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Abstract

We present a feasibility study of automated, vision-based
detection and recognition of trauma procedures in a medi-
cal emergency room. Given a ceiling-mounted camera view
of the trauma room, our goal is to track and transcribe
the activities performed during resuscitation of a patient,
the time instances of their initiation and their temporal du-
rations. We represent activities through complex spatio-
temporal relationships between image features based on
scene dynamics, patient localization, clinicians’ hand mo-
tions and medical devices. We design an activity grammar
based on trauma specific domain-knowledge and model the
resulting logic as a Markov Logic Network. Probabilistic
inference of activity posterior is computed efficiently in the
presence of observed features. To this end, we demonstrate
our approach on videos of realistic trauma simulations in
challenging, multi-agent. multi-task settings. This study
primarily aims at exploring the overall problem of visual
recognition of trauma procedures. The accuracy of the re-
sults we obtained from our recognition scheme confirms the
suitability of our framework.

1. Introduction

Trauma refers to “a body wound or shock produced by sud-
den physical injury, as from violence or accident”1. A pa-
tient suffering from trauma undergoes resuscitation in an
emergency room. The resuscitation process involves mul-
tiple procedures including patient stabilization, monitoring
vital signs, and determining the extent of injury. This pro-
cess is performed by a team of specialist clinicians and doc-
umented in the medical record by a dedicated nurse recorder
for future reference. The accuracy of the process as well as
its transcription is limited due to the complexity of the per-
formed tasks. The clinicians need to coordinate on time-
critical procedures while constantly exchanging informa-
tion about relevant statistics verbally. The task of the tran-
scriber is to pick up relevant information in this noisy en-

1www.thefreedictionary.com/trauma

vironment as well as keep an observation on multiple tasks
being performed [22].
To alleviate the responsibilities of medical personnel and
to aid procedure coordination, several researchers have
proposed to automate activity recognition using sensory
cues [4, 2, 1]. These works have primarily used embed-
ded and RFID sensors that provide limited, object-centric
signals. In contrast, a vision sensor is nonobtrusive and
provides a scene-centric, rich description that is amenable
to both computer and human interpretability. Consequently,
a vision sensor has become an ubiquitous component in all
types of activity surveillance systems [24, 10]. The focus of
activity recognition on complex activities in specific envi-
ronments e.g., sports, office etc. [28, 13, 20] has led to the
inclusion of domain knowledge in system design.
In this paper, we consider a novel problem of recognition of
trauma procedures in a hospital domain. The trauma room
scenario presents a complex, multi-agent and multi-task set-
ting, where procedures are simultaneous, interleaved and
follow a flexible sequence. Moreover, since all activity is
confined to the patient area, key observations are often oc-
cluded from camera view. In this context, we need to de-
velop algorithms that specifically address these challenges
while maintaining the generality of the solutions to be use-
ful in other scenarios.
Activities are generally observed through spatio-temporal
features extracted from the image sequence. Thus, the
problem of activity recognition can be broadly divided
into two steps; feature extraction step, in which we com-
pute low-level, object and people related features using ob-
ject detection, motion tracking and patient pose estimation,
and activity inference step in which we represent activities
through feature measurements and inter-feature relations.
We encode the feature relations using logic based on do-
main knowledge and perform probabilistic inference using
a Markov Logic Network(MLN) [18].
Multi-feature integration for activity recognition has been
investigated in prior work. In [3], object detectors, motion
tracks and people pose are combined in an MLN. Similar
features and an innovative object-reaction cue are inputs to
a graphical model in [9]. In [13], a specific scenario of



Activity Patient body part Image features ATLS denotation Duration, Repeated?

