
ar
X

iv
:2

31
0.

17
13

7v
1

 [
cs

.L
G

]
 2

6
O

ct
 2

02
3

Large-Scale Gaussian Processes via Alternating Projection

Kaiwen Wu1 Jonathan Wenger2 Haydn Jones1 Geoff Pleiss3,4 Jacob R. Gardner1

1University of Pennsylvania 2Columbia University 3University of British Columbia 4Vector Institute

Abstract

Gaussian process (GP) hyperparameter op-
timization requires repeatedly solving linear
systems with n × n kernel matrices. To ad-
dress the prohibitive O(n3) time complex-
ity, recent work has employed fast iterative
numerical methods, like conjugate gradients
(CG). However, as datasets increase in mag-
nitude, the corresponding kernel matrices
become increasingly ill-conditioned and still
require O(n2) space without partitioning.
Thus, while CG increases the size of datasets
GPs can be trained on, modern datasets
reach scales beyond its applicability. In this
work, we propose an iterative method which
only accesses subblocks of the kernel matrix,
effectively enabling mini-batching. Our algo-
rithm, based on alternating projection, has
O(n) per-iteration time and space complex-
ity, solving many of the practical challenges
of scaling GPs to very large datasets. Theo-
retically, we prove our method enjoys linear
convergence and empirically we demonstrate
its robustness to ill-conditioning. On large-
scale benchmark datasets up to four million
datapoints our approach accelerates training
by a factor of 2× to 27× compared to CG.

1 INTRODUCTION

Scaling Gaussian process (GP) models to large
datasets has been a central research topic in proba-
bilistic machine learning for nearly two decades. The
primary challenge is the cubic complexity of comput-
ing both the marginal log likelihood (MLL) during
training and the predictive distribution at test time.
Over the years, this problem has been addressed both

Preprint.

0 250 500 750 1000

iterations

10
0

10
1

a
v
g
re
l
re
si
d
u
a
l
n
o
rm

CG

alt. proj.

(a) 3droad

0 250 500 750 1000

iterations

10
−1

10
0

10
1

10
2

a
v
g
re
l
re
si
d
u
a
l
n
o
rm

CG

alt. proj.

(b) house electric

Figure 1: Comparison of the convergence of alter-
nating projection and (preconditioned) conjugate gra-
dient. Both algorithms are initialized at zero, but CG
increases the residual after the first iteration. Left:

While the asymptotic convergence rate of CG can be
faster than alternating projection, CG does not find a
better solution than alternating projection in the first
1000 iterations. Right: CG struggles with conver-
gence due to ill-conditioning and does not reach the
tolerance δ. In contrast, alternating projection con-
vergences. See §4 for more details.

from a modeling perspective (e.g., Hensman et al.,
2013, 2015; Titsias, 2009; Snelson and Ghahramani,
2005; Salimbeni et al., 2018; Jankowiak et al., 2020;
Katzfuss and Guinness, 2021) and from a numerical
methods perspective (e.g., Cutajar et al., 2016;
Pleiss et al., 2018; Gardner et al., 2018; Wang et al.,
2019; Maddox et al., 2022), and contemporary
work even unifies these perspectives to a degree
(Artemev et al., 2021; Wenger et al., 2022b). In
recent years, numerical methods have increasingly
relied on matrix-free iterative methods, which access
the kernel matrix through matrix-vector multipli-
cations. These iterations are suitable for GPU
acceleration (Gardner et al., 2018) and have shown
success on medium to moderately large datasets
(Wang et al., 2019), outperforming modeling-based
approaches such as stochastic variational GPs (SVGP)
(Hensman et al., 2013).

Most GP training and inference approaches based
on iterative methods use classic general-purpose al-

http://arxiv.org/abs/2310.17137v1

Large-Scale Gaussian Processes via Alternating Projection

gorithms for matrix solves, such as conjugate gradi-
ents (CG) (Cutajar et al., 2016; Gardner et al., 2018;
Wang et al., 2019), MINRES (Pleiss et al., 2020), or
(stochastic) gradient descent (Lin et al., 2023). There
is reason to believe that such algorithms are sub-
optimal for modern hardware-accelerated Gaussian
processes. For example, CG was purpose-built for
sparse linear systems that require high-precision so-
lutions. Neither of these properties applies to GP re-
gression: the necessary solves involve dense covariance
matrices, and tasks such as hyperparameter optimiza-
tion can be performed with extremely coarse-grained
solves (Wang et al., 2019; Maddox et al., 2022). These
characteristics of large-scale dense operations and
low precision amenability are in line with existing
trends in machine learning (Courbariaux et al., 2015;
Micikevicius et al., 2018), but ultimately place Gaus-
sian processes at odds with much of the literature on
numerical methods.

Much in the way that deep learning has been rev-
olutionized by purpose-built optimizers that exploit
properties of neural networks (Kingma and Ba, 2015;
Loshchilov and Hutter, 2019), this paper aims to ac-
celerate GPs with a purpose-built method leveraging
(coarse-grained) covariance matrix solves on modern
hardware. We introduce an iterative method to com-
pute gradients of the marginal log-likelihood (MLL)
and the posterior mean, that improves over CG in
the following ways: 1) It requires O(n) computation
per iteration (rather than CG’s O(n2)); 2) It con-
verges rapidly and monotonically in its early stages
(but does not necessarily obtain higher precision than
CG); and 3) It demonstrates improved numerical sta-
bility in floating point arithmetic.

In summary, we make the following contributions:

• We propose an iterative method to train Gaus-
sian processes, which computes the MLL deriva-
tives and posterior mean via alternating projec-
tion. Each update accesses only subblocks of
the kernel matrix, has linear complexity, and de-
creases the residual near-monotonically.

• We prove that our algorithm converges linearly
at a rate no slower than gradient descent, despite
never operating on the full kernel matrix. Empir-
ically, our method achieves a 2-27× speed-up over
CG on a wide range of datasets.

• As a demonstration of its scalability and ro-
bustness to ill-conditioning, we are able to train
a GP on 4 million data points, the largest
dataset reported in the literature to-date with-
out using inducing points or similar modeling
approximations—to the best of our knowledge.
We find that our method outperforms SVGP by
a significant margin at this scale.

2 SETUP AND BACKGROUND

Notation. Let (X,y) be a training set of n training
inputs X = (x1 · · · xn)

⊤ ∈ X ⊆ R
n×d and labels

y = (y1 · · · yn)⊤ ∈ Rn. Let the set {1, 2, . . . , n}
be denoted by [n]. Given a matrix A ∈ Rn×n and an
index set I ⊆ [n], AI = AI,: is the |I|×n row-indexed
submatrix, A:,I the n×|I| column-indexed submatrix,
and AI,I is the |I| × |I| principal submatrix. We use
similar indexing notations for vectors.

Now, let f : X → R be a latent function, and let
kθ : X × X → R be a (known) positive definite
kernel function with hyperparameters θ. We write
f = f(X) = (f(x1) · · · f(xn))

⊤ ∈ R
n. Similarly,

kθ(X, ·) : X → Rn denotes the vector-valued function
given by (k(x1, ·) · · · k(xn, ·))⊤ ∈ Rn, and Kθ ∈
R

n×n is the Gram matrix with [Kθ]ij = kθ(xi,xj).
We omit the subscript θ unless the context needs it.

Gaussian Process Regression. In supervised GP
regression, we assume a response-generating function
f that is Gaussian process distributed a priori—i.e.
f ∼ GP

(
µ, kθ). For simplicity of presentation, we as-

sume without loss of generality an exact observation
model—i.e. y = f(X).1 Given a finite test dataset
x∗
1, . . . ,x

∗
M , we can obtain a posterior distribution over

f(x∗
1), . . . , f(x

∗
M) using standard Gaussian condition-

ing rules with the posterior mean and covariance:

E[f∗ | f] = µ+K∗fK
−1(y − µ),

C[f∗ | f] = K∗∗ −K∗fK
−1Kf∗.

We refer the reader to Rasmussen and Williams (2006,
Ch. 2) for more details.

