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Abstract

Predictive models affect the world through induc-
ing a strategic response or reshaping the envi-
ronment in which they are deployed—a property
called performativity. This results in the need to
constantly adapt and re-design the model. We
formalize one possible mechanism through which
performativity can arise using the language of
causal modeling. We show that using features
which form a Markov blanket of the target vari-
able for prediction closes the feedback loop in
this setting. Thus, a predictive model that takes
as input such causal features might not require
any further adaptation after deployment even if it
changes the environment.

1. Introduction
Predictive models are often deployed from a position of
power, e.g., to allocate a scarce resource, as in credit scoring
or in welfare fraud prediction, or to issue other highly conse-
quential high-stakes decisions, as in recidivism prediction.

In these scenarios, the models cause a change of their envi-
ronment. This could be due to strategic responses of the pop-
ulation subjected to the model-mediated outcomes (Hardt
et al., 2016), in which individuals attempt to game the
algorithmic system, or are forced to adapt to its require-
ments (Miller et al., 2020). Apart from this, the model’s
outcomes could change the environment in other ways such
as changing observable features of individuals as a result of
decisions such as denying bail. Modeling in these circum-
stances has been recently studied and formalized under the
name of performative prediction (Perdomo et al., 2020).

Prediction using causal features—those which form a
Markov blankets of the prediction target—as opposed to fea-
tures that are otherwise correlated with the target is known
to have beneficial properties, such as robustness to certain
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distribution shifts (Guyon et al., 2007; Rojas-Carulla et al.,
2018). In this short paper we show that causality-aware
prediction also can help avoid the feedback loops due to
model performativity.

2. Background
2.1. Prediction in Causal Models

We consider a prediction task in which we want to predict
values of a real-valued random target variable Y with range
Y ⊆ R from a set of m covariate (feature) variables X
with joint range X ⊆ Rm. A predictive model g(xI) uses a
subset of covariates XI ⊆ X to output a prediction, with
xI ∈ XI = R|XI | being a realization of variables in XI .

We assume there exists a structural causal model (SCM)
describing the relationships between X and Y (Pearl, 2009).
We say that a set of features XS is Markov if they form the
Markov boundary of the target variable Y , which we define
as the set of Y ’s parents, children, and the children’s parents
(spouses) in the SCM. We refer to, e.g., (Pearl, 2009) for a
detailed treatment of the topic of structural causal models.

2.2. Classical Optimal Prediction

Let us introduce some notation and definitions regard-
ing predictive models which are optimal in standard, non-
performative settings.

In a non-performative setting we minimize the standard
expected loss over some distribution D:

R(g) ≜ E(x,y)∼D[ℓ(g(x), y)], (1)

where ℓ(ŷ, y) ≥ 0 is a loss function. A minimizer of the
loss is called a Bayes-optimal model:

gbayes ∈ arg min
g: X→Y

R(g)

For the square loss function ℓ(ŷ, y) = (ŷ − y)2, it is well-
known that the Bayes-optimal model is the conditional ex-
pectation:

gbayes(x) = E[Y | X = x].

For the 0-1 loss function ℓ(ŷ, y) = 1[ŷ = y], the optimal
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model is the maximum a posteriori rule:

gbayes(x) = argmax
y∈Y

Pr[Y = y | X = x].

Prediction from Different Feature Sets We also consider
optimal prediction of the target variable based on a given
subset of features XI ⊆ X:

RXI
(g) ≜ E(x,y)∼D[ℓ(g(xI), y)]

with the respective Bayes-optimal model:

gbayesXI
∈ arg min

g: XI→Y
RXI

(g)

2.3. Performative Prediction

The concept of performative prediction (Perdomo et al.,
2020) recognizes and formalizes the fact that predictive
models affect the world once deployed. Within the proba-
bilistic framework, this can be encoded as a distribution shift
which occurs after the model’s deployment. Such shifts are
undesirable as they result in a constant drift away from the
original distribution, turning the model that initially could
have performed well into a suboptimal one. It requires the
model to constantly adapt to its ever-changing environment.

