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Abstract

Since the release of ChatGPT, the field of Natu-001
ral Language Processing has experienced rapid002
advancements, particularly in Large Language003
Models (LLMs) and their multimodal coun-004
terparts, Large Multimodal Models (LMMs).005
Despite their impressive capabilities, LLMs of-006
ten exhibit significant performance disparities007
across different languages and cultural contexts,008
as demonstrated by various text-only bench-009
marks. However, current research lacks such010
benchmarks for multimodal visio-linguistic set-011
tings. This work fills this gap by introducing012
M5, the first comprehensive benchmark de-013
signed to evaluate LMMs on diverse vision-014
language tasks within a multilingual and mul-015
ticultural context. M5 includes eight datasets016
covering five tasks and 41 languages, with a fo-017
cus on underrepresented languages and cultur-018
ally diverse images. Furthermore, we introduce019
two novel datasets, M5-VGR and M5-VLOD,020
including a new Visio-Linguistic Outlier Detec-021
tion task, in which all evaluated open-source022
models fail to significantly surpass the random023
baseline. Through extensive evaluation and024
analyses, we highlight substantial task-agnostic025
performance disparities between high- and low-026
resource languages. Moreover, we show that027
larger models do not necessarily outperform028
smaller ones in a multilingual setting.029

1 Introduction030

Since the release of ChatGPT, Natural Language031

Processing has experienced a significant surge in032

interest and research, with a particular focus on033

LLMs finetuned to follow human instructions. Be-034

sides proprietary models like GPT-4 (Achiam et al.,035

2023), Claude (Bai et al., 2022), or Gemini (Anil036

et al., 2023), there are also successful open-source037

variants such as Llama (Touvron et al., 2023),038

Phi (Gunasekar et al., 2023; Abdin et al., 2024),039

or Mistral (Jiang et al., 2023). While LLMs of-040

ten demonstrate impressive performance on a wide041
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Figure 1: An overview of the average performance of the
models on the datasets included in the M5 benchmark.
For xFlickrCO and XM3600, we report BERTScore F1.
For the other datasets, the accuracy metric is reported.

range of tasks, quantifying and measuring this per- 042

formance is challenging. Nevertheless, recent eval- 043

uation studies have shown that LLMs generally 044

perform well in English but much worse in other 045

languages (Ahuja et al., 2023a,b; Holtermann et al., 046

2024). 047

In this work, we focus on multimodal variants of 048

LLMs, Large Multimodal Models (LMMs), such 049

as GPT 4V (OpenAI, 2023), Gemini Pro V (Anil 050

et al., 2023), or the popular open-source model, 051

LLaVA (Liu et al., 2023a,b). LLMs are not text- 052

only but are also capable of processing images 053

in addition to text. Most open-source LMMs 054

comprise three major components: an LLM, a 055

vision-encoder model, and a mapping network that 056

projects image embeddings into the text embed- 057

ding space. With this architecture, where an LLM 058

serves as the core, we argue that LMMs inher- 059

ently suffer from the same issue as LLMs: they 060

generally perform much worse in non-English lan- 061

guages. However, existing benchmarks are either 062

text-only (Ahuja et al., 2023a) or multimodal but 063

monolingual (Yue et al., 2023), thus unable to prove 064

this hypothesis. In other words, current research 065

lacks multimodal multilingual benchmarks to ex- 066

amine LMMs’ multilingual capabilities. In this 067
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Datasets: xGQA, MaXM
Languages: 8 + 7 = 13 uniq.
Samples: 77328 + 2142
Label Format: Open Vocab.
Task Inputs:
Image A, Question, Prompt

Visual Question Answering 
(VQA)

Datasets: MaRVL, M5-VGR
Languages: 12 + 5 = 16 uniq.
Samples: 5670 + 1432
Label Format: Binary Class
Task Inputs:
Images A + B, Hypothesis, 
Prompt

Visually Grounded 
Reasoning (VGR)

Datasets: XVNLI
Languages: 5
Samples: 5500
Label Format: Binary Class
Task Inputs:
Image A, Hypothesis, 
Prompt

Visual Natural Language 
Inference (VNLI)

Datasets: M5-VLOD
Languages: 12
Samples: 1422
Label Format: Mul. Choice
Task Inputs:
Images A + B + C+ D + E, 
Hypothesis, Prompt

Visio-Linguistic Outlier 
Detection (VLOD) Image Captioning (IC)

Datasets: XM3600, xFlickrCO
Languages: 36 + 8 = 36 uniq.
Samples: 129600 + 14000
Label Format: Free Text
Task Inputs:
Images A, Prompt