Hyperparameter Training. The hyperparameters
θ of the GP are learned by minimizing the negative
marginal log likelihood (MLL) ℓ(θ) := − log p(y; θ).
With a Gaussian process prior on f , we have p(y; θ) =
N (y;µ,Kθ), yielding the following minimization:

minimize
θ

ℓ(θ)
c
= 1

2

(
y⊤K−1

θ
y + log det(Kθ)

)
(1)

Equation (1) is commonly optimized with first-order
methods, which require an (unbiased) estimate of
∂ℓ(θ)
∂θ

. Unfortunately, as (1) cannot be written in the
usual

∑n
i=1 ℓ(xi, yi) form common to many machine

learning algorithms, standard minibatching strate-
gies are not readily applicable. Following prior
work (e.g. Cutajar et al., 2016; Gardner et al., 2018;
Wenger et al., 2022a), we use the following unbiased
estimate:

− 1
2y

⊤K−1
θ

∂Kθ

∂θ
K−1

θ
y + 1

2l

∑l

i=1

(

z⊤i K
−1
θ

)
∂Kθ

∂θ
zi, (2)

1Note that we can easily recover an observational noise
model by setting kθ(x,x

′) = kbase(x,x
′) + σ2

1[x = x′,x ∈

X] for some kbase and σ > 0.

Wu, Wenger, Jones, Pleiss, Gardner

where zi are i.i.d. random vectors with E [zi] = 0 and
E
[
ziz

⊤
i

]
= I. Note that the first term is an unbiased

approximation of tr
(
K−1

θ

∂Kθ

∂θ

)
. Crucially, computing

(2) primarily involves computing solves with Kθ.

Linear Solves via Iterative Methods. When K

is large, direct methods for solving Kw = b are pro-
hibitively slow. Iterative methods, such as conjugate
gradients (CG), offer reduced asymptotic complexity
(Cutajar et al., 2016), significant GPU acceleration
(Gardner et al., 2018), and memory savings if K is
accessed in a map-reduce fashion (Wang et al., 2019;
Charlier et al., 2021).

CG minimizes the quadratic objective 1
2w

⊤Kw−b⊤w

by iteratively searching along conjugated directions.
Each iteration requires a O(n2) matrix-vector multi-
plication with K. In exact arithmetic, CG returns
an exact solution after n iterations. In practice for
ill-conditioned problems, CG is terminated once the
residual r = b−Kw is small enough, e.g., ‖r‖≤ δ‖b‖
for some predefined tolerance parameter δ.

For GP hyperparameter learning often large values of
the tolerance δ are used despite the potential for over-
fitting (Potapczynski et al., 2021), for example δ = 1
is used in practice (Wang et al., 2019; Maddox et al.,
2022) and has been the default setting of CG during
training in popular GP software packages (e.g., GPy-
Torch2 and GPflow3).

For hyperparameter training, each MLL derivative
evaluation requires a batched linear solve KW = B,
where B = (y z1 . . . zl) with zi are random sam-
ples for stochastic MLL derivative estimation in (2).

RKHS. Every kernel k : X×X → R induces a space of
functions H := span{k(x, ·) : x ∈ X} ⊂ RX , known as
a reproducing kernel Hilbert space (RKHS) where the
inner product 〈·, ·〉H is defined as 〈k(x, ·), k(x′, ·)〉H =
k(x,x′) for all x,x′ ∈ X .

RKHS Projection. Define the following finite di-
mensional linear subspaces of H for indices I ⊆ [n]:

V[n] = span{k(xi, ·) : i = 1, 2, · · · , n} ⊂ H,

VI = span{k(xi, ·) : i ∈ I} ⊆ V[n],
(3)

By definition these subspaces contain functions of the
form f(·) = ∑n

i=1 αik(xi, ·) and f(·) = ∑

i∈I αik(xi, ·)
respectively. We can map any f ∈ H onto these sub-
spaces using the projection operator.

Definition 1 (Projection Operator). Let V ⊆ H be a
closed linear subspace. The projection of any f ∈ H

2GPyTorch setting https://rb.gy/qi8er
3GPflow setting https://rb.gy/mozif

g = r0

k(x1, ·) k(x2, ·)

k(x3, ·)

s1

r1

0 250 500 750 1000

epochs

10
−4

10
−3

10
−2

10
−1

re
l
re
si
d
u
a
l
n
o
rm

cyclic

random

GS

Figure 2: Left: Illustration of alternating projec-
tion. s1 is the projection of g = r0 onto the sub-
space spanned by k(x1, ·) and k(x2, ·). The residual
r1 = g−s1 will be projected to other coordinates in the
next iteration. Right: Gauss-Southwell block selec-
tion results in faster convergence than random/cyclic.

onto V is given by the projection operator

projV (f) = argmin
g∈V

1
2‖f − g‖2H,

which is well-defined, i.e. the unique minimizer exists.

Intuitively, the projection operator finds the best ap-
proximation of f in V , where approximation error is
measured by the norm ‖·‖H. For V = V[n] and V = VI ,
the projection operator has a simple form:

projV[n]
(f) = f(X)⊤K−1k(X, ·),

projVI
(f) = f(X)⊤E⊤

I K
−1
I,IEIk(X, ·).

(4)

Importantly, these projections only evaluate f and the
kernel k on the data X (or subset XI). In other
words, it is unnecessary to evaluate f or k outside ofX
(or XI). The complexity of computing the projection
projV (f) depends on the dimension of V : projV[n]

(f)

takes O(n3) time and projVI
(f) takes O(|I|3) time.

3 METHOD

In this section, we develop an iterative method for
computing solves K−1b by alternating projection.
The method supports batch linear solves with multiple
right-hand sides, as required by estimating the MLL
derivative (2), and is amenable to GPU parallelism.
We cast the linear solve as a projection in the RHKS
H and decompose the projection into a sequence of
small-scale subproblems. Each subproblem is solved
in O(n) time, allowing frequent updates. Alternating
projection typically makes rapid progress in the early
stage and finds a medium-precision solution quickly.

High Level Approach. Assume k is strictly positive
definite and there is no duplicate data, then there ex-
ists g ∈ H interpolating b, i.e. g(X) = b. The exact

https://rb.gy/qi8er
https://rb.gy/mozif

Large-Scale Gaussian Processes via Alternating Projection

form of g is not important (or unique for that mat-
ter); rather, we are interested in its projection onto
the subspace V[n], which by (4) is

projV[n]
(g) = b⊤K−1k(X, ·),

Thus the linear solve can be obtained from the coeffi-
cients of the projection projV[n]

(g).

Directly projecting g onto V[n] is computationally in-
feasible, as the time complexity is cubic in n. Instead,
we partition [n] into subsets P = {I1, I2, · · · , Im}. For
each subset I ∈ P , the projection to the linear sub-
space VI ⊆ V[n] is cheap, provided that |I| is small.
Thus, we construct the (full) projection projV[n]

(g) by
iteratively computing the projection onto the linear
subspaces VI where I ∈ P .

Starting from r0 = g and s0 = 0, the j-th iteration
selects an index set I ⊆ [n] and updates as follows

sj+1 = sj + projVI
(rj) (5)

rj+1 = rj − projVI
(rj) (6)

Intuitively, sj progressively approximates the true pro-
jection projV[n]

(g), since (5) iteratively adds the pro-
jection onto subspaces VI to the current approxima-
tion sj . Meanwhile, (6) consistently updates the resid-
ual. As j → ∞, sj converges to the true projection
b⊤K−1k(X, ·) (Wendland, 2004). See Figure 2 (left
panel) for an illustration of alternating projection.

Implicit Representation of rj(·) Crucially, in the
updates (5) and (6), the function ri is only ever ac-
cessed through its evaluation on X (recall the projec-
tion formula (4)). Therefore, we only need to maintain
the vector ri = ri(X) ∈ Rn instead of the entire func-
tion. The update (6) thus reduces to

rj+1 := rj − projVI
(rj)(X)

= rj −KE⊤
I K

−1
I,IEIrj (7)

= rj −K:,IK
−1
I,I [rj]I , (8)

where EI denotes the rows of the identity matrix cor-
responding to I. The final line comes from the right
multiplication KE⊤

I and left multiplication EIrj .

