
1

Abstract 1

Weakly supervised text classification is the 2

ability to classify large, diverse types of 3

unstructured text data while requiring only a 4

small amount of manual guidance. With 5

open-source pre-trained language models 6

becoming widely available in the last couple 7

of years, the weak supervision text 8

classification domain has received renewed 9

interest due to the potential for transfer 10

learning. Recent weak supervision methods 11

proposed using pre-trained language models 12

have performed well against the popular 13

WRENCH benchmark datasets (Zhang et al., 14

2021), demonstrating the capability of 15

transfer learning. However, these methods 16

use pre-trained language models that are 17

computationally expensive to perform 18

inference with and are unfeasible to finetune 19

without specialized accelerated hardware. 20

Methods that don’t require fine-tuning often 21

require repeated inference or large storage 22

needs to achieve their results. In this paper, 23

an alternative solution is proposed that uses 24

a single inference step, has minimal storage 25

and memory requirements, doesn’t require 26

accelerated hardware, and can provide 27

competitive results to much more hardware-28

intensive methods. 29

1 Introduction 30

Finding access to large amounts of clean labeled 31

data is not common in real use cases, and 32

requiring domain experts to manually label more 33

than a few samples can quickly become an 34

expensive and time-consuming drain on 35

resources. The text classification goal of users can 36

also shift over time to reflect new data or new 37

demands. An example is a customer complaint 38

system; business users may want to track specific 39

customer complaints based on a multitude of 40

criteria, and this criterion is likely to change over 41

time. Weak supervision promisesthe flexibility 42

that this text classification task would require. 43

Transformer architecture and hardware 44

advances have allowed for capable pre-trained 45

language models (PLM) to become available to 46

the public. Large companies (i.e. Microsoft, 47

Google) train them on expensive hardware over 48

massive amounts of data, and then smaller 49

organizations and individuals can directly use 50

them for a variety of natural language processing 51

(NLP) tasks. Autoencoder PLMs convert text by 52

embedding it into dense, high-dimensional 53

vectors which incorporate rich contextual 54

meaning. This context captures the different 55

meanings between words and allows for accurate 56

semantic comparisons between words using these 57

embeddings. It has been shown that averaging 58

these word embeddings per document can retain 59

the meaning of the overall document (Reimers 60

and Gurevych, 2019); this is a useful tool for 61

reducing memory and computational complexity 62

of each document, by collapsing the words into a 63

single pooled embedding. 64

Cosine similarity is a formula to calculate the 65

similarity between two vectors and has been 66

successfully used for text document comparisons 67

for many years (Mikawa et al., 2011). It has been 68

used more recently with PLMs as a way to match 69

class labels with document embeddings, 70

demonstrating its effectiveness when regular clean 71

samples are limited (Schopf et al., 2023).To use 72

cosine similarity between the document vectors 73

generated by a PLM, the PLM must be finetuned 74

on a cosine similarity goal for pairs of sentences in 75

order to generate a meaningful vector space 76

(Reimers and Gurevych, 2019). SBERT (Reimers 77

and Gurevych, 2019) and SimCSE (Gao et al., 78

2021) are two popular options for performing this 79

fine-tuning step. Contextually similar words in a 80

meaningful vector space have high cosine 81

similarity, and dissimilar words have a low cosine 82

similarity. 83

Weak Supervision Text Classification using Cosine Similarity

and SVM for Hardware Constrained Systems

Anonymous ACL submission

2

2 Previous Work 84

There are two recent categories of weak 85

supervision methods that have had strong 86

performance, but with contrasting design and 87

hardware requirements. The first category 88

requires fine-tuning on a PLM to obtain results. 89

They often don’t generate their own weakly 90

supervised data, and instead are methods to 91

improve the accuracy of pre-generated noisy data. 92

The second category of weak supervision 93

methods do not require PLM fine-tuning or pre-94

generated noisy data, and instead only require 95

PLM inference. They are designed to use a low 96

amount of manually provided words for each class 97

to perform labeling. These methods work using a 98

