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Abstract 1 

Weakly supervised text classification is the 2 

ability to classify large, diverse types of 3 

unstructured text data while requiring only a 4 

small amount of manual guidance. With 5 

open-source pre-trained language models 6 

becoming widely available in the last couple 7 

of years, the weak supervision text 8 

classification domain has received renewed 9 

interest due to the potential for transfer 10 

learning. Recent weak supervision methods 11 

proposed using pre-trained language models 12 

have performed well against the popular 13 

WRENCH benchmark datasets (Zhang et al., 14 

2021), demonstrating the capability of 15 

transfer learning. However, these methods 16 

use pre-trained language models that are 17 

computationally expensive to perform 18 

inference with and are unfeasible to finetune 19 

without specialized accelerated hardware. 20 

Methods that don’t require fine-tuning often 21 

require repeated inference or large storage 22 

needs to achieve their results. In this paper, 23 

an alternative solution is proposed that uses 24 

a single inference step, has minimal storage 25 

and memory requirements, doesn’t require 26 

accelerated hardware, and can provide 27 

competitive results to much more hardware-28 

intensive methods. 29 

1 Introduction 30 

Finding access to large amounts of clean labeled 31 

data is not common in real use cases, and 32 

requiring domain experts to manually label more 33 

than a few samples can quickly become an 34 

expensive and time-consuming drain on 35 

resources. The text classification goal of users can 36 

also shift over time to reflect new data or new 37 

demands. An example is a customer complaint 38 

system; business users may want to track specific 39 

customer complaints based on a multitude of 40 

criteria, and this criterion is likely to change over 41 

time. Weak supervision promisesthe flexibility 42 

that this text classification task would require. 43 

Transformer architecture and hardware 44 

advances have allowed for capable pre-trained 45 

language models (PLM) to become available to 46 

the public. Large companies (i.e. Microsoft, 47 

Google) train them on expensive hardware over 48 

massive amounts of data, and then smaller 49 

organizations and individuals can directly use 50 

them for a variety of natural language processing 51 

(NLP) tasks. Autoencoder PLMs convert text by 52 

embedding it into dense, high-dimensional 53 

vectors which incorporate rich contextual 54 

meaning. This context captures the different 55 

meanings between words and allows for accurate 56 

semantic comparisons between words using these 57 

embeddings. It has been shown that averaging 58 

these word embeddings per document can retain 59 

the meaning of the overall document (Reimers 60 

and Gurevych, 2019); this is a useful tool for 61 

reducing memory and computational complexity 62 

of each document, by collapsing the words into a 63 

single pooled embedding. 64 

Cosine similarity is a formula to calculate the 65 

similarity between two vectors and has been 66 

successfully used for text document comparisons 67 

for many years (Mikawa et al., 2011). It has been 68 

used more recently with PLMs as a way to match 69 

class labels with document embeddings, 70 

demonstrating its effectiveness when regular clean 71 

samples are limited (Schopf et al., 2023).To use 72 

cosine similarity between the document vectors 73 

generated by a PLM, the PLM must be finetuned 74 

on a cosine similarity goal for pairs of sentences in 75 

order to generate a meaningful vector space 76 

(Reimers and Gurevych, 2019). SBERT (Reimers 77 

and Gurevych, 2019) and SimCSE (Gao et al., 78 

2021) are two popular options for performing this 79 

fine-tuning step. Contextually similar words in a 80 

meaningful vector space have high cosine 81 

similarity, and dissimilar words have a low cosine 82 

similarity. 83 
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2 Previous Work 84 