Representing si(·) via Kernel Functions. Every
si is in V[n] and can thus be written as a linear combi-

nation w⊤
i k(X, ·) for some wi ∈ Rn, which is proved

by induction. At the 0-th iteration, we see that s0(·) is
the zero function, which can be written as 0⊤k(X, ·).
For the j-th iteration, assuming I ⊆ [n] is selected and
sj = w⊤

j k(X, ·), then we have

sj+1 = sj + projVI
(rj)

=
(

w⊤
j + rj(X)⊤E⊤

I K
−1
I,IEI

)

︸ ︷︷ ︸
wj+1

k(X, ·),

Algorithm 1: Alternating Projection

Input: A batched linear system KW=B

Output: The solution W∗ = K−1B

1 Initialize W = O and R = B

2 for t = 1, 2, · · · do // epoch

3 for j = 1, 2, · · · ,m do // mini-batch

4 select a block I ∈ P from the partition

5 WI = WI +K−1
I,IRI

6 R = R−K:,IK
−1
I,IRI

7 end

8 if converged then return W

9 end

where the last line gives an explicit update on wj :

wj+1 = wj +E⊤
I K

−1
I,IEIrj . (9)

Recall that EI simply selects rows/columns. Only en-
tries in wj indexed by I need to be updated, while
keeping the entries outside I unchanged:

[wj+1]I = [wj]I +K−1
I,I [rj]I ,

[wj+1][n]\I = [wj][n]\I .
(10)

Summary. (8) and (10) yield an iteration on si(·)=
w⊤

i k(X, ·) where the wi are obtained through simple
matrix operations. Since the si are produced by al-
ternating projections, we have si → projV[n]

(g) and

thus wi → K−1b. We summarize this approach in
Algorithm 1. Note that the algorithm can be adapted
to perform multiple right-hand solves in parallel by
replacing wi, ri,bi vectors with matrices W,R,B.

Block Selection. Selecting which block to update is
crucial for fast convergence. The simplest block selec-
tion rules are random selection (sample I uniformly
from P) and cyclic selection (I = Ij), which usually
converge slowly (see Figure 2). Instead, we select the
block I with the largest residual norm

I = argmax
I∈P

‖RI,:‖2F. (11)

In the special case that R is an n× 1 vector, (11) re-
duces to the Gauss-Southwell (GS) rule (Nutini et al.,
2015). (11) is a modification adapted to our setting.

Cached Cholesky. Line 4 requires solving a linear
system with the submatrix KI,I . To avoid repeatedly
inverting the same matrices, we compute and cache the
Cholesky factors of all principal submatrices {KI,I :
I ∈ P} once whenever the GP hyperparameters are
updated (e.g., once per gradient computation). To
facilitate parallelism, we partition the blocks evenly so
that every block has the same size |I| = b and factorize

Wu, Wenger, Jones, Pleiss, Gardner

0 250 500 750 1000

epochs

10
−1

10
0

a
v
g
re
l
re
si
d
u
a
l
n
o
rm

b=6000

b=2000

b=1000

b=500

b=100

0 2000 4000 6000 8000

wall-clock time (s)

10
−1

10
0

av
g
re
l
re
si
d
u
al

n
or
m b=6000

b=2000

b=1000

b=500

b=100

Figure 3: Convergence of alternating projection with
different batch sizes b on 3droad. Left: Smaller batch
sizes converge faster within the same epochs. Right:

However, smaller batch sizes result in more sequential
updates on the GPU and thus longer wall-clock time.

all matrices in a single batch Cholesky call, which takes
O(nb2) time and O(nb) memory.

Complexity. The block selection takes O(n) time.
Updating the weights W takes O(b2) time. Updating
the residual R takes O(nb) time. Each epoch runs
m = n/b inner loops and thus takes O(nb + n2) time
in total. Thus, the complexity of each epoch has the
same quadratic complexity as a single CG iteration. A
more fine-grained analysis in Appendix F shows that
each epoch requires (2+ 3

b
)n2+(2b+1)n FLOPs. Thus,

for typical batch sizes 1 ≪ b ≪ n, each epoch requires
roughly 2n2 FLOPs, the same number as a single CG
iteration. We note that every update in Algorithm 1
has linear (in terms of n) time and memory complexity.

Connection with Coordinate Descent. Interest-
ingly, we can show that Algorithm 1 produces iterates
equivalent to coordinate descent on the quadratic form
(see §A for details). We will exploit this connection
to prove the rate of convergence of Algorithm 1. We
introduce this algorithm as alternating projection for
two reasons: (a) unlike in coordinate descent, the up-
date rules based on alternating projection maintain
the residual R, which enables efficient block selection
strategies like the GS rule without re-evaluating the
residual; (b) alternating projection can be easily ex-
tended to different settings. For instance, a paral-
lel coordinate descent algorithm was discovered via
the connection with (Dykstra’s) alternating projec-
tion (Boyle and Dykstra, 1986; Tibshirani, 2017) in
the setting of regularized least-squares, which hints
that Algorithm 1 may be distributed.

4 CONVERGENCE

Let λmax and λmin be the largest and smallest eigen-
values of K, κ = λmax/λmin its condition number, and
define λ′

max = maxI∈P λmax(KI,I) as the maximum
of the largest eigenvalues of the principal submatrices
{KI,I : I ∈ P}. By leveraging the connection with co-

ordinate descent (Nutini et al., 2022), we can prove an
explicit convergence rate for Algorithm 1 when applied
to a linear system with multiple right-hand sides.

Theorem 1. Let W∗ be the (unique) solution of the
linear system KW = B and W(t) its approximation
after t epochs of Algorithm 1 using the modified GS
rule (11). Then it holds that

‖W(t) −W∗‖2
K

≤ exp
(
− t/κ′

)
‖W(0) −W∗‖2

K
,

where κ′ = λ′
max/λmin ≤ κ.

The rate in Theorem 1 improves over gradient descent
despite only needing sub matrices, for which the above
holds with exp(−t/κ), since generally κ′ ≤ κ. For
comparison, the convergence rate of (batched) CG is

4
(
(
√
κ− 1)/(

√
κ+ 1)

)2t ≈ 4 exp
(
− 4t/

√
κ
)
for a suf-

ficiently large condition number κ ≫ 1. The conver-
gence rate of alternating projection is asymptotically
faster than that of CG if κ′ ≤ 1

4

√
κ. In general, we

do not expect this condition to hold. However, alter-
nating projection has practical advantages despite a
slower asymptotic convergence rate. First, alternat-
ing projection performs m times more updates than
CG with the same number of FLOPs. Second, al-
ternating projection generally decreases the residual
in every epoch, while the CG residual is not mono-
tonic. We empirically observe that CG often increases
the residual dramatically in the early stage and it
takes time for CG to enter the “linear convergence
phase”. In addition, the dependency on κ′ suggests
that alternating projection implicitly works on better-
conditioned matrices, which may imply robustness
against ill-conditioning.

Figure 1 shows the above two points in practice. The
figure is plotted on two checkpoints at the 50 epoch
GP training on the 3droad and house electric datasets
respectively. The (batched) linear system K−1B has
16 right-hand sides, where b0 = y is the training
labels and {bi}15i=1 are i.i.d . samples from a Gaus-
sian. We can prove that the random selection strat-
egy in Figure 2 (right panel) achieves a similar rate in
Theorem 1, but only in expectation. In practice, the
GS rule converges faster than random selection.

The batch size b affects the rate in Theorem 1 through
the condition number κ′ = λ′

max/λmin. Note that
the largest eigenvalue of the principal submatrix is
bounded by its trace λmax(KI,I) ≤ tr (KI,I), where
the trace grows linearly in |I|. A small batch size
b = |I| is likely to have a small λ′

max and a faster con-
vergence rate. We compare the convergence of differ-
ent batch sizes in Figure 3. Although small batch sizes
lead to faster convergence, they generally have a longer
running time due to more sequential updates. There-
fore, in practice, we recommend using the largest batch

Large-Scale Gaussian Processes via Alternating Projection

size possible subject to memory constraints. In addi-
tion, we note that the convergence rate in Theorem 1
is loose for large batch sizes b. In the extreme case
where b = n, Algorithm 1 is equivalent to the Cholesky
decomposition on the entire matrix K and thus con-
verges to the exact solution in one update. However,
Theorem 1 does not reflect that. The convergence rate
in practice may be much faster than the theory pre-
dicts.

5 EXPERIMENTS

We evaluate the efficacy of our alternating projections
solver in a GP regression task. Our evaluation includes
a training dataset of n = 4M , which, to the best of
our knowledge, is considerably larger than any other
dataset where a GP has been applied without inducing
points or employing modeling approximations.

All experiments are performed on a single 24 GB
NVIDIA RTX A5000 GPUs with single precision float-
ing point, and all numerical algorithms/GPmodels are
implemented in PyTorch/GPyTorch (Gardner et al.,
2018). We use the KeOps library (Charlier et al.,
2021) to implement all matrix-free numerical algo-
rithms in a map-reduce fashion, thus eliminating the
need to store large n× n kernel matrices in memory.

5.1 Main Result: GP Regression

We first evaluate our method on large-scale GP train-
ing tasks. We compare against GPs trained with
CG, which is the predominant matrix-free GP train-
ing approach (Gardner et al., 2018; Wang et al., 2019;
Maddox et al., 2022).