word-based analysis, and they need the full corpus 99

of token embeddings available to function. 100

The first category is a best fit for many different 101

text classification tasks, including topic 102

classification, sentiment analysis, name entity 103

recognition, relation classification, etc. However, 104

as shown by a recent survey of these types of weak 105

supervision methods (Zhu et al., 2023), these 106

methods still require clean samples to perform 107

model selection and validation. This category was 108

chosen due to its benchmark setting performance 109

on many weak supervision datasets. COSINE (Yu 110

et al., 2021) was chosen for comparison in this 111

paper, as it was shown to be the best overall 112

performing weak supervision method in the 113

survey (Zhu et al., 2023). COSINE uses “roberta-114

base” as its PLM for inferencing and fine-tuning. 115

X-Class (Wang et al., 2021) belongs to the 116

second category of text classification methods and 117

doesn’t require fine-tuning a PLM or traditional 118

clean samples. It only requires a one-word class 119

label and performs very competitively on certain 120

datasets. It is part of the one-word and low-word 121

classification methods that work without using 122

any traditional clean samples. It only requires a 123

PLM to transform the text into embeddings, and 124

can perform classification without fine-tuning or 125

additional inference, as long as the entire corpus 126

of token embeddings can be stored and retrieved. 127

This category was selected due to both its strong 128

performance and its minimal labeling 129

requirements. X-Class was chosen for comparison 130

in this paper because it is a top-performing 131

method from this category. X-Class uses “bert-132

base-uncased” as its PLM for inferencing. 133

3 Methodology 134

This paper’s algorithm combines a few different 135

methods to obtain the final classification result: 136

MPNet (Song et al., 2020), SBERT, cosine 137

similarity, and SVM. MPNet fine-tuned with 138

SBERT is used as the Autoencoder PLM for 139

creating the initial document embeddings. 140

SBERT fine-tuning is necessary for the 141

embeddings generated by MPNet to be used 142

directly with cosine similarity. Cosine similarity 143

has been commonly used in the document scoring 144

domain for many years. SVM is a machine 145

learning classifier that learns boundary points and 146

optimizes a best-fit margin between the different 147

classes. It has shown to be one of the most 148

powerful classifiers for a variety of domains 149

(Cervantes et al., 2020), and it has the advantage 150

of being memory and compute efficient versus 151

PLMs when trained with limited, selective input 152

data. 153

A benefit to using the embeddings directly is 154

that once they are generated by the PLM, they can 155

be stored and reused indefinitely. As shown in 156

Table 1, storing the document embeddings instead 157

of the token embeddings greatly minimizes the 158

storage and memory requirements. The PLM is 159

only necessary for further inference when new 160

data is provided, class labels change, or the clean 161

samples change. This removes the need for 162

repeated inference and limits the usage of the 163

compute-intensive PLM. The consequence is that 164

once the initial corpus is embedded for the first 165

time, the system can be modified near real time by 166

users as their data monitoring needs progressively 167

change. 168

There is only one hyper parameter to modify; 169

the number of standard deviations above the 170

median class scores of the top cosine similarity 171

scores per class (𝜶). The hyper parameter 𝜶 will 172

be explained in detail below. For 𝜶, using 173

anywhere from 2-3 is sufficient for most 174

applications. 175

3.1 PLM And Embedding Details 176

The first step is to use MPNet to generate the 177

embedding vectors for the text corpus. MPNet is 178

an alternative to the encoder transformer network 179

BERT, which instead uses a different pre-training 180

method. This alternative pre-training method 181

maximizes the amount of information the network 182

receives for each input versus the traditional 183

masked language modeling approach with BERT. 184

This MPNet model was then fine-tuned using 185

SBERT and a cosine similarity goal to create a 186

3

meaningful vector space that can be compared 187

using cosine similarity. The specific model used 188

for this paper was ”all-mpnet-base-v2”, since it 189

used some of the largest amount of training data 190

and therefore produced the most accurate and 191

detailed embeddings. 192