Ventilation Mouth Oxygen Mask Primary(Breathing) Variable, Multiple
Intubation Mouth Laryngoscope Primary(Airway) Variable, Once
Listening to breath Chest Stethoscope Primary(Breathing) Fixed, Multiple
Chest compression Chest Hand position Primary(Breathing) Variable, Multiple
Check pulse Wrist/feet/neck Hand position Primary(Circulation) Fixed, Multiple
Cover/uncover Body Skin region Primary(Exposure) Variable, Once
Roll patient Body Scene dynamics Secondary Fixed, Once

Check blood pressure Arms BP cuff Secondary Fixed, Multiple
Check ECG Chest ECG leads, Primary Fixed, Once
Apply medication Arms/feet Syringe Secondary Variable, Multiple
Inspect head and eyes Head - Secondary Fixed, Once
Establish IV Arms Equipment approach Secondary Fixed, Once
Inspect body Full body - Secondary Fixed, Once

Table 1. Description of common trauma procedures. The top panel lists the visually identifiable activities.

basketball play is represented using player, ball tracks and
field position cues. In our work, in addition to local, object
and person based features we also include global scene dy-
namics to capture multi-person and agent-independent ac-
tivities.
High level activity models can be broadly classified into
probabilistic (e.g., Dynamic Baysian Networks and its vari-
ants [28, 8]) and plan and grammar based systems [11, 19].
Recently however, researchers have realized the benefits
of fusing the two approaches through hybrid models [27].
Markov Logic Network is one such hybrid model that has
been effectively applied on a variety of problems. For ex-
ample, in [17], MLN is used to represent group activities
for video matching in football datasets. A method for park-
ing lot monitoring is proposed in [25] where multi-person,
multi-vehicle interactions are expressed as first order logic
formulas. Unlike aforementioned works which handle fixed
time instances, Morariu et al [13], describe basketball rules
using Interval Algebra to handle time durations. MLN de-
pends on logic formulas that are usually hand-crafted for
each environment. A set of general logic formulas are pro-
posed in [3] for multi-cue activity recognition. However
they are limited to classifying simple, single-person ac-
tions. We propose an activity grammar which comprises
of generic rules applicable to many scenarios and trauma
specific rules. Additionally, we also propose a generalized
temporal duration model.
Activity recognition in a hospital domain is an active field
of research. In [2], the phase of a surgical operation is in-
ferred from RFID based people tracks and object use. Loca-
tions of people and their interactions with PDAs are mapped
to activities using HMM in [21]. A method for automatic
transcription of operating room events was proposed in [1],
where the authors use a logic based approach to detect an
activity sequence. To the best of our knowledge, ours is
the first work that uses visual analysis to detect activities
in a hospital domain. It is important to note here that vi-
sion is not a perfect technology and many activities can-
not be explained by using visual analysis alone. The in-

clusion of complementary technologies such as RFID have
been seen to improve the accuracy of activity recognition
systems [16]. The aim of this work is to present the appli-
cability of visual analysis in trauma procedures and more
importantly, to point out the limitations which can be fur-
ther improved by inclusion of other algorithms and tech-
nologies.

2. Overall approach

In this project, we perform a comprehensive overview of
trauma workflow analysis using automated vision. We de-
termine visually identifiable trauma activities and propose
solutions based on state-of-the-art algorithms to represent
activities using spatio-temporal, local and global features.
For activity detection, we propose an activity grammar that
is modeled by a temporal Markov Logic Network. We
demonstrate the efficacy of our approach by applying our
model on realistic simulations in a real trauma room.
Table 1 lists a set of common trauma activities. Based on
empirical evaluation, we shortlisted a set of trauma proce-
dures that are consistently well-represented using image-
based features. These visually identifiable activities are
listed in the top panel. The rest of the activities are either
better detected based on non-visual signals (e.g., ECG can
be detected from machine response) or require a more de-
scriptive representation, e.g., through stereo or zoom cam-
era. Evaluations with improved representations is part of
future work.
Given a video of trauma resuscitation, our goal is to track
and transcribe the procedures performed during the process.
The overall approach is illustrated in Figure 1. First, pa-
tient arrival in the trauma room is detected and her body
pose is localized in the image. Next, we extract features
corresponding to scene dynamics, hand motions and ob-
ject presence from the image sequence (Section 3). Each
of these features are mapped to a one dimensional prob-
ability trajectory along the time axis. Based on trauma-
domain specific knowledge, activities are expressed as com-
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Figure 1. Overview of the proposed system.

plex spatio-temporal feature interactions using weighted
logic rules (Section 4). Finally, we model the logic rules
as a Markov Logic Network to perform efficient inference
in activity space(Section 5). The output of our algorithm is
a probability distribution of each activity over time.