Metrics. Our primary desiderata for GPs are 1) low
computational costs for training and 2) generalization.
Therefore, we compare the different training methods
using the following metrics: 1) the total number of
floating point operations (FLOPs) normalized by 2n2

(the FLOPs of a single matmul), 2) the wall clock
training time, and 3/4) the trained model’s RMSE

and NLL measured on the test set.

Datasets and Models. We conduct experiments on
UCI regression datasets, whose statistics are shown
in Table 4. Each dataset is split into 80% training
and 20% test. The labels are normalized so that they
have zero mean and unit variance. Almost all exper-
iments are averaged over 5 runs. Because of resource
constraints, we limit the two largest datasets—House
Electic and Gas Sensors—to 3 and 1 run respectively.

We train GP regression models with ν = 2.5 Matérn
kernels and a constant prior mean. We optimize
the following hyperparameters: a scalar constant for

the prior mean, a d-dimensional kernel lengthscale, a
scalar outputscale, and a scalar observational noise pa-
rameter σ2. We include experiments with ν = 1.5
Matérn kernels in Appendix E.

MLL Optimization. To compute the stochastic
MLL gradient (2), we use l = 15 random samples zi.
Thus, all matrix-free methods solve a batched linear
system with 16 right-hand sides y and {zi}15i=1 in each
training iteration. On the first five datasets, the GPs
are trained by 50 iterations of Adam with a step size
0.1. On house electric and gas sensors, the GPs are
trained by 100 iterations of Adam with a step size 0.1.

Alternating Projection Details. As discussed in
§4, a large batch size is preferred empirically. We use
the largest batch size that we can fit on a 24 GB GPU.
The batch sizes b are set as: 6000 on SGEMM, air
quality and 3droad; 4000 on song and buzz; 1000 on
house electric; 500 on gas sensors. We use the sequen-
tial partition P : the data points from (j − 1)b + 1 to
jb belong to the j-th block Ij for j = 1, 2, · · ·n/b.
The maximum CG iterations and the maximum num-
ber of alternating projection epoch is set to 1000. Fol-
lowing GPyTorch’s CG stopping criteria, we terminate
the alternating projection solves after (a) the average
relative residual norm is strictly smaller than the toler-
ance δ = 1 or (b) 1000 total epochs, whichever comes
first. However, we ensure that at least 11 epochs of
alternating projections have been run before termina-
tion (again following GPyTorch). We define the aver-

age relative residual norm as 1
l+1

∑l

i=0‖ri‖/‖bi‖ when

there are l + 1 right hand sides (b0 b1 · · · bl).

CG Details. We use GPyTorch’s implementation
of CG, which uses the same stopping criteria as our
alternating projections implementation. Following
Wang et al. (2019); Wenger et al. (2022a), we use a
pivoted Cholesky preconditioner of size 500 on all
datasets except: house electric uses a size 300 and gas
sensors uses a size 150 due to GPU memory overflow.

Prediction. At test time, the predictive mean is com-
puted by the same iterative method used for train-
ing (e.g., CG for the CG trained GP, alternating pro-
jection for the AP trained GP). A limitation of our
method is that it does not easily result in a cache for
variances. Therefore, we use 1000 Lanczos iterations
as in Pleiss et al. (2018); Wang et al. (2019).

Results on 105 < n < 106 datasets. Table 4
compares the predictive performance and the training
speed of CG-based versus alternating projection-based
GPs. Both training procedures produce GPs with sim-
ilar RMSE and NLL. We conjecture that this similarity
occurs because both approaches solve linear systems
up to the same tolerance, and thus find similar hyper-

Wu, Wenger, Jones, Pleiss, Gardner

Table 1: Gaussian process training on UCI benchmark datasets. Metrics are computed across multiple runs
and reported with ± one standard deviation.

Dataset Method RMSE NLL FLOPs/2n2 Training time Speed up

SGEMM
n = 241, 600

d = 14

CG 0.048 ± 0.000 −1.037± 0.001 551± 1 9.1m ±0.0
Alt. Proj. 0.046± 0.000 −0.999 ± 0.001 550± 0 12.2m ±0.2 0.7×

SVGP 0.086 ± 0.000 −0.934 ± 0.003 NA 14.8m ±0.1

air quality
n = 382, 168

d = 13

CG 0.261± 0.001 0.143 ± 0.004 2965 ± 19 33.5m ±1.5
Alt. Proj. 0.262± 0.001 0.137± 0.003 550± 0 16.9m ±0.5 2.0×

SVGP 0.363 ± 0.003 0.399 ± 0.006 NA 23.4m ±0.1

3droad
n = 434, 874

d = 3

CG 0.069± 0.000 1.324 ± 0.002 5128 ± 114 53.2m ±2.8
Alt. Proj. 0.076 ± 0.000 1.203 ± 0.001 676± 1 21.1m ±0.5 2.5×

SVGP 0.327 ± 0.002 0.320± 0.005 NA 26.1m ±0.1

song
n = 515, 345

d = 90

CG 0.747± 0.002 1.140 ± 0.003 4431 ± 110 13.8h ±0.8
Alt. Proj. 0.749± 0.002 1.132± 0.002 550± 0 2.7h ±0.1 5.1×

SVGP 0.790 ± 0.002 1.184 ± 0.002 NA 0.5h ±0.0

buzz
n = 583, 250

d = 77

CG 0.321∗ ± 0.144 0.669∗ ± 1.152 16726 ± 2724 31.1h ±5.4
Alt. Proj. 0.239± 0.001 0.018± 0.003 550± 0 2.0h ±0.1 15.6×

SVGP 0.259 ± 0.002 0.066 ± 0.006 NA 0.6h ±0.0

house electric
n = 2, 049, 280

d = 11

CG - - > 50441 > 11d
Alt. Proj. 0.030± 0.000 −1.148 ± 0.001 1100± 0 9.8h ±0.4 > 26.9×

SVGP 0.050 ± 0.000 −1.549± 0.001 NA 2.1h ±0.0

gas sensors
n = 4, 178, 504

d = 17

CG - - - -
Alt. Proj. 0.203 0.070† 1100 84.5h

SVGP 0.330 ± 0.001 0.339 ± 0.003 NA 8.7h ±0.03

* : At test time, CG does not reach the tolerance δ = 0.01 after 4000 iterations on some checkpoints.

- : CG does not finish GP training.

† : This predictive variance is calculated using only 500 Lanczos iterations to save time and avoid numerical instability.

0 20 40

Adam iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

li
k
e
li
h
o
o
d
n
o
is
e
σ
2 CG

alt. proj.

0 20 40

Adam iterations

20

40

60

80

100

120

C
G

it
e
ra
ti
o
n
s

CG

alt. proj.

Figure 4: GP training on air quality dataset. Left:

Because the likelihood noise σ2 decreases during train-
ing, the matrix K gets more ill-conditioned. Right:

CG is sensitive to this increased ill-conditioning, while
alternating projections is robust.

parameters. One exception is the buzz dataset: CG
struggles to converge while training on this dataset,
resulting in considerably worse RMSE and NLL.

The primary difference between the two methods is
training time. Alternating projection-based training
is up to 27× faster than CG. The only exception is
SGEMM GPU, which seems to be a well-conditioned
dataset since CG converges quickly.

For reference, we also report the training/test per-

formance of stochastic variational Gaussian processes
(SVGP) (see Appendix E for experimental design de-
tails). GPs trained by alternating projection achieve
substantially lower RMSE and comparable NLL com-
pared with SVGP. We do note that SVGPs have lower
NLL on 3droad and house electric, which we suspect
is a limitation of the Lanczos predictive variance es-
timates used on the alternating projections models.
(Note that SVGP’s predictive variances can be com-
puted exactly and do not make use of the Lanczos
estimator.) Indeed, in Appendix E we find that the
NLL gap shrinks as we increase the rank of the Lanc-
zos variance estimator, suggesting that this gap is not
a fundamental limitation of the alternating projections
training methodology.

Results on n ≥ 106 datasets. Previous attempts
to train GPs using iterative methods on datasets with
n ≥ 106 examples have used a large noise constraint
σ2 ≥ 0.1 to improve the conditioning of the kernel
matrix (e.g., Wang et al., 2019; Maddox et al., 2022).
Since alternating projection is much less conditioning-
sensitive than CG (see §5.2), for the first time, we are
able to train the model with a much smaller noise con-
straint σ2 ≥ 10−4, i.e. the default in GPyTorch for the

Large-Scale Gaussian Processes via Alternating Projection

0 200 400 600 800

CG iterations

10
−4

10
−3

10
−2

10
−1

10
0

re
l
re
si
d
u
a
l
n
o
rm

CG

alt. proj.