The standard tokenizer for MPNet is used to 193

turn the input text into tokens to feed into MPNet. 194

Any document with text over the 512 token limit 195

of MPNet has the extra text truncated, and the 196

extra text is not used. Once the 768-dimensions 197

text embeddings are generated by MPNet for each 198

token from the text, they are immediately pooled 199

together as an average so that there is a single 768-200

dimension vector per document. 201

The second step is to then do the same MPNet 202

embedding and pooling technique to the labeled 203

text samples that will be provided by the domain 204

expert. The class labels also need to be provided 205

by a domain expert and then embedded into a 206

vector as well. These class labels can be one word 207

or multiple words. Now that all the relevant text 208

has been turned into pooled MPNet embeddings, 209

they can now be compared to each other using 210

cosine similarity. 211

3.2 Document Scoring 212

There are two separate cosine similarity scoring 213

processes that are combined and averaged 214

together for each document’s score per class (DS): 215

the highest sample cosine similarity score per 216

class for each document (S1), and the class label 217

cosine similarity score per document (S2). To get 218

the first score, the highest cosine similarity 219

amongst the samples for each class is obtained 220

against each document. To get the second score, 221

it’s simply the class label embedding cosine 222

similarity for each class against each document. 223

 224

Figure 1: Document score (DS) for a given class ‘k’ 225

and document ‘j’. 226

3.3 Selecting Top Scores 227

Once each document has a score for each class, 228

the highest score for a document amongst all the 229

classes is chosen as the class winner. Then, the top 230

portion of scorers for each class are selected to be 231

used. Specifically, the scores that are higher than 232

Equation 3 are chosen. You can lower 𝜶 to lower 233

the accuracy and widen the selection of samples 234

returned or increase 𝜶 to improve the accuracy 235

and reduce the number of samples returned. As 236

the next step is to feed this data through SVM, it 237

may be worth lowering the overall accuracy to 238

increase the data available for SVM to use. 239

 240

Figure 2: Minimum document score DS required per 241

class ‘k’ 242

These high-confidence samples for each class 243

are used to train the SVM algorithm implemented 244

in the sklearn library using the radial basis kernel. 245

Different kernels were examined, and the radial 246

basis kernel provides the best overall results 247

without having to modify the default 248

hyperparameters. This SVM classifier is then used 249

to do the final predictions on the full dataset. 250

4 Results 251

A variety of datasets were used to test the method 252

proposed in this paper, and ensure it has flexibility 253

amongst a variety of challenges. While cosine 254

similarity + SVM is rarely a top-performing 255

solution, it’s highly adaptable to many topic 256

classification and sentiment analysis datasets 257

without complex hyperparameter tuning, and 258

produces competitive results compared against 259

two well-performing weak supervision text 260

classification methods, X-Class and COSINE. X-261

Class uses a one-word class label to classify the 262

data and doesn’t require clean samples to classify 263

the data. COSINE does require clean samples, but 264

only as validation samples for selecting a final 265

model. For X-Class, the numbers from the 266

original paper are used for the dataset if available, 267

else the publicly available code is used to generate 268

the results. 269

4.1 Hardware Requirements 270

Cosine similarity + SVM hardware cost is greatly 271

minimized compared to many popular weak 272

supervision methods. Common class label-based 273

methods require using the entire corpus word 274

embeddings, which can quickly grow to many 275

GBs for even a small corpus of documents. By 276

only requiring the averaged document 277

4

 278

Table 1: Details for the datasets used in this paper. The CPU used was an Intel Core i9-9900k @ 3.6 GHz 279

processor with 32 GB of RAM. The GPU used was a Nvidia RTX 2080 Ti. Batch size for embedding is 128 for 280

GPU, 1 for CPU. 281

 282

Table 2: Training and testing time requirement for cosine similarity + SVM with two different datasets using 283

only a CPU. The CPU used was an Intel Core i9-9900k @ 3.6 GHz processor with 32 GB of RAM. Batch size for 284

embedding is 1. 285

 286

Figure 3: The performance of different models using SVM with document embeddings, along with estimates of 287