3. Feature detection

In this section, we provide details about the various feature
extraction algorithms used in our framework. First, we de-
scribe a method to compute patient’s body pose in Section
3.1. Scene-level dynamics are calculated in terms of On-
line background model (Section 3.2). Clinicians’ actions
are tracked using hand motion trajectories in Section 3.3
and finally algorithms to detect medical devices is detailed
in Section 3.4.

3.1. Patient Detection

Since most trauma procedures involve examination of a spe-
cific body part of the patient, feature search related to such
procedures can be spatially constrained around the relevant
location. In particular, we detect the head, chest and the
upper/lower limb locations of the patient by adapting the
human pose estimation algorithm as proposed in Ferrari et
al. [6]. In this method, a human body is modeled as a part
based Pictorial Structure model, in which pairwise spatial
priors between body parts enforce kinematic constraints on
the human body. Local image evidence about the body parts
is prefiltered using a simple human body detector. This
method for pose estimation does not assume face or skin
detection, although these may be used as additional cues.
For upper body detection, we replace Histogram of Ori-
entation Gradients(HOG) features with motion-based cues
during patient transfer onto bed. Based on the observation
that the patient is usually in a passivie state during pose
estimation, we include an additional symmetry constraint
on limb positions. This prevents abnormal pose discovery
and makes the algorithm robust to partial limb occlusions
(Figure 2).

Figure 2. Left and center: ROI detection in peripheral zone signals
patient arrival and momentary inactivity in central zone signals
that patient is at rest and pose can be reliably estimated. Right:
Symmetry constraints on pose estimation circumvents left hand
occlusion.

3.2. Scene dynamics

The onset of an event usually manifests as rapid pixel inten-
sity changes at the event’s location in the image sequence.
This cue can be computed through consecutive image differ-
encing to identify movement [3]. A more robust approach
is proposed in Grimson et al [23] where instead of merely
calculating intensity changes, a memory-based online back-
ground model keeps track of the intensity changes to sepa-
rate pixels into foreground and background classes. We de-
fine foreground as Region of Interest(ROI) and employ the
latter approach to compute an ROI map of the scene. In par-
ticular, the ROI is an inactive region that undergoes large
appearance change e.g., due to addition or removal of ob-
jects, pose changes etc. (Figure 3). In this approach, pixel
intensities are represented as Mixture of Gaussians and each
pixel in the new image is either accommodated into one of
the background clusters or labeled as foreground with its
own Gaussian distribution. Based on the persistence and
variance of this Gaussian, a pixel either remains in fore-
ground or is added to background. The ROI map is effective
in detecting agent-independent, non-local procedures such
as rolling patient, cover/uncover and equipment approach
as well as to detect patient arrival (Figures 2 and 3).
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Figure 3. ROI map based on online background model. Left, pa-
tient area is ROI when rolling patient sideways and right, equip-
ment approach. Inset: Corresponding image from video.

