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ABSTRACT

Explainability is one of the important challenges facing the application of medical
AI. The existing AI explainability research is more of a kind of process explain-
ability study. Drawing on the behavioral habits of human beings to communicate
on a certain topic, this paper proposes a definition of result interpretability for
medical AI, divides explainable medical AI research into three phases: data ex-
plainability, process explainability and result interpretability, and argues that once
an AI model reaches a certain result interpretability metric, we can accept its con-
clusions and apply it to the clinic without having to wait until human beings fully
understand the operation and decision-making mechanism of the AI model be-
fore using it. In this regard, we propose the concept of interpretative integrity.
Further, we propose an architecture for result-interpretable medical AI system
based on AI-Agent and build a result-interpretable system around risk prediction
AI model for amyloidosis, which enables professional interpretation of the re-
sult of the risk prediction model for amyloidosis disease through a large language
model and supports professional Q&A with clinicians. The implementation of the
system enhances clinicians’ professional acceptance of medical AI models, and
provides a more feasible realization path for the large-scale application of medical
AI-assisted diagnosis.

1 INTRODUCTION

Machine learning and deep learning are increasingly used in healthcare, yet these AI models are
typically black-box in nature. Relying on unexplained black-box models to make decisions may
lead to blindness in clinical diagnosis and treatment, which leads to relatively low acceptance of
medical AI by clinicians Varghese (2020); Taylor & Fenner (2019). Explainable Artificial Intel-
ligence (XAI) plays a crucial role in promoting human understanding and trust in deep learning
systems. Many scholars have attempted to endow AI with explainable capabilities from a variety
of perspectives, including data, neural network structure, and algorithm design. The goal of XAI
is to reduce application risk by providing explanations for black-box model decisions or making
the model decision-making process transparent Swamy (2023); Kim et al. (2023). The existing re-
searches on XAI are complex and diverse, but in general they can be categorized according to the
scope of the concern, the specific methodology and the implementation Das et al. (2020); Madsen
et al. (2022); Danilevsky et al. (2020); Sarti et al. (2023); Enguehard (2023); Yin et al. (2022); Wu
et al. (2023).

Overall, the existing explainability research of AI is a kind of study from the perspective of model
and algorithm designers, which is still difficult to be accepted by the applicators. At the same time,
the development of AI has far exceeded the progress of existing explainability studies. So, one of
the realistic questions we are faced with is under what circumstances can humans be truly confident
in using AI in specialized areas such as healthcare? Can this be achieved by giving AI algorithms
and models a threshold standard for precision and accuracy? Or should humans use AI after the
black-box effects of AI models are fully understandable, reasonable, and controllable?

Compared with other fields, medical treatment puts forward higher requirements for theories, tech-
nologies and methods related to explainable AI. Explainability has become a key issue that must
be faced by the clinical application of medical AI, and many scholars have conducted research on
this issue. Singh et al. (2020) and Salahuddin et al. (2022) focused on a review of XAI applications
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in medical image analysis. Antoniadi et al. (2021) provided a review of XAI for clinical decision
support (CDS). Payrovnaziri et al. (2020) provided a review of XAI for electronic health records
(EHR). In general, the most commonly used XAI methods in the medical field today are SHapley
Additive exPlanations (SHAP) Lundberg et al. (2017), Local Interpretable Model-agnostic Expla-
nations (LIME) Ribeiro et al. (2016); Dave et al. (2020) and Gradient-weighted Class Activation
Mapping (GradCAM) Zhou et al. (2015). From the above analysis, the existing explainable medical
AI research belongs to the application of general XAI methods in medical treatment, which has not
yet fully considered the professional requirements in clinical scenarios, and is still unable to solve
the problem of medical AI results being adopted and directly used by physicians.