their model size for inference.288

embedding, storage requirements grow linearly 289

with document count ‘m’, and it is not dependent 290

on document size. 291

Large models are not required to achieve 292

competitive results when the PLM is fine-tuned 293

using SBERT and a cosine similarity goal. The 294

SBERT fine-tuned “all-mpnet-base-v2” model 295

used in this paper performs significantly better 296

with SVM than either equal sized or larger models 297

that were not fine-tuned using SBERT. Fine-298

tuning SBERT with a cosine similarity goal for 299

the embedding space may allow the embeddings 300

to be more linearly separated in high dimensions, 301

which could account for the significant baseline 302

improvement with SVM. This advantage further 303

minimizes both the memory and storage needs 304

required. 305

 By minimizing the model size, the inference 306

time and computational requirements are 307

consequently reduced as well. The post-corpus 308

embedding training and testing runtime is 309

measurable in seconds, and the primary runtime 310

bottleneck is the initial corpus embedding 311

process. SVM can potentially be a source of 312

slowdown if too many values are fed to it, but this 313

can be controlled by the 𝜶 value. Cosine similarity 314

+ SVM’s runtime is broken down in Table 2. 315

4.2 Testing Procedure 316

Due to the variance from selecting clean samples 317

to use, each sample count was tested 20 times with 318

a different sample selection each time. The 319

average macro f1 for those 20 epochs are shown. 320

𝜶=3 is used for the topic classification datasets, 321

except for AGNews as it was the largest corpus so 322

𝜶=3.5 was used to accelerate testing. 𝜶=2 was 323

used for sentiment analysis datasets, because there 324

wasn’t enough data selected with 𝜶=3. All SVM 325

implementations use the default hyperparameters 326

for C and gamma. Cosine similarity + SVM can 327

start at 0 samples by only using the class label 328

score (S2). Cosine similarity + SVM and SVM are 329

always the average of 20 runs. COSINE data is taken 330

from the original paper and is the average of 5 runs. X-331

Class data is taken from the original paper except for 332

5

the two untested datasets IMDB and 20Newsgroup (20 333

class), where it is the result of a single run. 334

4.3 Datasets 335

A variety of common text classification datasets 336

were used to evaluate this method. 337

• AGNews (Zhang et al., 2015) is a topic 338

classification dataset from a set of short 339

news story summaries. 340

• DBPedia (Zhang et al., 2015) is a topic 341

classification dataset made of a list of 342

short article descriptions from DBPedia. 343

• 20Newsgroup (Lang, 1995) is a topic 344

classification dataset made of a collection 345

of news organized into 6 main groups or 346

20 sub-groups. 347

• IMDB (Maas et al., 2011) is a sentiment 348

analysis dataset from a list of movie 349

reviews from IMDB. 350

• Yelp (Zhang et al., 2015) is a sentiment 351

analysis dataset from a list of business 352

reviews.353

354

 355

 356

Figure 4: The results of SVM, cosine similarity + SVM, and two recent weak supervision methods. 357

 358

Figure 5: The effect of changing the class label on the macro f1 accuracy when 0 clean samples are available 359

for cosine similarity + SVM and X-class. 360

 361

Figure 6: Ablation study of different scoring components. For topic classification tasks, using DS (S1 & S2) 362