3.3. Hand motion tracking

To detect hand locations, we model the color of gloves that
are mandatorily worn by all the clinicians. We use a sim-
ple two dimensional Gaussian model over the chrominance
components U and V in the YUV color space to obtain a
probability map of hand positions. The glove color model
can be easily replaced to identify other colors or textures,
e.g., skin.
To compute hand motion trajectories, we perform tracking-
by-detection. We ignore identity association and jointly
track hand positions as independent targets. We adopt Mix-
ture Particle Filter(MPF) [26] for our multi-target tracking
problem, where each target is modeled with an individual
particle filter that forms part of a mixture. The state tran-
sition of hand positions is based on two kinds of dynam-
ics - random Gaussian noise and constant velocity autore-
gressive model. As in [15], when observation likelihoods
are present, a new detection is either included into existing
targets or creates a new target. To avoid incorrect particle-
cluster pairings, resampling is performed by weighting tran-
sition priors with observation likelihoods to increase parti-
cle accuracy (Figure 4).
In each output trajectory the interval relevant to activity de-
tection lies in the vicinity of the patient. Hence, we divide
the trajectories into short distance segments denoted by (1)
approach, (2) recede and (3) pause relative to a body part of
the patient. By considering short segments, we are also able
to circumvent the problem of identity exchange that arises
due to multiple-hand tracking.

3.4. Object detection

We consider two types of object detection methods, (a)
color/texture based detection for oxygen mask and laryngo-
scope. and (b) shape based detection, specifically the tubu-
lar structure, which is a common shape of many devices
such as stethoscope tube, ECG leads, IV access tubes etc.
The methods are described below.
Texture based detection: First, an image is segmented based
on color and texture to isolate small devices in separate re-
gions. We use the algorithm in [5] since it can detect small,
non-convex regions. Next, color SIFT features [12] are ex-

Figure 4. Top left: Tracked hand locations. Top right: The corre-
sponding particles (green, blue, cyan) and the resampled particles
based on observations(red) which shows more compact clusters.
Bottom left: Tracked segment showing approach towards chest to
attach ECG leads. Bottom right: Pause segment at left wrist to
check pulse.

tracted at each region and matched to trained features. Since
devices are hand-held, segmented regions close to hand po-
sitions are assigned high prior probability of object pres-
ence. The method is illustrated in Figure 5.
Tube detection: We use the Frangi vesselness filter [7] on
an intensity image. The vesselness filter assumes pixel in-
tensities at a tubular stucture to be distributed as a Gaussian
and computes the strength of tubularness as a ratio of the
principle axes after eigen decomposition. We further add
a heuristic to separate the ridge (true tubes) and step edges
(false detections). At each candidate edge the average in-
tensity is computed over the normalized profile of its cross-
section. If the edge is a step response, the average intensity
is close to zero, otherwise it is a ridge.

4. Activity modeling
The goal of activity modeling is to combine low-level fea-
ture trajectories to accurately infer activities. Probabilis-
tic graphical models such as Dynamic Bayesian Network
and its variants [8] can effectively handle uncertainties in
activity inference. However, due to a large state space,
complex inter-feature relations and flexible within and be-
tween activity transitions, structure or parameter learning is
an ill-posed problem for trauma procedures. On the other
hand, trauma activities are well-defined in terms of domain-
specific knowledge about medical devices, reference to pa-
tient’s body parts and clinicians’ actions. Hence, for ef-
ficient activity inference, a model should be able to com-
pensate for uncertainty in feature observations within the
framework of a knowledge-based activity description. To
this end, we represent our problem as a Markov Logic Net-
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Figure 5. Object detection examples. Oxygen mask and Laryngoscope are detected by segmenting the image region around the patient’s
head and scanning segments features matches within the grasping radius around the hands.

work [18], a graphical model that fulfils the above require-
ments by allowing probabilistic inference on knowledge
based rules.
An MLN is represented by a set of weighted, first-order
logic formulas. A weight serves as a measure of confidence
in its formula; if a world violates the formula, it only be-
comes less probable, not impossible. A formula consists
of objects, predicates and weights. In our model, objects
represent features, e.g., medical devices, patient body parts,
time etc. whereas predicates represent inter-object relations
or object attributes, e.g., the relation between device use
and patient body part. The weights can be learnt, or as in
our case, specified by the modeler. Each object variable
corresponds to a finite set of constants,e.g., a time vari-
able corresponds to 1...T, the time intervals in a trauma
process. Based on these components, an MLN is an ab-
stract description of a Markov Random Field(MRF). In the
presence of observations an MLN is transformed into an
MRF by grounding, i.e., replacing the objects by observa-
tion constants. The MRF hence formed, models the joint
distribution over a set of weighted, binary formulas of the
grounded MLN. All the methods that are applicable for es-
timation and inference of MRF are then applicable on this
grounded MLN. We model activity as a dependent variable
and compute its posterior probability. To perform inference,
we use ALCHEMY, an MLN software which uses MCSAT,
a combination of Markov Chain Monte Carlo (MCMC) and
WalkSAT, a Constraint Satisfaction sampling technique.