Rapid development of large models provides new ideas for research on the explainability of medical
AI Yunxiang et al. (2023); LUO et al. (2022); WU et al. (2023); XU et al. (2023); YANG et al.
(2023), and we can utilize the natural language interaction and content generation capabilities of
large language models(LLMs) to provide professional interpretations of the results of traditional
medical AI models and algorithms, which is more conducive to the direct application of medical
AI in the clinic. To address this problem, this paper proposes the concept of result interpretability,
which provide a new idea for explainable medical AI, i.e., instead of letting doctors believe in AI
through the describability of AI’s reasoning process, letting doctors accept AI’s conclusions through
the professional interpretation of the results.

2 RESULT INTERPRETABILITY AND ITS METRICS OF MEDICAL AI

2.1 PROCESS EXPLAINABILITY AND RESULT INTERPRETABILITY OF MEDICAL AI

Various prior publications debate the nuances in defining explainability of neural networks Dosilovic
et al. (2018); Chakraborty et al. (2017). Despite the differences in definitions of XAI, the essence
of these definitions is to help the user to have a clear understanding of the model’s decision-making
process in a simple and clear way, and then to trust the model’s results. This kind of explainability is
concerned in fact with the describability of the internal structure of the model and the computational
process. Thus, it can be defined as process explainability. Medical AI’s process explainability is
essentially a kind of process descriptability that aims to increase human trust in the AI and thus
accept the conclusions made by the AI. However, the rapid expansion of the parameter scale of AI
models and the limitations of human cognitive level will lead to the long-term problem of cognitive
alignment between AI and humans, and the process explainability cannot be realized in a short
period of time, which in turn will affect the large-scale application of medical AI.

Research on process explainability of medical AI is more often used to guide the design and opti-
mization of models for better results. However, what professionals need is a full interpretation of
the AI conclusions from a professional perspective, not an explanation from the model builder of
how the model was constructed and works. For this reason, we defines the result interpretability
of medical AI from the perspective of the clinician as a user of the AI algorithm, that is, human
understanding of the specialized knowledge, decision rationale and causal relationships underlying
the decision/prediction results of AI models. Result interpretability is analogous to the fact that
when humans explain their behavior, it is impossible to explain how the brain works or how neurons
conduct, but humans can explain their behavior through knowledge and experience in a way that is
understandable and acceptable to the audience.

Process-explainable medical AI attempts to allow physicians to understand the training and reason-
ing process of medical AI, but is divorced from the physician’s area of expertise. Despite increasing
physician’s trust in the AI, the lack of medical expertise and judgmental logic still greatly limits its
practical application. For example, when a patient asks a physician why he or she may be suffering
from a certain disease, the physician cannot say that it is because the AI model has made such a
prediction. Physicians still need to make professional analysis and judgment based on clinical test
indicators and relevant findings. Considering this, we redefines the different phases of explainable
medical AI research and categorizes them into three phases: data explainability, process explainabil-
ity, and result interpretability, as shown in the Fig.1. The inclusion of result interpretability allows
explainable medical AI research to cover the whole process from training to deployment and then
from inference to clinical application, which will greatly facilitate the application of medical AI in
real clinical scenarios.
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Figure 1: Data explainability, process explainability and result interpretability

2.2 INTERPRETATIVE INTEGRITY AND ASSESSMENT

To enable result-interpretable medical AI models or algorithms to be used effectively in the clinic,
the first issue to be addressed is how to judge the adequacy of the interpretation of AI results. That
is, what situation or condition is reached where we believe the interpretation of the results of the
AI model or algorithm has been accomplished from a professional point of view and is able to be
accepted by the physician and applied in the clinic. Thus, it becomes necessary to determine the
basis for judging the adequacy of the interpretation of medical AI results. In other words, once
the professional interpretation of the results of a certain AI algorithm meets the evaluation criteria
of adequacy, we can consider it to be able to be understood and accepted by physicians from a
professional point of view and meet the requirements for its application in the professional field
without having to wait until human beings fully understand the internal operation and decision-
making mechanisms of the AI black box model before using it. This criterion of judgment is more
in line with the behavioral habits of human beings in communicating on a certain topic, i.e., if the
other party gives a reasonable interpretation, we accept his suggestions or conclusions, rather than
deciding whether to accept his suggestions or conclusions on the basis of how he thinks about them.