There are two recent categories of weak 85 

supervision methods that have had strong 86 

performance, but with contrasting design and 87 

hardware requirements. The first category 88 

requires fine-tuning on a PLM to obtain results. 89 

They often don’t generate their own weakly 90 

supervised data, and instead are methods to 91 

improve the accuracy of pre-generated noisy data. 92 

The second category of weak supervision 93 

methods do not require PLM fine-tuning or pre-94 

generated noisy data, and instead only require 95 

PLM inference. They are designed to use a low 96 

amount of manually provided words for each class 97 

to perform labeling. These methods work using a 98 

word-based analysis, and they need the full corpus 99 

of token embeddings available to function.  100 

The first category is a best fit for many different 101 

text classification tasks, including topic 102 

classification, sentiment analysis, name entity 103 

recognition, relation classification, etc. However, 104 

as shown by a recent survey of these types of weak 105 

supervision methods (Zhu et al., 2023), these 106 

methods still require clean samples to perform 107 

model selection and validation. This category was 108 

chosen due to its benchmark setting performance 109 

on many weak supervision datasets. COSINE (Yu 110 

et al., 2021) was chosen for comparison in this 111 

paper, as it was shown to be the best overall 112 

performing weak supervision method in the 113 

survey (Zhu et al., 2023). COSINE uses “roberta-114 

base” as its PLM for inferencing and fine-tuning. 115 

X-Class (Wang et al., 2021) belongs to the 116 

second category of text classification methods and 117 

doesn’t require fine-tuning a PLM or traditional 118 

clean samples. It only requires a one-word class 119 

label and performs very competitively on certain 120 

datasets. It is part of the one-word and low-word 121 

classification methods that work without using 122 

any traditional clean samples. It only requires a 123 

PLM to transform the text into embeddings, and 124 

can perform classification without fine-tuning or 125 

additional inference, as long as the entire corpus 126 

of token embeddings can be stored and retrieved. 127 

This category was selected due to both its strong 128 

performance and its minimal labeling 129 

requirements. X-Class was chosen for comparison 130 

in this paper because it is a top-performing 131 

method from this category. X-Class uses “bert-132 

base-uncased” as its PLM for inferencing. 133 

3 Methodology 134 

This paper’s algorithm combines a few different 135 

methods to obtain the final classification result: 136 

MPNet (Song et al., 2020), SBERT, cosine 137 

similarity, and SVM. MPNet fine-tuned with 138 

SBERT is used as the Autoencoder PLM for 139 

creating the initial document embeddings. 140 

SBERT fine-tuning is necessary for the 141 

embeddings generated by MPNet to be used 142 

directly with cosine similarity. Cosine similarity 143 

has been commonly used in the document scoring 144 

domain for many years. SVM is a machine 145 

learning classifier that learns boundary points and 146 

optimizes a best-fit margin between the different 147 

classes. It has shown to be one of the most 148 

powerful classifiers for a variety of domains 149 

(Cervantes et al., 2020), and it has the advantage 150 

of being memory and compute efficient versus 151 

PLMs when trained with limited, selective input 152 

data.  153 

A benefit to using the embeddings directly is 154 

that once they are generated by the PLM, they can 155 

be stored and reused indefinitely. As shown in 156 

Table 1, storing the document embeddings instead 157 

of the token embeddings greatly minimizes the 158 

storage and memory requirements.  The PLM is 159 

only necessary for further inference when new 160 

data is provided, class labels change, or the clean 161 

samples change. This removes the need for 162 

repeated inference and limits the usage of the 163 

compute-intensive PLM. The consequence is that 164 

once the initial corpus is embedded for the first 165 

time, the system can be modified near real time by 166 

users as their data monitoring needs progressively 167 

change.  168 

There is only one hyper parameter to modify; 169 

the number of standard deviations above the 170 

median class scores of the top cosine similarity 171 

scores per class (𝜶). The hyper parameter 𝜶 will 172 

be explained in detail below. For 𝜶, using 173 

anywhere from 2-3 is sufficient for most 174 

applications.  175 

3.1 PLM And Embedding Details 176 

The first step is to use MPNet to generate the 177 

embedding vectors for the text corpus. MPNet is 178 

an alternative to the encoder transformer network 179 

BERT, which instead uses a different pre-training 180 

method. This alternative pre-training method 181 

maximizes the amount of information the network 182 

receives for each input versus the traditional 183 

masked language modeling approach with BERT. 184 

This MPNet model was then fine-tuned using 185 

SBERT and a cosine similarity goal to create a 186 
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meaningful vector space that can be compared 187 