(a) air quality

0 250 500 750 1000

CG iterations

10
−3

10
−2

10
−1

10
0

re
l
re
si
d
u
a
l
n
o
rm

CG

alt. proj.

(b) buzz

Figure 5: Running CG and alternating projection on
test-time solves K−1(y − µ). For alternating projec-
tion, the x-axis is the number of epochs. Left: CG
has faster convergence rate, but CG does not reach
the test-time tolerance δ = 0.01 much faster. Right:

Alternating projection reaches the tolerance δ = 0.01
faster despite its slower asymptotic rate.

Gaussian likelihood.4 Removing the noise constraint
yields much better predictive performance: the RMSE
0.030 is significantly lower than what can be achieved
with high-noise constraint models (see Appendix E).

We additionally train a GP on the gas sensors dataset
with 4 million data points. To the best of our knowl-
edge, this is the largest dataset trained on using GPs
without the use of inducing point or other modeling
approximations. CG-based training appears to be in-
tractable on such a large dataset, requiring over a
week to train. In contrast, the alternating projections
method required 84.5 hours.

5.2 Effect of Kernel Matrix Conditioning

As implied by our theoretical dependence on λ′
max

rather than λmax, we observe that our alternating pro-
jections method is less sensitive to ill-conditioning than
CG. We demonstrate this phenomenon in Figure 4,
which depicts training on the n ≈ 400K air quality
dataset. Over the course of training, the noise param-
eter σ2 decreases for both methods, resulting in an in-
creasingly ill-conditioned kernel matrix (as λmin ≈ σ2).
At the end of training, when σ2 ≈ 0.01, CG requires
over 120 iterations to converge—10× as many itera-
tions as the beginning of training. In contrast, alter-
nating projection consistently converges in 11 itera-
tions despite the decreasing noise and increasing con-
dition number. See more datasets in Appendix E.

5.3 Alternating Projection at Test Time

Any linear solver K−1b can be used to compute the
posterior mean on the test data. We explore alter-
nating projection at test time, as shown in Figure 5

4GPyTorch likelihood setting https://rb.gy/fv41w

and Table 3 in Appendix E. With a test-time toler-
ance δ = 0.01, the posterior mean computed by alter-
nating projection is practically the same as CG: the
RMSE of both methods are the same up to the 3rd
digit after the decimal point. While alternating pro-
jection is slightly slower on medium-size datasets such
air quality and 3droad, we observe strong speed up on
large datasets such as buzz and house electric. Our
method computes the posterior mean 17.2× faster in
wall-clock time than CG on buzz, and requires only 5
min to compute the posterior mean on house electric.

6 RELATED WORK

The early usage of conjugate gradients in GPs dates
back at least to Yang et al. (2004); Shen et al. (2005).
They proposed methods speeding up CG by approx-
imate matrix-vector multiplications. More recently,
CG has been revisited by Davies (2015); Cutajar et al.
(2016). Then, a series of work (Gardner et al., 2018;
Wang et al., 2019; Artemev et al., 2021) and software
such as GPyTorch (Gardner et al., 2018) and GPflow
(Matthews et al., 2017) have popularized CG for GPs.

Alternating projection (Von Neumann, 1949) is a gen-
eral algorithm finding a point in the intersection of
convex sets, enjoying applications in convex optimiza-
tion (Agmon, 1954) and scattered data approximation
(Wendland, 2004). An early work applying coordinate
descent with greedy block selection for GP inference is
done by Bo and Sminchisescu (2008). However, the
algorithm is not parallelizable on modern hardware
like GPUs due to the inherent sequential nature of
the greedy selection, and lacks an explicit convergence
rate with explicit constants. Lin et al. (2023) recently
have applied stochastic gradient descent for approxi-
mate GP posterior sampling. They also observe CG
struggles with convergence in ill-conditioned settings.

7 CONCLUSION

In this work we proposed an alternating projection
method with provable linear convergence for solving
dense kernel linear systems and applied it to GP
training and inference. Our method quickly reaches
commonly used tolerances faster than CG, requires
only linear time per iteration, and is highly robust
to ill-conditioning. Experiments on several large-scale
benchmark datasets show that we achieve a 2-27×
speed-up over CG-based training and a 2-17× speed
up over CG-based inference with an increase in pre-
dictive performance. This includes results on datasets
as large as 4 million data points which is state-of-the-
art for GPs trained with iterative methods without
artificially inflating observation noise for stability.

https://rb.gy/fv41w

Wu, Wenger, Jones, Pleiss, Gardner

Acknowledgements

JW was supported by the Gatsby Charitable Founda-
tion (GAT3708), the Simons Foundation (542963) and
the Kavli Foundation.

References

Agmon, S. (1954). The relaxation method for lin-
ear inequalities. Canadian Journal of Mathematics,
6:382–392.

Artemev, A., Burt, D. R., and van der Wilk, M.
(2021). Tighter bounds on the log marginal likeli-
hood of Gaussian process regression using conjugate
gradients. In International Conference on Machine
Learning (ICML), volume 139, pages 362–372.

Bertin-Mahieux, T. (2011). YearPredictionMSD. UCI
Machine Learning Repository.

Bo, L. and Sminchisescu, C. (2008). Greedy block co-
ordinate descent for large scale Gaussian process re-
gression. In Conference on Uncertainty in Artificial
Intelligence (UAI).

Boyle, J. P. and Dykstra, R. L. (1986). A method
for finding projections onto the intersection of con-
vex sets in Hilbert spaces. In Advances in Or-
der Restricted Statistical Inference: Proceedings of
the Symposium on Order Restricted Statistical In-
ference, pages 28–47.

Charlier, B., Feydy, J., Glaunès, J. A., Collin, F.-
D., and Durif, G. (2021). Kernel operations on
the GPU, with autodiff, without memory overflows.
Journal of Machine Learning Research, 22(74):1–6.

Chen, S. (2019). Beijing Multi-Site Air-Quality Data.
UCI Machine Learning Repository.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015).
BinaryConnect: Training deep neural networks with
binary weights during propagations. In Advances in
Neural Information Processing Systems (NeurIPS),
volume 28.

Cutajar, K., Osborne, M., Cunningham, J., and Fil-
ippone, M. (2016). Preconditioning kernel matri-
ces. In International Conference on Machine Learn-
ing (ICML), volume 48 of Proceedings of Machine
Learning Research, pages 2529–2538.

Davies, A. J. (2015). Effective implementation of
Gaussian process regression for machine learning.
PhD thesis, University of Cambridge.

Fonollosa, J. (2015). Gas sensor array under dynamic
gas mixtures. UCI Machine Learning Repository.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel,
D., and Wilson, A. G. (2018). GPyTorch: Black-
box matrix-matrix Gaussian process inference with

GPU acceleration. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 31.

Hebrail, G. and Berard, A. (2012). Individual house-
hold electric power consumption. UCI Machine
Learning Repository.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013).
Gaussian processes for big data. In Conference on
Uncertainty in Artificial Intelligence (UAI).

Hensman, J., Matthews, A., and Ghahramani, Z.
(2015). Scalable variational Gaussian process clas-
sification. In International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 38,
pages 351–360.

Jankowiak, M., Pleiss, G., and Gardner, J. (2020).
Parametric Gaussian process regressors. In Inter-
national Conference on Machine Learning (ICML),
pages 4702–4712.

Katzfuss, M. and Guinness, J. (2021). A general frame-
work for Vecchia approximations of Gaussian pro-
cesses. Statistical Science, 36(1):124–141.

Kaul, M. (2013). 3D Road Network (North Jutland,
Denmark). UCI Machine Learning Repository.

Kelly, M., Longjohn, R., and Nottingham, K. (2023).
The UCI machine learning repository.

Kingma, D. and Ba, J. (2015). Adam: A method for
stochastic optimization. In International Conference
on Learning Representations (ICLR).

Lin, J. A., Antorán, J., Padhy, S., Janz, D.,
Hernández-Lobato, J. M., and Terenin, A. (2023).
Sampling from Gaussian process posteriors using
stochastic gradient descent. In Advances in Neural
Information Processing Systems (NeurIPS).

Loshchilov, I. and Hutter, F. (2019). Decoupled weight
decay regularization. In International Conference on
Learning Representations (ICLR).

Maddox, W. J., Potapcynski, A., and Wilson, A. G.
(2022). Low-precision arithmetic for fast Gaussian
processes. In Conference on Uncertainty in Artificial
Intelligence (UAI), volume 180, pages 1306–1316.