5. Description of Logical Rules
In the aforementioned section we have explained the formal
description of MLN. But the core of an MLN is the set of
logic rules that encode its graphical structure. The design
of rules should be driven by modularity (amenable to addi-
tion of new rules), complexity (minimal set of variables) and
consistency (agreeability among rules). In this section, we
describe the underlying assumptions of our activity gram-
mar to design the MLN graph.
We infer activities through spatio-temporal combination of
feature trajectories. An activity duration is defined using

three states - {Begin}, {During} and {End}. Each state
is independently modeled through feature observations and
other states. Figure 6 describes the states of Listen to
breathing procedure. This activity’s Begin state (blue curve)
is based on a clinician attaching the stethoscope earpiece
(Frame 1) and approaching the patient’s chest (Frame 2).
The End state (green curve) is based on a recede motion
away from the patient’s chest and detachment of earpiece
(Frame 4). The During state (green curve) is supported
by two clauses, an evidential support from object presence
(stethoscope tube, Frame 3) and the anchor support pro-
vided by detection of Begin and End states (Rule 4). By
modeling duration through independent individual states,
we achieve linear time complexity. Moreoever, in compari-
son to Morariu et al’s approach [13], where a relevant du-
ration is directly based on consecutive start and end times
of observations, our model is based on high-level encoding
of Begin and End of states, which allows interleaved and
simultaneous activities to be detected.

Activity-specific and Activity-independent Modeling: Rules
can be activity-independent e.g., Rule 1 in which an ap-
proach towards a patient’s body part increases the probabil-
ity of all procedures specific to that part, or activity-specific,
e.g., Rule 11 which exclusively encodes the CheckPulse
procedure. The overall probability of an activity is based
on the combined inference on both types of rules. The
aim of activity modeling should be to maximize activity-
independent grammar in order to minimize overfitting.

Static, Dynamic and Causal Activity Modeling: Activities
are static if they can be detected based on spatial fea-
tures only. The During phase of such activities attach high
weights on feature observations, e.g., the Intubation proce-
dure in Rule 3. Dynamic activities on the other hand, are
based on temporally and spatially constrained interactions
among features, e.g., Listen to breathing procedure as de-
scribed above. A causal activity is marked by an absence of
any salient, individual action or object. However, the effect
of the activity is measurable based on scene-level changes,
e.g., either through ROI(Section x) or as in Cover/Uncover
Patient based on skin appearance around the patient area

5



Figure 6. Listen to breathing procedure described in terms of spatio-temporal features. See section 5 for details.

(Rule 16).
Temporal Sequence modeling: The sequence in which
the trauma procedures should be performed is defined in
Advanced Trauma Life Support(ATLS)2, a worldwide ac-
cepted protocol for performing resuscitation. According to
ATLS, the procedures are broadly divided into primary, sec-
ondary and tertiary surveys based on their importance in
identifying and solving life threatening conditions. While
ATLS provides a simple and standardized approach to re-
suscitation, its effect on patient outcomes is debatable.
Hence, most doctors often deviate from the code based on
their own assessment of the patient’s medical condition. To
model this high-level procedure sequencing, we broadly di-
vide the trauma activities into three phases based on their
prior probability of occurrence phase. For example, in
Rules 18 and 19, Uncover and Rolling patient to assigned
to Phases 1 and 3 respectively. Furthermore, activities can
occur simultaneously only if different body parts of the pa-
tient are examined. This exclusion principle is described in
Rule 9.