using cosine similarity. The specific model used 188 

for this paper was ”all-mpnet-base-v2”, since it 189 

used some of the largest amount of training data 190 

and therefore produced the most accurate and 191 

detailed embeddings.  192 

The standard tokenizer for MPNet is used to 193 

turn the input text into tokens to feed into MPNet. 194 

Any document with text over the 512 token limit 195 

of MPNet has the extra text truncated, and the 196 

extra text is not used. Once the 768-dimensions 197 

text embeddings are generated by MPNet for each 198 

token from the text, they are immediately pooled 199 

together as an average so that there is a single 768-200 

dimension vector per document.  201 

The second step is to then do the same MPNet 202 

embedding and pooling technique to the labeled 203 

text samples that will be provided by the domain 204 

expert. The class labels also need to be provided 205 

by a domain expert and then embedded into a 206 

vector as well. These class labels can be one word 207 

or multiple words. Now that all the relevant text 208 

has been turned into pooled MPNet embeddings, 209 

they can now be compared to each other using 210 

cosine similarity.  211 

3.2 Document Scoring 212 

There are two separate cosine similarity scoring 213 

processes that are combined and averaged 214 

together for each document’s score per class (DS): 215 

the highest sample cosine similarity score per 216 

class for each document (S1), and the class label 217 

cosine similarity score per document (S2). To get 218 

the first score, the highest cosine similarity 219 

amongst the samples for each class is obtained 220 

against each document. To get the second score, 221 

it’s simply the class label embedding cosine 222 

similarity for each class against each document.  223 

 224 

Figure 1: Document score (DS) for a given class ‘k’ 225 

and document ‘j’.  226 

3.3 Selecting Top Scores 227 

Once each document has a score for each class, 228 

the highest score for a document amongst all the 229 

classes is chosen as the class winner. Then, the top 230 

portion of scorers for each class are selected to be 231 

used. Specifically, the scores that are higher than 232 

Equation 3 are chosen. You can lower 𝜶 to lower 233 

the accuracy and widen the selection of samples 234 

returned or increase 𝜶 to improve the accuracy 235 

and reduce the number of samples returned. As 236 

the next step is to feed this data through SVM, it 237 

may be worth lowering the overall accuracy to 238 

increase the data available for SVM to use.  239 

 240 

Figure 2: Minimum document score DS required per 241 

class ‘k’ 242 

These high-confidence samples for each class 243 

are used to train the SVM algorithm implemented 244 

in the sklearn library using the radial basis kernel. 245 

Different kernels were examined, and the radial 246 

basis kernel provides the best overall results 247 

without having to modify the default 248 

hyperparameters. This SVM classifier is then used 249 

to do the final predictions on the full dataset. 250 

4 Results 251 

A variety of datasets were used to test the method 252 

proposed in this paper, and ensure it has flexibility 253 

amongst a variety of challenges. While cosine 254 

similarity + SVM is rarely a top-performing 255 

solution, it’s highly adaptable to many topic 256 

classification and sentiment analysis datasets 257 

without complex hyperparameter tuning, and 258 

produces competitive results compared against 259 

two well-performing weak supervision text 260 

classification methods, X-Class and COSINE. X-261 

Class uses a one-word class label to classify the 262 

data and doesn’t require clean samples to classify 263 

the data. COSINE does require clean samples, but 264 

only as validation samples for selecting a final 265 

model. For X-Class, the numbers from the 266 

original paper are used for the dataset if available, 267 

else the publicly available code is used to generate 268 

the results. 269 

4.1 Hardware Requirements 270 

Cosine similarity + SVM hardware cost is greatly 271 

minimized compared to many popular weak 272 

supervision methods. Common class label-based 273 

methods require using the entire corpus word 274 

embeddings, which can quickly grow to many 275 

GBs for even a small corpus of documents. By 276 

only requiring the averaged document 277 
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 278 

Table 1: Details for the datasets used in this paper. The CPU used was an Intel Core i9-9900k @ 3.6 GHz 279 

processor with 32 GB of RAM. The GPU used was a Nvidia RTX 2080 Ti. Batch size for embedding is 128 for 280 

GPU, 1 for CPU. 281 

 282 

Table 2: Training and testing time requirement for cosine similarity + SVM with two different datasets using 283 

only a CPU. The CPU used was an Intel Core i9-9900k @ 3.6 GHz processor with 32 GB of RAM. Batch size for 284 

embedding is 1. 285 

 286 

Figure 3: The performance of different models using SVM with document embeddings, along with estimates of 287 