Matthews, A. G. d. G., van der Wilk, M., Nickson,
T., Fujii, K., Boukouvalas, A., León-Villagrá, P.,
Ghahramani, Z., and Hensman, J. (2017). GPflow:
A Gaussian process library using TensorFlow. Jour-
nal of Machine Learning Research, 18(40):1–6.

Micikevicius, P., Narang, S., Alben, J., Diamos, G.,
Elsen, E., Garcia, D., Ginsburg, B., Houston, M.,
Kuchaiev, O., Venkatesh, G., and Wu, H. (2018).
Mixed precision training. In International Confer-
ence on Learning Representations (ICLR).

Nutini, J., Laradji, I., and Schmidt, M. (2022).
Let’s make block coordinate descent converge faster:

Large-Scale Gaussian Processes via Alternating Projection

Faster greedy rules, message-passing, active-set
complexity, and superlinear convergence. Journal
of Machine Learning Research, 23(131):1–74.

Nutini, J., Schmidt, M., Laradji, I., Friedlander, M.,
and Koepke, H. (2015). Coordinate descent con-
verges faster with the Gauss-Southwell rule than
random selection. In International Conference on
Machine Learning (ICML), volume 37, pages 1632–
1641.

Paredes, E. and Ballester-Ripoll, R. (2018). SGEMM
GPU kernel performance. UCI Machine Learning
Repository.

Pleiss, G., Gardner, J., Weinberger, K., and Wilson,
A. G. (2018). Constant-time predictive distribu-
tions for Gaussian processes. In International Con-
ference on Machine Learning (ICML), volume 80,
pages 4114–4123.

Pleiss, G., Jankowiak, M., Eriksson, D., Damle,
A., and Gardner, J. (2020). Fast matrix square
roots with applications to Gaussian processes and
Bayesian optimization. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 33,
pages 22268–22281.

Potapczynski, A., Wu, L., Biderman, D., Pleiss, G.,
and Cunningham, J. P. (2021). Bias-free scal-
able Gaussian processes via randomized truncations.
In International Conference on Machine Learning
(ICML), volume 139, pages 8609–8619.

Rasmussen, C. E. and Williams, C. K. (2006). Gaus-
sian processes for machine learning. MIT Press.

Salimbeni, H., Cheng, C.-A., Boots, B., and Deisen-
roth, M. (2018). Orthogonally decoupled variational
Gaussian processes. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 31.

Shen, Y., Seeger, M., and Ng, A. (2005). Fast Gaussian
process regression using kd-trees. In Advances in
Neural Information Processing Systems (NeurIPS),
volume 18.

Snelson, E. and Ghahramani, Z. (2005). Sparse Gaus-
sian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems (NeurIPS),
volume 18.

Tibshirani, R. J. (2017). Dykstra's algorithm, admm,
and coordinate descent: Connections, insights, and
extensions. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 30.

Titsias, M. (2009). Variational learning of inducing
variables in sparse Gaussian processes. In Inter-
national Conference on Artificial Intelligence and
Statistics (AISTATS), volume 5, pages 567–574.

Von Neumann, J. (1949). On rings of operators. reduc-
tion theory. Annals of Mathematics, pages 401–485.

Wang, K., Pleiss, G., Gardner, J., Tyree, S., Wein-
berger, K. Q., and Wilson, A. G. (2019). Exact
Gaussian processes on a million data points. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 32.

Wendland, H. (2004). Scattered Data Approximation,
volume 17. Cambridge University Press.

Wenger, J., Pleiss, G., Hennig, P., Cunningham, J.,
and Gardner, J. (2022a). Preconditioning for scal-
able Gaussian process hyperparameter optimization.
In International Conference on Machine Learning
(ICML), volume 162, pages 23751–23780.

Wenger, J., Pleiss, G., Pförtner, M., Hennig, P., and
Cunningham, J. P. (2022b). Posterior and com-
putational uncertainty in Gaussian processes. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 35, pages 10876–10890.

Yang, C., Duraiswami, R., and Davis, L. S. (2004).
Efficient kernel machines using the improved fast
Gauss transform. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 17.

Yang, Z., Wilson, A., Smola, A., and Song, L. (2015).
A la Carte – Learning Fast Kernels. In Proceedings
of the Eighteenth International Conference on Ar-
tificial Intelligence and Statistics, volume 38, pages
1098–1106.

Wu, Wenger, Jones, Pleiss, Gardner

Large-Scale Gaussian Processes via Alternating Projection:

Supplementary Material

A Connection between Coordinate Descent and Alternating Projection 12

B Technical Lemmas 13

C Proof of Theorem 1 14

D Descriptions of the UCI Datasets in the Experiments 14

E Additional Experiments 14

E.1 Further Experimental Details . 15

E.2 GP Training on House Electric with Large Noise Constraint σ2 ≥ 0.1 15

E.3 CG Iterations During Training . 15

E.4 Increasing Lanczos Iterations Improves NLL . 15

E.5 Alternating Projection in Test Time . 16

E.6 Training Gaussian Processes with Matérn ν = 1.5 . 16

F FLOPs in Algorithm 1 17

Large-Scale Gaussian Processes via Alternating Projection

A Connection between Coordinate Descent and Alternating Projection

This section shows the connection between Algorithm 1 and coordinate descent, as shown in Algorithm 2.

Algorithm 2: Block Coordinate Descent

Input: A kernel linear system KW = B

Output: The solution K−1B

1 Initialize W = O

2 for i = 1, 2, · · · do // epoch

3 for j = 1, 2, · · · ,m do // mini-batch

4 select a block I ∈ {I1, I2, · · · , Im}
5 WI = K−1

I,I

(
BI −KI,¬IW¬I

)

6 end

7 if converged then

8 return W

9 end

Observe that the minimizer of the quadratic objective

h(W) =
1

2
tr

(
W⊤KW

)
− tr

(
B⊤W

)
(12)

is exactly the solution K−1B of the linear system KW = B.

Given a partition of indices {I1, I2, · · · , Im} where Ii ∩ Ij = ∅ for all i 6= j and ∪m
i=1Ii = [n], coordinate descent

minimizes (12) by minimizing over a subset of variables WI,: in each iteration. The derivative of (12) is

∇h(W) = KW −B.

Thus, the derivative w.r.t. the subblock WI,: is

[∇h(W)]I = KIW −BI

=
(
KI,I KI,¬I

)
(

WI

W¬I

)

−BI

where the second line splits KI and W into two blocks. The index ¬I = [n] \ I denotes the complement of I.
Setting the derivative to zero gives the following update

W
(j+1)
I = K−1

I,I

(
B−KI,¬IW

(j)
¬I

)

which minimizes (12) over WI,: exactly. The full algorithm of coordinate descent is shown in Algorithm 2.

The following lemma shows the R matrix in Algorithm 1 is indeed the residual of the linear system. This lemma
will be useful in proving the equivalence between Algorithm 1 and Algorithm 2.

Lemma 1. Let R(j) and W(j) be the residual and weight after j updates of Algorithm 1. Then we have

R(j) = B−KW(j).

Proof. The proof is an induction on the number of updates j. At the initialization j = 0, the equality holds
trivially. Suppose after the j-th update we have R(j) = B−KW(j). All we need to do is to verify this equality
in the case of j + 1 by direct calculation:

B−KW(j+1) = B−K
(
W(j) +E⊤

I K
−1
I,IEIR

(j)
)

= R(j) −KE⊤
I K

−1
I,IEIR

(j)

= R(j+1)

where the first line uses the update rule (7) of W(j) and the last line uses the update rule (9) of R(j).

Wu, Wenger, Jones, Pleiss, Gardner

With Lemma 1, now we can show the equivalence between Algorithm 1 and Algorithm 2.

Lemma 2. Let W(j) be the weight produced by Algorithm 1 after j updates. Them, we have

W
(j+1)
I = K−1

I,I

(
BI −KI,¬IW

(j)
¬I

)

W
(j+1)
¬I = W

(j)
¬I

where ¬I = [n] \ I. Thus, Algorithm 1 produces the same iterates as Algorithm 2.

Proof. Recalling the update rule (9), we have

W(j+1) = W(j) +E⊤
I K

−1
I,IEIR

(j).