The development of LLM allows machines and humans to communicate fluently and expertly using
natural language, which also provides a technical means to realize results-interpretable medical AI.
Therefore, we propose the concept of interpretative integrity for result-interpretable medical AI
system, it reflects whether the system meets the basic requirements for professional communication,
it also determines whether a result-interpretable medical AI system can be truly embedded in the
diagnosis and treatment process and accepted by clinicians. Interpretative integrity includes three
dimensional indicators: consistency, coverage and professionalism. Consistency is the degree to
which the interpretation matches the contextually relevant knowledge, emphasizing the relevance of
the interpreted content, require that the content of the interpretation fully considers and incorporates
the specific input information and relevant knowledge on which the medical AI results are based,
such as patient clinical test indicators and medical records. Coverage refers to whether the content of
the interpretation comprehensively covers the clinical concerns, and respond to the questions posed
by clinicians with clear interpretations or answers. Coverage emphasizes the comprehensiveness
of answering questions and interpretations, which helps clinicians progressively understand and
accept medical AI results in depth from a medical professional perspective.Professionalism refers
to the qualities of the result interpretation that are consistent with domain knowledge, experience
and standardized terminology, and emphasizes that the content of the interpretation should not only
be accurate and reliable, but also have professional insights and linguistic normativity in medical
field. The professionalism of the interpreted content of medical AI results currently still needs to be
measured by specialized physicians.

In addition to the three metrics involved in interpretative integrity, there are other functional re-
quirements for system design that need to be fully considered. These requirements are fundamental
guarantee that the result-interpretable medical AI system can be practically applied in the clinic.
However, the realization of these requirements cannot rely solely on the content generation capabil-
ities of a LLM, and requires that the result-interpretable medical AI system have a flexible system
architecture and a dynamic combination of functions. Therefore, in this paper, we use AI-Agent
XI et al. (2023); LIN et al. (2023); HUANG et al. (2023) to build result-interpretable medical AI
system.
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3 A RESULT-INTERPRETABLE RISK PREDICTION SYSTEM FOR AMYLOIDOSIS
(RIP4LCA)

To validate the effectiveness of the result-interpretable approach, we designed a clinically oriented
result-interpretable disease risk prediction system for amyloidosis, a rare hematological disease. The
system not only predicts a patient’s risk of suffering amyloidosis, but also provides an expertise-
based diagnostic interpretation of the results. At the same time, the system utilizes interpretative
integrity assessment tools to ensure the quality of the interpretation content.

Primary light chain (AL) amyloidosis is a rare hematological disease with multi-organ involvement
that is associated with high mortality and difficult early diagnosis. Nearly one-third of patients with
amyloidosis experience five or more consultations before diagnosis, which may lead to a poor prog-
nosis due to delayed diagnosis, with up to 30% of patients with AL amyloidosis dying within the
first year of diagnosis. For this disease, we designed and realized an ensemble learning risk predic-
tion algorithm for amyloidosis with high accuracy (>90%) for early disease risk prediction, using
routine screening indicators (gender, age, routine blood tests, urine test results, biochemical results,
and echocardiography results as reference factors). Due to the professional requirements of clini-
cal diagnosis, the high accuracy of AI prediction algorithms does not fully meet the requirements of
clinical application of assisted diagnostic systems, and professional interpretation and diagnostic ba-
sis need to be provided as a reference to ensure that physicians can understand the conclusions of the
AI algorithms from a professional perspective. For this reason, we constructed a result-interpretable
amyloidosis risk prediction system (as shown in Fig.2), and realized multi-round dialogue and pro-
fessional Q&A.