their model size for inference.288 

embedding, storage requirements grow linearly 289 

with document count ‘m’, and it is not dependent 290 

on document size. 291 

Large models are not required to achieve 292 

competitive results when the PLM is fine-tuned 293 

using SBERT and a cosine similarity goal. The 294 

SBERT fine-tuned “all-mpnet-base-v2” model 295 

used in this paper performs significantly better 296 

with SVM than either equal sized or larger models 297 

that were not fine-tuned using SBERT. Fine-298 

tuning SBERT with a cosine similarity goal for 299 

the embedding space may allow the embeddings 300 

to be more linearly separated in high dimensions, 301 

which could account for the significant baseline 302 

improvement with SVM. This advantage further 303 

minimizes both the memory and storage needs 304 

required. 305 

 By minimizing the model size, the inference 306 

time and computational requirements are 307 

consequently reduced as well. The post-corpus 308 

embedding training and testing runtime is 309 

measurable in seconds, and the primary runtime 310 

bottleneck is the initial corpus embedding 311 

process. SVM can potentially be a source of 312 

slowdown if too many values are fed to it, but this 313 

can be controlled by the 𝜶 value. Cosine similarity 314 

+ SVM’s runtime is broken down in Table 2.  315 

4.2 Testing Procedure 316 

Due to the variance from selecting clean samples 317 

to use, each sample count was tested 20 times with 318 

a different sample selection each time. The 319 

average macro f1 for those 20 epochs are shown. 320 

𝜶=3 is used for the topic classification datasets, 321 

except for AGNews as it was the largest corpus so 322 

𝜶=3.5 was used to accelerate testing. 𝜶=2 was 323 

used for sentiment analysis datasets, because there 324 

wasn’t enough data selected with 𝜶=3. All SVM 325 

implementations use the default hyperparameters 326 

for C and gamma.  Cosine similarity + SVM can 327 

start at 0 samples by only using the class label 328 

score (S2). Cosine similarity + SVM and SVM are 329 

always the average of 20 runs. COSINE data is taken 330 

from the original paper and is the average of 5 runs. X-331 

Class data is taken from the original paper except for 332 



5 

 
 

the two untested datasets IMDB and 20Newsgroup (20 333 

class), where it is the result of a single run. 334 

4.3 Datasets 335 

A variety of common text classification datasets 336 

were used to evaluate this method. 337 

• AGNews (Zhang et al., 2015) is a topic 338 

classification dataset from a set of short 339 

news story summaries. 340 

• DBPedia (Zhang et al., 2015) is a topic 341 

classification dataset made of a list of 342 

short article descriptions from DBPedia. 343 

• 20Newsgroup (Lang, 1995) is a topic 344 

classification dataset made of a collection 345 

of news organized into 6 main groups or 346 

20 sub-groups. 347 

• IMDB (Maas et al., 2011) is a sentiment 348 

analysis dataset from a list of movie 349 

reviews from IMDB. 350 

• Yelp (Zhang et al., 2015) is a sentiment 351 

analysis dataset from a list of business 352 

reviews.353 

354 

 355 

  356 

Figure 4: The results of SVM, cosine similarity + SVM, and two recent weak supervision methods.  357 

   358 

Figure 5: The effect of changing the class label on the macro f1 accuracy when 0 clean samples are available 359 

for cosine similarity + SVM and X-class.  360 

 361 

Figure 6: Ablation study of different scoring components. For topic classification tasks, using DS (S1 & S2) 362 

provides the best performance over using S1 or S2 separately.  363 
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5 Analysis 364 