Thanks to E⊤
I , entries outside I are unchanged and thus W

(j+1)
¬I = W

(j)
¬I . It remains to verify the entries indexed

by I. By Lemma 1, we can plug in R(j) = B−KW(j) and thus

W
(j+1)
I = W

(j)
I +K−1

I,IEI

(
B−KW(j)

)

= W
(j)
I +K−1

I,I

(
BI −KIW

(j)
)

= W
(j)
I +K−1

I,I

(
BI −KI,IW

(j)
I −KI,¬IW

(j)
¬I

)

= K−1
I,I

(
BI −KI,¬IW

(j)
¬I

)

where the second line uses the definition ofEI ; the third line split the matrixKI into blocksKI =
(
KI,I KI,¬I

)
;

the last line is straightforward algebra.

B Technical Lemmas

Lemma 3. The quadratic objective function (12) satisfies the Polyak- Lojasiewicz (PL) inequality

1

2
‖∇h(W)‖2F ≥ λmin(h(W)− h(W∗)).

Proof. If W has only a single column this follows directly from the strong convexity of the quadratic function.
When W has multiple columns, h is a separable function across each column. Therefore, h is also λmin strongly
convex which implies the PL inequality.

Lemma 4. For h(W) as in (12), it holds that

h(W)− h(W∗) =
1

2
‖W −W∗‖2

K
.

Proof. Using B = KW∗, we have

h(W)− h(W∗) =
1

2
〈W,KW〉 − 〈B,W〉 − 1

2
〈W∗,KW∗〉+ 〈B,W∗〉

=
1

2
〈W,KW〉 − 〈KW∗,W〉 − 1

2
〈W∗,KW∗〉+ 〈KW∗,W∗〉

=
1

2
〈W,KW〉 − 〈KW∗,W〉+ 1

2
〈W∗,KW∗〉

=
1

2
‖W −W∗‖2K.

Large-Scale Gaussian Processes via Alternating Projection

C Proof of Theorem 1

Theorem 1. Let W∗ be the (unique) solution of the linear system KW = B and W(t) its approximation after
t epochs of Algorithm 1 using the modified GS rule (11). Then it holds that

‖W(t) −W∗‖2
K

≤ exp
(
− t/κ′

)
‖W(0) −W∗‖2

K
,

where κ′ = λ′
max/λmin ≤ κ.

Proof. For any residual R, note the following inequality

‖R‖2F =
∑

I∈P

‖RI,:‖2F ≤ |P| ·max
I∈P

‖RI,:‖2F = m ·max
I∈P

‖RI,:‖2F. (13)

The improvement on the objective h as in (12) after the update in the j-th iteration is bounded by

h(W(j+1))− h(W(j)) = −1

2
‖R(j)

I,: ‖2K−1
I,I

≤ − 1

2λ′
max

‖R(j)
I,: ‖2F

≤ − 1

2mλ′
max

‖R(j)‖2F

where the last inequality is due to the Gauss-Southwell selection rule and (13). Subtract h∗ = h(W∗) from both
sides. Then, we have

h(W(j+1))− h∗ = h(W(j))− h∗ − 1

2mλ′
max

‖R(j)‖2F

≤
(
1− λmin

mλ′
max

)(
h(W(j))− h∗

)

≤
(
1− 1

mκ′

)(
h(W(j))− h∗

)

where the second line uses R(j) = B−KW(j) = −∇h(W(j)) by Lemma 1 and the PL inequality by Lemma 3.
Using the inequality (1 − x)t ≤ exp(−tx), we obtain a convergence rate in the number of updates j

h(W(j+1))− h∗ ≤ exp
(

− j

mκ′

)(
h(W(0))− h∗

)
.

Since each epoch has m updates, the convergence rate in the number of epochs t is

h(W(t+1))− h∗ ≤ exp
(

− t

κ′

)(
h(W(0))− h∗

)
.

By Lemma 4, the left and right hand sides can be written as ‖W(t) −W∗‖2
K

and ‖W(0) −W∗‖2
K

respectively,
which concludes the proof.

D Descriptions of the UCI Datasets in the Experiments

This section lists the relevant information of the datasets with citations. The datasets used in the papers
are SGEMM GPU (Paredes and Ballester-Ripoll, 2018), air quality (Chen, 2019), 3droad (Kaul, 2013), song
(Bertin-Mahieux, 2011), buzz (Yang et al., 2015), house electric (Hebrail and Berard, 2012), and gas sensors
(Fonollosa, 2015). All of them are downloaded from the UCI machine learning repository (Kelly et al., 2023).

E Additional Experiments

This section presents more experimental details and additional experiments.

Wu, Wenger, Jones, Pleiss, Gardner

E.1 Further Experimental Details

GP Training. All Gaussian processes, including the stochastic variational Gaussian processes, use an obser-
vation noise constraint σ2 ≥ 10−4, which is the default in GPyTorch. For the stochastic trace estimation (2),
we use ℓ = 15 random probe vectors. For CG, the probe vectors are sampled from N (0,P), where P is the
pivoted Cholesky preconditioner. Again, these settings are the default in GPyTorch. For alternating projection,
the probe vectors are sampled from the Rademacher distribution.

Preconditioning. CG uses the pivoted Cholesky preconditioner both in training and test. During training,
the preconditioner size is 500 on SGEMM, air quality, 3droad, song and buzz; 300 on house electric; 150 on gas
sensors. We decrease the preconditioner size on house electric and gas sensors due to GPU memory overflow.
During test, the preconditioner size is 500 on SGEMM, air quality, 3droad, song, buzz and house electric; 300
on gas sensors. Again, we decrese the preconditioner size on gas sensors due to GPU memory flow.

SVGP Training. All SVGPs use 1024 inducing points and a batch size of 4096. On the first six datasets,
SVGPs are trained with 50 iterations of Adam with a step size 0.01 and another 150 iterations of Adam with a
step size 0.001. On gas sensors, we train the SVGP with 50 iterations of Adam with a step size 0.01 followed by
350 iterations of Adam with a step size 0.001.

The right panel of Figure 2 is produced on with an alternating projection-trained GP on air quality with batch
size 1000. The linear system solved in the figure is K−1y.

Figure 3 is plotted with an alternating projection-trained GP on 3droad. The linear system in the figure is
K−1(y z1 z2 · · · z15) where zi are sampled from a standard Gaussian distribution.

E.2 GP Training on House Electric with Large Noise Constraint σ2 ≥ 0.1

We compare Gaussian processes on house electric trained with two different noise constraints σ2 ≥ 0.1 and
σ2 ≥ 10−4, as shown Table 2. We observe significant improvements on both RMSE and NLL when the noise
is smaller. In particular, the GP trained with small noise constraint σ2 ≥ 10−4 has 40% smaller RMSE and
significantly smaller NLL. This indicates that artificially inflating the observation noise σ2, while making the
kernel matrix well-conditioned, ultimately hurts the predictive performance.

With alternating projection, training the GP with small noise constraint σ2 ≥ 10−4 is as fast as the GP with
large noise constraint σ2 ≥ 10−1.

Table 2: Comparison of GP training on the house electric dataset with large noise constraint σ2 ≥ 0.1 and
small noise constraint σ2 ≥ 10−4.

Dataset Method RMSE NLL FLOPs / 2n2 Time

house electric
n = 2, 049, 280

d = 11

CG (σ2 ≥ 10−1) 0.050± 0.000 −0.196± 0.000 1200± 8 9.6h ±0.6
Alt. Proj. (σ2 ≥ 10−1) 0.053± 0.000 −0.197± 0.000 1100± 0 9.8h ±0.4
Alt. Proj. (σ2 ≥ 10−4) 0.030± 0.000 −1.148± 0.001 1100± 0 9.8h ±0.4

E.3 CG Iterations During Training

Figure 4 in the main paper is produced on air quality. This section presents figures on more datasets, as shown in
Figure 6. We observe similar phenomenon: as the noise decreases durining training, the number of CG iteration
increases; in contrast, alternating projection converges steadily.

E.4 Increasing Lanczos Iterations Improves NLL

In the experiment, we use 1000 Lanczos iterations to compute the predictive variance and the test negative log
likelihood (NLL). This section investigates the relation between test NLL and the Lanczos iterations, as shown
in Figure 7. We empirically observe that increasing the Lanczos iterations always decreases the test NLL. This
suggests that the true NLL of the GPs may be even lower than what is reported in Table 4.

Large-Scale Gaussian Processes via Alternating Projection

0 20 40

Adam iterations

0.0

0.2

0.4

0.6

li
k
e
li
h
o
o
d
n
o
is
e
σ
2 CG

alt. proj.

0 20 40

Adam iterations

10.75

11.00

11.25

11.50

11.75

12.00

12.25

C
G

it
e
ra
ti
o
n
s

CG

alt. proj.