Figure 2: Result-interpretable risk prediction system for amyloidosis

3.1 INTERPRETATION OF AMYLOIDOSIS RISK PREDICTION

When the risk prediction model for amyloidosis gives a prediction result for a sample, knowledge
retrieval related to the patient’s clinical exam data is first performed through the AI-Agent workflow
engine using RAG. Based on the features used by the risk prediction model, the relevant knowledge
triad is queried in the knowledge graph and converted into an individual-related clinical knowledge
base for a specific case in natural language form. Multiple triads of the same entity and relationship
type can be converted into one piece of knowledge. For example, (Amyloidosis, Clinical manifes-
tations, Hypertrophy of the tongue) and (Amyloidosis, Clinical manifestations, Periorbital purpura)
are converted to ”Clinical manifestations of amyloidosis include symptoms such as hypertrophy of
the tongue and periorbital purpura”. Then, the prediction results of the amyloidosis risk prediction
model are input to the interpreter along with the case knowledge, the interpreter generates special-
ized interpretations of amyloidosis prediction results using LLM, and the consistency calculation
module is used to complete the consistency assessment of the interpretation. Interpretations with
highest consistency are presented to clinicians along with amyloidosis risk prediction results and
model inputs. The basic flow is shown in Fig.3.
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Figure 3: Interpretation of amyloidosis risk prediction

The consistency of interpretation is basically calculated as follows: First, the knowledge in the
individual-related clinical knowledge base is sliced into text fragments according to a fixed max-
imum length and semantic separation rule, form the knowledge slices set K = {k1, k2, · · · , kn}.
To avoid the effect of the order of the text in the prompts on the interpretation generation, for an
interpretive task, we randomly sort the knowledge slices set K several times and construct it as a
prompt set P = {p1, p2, · · · , pm} using prompt templates,

pi = Prompt(shuffle(K, i), i ∈ {1, 2, · · · ,m} (1)

Where, shuffle(K, i) denotes the ith randomized sorting operation on the knowledge slices set
K. Each pi in the prompt set P is entered independently into the LLM to generate interpretation
content:

O = {oi|oi = LLM(pi)}, i ∈ {1, 2, · · · ,m} (2)

To assess whether the content of the interpretation is consistent with factual knowledge and maxi-
mizes the inclusion of the necessary factual knowledge, we perform item-by-item semantic similar-
ity matching between interpretations and the set K of knowledge to select the interpretation with
the optimal degree of consistency. Specifically, we use the sum of the cosine similarity of oi in
the set O of interpretation to each ki in set K of knowledge as the consistency score of the current
interpretation. In the end, we choose the generated content with the highest consistency score and
output it as the contents of the interpretation.

si =

n∑
j=1

oi · kj
∥ oi ∥∥ kj ∥

, oi ∈ O (3)

3.2 Q&A AND INTERACTION

In addition to interpretive analysis of the results, the system provides professional Q&A and interac-
tion for physicians to give further analytical assistance. The process flow of Q&A is shown in Fig.4.

Figure 4: Process of Q&A

First, we convert the disease-specific knowledge graph of amyloidosis into a natural language form
of knowledge base K and the knowledge in the base is transformed from the triad in the knowledge
graph. Converting knowledge from ternary form to natural language form allows LLM to understand
the knowledge more effectively. After converting all the triads in the knowledge graph into natural
language knowledge, we can generate one or more issue for each knowledge slice. Finally, the issue
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in the issue-knowledge base is vectorized using a semantic vectorized pre-training model, and the
generated embedding representation of the issue is stored in the issue-knowledge vector base M .

