive exper-
imental results show that our proposed method can not only reach
the level of the current SOTA but even surpass the performance of
UDA and full supervision with only 0.1%, and 10% data annotation,
respectively. In future work, we will further explore more efficient
active domain adaptation strategies for ADA-ID tasks.
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