provides the best performance over using S1 or S2 separately. 363

6

5 Analysis 364

5.1 Ablation Study 365

The performance of cosine similarity + SVM is 366

better than standalone SVM when the number of 367

samples per class is less than ten for all topic 368

classification datasets, at which point it tends to 369

converge. S1 and S2 provide two weak 370

supervision signals that work together better than 371

as separate methods for all topic classification 372

datasets, as shown in Fig 3. 373

 The S2 score performed best for the sentiment 374

analysis datasets, and including the S1 score 375

reduced the accuracy. Due to sentiment analysis 376

being a higher-level concept than simple topic 377

matching, it may be harder for document 378

comparisons to identify sentiment. It may be more 379

effective to capture the sentiment with a summary 380

label of the objective versus using examples of the 381

objective. This is reinforced by the drop in 382

accuracy from the class label score when samples 383

are provided for Yelp and IMDB datasets. 384

5.2 Comparison to Previous Work 385

Cosine similarity + SVM stays competitive with 386

the two other high-performing weak supervision 387

methods reviewed in this paper. X-Class is 388

dependent on the quality of the class label, and it 389

can have a large effect on the final accuracy. Even 390

semantically similar labels have this effect, as 391

shown in Fig 2. Cosine similarity + SVM is also 392

affected by the quality of the label, but it can be 393

offset by clean samples for topic classification 394

tasks. The performance of cosine similarity + 395

SVM is less dependent on the specific words in a 396

particular corpus, and is instead determined by 397

both accuracy and descriptiveness, which makes 398

for a more simple, general application across 399

varied datasets. An example of this behavior is 400

found in Fig 2; “positive” and “negative” perform 401

similarly for both IMDB and Yelp for cosine 402

similarity + SVM but have extreme variance with 403

X-Class. 404

For sentiment analysis tasks, overall goal 405

summarization with cosine similarity + SVM 406

performs much better with only the class label 407

(S2) score. Cosine similarity + SVM with only the 408

class label can match and outperform the accuracy 409

of COSINE with 5 clean samples. For topic 410

classification with AGNews, cosine similarity + 411

SVM closely approaches COSINE performance. 412

6 Conclusion 413

Fine tuning PLMs is a resource and time intensive 414

process. Even organizations that can afford to 415

support expensive finetuning methods may want 416

to instead repurpose older and more limited 417

existing infrastructure. The ideal solution would 418

be transfer learning without modification, where 419

any general PLM trained by a large group with 420

resources can be used directly for any common 421

NLP task. 422

As shown by the results, averaged document 423

embeddings from a meaningful vector space 424

provide competitive performance for topic and 425

sentiment classification tasks while minimizing 426

computational, storage, and memory 427

requirements. It suggests that averaged dense 428

embedding vectors have all the information 429

needed to reach a similar level of performance 430

versus more complex, hardware-expensive 431

methods. 432

7 Future Work 433

Comparing documents and class labels is a simple 434

process; further processing methods could yield 435

improvements to the overall accuracy. The clean 436

samples provided can be broken down into 437

smaller pieces to provide more signals to refine 438

the weak supervision labels. Alternative pooling 439

methods could be explored for the word pooling 440

step, such as maximum, minimum, median, etc. 441

8 Potential Risks 442

Pre-trained language models can have biases and 443

unintended associations, and these can be 444

especially present in models finetuned to produce 445

semantically similar words. This risk is most 446

present in low resource areas such as weak 447

supervision, where there is little room for human 448

correction. However, by allowing for multi-word 449

class labels, using document averages, and 450

including two different scoring methods, individual 451

biases amongst particular words is greatly reduced. 452

Classification can also be directly adjusted by 453

including samples of a particular incorrect 454

classification as part of the sample set for the 455

correct class. This can mitigate the risk of 456

unintended classifications due to inherent model 457

biases. 458

7

9 Limitations 459

There were only two types of text classification 460

examined in this paper. Other types of text 461

classification, such as relation classification, may 462

not perform well with this paper’s semantic 463

similarity-based method without additional 464

processing. 465

The ability to retain a near real-time ability to 466

modify the classifier is severely diminished with 467

larger datasets over one million samples, without 468

careful consideration of the amount of data being 469

fed into the SVM classifier. The 𝜶 parameter 470

becomes more sensitive when datasets start to 471

increase in size, and it could cause over-472

sampling if it’s not carefully monitored. The 473

need to perform cosine similarity against all 474

documents in a larger dataset may also limit the 475

near real-time scalability of this method. 476

References 477

Jair Cervantes, Farid Garcia-Lamont, Lisbeth 478

Rodrıguez-Mazahua, and Asdrubal Lopez. 2020. 479

A comprehensive survey on support vector machine 480

classification: Applications, challenges and trends. 481

Neurocomputing, pages 408:189– 215. 482

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 483