When a physician asks a question, we define the physician’s question as QD. We first slice the
QD into multiple segments with independent semantics, and generate corresponding issue for each
semantics slice to construct the issue set ID, so that QD can be represented as the issue set of
all semantic slices. We retrieve relevant knowledge for the physician’s question by finding similar
issues in the issue-knowledge vector base M for each issue in ID. First, we vectorize all issues in ID
using the same semantic vectorization pre-training model as used to construct the issue-knowledge
vector base, and with the vector similarity calculation, we are able to retrieve the most relevant
knowledge slice for each issue iD in ID from the issue-knowledge vector base M . To ensure the
effectiveness and comprehensiveness of knowledge retrieval, we refer to the voting mechanism in
KnowledgeNavigatorGUO et al. (2024) to assign a composite similarity score to each knowledge
slice k corresponding to similar issues Mk using the sum of vector similarity score between the
similar issues Mk generated from k and iD from the physician’s question:

Score(MK , iD) =
∑

m∈MK

Sim(iD,m) (4)

Then, we retrieve knowledge slice with the highest similarity scores S as the relevant knowledge
corresponding to iD. Finally, we summarize the knowledge involved in each issue in ID and use it
as a prompt to generate a preliminary answer C to the physician’s question through LLM.

S = Top
{
Score(MK , iD) | k ∈ K, iD ∈ ID

}
(5)

To ensure the comprehensiveness of the content of the answers generated in response to physician’s
questions, we assess the quality of the preliminary answers by performing a coverage calculation,
and propose a coverage calculation method of multi-issue similarity comparison.

First, we semantically slice C to construct the set T of semantic slices of the answer content, and
utilize the LLM to generate 5 semantically similar issues with each semantic slice Ti ∈ T as the
target answer, respectively, so as to construct the issue set QC of the answer content. Then, we per-
form a one-to-one similarity comparison between the issue set ID, which represents the physician’s
original issue, and the reconstructed answer issue set QC . Finally, we define the similarity scoring
function S and evaluate the coverage by calculating the ratio of the number of issues in ID that can
find at least one similar issue in QC to the total number of issues in ID:

N =
∑
i∈ID

∑
q∈QC

I
(
S(i, q) ≥ θ

)
(6)

Coverage =
N

| ID |
(7)

where I(S ≥ θ) is an indicator function, and the value of the indicator function is 1 when the con-
dition is satisfied and 0 otherwise. For this indicator function, we set the similarity score threshold
to θ, i.e., two issues are considered to be the same issue when their similarity scores are greater than
θ. The system will output to the clinicians the content of the responses whose coverage meets the
set threshold or reaches a certain number of judgment rounds.

4 EXPERIMENTATION AND ANALYSIS

4.1 ASSESSMENT OF THE VALIDITY OF RIP4LCA SYSTEM

We conducted experiments on the system realized in this paper around three measures of interpre-
tative integrity, namely consistency, coverage and professionalism. In order to minimize the inter-
ference of different LLM, we used multiple LLMs for comparison in each group of experiments.
Two groups of experiments are designed to assess the effectiveness of the system. For each group of
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experiments, we designed the same 380 interpretative tasks and 200 Q&A-type tasks, which were
derived from clinical practice. Each group of experiments required professional interpretations of
amyloidosis risk prediction results and related inputs, also required professional answers to ques-
tions. For the first group of experiments, we directly invoked the LLM without using any knowledge
engineering or specialized information supplements, and simply used the generalized capabilities of
the LLM itself to finish all interpretative tasks and Q&A-type tasks. The second group of exper-
iments used RIP4LCA system realized in this paper to provide professional interpretations of the
amyloidosis risk prediction results and related input indicators, as well as professional answers to
physician’s questions.

For the interpretative tasks in each group of experiments, we computed the degree of consistency
separately; for the Q&A-type tasks in each group of experiments, we computed the degree of cov-
erage separately, in which the threshold of θ for the indicator function I(S ≥ θ) in the process
of coverage computation was set to 0.80. For all interpretive tasks and Q&A-type tasks in each
group of experiments, we commissioned the clinical professionals to conduct a measure of profes-
sionalism. The measure of professionalism was scored on a scale of 1 to 5, with a maximum of
5 and a minimum of 1 for content professionalism, given independently by 6 different clinicians,
and the average of each clinician’s score was taken. The results of the consistency, coverage and
professionalism evaluations of each group of experiments are shown in Table.1.