6. An Illustrative Example

Our research is a work-in-progress in collaboration with a
teaching hospital in the US Northeast region. The trauma
resuscitation simulations are conducted in a Level-1 pedi-
atric trauma center on the hospital premises by professional
clinicians on a patient simulator manikin. The process is
captured using a ceiling fitted Bumblebee2 camera.
To illustrate the overall approach of activity inference,
we show results of our algorithm on a short test video

2http://www.facs.org/trauma/atls/index.html

of approx. 4 mins. duration. All the visually iden-
tifiable procedures, except Roll Patient are performed in
the simulation. The video with 3270 image frames is
segmented into twenty-frame intervals. Thus, the pro-
cess duration is 167 intervals. Patient arrival is detected
in the 19th interval. After running pose detection, fea-
tures are tracked during the entire duration which are com-
bined post-process in the MLN. The logic formulas and
corresponding weights are defined in Table 2. MLN
software for learning and inference is available online at
(http://alchemy.cs.washington.edu/). The trauma activities
performed in this video and the grammar used to infer
them are listed below. The inferred activity trajectories are
mapped to the corresponding groundtruth in Figure 7.

• Chest compression is directly defined in terms of paused
hand-motion tracks around patient chest area. The begin
and end states of this Phase 1 procedure are described us-
ing activity-specific Rules 9 and 10 (Panel 3, Figure 7).
• Listen to breathing procedure (described in Section 5) is a

dynamic, phase-independent activity described by a combi-
nation of activity-specific and independent rules. (Panel 1,
Figure 7)
• Intubation is the process of inserting a tube through the pa-

tient’s mouth into the trachea. The standard way of insertion
is with the aid of a laryngoscope, which can be accurately
detected based on appearance cues (Table 6). However, in
this video it is inserted by hand. In the absence of the ob-
ject cue, the activity inference is based only on hand motion
tracks which generates several false detections.
• Ventilation is the act of pumping air into the lungs of the

patient. Using a bag valve mask, the air can be forced ei-
ther by pumping air through the mouth or post-intubation,
through a tube inserted in the trachea. It is a static, phase

6



# Formula Weight

1 Approach(part, t) AND Located(part, act) => Activity(act, t, Begin) W/2
2 Recede(part, t) AND Located(part, act) => Activity(act, t, End) W/4
3 observeObject(o, t) AND Use(o, act) => Activity(act, t,During) W
4 Activity(act, t1, Begin) AND Activity(act, t2, End) AND (t1 < t2) AND (t2 > t > t1) => Activity(act, t,During) W/2
5 Activity(act, t1, Begin) AND Activity(act, t2, End) AND (t1 > t2) AND (t1 > t > t2) =>!Activity(act, t,During) W
6 Activity(act, t1, During) => Activity(act, succ(t1), During) W/4
7 FGchange(part, t1) AND Located(part, act) AND Follows(t1, t2) => Activity(act, t2, Begin) OR Activity(act, t2, End) W/4
8 Activity(act1, t,During) AND Located(part, act1) => (a1 = a2) OR !(Activity(act2, t,During) AND Located(part, act2)) W
9 PauseBegin(Chest, t) => Activity(Compression, t, Begin) W/2
10 PauseEnd(Chest, t) => Activity(Compression, t, End) W/2
11 PauseBegin(part, t) AND !(part = Chest) => Activity(CheckPulse, t, Begin) W/2
12 PauseEnd(part, t) AND !(part = Chest) => Activity(CheckPulse, t, End) W/2
13 FGchange(Head, t) AND FGchange(Chest, t) => Activity(RollPatient, t, Begin) OR Activity(RollPatient, t, End) w
14 AttachEarpiece(t1) AND Approach(Chest, t2) AND Follows(t1, t2) => Activity(Stethoscope, t2, Begin) w