SimCSE: Simple contrastive learning of sentence 484

embeddings. Proceedings of the 2021 Conference 485

on Empirical Methods in Natural Language 486

Processing, Punta Cana, Dominican Republic 487

pages 6894–6910, Association for Computational 488

Linguistics. 489

Kenta Mikawa, Takashi Ishida and Masayuki Goto, A 490

proposal of extended cosine measure for distance 491

metric learning in text classification. 2011 IEEE 492

International Conference on Systems, Man, and 493

Cybernetics, Anchorage, AK, USA, 2011, pages. 494

1741-1746 495

Ken Lang. 1995. Newsweeder: Learning to filter 496

netnews. In Machine Learning, Proceedings of the 497

Twelfth International Conference on Machine 498

Learning, Tahoe City, California, USA, July 9-12, 499

1995, pages 331–339. Morgan Kaufmann. 500

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, 501

Dan Huang, Andrew Y. Ng, and Christopher Potts. 502

2011. Learning word vectors for sentiment 503

analysis. In Proceedings of the 49th Annual 504

Meeting of the Association for Computational 505

Linguistics: Human Language Technologies, 506

pages 142–150 507

Nils Reimers, and Iryna Gurevych. 2019. 508

SentenceBERT: Sentence embeddings using 509

Siamese BERT-networks. Proceedings of the 2019 510

Conference on Empirical Methods in Natural 511

Language Processing and the 9th International 512

Joint Conference on Natural Language 513

Processing (EMNLP-IJCNLP), Hong Kong, 514

China. pages 3982–3992, Association for 515

Computational Linguistics. 516

Tim Schopf, Daniel Braun, and Florian Matthes. 2023. 517

Evaluating unsupervised text classification: Zero-518

shot and similarity-based approaches. In 519

Proceedings of the 2022 6th International 520

Conference on Natural Language Processing and 521

Information Retrieval, NLPIR ’22, page 6–15, 522

New York, NY, USA. Association for Computing 523

Machinery. 524

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-525

Yan Liu. 2020. Mpnet: masked and permuted pre-526

training for language understanding. In 527

Proceedings of the 34th International Conference 528

on Neural Information Processing Systems, 529

NIPS’20, Red Hook, NY, USA. Curran Associates 530

Inc. 1 531

Zihan Wang, Dheeraj Mekala, and Jingbo Shang, 2021. 532

X-class: Text classification with extremely weak 533

supervision. Proceedings of the 2021 Conference 534

of the North American Chapter of the Association 535

for Computational Linguistics: Human Language 536

Technologies, pages 3043–3053, Association for 537

Computational Linguistics. 538

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo 539

Zhao, and Chao Zhang. 2021. Fine-tuning 540

pretrained language model with weak supervision: 541

A contrastive-regularized self-training approach. In 542

Proceedings of the 2021 Conference of the North 543

American Chapter of the Association for 544

Computational Linguistics: Human Language 545

Technologies, NAACL-HLT 2021, Online, June 6-546

11, 2021, pages 1063–1077. Association for 547

Computational Linguistics 548

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, 549

and Alexander Ratner. 2021b. WRENCH: A 550

comprehensive benchmark for weak supervision. In 551

Proceedings of the Neural Information Processing 552

Systems Track on Datasets and Benchmarks 1, 553

NeurIPS Datasets and Benchmarks 2021, 554

December 2021, virtual. 555

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 556

2015. Character-level convolutional networks for 557

text classification. In Advances in Neural 558

Information Processing Systems 28: Annual 559

Conference on Neural Information Processing 560

Systems 2015, December 7-12, 2015, Montreal, 561

Quebec, Canada, pages 649–657 562

Dawei Zhu, Xiaoyu Shen, Marius Mosbach, Andreas 563

Stephan, and Dietrich Klakow. 2023. Weaker than 564

you think: A critical look at weakly supervised 565

learning. In Rogers, A., Boyd-Graber, J., and 566

Okazaki, N., editors, Proceedings of the 61st 567

Annual Meeting of the Association for 568

Computational Linguistics (Volume 1: Long 569

Papers), Toronto, Canada. pages 14229–14253, 570

Association for Computational Linguistics. 571

 572

https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.1109/ICSMC.2011.6083923
https://doi.org/10.1109/ICSMC.2011.6083923
https://doi.org/10.1109/ICSMC.2011.6083923
https://doi.org/10.1016/b978-1-55860-377-6.50048-7
https://doi.org/10.1016/b978-1-55860-377-6.50048-7
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/3582768.3582795
https://doi.org/10.1145/3582768.3582795
https://dl.acm.org/doi/10.5555/3495724.3497138
https://dl.acm.org/doi/10.5555/3495724.3497138
https://doi.org/10.18653/v1/2021.naacl-main.242
https://doi.org/10.18653/v1/2021.naacl-main.242
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.48550/arXiv.2109.11377
https://doi.org/10.48550/arXiv.2109.11377
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification
https://doi.org/10.18653/v1/2023.acl-long.796
https://doi.org/10.18653/v1/2023.acl-long.796
https://doi.org/10.18653/v1/2023.acl-long.796

8

A Appendix A: Score Distribution 573

 574

Figure 6: The score distribution for a single class of document scores (DSj) with 5 clean samples on the left, and 575

with 10 clean samples on the right for the AGNews dataset. 576

 577

B Appendix B: Python Libraries 578

• The hugging face transformers library was 579

used to run the mpnet model. 580

• The sklearn library was used to implement 581

SVM. 582

• The pandas library was used to load csv 583

files. 584

• The sentence_transformers library was 585

used to perform cosine similarity 586

comparison. 587

 588

	1 Introduction
	2 Previous Work
	3 Methodology
	4 Results
	5 Analysis
	6 Conclusion
	7 Future Work
	8 Potential Risks
	9 Limitations
	References
	A Appendix A: Score Distribution
	B Appendix B: Python Libraries