Table 1: Assessment of the validity of RIP4LCA system

Model Group1(LLM directly) Group2(RIP4LCA system)
Consistency Coverage Professionalism Consistency Coverage Professionalism

Qwen2-
72B

0.66 0.44 3.22 0.77 0.84 4.27

Qwen1.5-
32B

0.62 0.46 3.21 0.76 0.77 4.19

GPT-
3.5turbo

0.59 0.33 2.77 0.74 0.62 3.99

Regardless of which LLM was used, the first group of experiments performed poorly on the con-
sistency, coverage and professionalism. Specifically, in terms of consistency, the output content did
not adequately use the expertise that underlie the clinical diagnosis and treatment of amyloidosis;
in terms of coverage, the output content did not adequately cover all the concerns of the questions
posed by the users, and answered the questions inappropriately or only responded to a part of the
concerns; and in terms of professionalism , content output using the three LLMs scored only 3.22,
3.21 and 2.77, respectively, as assessed by physicians. This is attributed to the fact that the LLMs
lacked specialized knowledge related to rare hematological diseases and could not meet the require-
ments of clinical diagnosis and treatment. It also suggests that the LLM alone cannot achieve a
result-interpretable medical AI system.

In the second group of experiments, we use RIP4LCA system realized in this paper to complete the
test, and the system improves the quality of the output by invoking the corresponding tools through
the AI-Agent to complete the expertise supplementation, consistency discrimination and coverage
discrimination. For the interpretive task, the system adopts the cosine similarity algorithm to retrieve
the relevant expertise, and shuffle the retrieved relevant knowledge to generate the interpretation
content through the system’s interpreter by invoking the LLM, and then selects the optimal inter-
pretation content for the output by using the consistency discrimination, and the number of shuffle
times was selected to be 20 in the experiment. As can be seen from Table 1, the system realized in
this paper has a substantial improvement with 77%, 76% and 74% consistency on the three LLMs,
respectively. For the Q&A-type task, the system adopts the knowledge retrieval enhancement based
on multi-issue decomposition and a coverage calculation method of multi-issue similarity compari-
son, and selects the optimal answer output through the coverage discriminator, thus, it also performs
well in the Q&A-type task. Finally, in terms of professionalism, no matter which LLM is used, the
RIP4LCA system scores high in both interpretive and Q&A-type tasks.

As can be seen from the results of the above two groups of experiments, the result-interpretable
amyloidosis risk prediction system realized in this paper is able to provide clinicians with profes-
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sional, clinically realistic interpretations and answers based on the results of the medical AI and the
relevant input indicators, which improves the ability to deploy medical AI in clinical diagnosis and
treatment.

4.2 INFLUENCE OF KNOWLEDGE REPRESENTATION ON CONSISTENCY OF INTERPRETATION

For the result-interpretable amyloidosis risk prediction system, we further experimentally analyze
the impact of the knowledge representation in natural language proposed in this paper on the con-
sistency of interpretation. Experiments were conducted to evaluate the effect of different knowledge
representations on the consistency of the interpretation by using three knowledge representations to
implement expertise supplementation respectively.

We conducted three groups of experiments, each containing 380 interpretive tasks, and took the
average consistency of the output content of these tasks as the result of that group of experiments.
For the first group of experiments, we use the knowledge representation of the ternary, without any
processing or transformation, as an external knowledge supplement, and generate the interpretation
through the system’s interpreter by invoking LLM. For the second group of experiments, we used tri-
ads with merged head and tail entities as external knowledge supplements for interpretative content
generation. For the third group of experiments, we used natural language knowledge representation,
i.e., we transformed the original knowledge triad into a natural language knowledge text, which was
used as knowledge supplements for interpretative content generation. Each group of experiments
was conducted using three LLMs and the results are shown in Table.2.