A way to account for the future shift is strategic training, in
which a model minimizes its own performative loss:

PR(g) ≜ E(x,y)∼Dg
[ℓ(g(x), y)], (2)

where Dg is the data distribution of (X,Y ) induced by the
deployment of a model g into its environment. An optimal
model which minimizes Equation (2) is called performa-
tively optimal:

gpo ∈ arg min
g: X→Y

PR(g)

Performative optimality in general does not stop the feed-
back loop of needing to adapt the model to induced perfor-
mative shifts. To do so, a model gps needs to satisfy the
property called performative stability:

gps ∈ arg min
g: X→Y

PR(g; gps) ≜ E(x,y)∼Dgps
[ℓ(g(x), y)]

(3)
A performatively stable predictive model is best-performing
even after the shift its deployment induces.

3. Performative Stability in the
Soft-Intervention Model

To formalize the setting of performativity within the frame-
work of causality, we extend the SCM in Section 2.1 by
introducing a new root random variable M which rep-
resents the deployed model. The effects of the variable
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Figure 1. General structural causal model of performative predic-
tion. The deployment of a predictive model M affects the distribu-
tion of data variables X,Y .
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Figure 2. Structural causal model of performative prediction under
Assumption 3.2. The deployment of a predictive model M affects
only the covariates X .

M on the data variables X and Y reflect the mechanism
through which the predictive model affects the data distri-
bution, as illustrated in Figure 1. We represent the deploy-
ment of a given predictive model as an intervention (Pearl,
2009) on the M variable. Thus, the performative distribu-
tion Dg is the distribution of (X,Y ) under an intervention
M := g. As M is a root variable, this distribution is simply
P (X,Y | M = g). This setup is known as a “soft interven-
tion” on (X,Y ) (Eberhardt & Scheines, 2007). We use a
special value M = ∅ to denote the initial data distribution
D∅ = P (X,Y | M = ∅) prior to any deployment.

We make the following assumptions about the setting:

Assumption 3.1 (Markov and Faithfulness (Pearl, 2009)).
The conditional independencies of the joint distribution of
variables are expressed in the graph, and vice versa.

Assumption 3.2. The performativity shift directly affects
only the covariates: M → X , yet M ̸→ Y . Formally, the
set of covariates X d-separate Y from M (Pearl, 2009). See
Figure 2 for a graph that satisfies the assumption.

The Assumption 3.1 are standard assumptions for causal
graphs that appropriately model the probability distribution.
Assumption 3.2 is equivalent to a covariate shift caused by
the deployment of the model (Bühlmann, 2020). Unlike the
standard setting of covariate shift, however, performative
shift can be controlled by the model’s deployer.

Next, we show that under these assumptions, surprisingly,
performative stability can be achieved without any strategic
training by using the Markov features.

Theorem 3.3. Suppose that Assumption 3.1 and Assump-
tion 3.2 hold. Then, in the case of square loss and 0-1 loss,
the non-strategically optimal model which uses the Markov
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features XS over the initial distribution D∅ achieves per-
formative stability:

gbayesXS
∈ arg min

g: X→Y
E(x,y)∼D

g
bayes
XS

[ℓ(g(x), y)] (4)

Proof. Let us denote as XN = X \XS the set of all non-
Markov features. By Assumption 3.1, the Markov features
XS provide the conditional independence guarantee:

P [Y | XS , XN ] = P [Y | XS ].

Moreover, from Assumption 3.2 we additionally have:

P [Y | X,M ] = P [Y | X].

Therefore, the conditional distribution of Y | X is constant
for any performative shift Dg:

P [Y | X,M = ∅] = P [Y | X,M = g] = P [Y | X]

Combining these, we have:

P [Y | XS , XN ,M ] = P [Y | XS ]. (5)

Let us consider the case of the square loss. Then, the optimal
non-performative model is gbayesXS

(x) = E[Y | XS = xS ].
Observe that one performatively stable model, which mini-
mizes PR( · ; gbayesXS

), is the Bayes-optimal model over the
distribution induced by gbayesXS

. We know its closed form: it
is the conditional expectation E[Y | X = x,M = gbayesXS

].
By Equation (5), it equals gbayesXS

(x).

An analogous argument holds for 0-1 loss.

4. Conclusions
In this short paper, we provided a formal argument that
causal prediction—using features on the Markov boundary
of the target—can induce performative stability: remove the
need to adapt to those changes of the environment which
are due to the model itself under the assumption that perfor-
mative shifts can be formalized as soft interventions on the
data distribution. Future work could investigate other for-
malizations of performativity such as individual-level hard
interventions, more appropriate to strategic classification
settings (Miller et al., 2020).
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