(a) SGEMM GPU

0 20 40

Adam iterations

0.0

0.2

0.4

0.6

li
k
e
li
h
o
o
d
n
o
is
e
σ
2 CG

alt. proj.

0 20 40

Adam iterations

0

50

100

150

200

250

300

C
G

it
e
ra
ti
o
n
s

CG

alt. proj.

(b) 3droad

0 20 40

Adam iterations

0.2

0.3

0.4

0.5

0.6

li
k
e
li
h
o
o
d
n
o
is
e
σ
2 CG

alt. proj.

0 20 40

Adam iterations

25

50

75

100

125

C
G

it
e
ra
ti
o
n
s

CG

alt. proj.

(c) song

0 20 40

Adam iterations

0.1

0.2

0.3

0.4

0.5

0.6

li
k
e
li
h
o
o
d
n
o
is
e
σ
2 CG

alt. proj.

0 20 40

Adam iterations

0

200

400

600

800

1000

C
G

it
e
ra
ti
o
n
s

CG

alt. proj.

(d) buzz

Figure 6: The observation noise σ2 and the number of CG iterations/alternating projection epochs during
training. Top: The observation noisea σ2 decreases as the training goes. Bottom: CG takes more iterations to
converge as the observation noise decreases during training. However, alternating projection is less sensitive to
the decrease of observation noise.

E.5 Alternating Projection in Test Time

This section compares alternating projection and CG in the test time. We use CG and alternating projection to
compute the predictive mean and the RMSE of alternating projection-trained GPs, as shown Table 3. CG and
alternating projection report virtually the same RMSE (exactly the same up to the third digit after the decimal
point). However, we observe significant speed up on large datasets. On the four largest datasets, alternating
projection achieves 2.3× to 72.3× speed up. In particular, the predictive mean on house electric can be computed
in 5 min with alternating projection.

Table 3: Compute the predictive mean and the RMSE of the GPs using CG and alternating projection.

Dataset
RMSE Time

Speed up
CG Alt. Proj. CG Alt. Proj.

SGEMM 0.046± 0.000 0.046± 0.000 35.0s ±1.1 13.5s ±0.3 0.4×
air quality 0.256± 0.001 0.256± 0.001 2.8s ±0.3 3.6s ±0.8 0.7×
3droad 0.076± 0.000 0.076± 0.000 5.8m ±0.4 9.6m ±0.6 0.6×
song 0.749± 0.002 0.749± 0.001 38.1m ±0.7 16.4m ±1.0 2.3×
buzz 0.240± 0.001 0.239± 0.001 1.2h ±0.6 4.4m ±1.2 17.2×

house electric 0.032± 0.000 0.030± 0.000 5.6h ±0.6 4.7m ±0.2 72.3×
gas sensors 0.203 0.203 16.1h 27.7m 34.9×

E.6 Training Gaussian Processes with Matérn ν = 1.5

Lastly, we report results using Matérn ν = 1.5. The experimental settings are exactly the same as Matérn
ν = 2.5 GPs. We observe similar phenomenon: while CG-trained GPs and alternating projection-trained GPs
have similar RMSE and NLL, alternating projection achieves 1.4× to 27.2× speed up against CG.

Wu, Wenger, Jones, Pleiss, Gardner

500 1000 1500 2000

Lanczos iterations

−1.1

−1.0

−0.9

−0.8

−0.7

N
L
L

(a) SGEMM

500 1000 1500 2000

Lanczos iterations

0.05

0.10

0.15

0.20

0.25

0.30

N
L
L

(b) air quality

500 1000 1500 2000

Lanczos iterations

1.1

1.2

1.3

1.4

1.5

N
L
L

(c) 3droad

500 1000 1500 2000

Lanczos iterations

1.132

1.134

1.136

1.138

N
L
L

(d) song

500 1000 1500 2000

Lanczos iterations

0.02

0.03

0.04

0.05

N
L
L

(e) buzz

250 500 750 1000 1250

Lanczos iterations

−1.2

−1.1

−1.0

−0.9

−0.8

N
L
L

(f) house electric

Figure 7: Test negative log likelihood (NLL) vs . the number of Lanczos iterations. Empirically, the test NLL
decreases as the number of Lanczos iterations increases on all datasets.

F FLOPs in Algorithm 1

The following table gives floating point operations (FLOPs) and memory complexity of Algorithm 1. There is
no hidden constant in the leading term. Throughout, we assume l ≪ n and 1 ≪ b ≪ n.

Large-Scale Gaussian Processes via Alternating Projection

Table 4: Gaussian process training on UCI benchmark datasets with Matérn ν = 1.5. Metrics are computed
across multiple runs and reported with ± one standard deviation.

Dataset Method RMSE NLL FLOPs/2n2 Training time Speed up

SGEMM
n = 241, 600

d = 14

CG 0.048± 0.000 −1.071± 0.001 550± 0 8.9m ±0.2
Alt. Proj. 0.048± 0.000 −1.060 ± 0.001 550± 0 12.1m ±0.2 0.7×

SVGP 0.085 ± 0.000 −0.932 ± 0.001 NA 18.3m ±0.1

air quality
n = 382, 168

d = 13

CG 0.227± 0.002 0.131 ± 0.003 1825 ± 26 22.5m ±1.2
Alt. Proj. 0.253 ± 0.001 0.033± 0.002 550± 0 16.1m ±0.5 1.4×

SVGP 0.358 ± 0.002 0.387 ± 0.005 NA 28.8m ±0.1

3droad
n = 434, 874

d = 3

CG 0.065± 0.001 1.062 ± 0.003 6086 ± 142 44.4m ±2.2
Alt. Proj. 0.069 ± 0.001 0.896 ± 0.002 572± 1 16.5m ±0.3 2.7×

SVGP 0.319 ± 0.002 0.294± 0.007 NA 32.4m ±0.1

song
n = 515, 345

d = 90

CG 0.743± 0.001 1.135 ± 0.003 4393 ± 159 13.7h ±0.6
Alt. Proj. 0.746± 0.002 1.129± 0.002 550± 0 2.6h ±0.0 5.3×

SVGP 0.790 ± 0.002 1.184 ± 0.002 NA 0.6h ±0.0

buzz
n = 583, 250

d = 77

CG 0.238± 0.000 0.027 ± 0.002 13608 ± 2299 25.4h ±4.7
Alt. Proj. 0.238± 0.001 0.002± 0.004 550± 0 1.9h ±0.1 13.4×

SVGP 0.255 ± 0.002 0.049 ± 0.009 NA 0.7h ±0.0

house electric
n = 2, 049, 280

d = 11

CG - - - > 11d
Alt. Proj. 0.029± 0.000 −1.321 ± 0.000 1100± 0 9.7h ±0.1 > 27.2×

SVGP 0.048 ± 0.000 −1.580± 0.003 NA 2.6h ±0.0

gas sensors
n = 4, 178, 504

d = 17

CG - - - -
Alt. Proj. 0.201 0.245† 1100 42h∗

SVGP 0.311 ± 0.002 0.286 ± 0.004 NA 10.6h ±0.1

† : This predictive variance is calculated using only 500 Lanczos iterations to save time and avoid numerical instability.

* : Time measured on a A100 GPU.

Table 5: FLOPs Counting in Algorithm 1.

Operation FLOPs Memory

Cache Cholesky decomposition of {KI,I : I ∈ P} 1
3nb

2 nb

GS rule I = argmaxI∈P ‖RI,:‖2F 2nl -

WI = WI +K−1
I,IRI (b2 + b)l -

R = R−K:,IK
−1
I,IRI (b2 + 2nb+ n)l nb

total FLOPs of a single epoch
(
(2 + 3

b
)n2 + (2b+ 1)n

)
l 2nb

	INTRODUCTION
	SETUP AND BACKGROUND
	METHOD
	CONVERGENCE
	EXPERIMENTS
	Main Result: GP Regression
	Effect of Kernel Matrix Conditioning
	Alternating Projection at Test Time

	RELATED WORK
	CONCLUSION
	Connection between Coordinate Descent and Alternating Projection
	Technical Lemmas
	Proof of thm:convergence-gauss-southwell
	Descriptions of the UCI Datasets in the Experiments
	Additional Experiments
	Further Experimental Details
	GP Training on House Electric with Large Noise Constraint 2 0.1
	CG Iterations During Training
	Increasing Lanczos Iterations Improves NLL
	Alternating Projection in Test Time
	Training Gaussian Processes with Matérn = 1.5

	FLOPs in alg:alternatingprojection