15 Skindetect(t1) AND !Skindetect(t2) AND Follows(t1, t2) => Activity(Cover, t1, During) W
16 exist t Activity(RollPatient, t,During) => Phase(t, 3) W
17 exist t Activity(Uncover, t,During) => Phase(t, 1) W
18 Follows(t, t) ∞
19 Follows(t, succ(t)) ∞

Table 2. Activity rules with weights

Approach Recede Pause
Head 0.06 0.11 0.03
Chest 0.19 0.29 0.27
Limbs - - 0.37

Table 3. False alarm rate of hand motion detection averaged over
10 video sequences.

OxyMask L.scope Ste. Tube
Per frame(%) 88.7 76.0 62.7

Per usage 23 / 24 10 / 13 39 / 39
Table 4. Object detection average from 10 video sequences.

independent activity based on activity-specific and indepen-
dent rules. (Panel 4, Figure 7
• Check pulse begin and end states of this phase independent

procedure are described using activity-specific paused hand
tracks around patient’s wrist, feet and neck (Rules 11, 12).
Other methods employed to measure pulse is by using a
stethoscope or a pulse oximeter.
• Cover/Uncover: This causal activity is detected by scene-

level skin detection around the patient’s body area. Uncover
is a Phase 1 (Panel 2, Figure 7) whereas cover is a Phase 3
procedure (Rule 15).
• Rolling patient sideways is a phase 3 procedure to identify

any side injuries. This is a causal activity detected by mea-
suring scene changes around patient’s body (Rules 13, Fig-
ure 3). This procedure is not performed in this simulation.
Quantitative evaluation of hand tracking and object detec-
tion algorithms are evaluated on images from 10 video sim-
ulations, as shown in Tables 3 and 4. In the object detection
experiment, per frame accuracy is based on 1000 randomly

Figure 7. Activity detection in test video. Blue shows the
groundtruth and red shows the intervals detected by our algorithm.

chosen images containing the object. Per usage accuracy is
the average detection over the entire video segment in which
the procedure is performed. For example, stethoscope tube
detection is unreliable based on individual images but is ac-
curate over an image sequence. In the hand tracking exper-
iment, we concern ourselves with false detections since the
overall accuracy is 98%. Hand tracks related to patient’s
head area are more accurately detected than chest because
of less occlusion and sparser activities. Approach move-
ments are better detected since receding tracks often switch
identities in the presence of multiple targets close to the pa-
tient’s body. Paused tracks around limbs get confused with
idle hands leading to higher false alarms than chest or head
area.
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7. Discussion and Future Work
In this paper, we have proposed an overview of a complete
recognition system for trauma procedures. We have identi-
fied the key activities and described them through visually
salient actions and objects. We believe that our first steps
towards understanding video activity recognition in a hospi-
tal domain will have far-reaching effects on automated tran-
scription, content storage and retrieval, and training based
on trauma recordings. The accuracy of the results, albeit
on a small dataset, signifies the suitability of our frame-
work. At present, we are in the process of annotating a
large dataset of simulations for a complete evaluation. We
conclude by listing a few challenges that we seek to address
in our future work.

• Multi-modality. Team activities are multi-modal, hence in-
clusion of additional sensors such as RFID and audio would
improve detection. In the vision context, we hope to im-
prove coverage and reduce occlusion through multi-camera
network.

• Activity structure. Instead of describing activities solely
through logic, we are looking at combining logic rules and
bayesian learning to define activity structure, as recently
proposed in [27]. Such a model would also allow semi-
supervised learning of activities based on weakly labeled se-
quences and reduce annotation effort.

• Device search. Recent work has explored functional ob-
jects [9, 14], in which objects are defined more by the ac-
tion and scene context than their appearance. Several med-
ical devices, such as syringes and blood pressure cuffs fall
into this category. By correlating object detection with other
cues, we hope to improve detection accuracy.
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