Table 2: Influence of knowledge representation on consistency

Model Triads Triads with merged
head and tail entities

Natural language knowledge text

no-shuffle Shuffle:5 Shuffle: 20

Qwen2-72B 0.67 0.71 0.73 0.75 0.76
Qwen1.5-32B 0.64 0.69 0.72 0.74 0.75
GPT-3.5turbo 0.60 0.62 0.69 0.71 0.74

From the experimental results, it can be seen that the consistency of the interpretations generated
by the RIP4LCA system in the case of using knowledge triads is 67%, 64% and 60% on the three
LLMs, respectively; and the consistency of the interpretations generated by the system in the case
of using merged head and tail entity triads is 71%, 69% and 62% on the three LLMs, respectively.
In the third group of experiments, we use the knowledge representation of natural language text,
and we do three more sets of experiments in this group separately to assess the effectiveness of the
knowledge slice shuffle method proposed in this paper.

As can be seen from Table 2, the consistency of the generated interpretations is improved using the
knowledge representation of natural language text over the original triad and the merged head and
tail triad representation, regardless of whether the knowledge is subjected to the shuffle operation
or not. Meanwhile, the experimental results of the third group also show that shuffle operation on
knowledge significantly improves the consistency of the interpretation, and, the more the number
of shuffles, the higher the consistency. However, as the number of shuffles gradually increases, the
system performance decreases. After experiments, we find that when the number of shuffles is set
to 20, the consistency of the interpretation stabilizes, and the overall performance of the system
is not significantly affected. We visualize the distribution of the consistency metrics using violin
plots. The consistency distributions of the final output interpretations on the three LLMs without
shuffle operation, with a shuffle count of 5 and a shuffle count of 20, are shown in Fig.5, where
the Y-axis represents the consistency measure of the interpretative content, and the width of the
image corresponding to each Y-value represents how many interpretative tasks have an interpretation
consistency measure for this Y-value.

4.3 COVERAGE CALCULATION

To further evaluate the validity of the result-interpretable amyloidosis risk prediction system real-
ized in this paper for Q&A-type tasks and to validate the coverage calculation method proposed in
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Figure 5: The consistency distributions of the interpretations on three LLMs

this paper, two groups of experiments were conducted. Each group of experiments involves 200
Q&A-type tasks, i.e., the system outputs specialized answers to 200 questions posed by hematology
clinicians. The coverage of each group of experiment is taken as the average of the coverage of all
tasks.

The first group of experiments inputs questions from physicians about amyloidosis diseases and gen-
erates answers directly from the large language model. The coverage calculation for this experiment
is done by direct semantic similarity comparison. That is, the physician’s question and the answer
generated by the LLMs are semantically segmented to form a collection of question semantic slices
and a collection of answer semantic slices, and then the semantic similarity algorithm is used to
compare the semantic slices in the two collections for similarity, and to find out which physician’s
concern in question are covered by the output of the LLMs.

The second group of experiments input questions from physicians about amyloidosis diseases into
our RIP4LCA system, which generates the content of the responses, but instead of using the cov-
erage calculation method of multiple-issue similarity comparison and the coverage discriminator to
select the optimal outputs, we used the same semantic similarity comparison method as in the first
group of experiments for the coverage calculation.

The results of two groups of experiments are shown in Table.3. The first group of experiments
using Qwen2-72B, Qwen1.5-32B and GPT-3.5turbo yielded average coverage of 0.44, 0.46 and
0.33, respectively. The second group of experiments using Qwen2-72B, Qwen1.5-32B and GPT-
3.5turbo yielded average coverage of 0.68, 0.62 and 0.49, respectively. The results show that the
system realized in this paper enables the answers to better cover the physician’s concerns due to
the identification and targeted enhancement of knowledge retrieval for the issues of the physician’s
questions.