5.1 Ablation Study 365 

The performance of cosine similarity + SVM is 366 

better than standalone SVM when the number of 367 

samples per class is less than ten for all topic 368 

classification datasets, at which point it tends to 369 

converge. S1 and S2 provide two weak 370 

supervision signals that work together better than 371 

as separate methods for all topic classification 372 

datasets, as shown in Fig 3. 373 

 The S2 score performed best for the sentiment 374 

analysis datasets, and including the S1 score 375 

reduced the accuracy. Due to sentiment analysis 376 

being a higher-level concept than simple topic 377 

matching, it may be harder for document 378 

comparisons to identify sentiment. It may be more 379 

effective to capture the sentiment with a summary 380 

label of the objective versus using examples of the 381 

objective. This is reinforced by the drop in 382 

accuracy from the class label score when samples 383 

are provided for Yelp and IMDB datasets.  384 

5.2 Comparison to Previous Work 385 

Cosine similarity + SVM stays competitive with 386 

the two other high-performing weak supervision 387 

methods reviewed in this paper.  X-Class is 388 

dependent on the quality of the class label, and it 389 

can have a large effect on the final accuracy. Even 390 

semantically similar labels have this effect, as 391 

shown in Fig 2. Cosine similarity + SVM is also 392 

affected by the quality of the label, but it can be 393 

offset by clean samples for topic classification 394 

tasks. The performance of cosine similarity + 395 

SVM is less dependent on the specific words in a 396 

particular corpus, and is instead determined by 397 

both accuracy and descriptiveness, which makes 398 

for a more simple, general application across 399 

varied datasets. An example of this behavior is 400 

found in Fig 2; “positive” and “negative” perform 401 

similarly for both IMDB and Yelp for cosine 402 

similarity + SVM but have extreme variance with 403 

X-Class. 404 

For sentiment analysis tasks, overall goal 405 

summarization with cosine similarity + SVM 406 

performs much better with only the class label 407 

(S2) score. Cosine similarity + SVM with only the 408 

class label can match and outperform the accuracy 409 

of COSINE with 5 clean samples. For topic 410 

classification with AGNews, cosine similarity + 411 

SVM closely approaches COSINE performance. 412 

6 Conclusion 413 

Fine tuning PLMs is a resource and time intensive 414 

process. Even organizations that can afford to 415 

support expensive finetuning methods may want 416 

to instead repurpose older and more limited 417 

existing infrastructure. The ideal solution would 418 

be transfer learning without modification, where 419 

any general PLM trained by a large group with 420 

resources can be used directly for any common 421 

NLP task.  422 

As shown by the results, averaged document 423 

embeddings from a meaningful vector space 424 

provide competitive performance for topic and 425 

sentiment classification tasks while minimizing 426 

computational, storage, and memory 427 

requirements. It suggests that averaged dense 428 

embedding vectors have all the information 429 

needed to reach a similar level of performance 430 

versus more complex, hardware-expensive 431 

methods. 432 

7 Future Work 433 

Comparing documents and class labels is a simple 434 

process; further processing methods could yield 435 

improvements to the overall accuracy. The clean 436 

samples provided can be broken down into 437 

smaller pieces to provide more signals to refine 438 

the weak supervision labels. Alternative pooling 439 

methods could be explored for the word pooling 440 

step, such as maximum, minimum, median, etc.  441 

8 Potential Risks 442 

Pre-trained language models can have biases and 443 

unintended associations, and these can be 444 

especially present in models finetuned to produce 445 

semantically similar words. This risk is most 446 

present in low resource areas such as weak 447 

supervision, where there is little room for human 448 

correction. However, by allowing for multi-word 449 

class labels, using document averages, and 450 

including two different scoring methods, individual 451 

biases amongst particular words is greatly reduced. 452 

Classification can also be directly adjusted by 453 

including samples of a particular incorrect 454 

classification as part of the sample set for the 455 

correct class. This can mitigate the risk of 456 

unintended classifications due to inherent model 457 

biases. 458 



7 

 
 

9 Limitations 459 

There were only two types of text classification 460 

examined in this paper. Other types of text 461 

classification, such as relation classification, may 462 

not perform well with this paper’s semantic 463 

similarity-based method without additional 464 

processing.  465 

The ability to retain a near real-time ability to 466 

modify the classifier is severely diminished with 467 

larger datasets over one million samples, without 468 

careful consideration of the amount of data being 469 

fed into the SVM classifier. The 𝜶 parameter 470 

becomes more sensitive when datasets start to 471 

increase in size, and it could cause over-472 

sampling if it’s not carefully monitored. The 473 

need to perform cosine similarity against all 474 

documents in a larger dataset may also limit the 475 

near real-time scalability of this method. 476 
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A Appendix A: Score Distribution 573 

 574 

Figure 6: The score distribution for a single class of document scores (DSj) with 5 clean samples on the left, and 575 

with 10 clean samples on the right for the AGNews dataset. 576 

 577 

B Appendix B: Python Libraries 578 

• The hugging face transformers library was 579 

used to run the mpnet model. 580 

• The sklearn library was used to implement 581 

SVM. 582 

• The pandas library was used to load csv 583 

files. 584 

• The sentence_transformers library was 585 

used to perform cosine similarity 586 

comparison. 587 

 588 
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