To further validate the coverage calculation method based on multi-issue comparison proposed in
this paper, we conducted another 6 sets of tests. These additional tests were performed entirely
using RIP4LCA realized in this paper, i.e., the coverage calculation method of multi-issue similarity
comparison was used and the output was optimized by a coverage discriminator with at least 3
rounds of judgment. All 6 sets of tests perform semantic segmentation on the answers generated by
the interpreter invoking the LLM and generate a number of issues corresponding to each semantic
slice, and the number of generated issues is 1,2,3,4,5,6 in each of the 6 sets of tests, respectively.
The coverage was calculated using the method described in section 3.2 of this paper. The results are
also listed in Table.3.

In set 1 additional tests, only one corresponding issue is generated for a semantic slice, and after the
issue is generated, the coverage is then computed by the multi-issue similarity comparison method,
and the results are basically the same as the results of the coverage computation method that direct
semantic similarity comparison. As the number of issues generated by a semantic slice increase,
the coverage metrics of the content of the answer rise significantly. The best results were achieved
when the number of issues was 5. The number of issues to be generated actually needs to consider
the influence of many aspects. Few issues cannot realize the accurate calculation of coverage. Too
many issues will also have an adverse effect on the accuracy of coverage, such as introducing the
error in issue generation into the process of coverage calculation, and too many issues will also
cause the performance of the system to be degraded. Therefore, the number of issues generated for
each semantic slice in our RIP4LCA system is set to 5.
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Table 3: Experiments on coverage of interpretation

Model Semantic similarity comparison RIP4LCA with Multiple-issue comparisons
LLM
directly

RIP4LCA without
multiple-issue com-
parisons

Issue:1 Issue:2 Issue:3 Issue:4 Issue:5 Issue:6

Qwen2-
72B

0.44 0.68 0.69 0.77 0.78 0.81 0.84 0.82

Qwen1.5-
32B

0.46 0.62 0.62 0.68 0.70 0.76 0.77 0.75

GPT-
3.5turbo

0.33 0.49 0.49 0.57 0.58 0.61 0.62 0.60

4.4 PROFESSIONALISM ASSESSMENT

In order to assess the medical professionalism of the interpretations and responses generated by
RIP4LCA system realized in this paper, we conducted five groups of experiments, with groups 1, 2
and 3 of the experiments being conducted on 380 interpretive tasks. Group 1 experiments generate
interpretations directly for interpretive tasks using the LLMs, group 2 uses RIP4LCA but does not
employ the knowledge shuffle method and group 3 uses RIP4LCA and employs the knowledge
shuffle method. Groups 4 and 5 experiments were conducted on 200 Q&A-type tasks. Group
4 experiments use the LLMs directly to generate answer and group 5 generated answer content
using RIP4LCA. We invited 6 clinicians specializing in hematology to assess the professionalism
of the generated content of the interpretive tasks and the Q&A-type tasks in all the experiments
independently. Professionalism was measured on a scale of 1 to 5, with a maximum of 5 and a
minimum of 1. The average of all clinicians’ scores was taken as the final professionalism score.
The results of the assessment are shown in the Fig.6. As can be seen from the results, the RIP4LCA
system realized in this paper shows more professional both in the interpretive tasks and Q&A-type
tasks.

Figure 6: Professionalism assessment

5 CONCLUSION

This paper proposes a definition of result interpretability for medical AI, and divides explainable
medical AI research into three phases: data explainability, process explainability and result inter-
pretability. An architecture for result-interpretable medical AI system based on AI-Agent is also
proposed and a result-interpretable amyloidosis risk prediction system is realized, which enables
professional interpretation of the result of the risk prediction model for amyloidosis disease through
a LLM and supports professional Q&A with clinicians. The results of the experiments show that the
result-interpretable system realized in this paper performs well and is able to provide clinicians with
professional, specialized interpretations and Q&A based on the medical AI results and the relevant
input indicators that meet the actual needs of the clinic.
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