M5
Multi-Lingual: 41 languages, 16 scripts, 13 language families
Multi-Modal: Text + image as input and text as output
Multi-Cultural: Cultural diversity in images taken across the globe
Multi-Task: Five different vision-language tasks
Multiple Models:  18 different LMMs, 10 model families, S to XL sizes

Figure 2: An informative overview of the M5 Benchmark introduced in this work.

work, we fill this gap by introducing the M5 Bench-068

mark, taking a significant step towards identifying069

and measuring the performance disparities of cur-070

rent LMMs between various languages. Figure 2071

and Figure 1 present a high-level summary of our072

benchmark. Moreover, we introduce two new eval-073

uation datasets, including a novel vision-language074

task. Both datasets focus on African and Asian075

cultures, which are underrepresented or even non-076

existent in previous benchmarks. Our exhaustive077

analyses additionally investigate the influence of078

different factors on the performance, such as the079

models’ size or language fidelity.080

Major Contributions The major contributions081

of this work are (a) M5, the first multimodal bench-082

mark to assess the performance of current LMMs083

across five tasks, eight datasets, and 41 languages;084

(b) Two novel datasets spanning 10 underrepre-085

sented African and Asian languages, English and086

German, with images depicting the respective cul-087

tures. (c) A novel vision-language task: Visio-Lin-088

guistic Outlier Detection (VLOD); (d) A large-s-089

cale evaluation of 18 recent LLMs and a thorough090

analysis of their multilingual performance. (e) A091

public release of our codebase and all datasets in a092

uniform schema to foster future research for more093

equitable and accessible LMMs or AI in general1.094

2 Related Work095

Large Multi-Modal Models This work focuses096

on the multimodal counterpart of large language097

models (LLMs), often referred to as Large Mul-098

timodal Models (LMMs). LMMs are language099

models capable of processing and “understanding”100

data other than text. While this generally subsumes101

images, video, audio, or more, we concentrate on102

1We will release all code and data upon acceptance.

visio-linguistic LMMs, i.e., models that take text 103

and/or images as input and generate textual output. 104

The vast majority of open-source LMMs com- 105

prise three major components: a pretrained genera- 106

tive LLM as the core, a pretrained vision-encoder 107

model that computes semantically rich image em- 108

beddings, and a shallow mapping network that 109

learned to project image embeddings into the text 110

embedding space. One of this architecture’s suc- 111

cessful open-source implementations with a re- 112

cent LLM, i.e., the Llama-based Vicuna (Chiang 113

et al., 2023; Touvron et al., 2023), is LLaVA (Liu 114

et al., 2023b), from which many others took in- 115

spiration also regarding the training data and pro- 116

cess. Besides this, LMMs also exist, which use 117

Cross-Attention (Wang et al., 2023; Bai et al., 118

2023), Q-Formers (Li et al., 2023; Geigle et al., 119

2023), Adapters (Eichenberg et al., 2022), or Pre- 120

ceiver Resamplers (Alayrac et al., 2022; Awadalla 121

et al., 2023) to process image embeddings. For 122

an overview including architectural details and the 123

number of parameters of the 18 LMMs’ compo- 124

nents we employed in this work, please see Table 8. 125

Evaluation Benchmarks With the recent surge 126

in the research of LLMs and LMMs, analyzing 127

the models’ performances is crucial yet challeng- 128

ing. Popular benchmarks like BIG-Bench (bench 129

authors, 2023), HELM (Liang et al., 2022), or 130

MMLU (Hendrycks et al., 2020) are the defacto- 131

standard to evaluate LLMs on text-only tasks pri- 132

marily in English. Efforts like MEGA, MEGA- 133

VERSE, or MultiQ (Ahuja et al., 2023a,b; Holter- 134

mann et al., 2024) extended these monolingual 135

benchmarks to a large set of diverse languages and 136

showed that the LLMs’ performance in English 137

versus non-English languages differs significantly. 138

Similarly, efforts have been made to eval- 139
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uate multimodal models. Benchmarks like140

MMMU (Yue et al., 2023), MME (Fu et al., 2023),141

or MMBench (Yuan et al., 2023) assess the per-142

formance of LMMs on a vast number of text-143

image tasks. However, these benchmarks primar-144

ily focus on English, with some tasks available in145

Chinese. Like MMMU, there is CMMMU (Ge146

et al., 2024), which focuses on text-image tasks in147

Chinese. Nonetheless, evaluating state-of-the-art148

LMMs in a massively multilingual large-scale set-149

ting remains largely unexplored. There are only150

a few multimodal multilingual evaluation datasets151

(see Section 3.2 and 8.6) and only two benchmarks:152

IGLUE (Bugliarello et al., 2022) and MEGA-153

VERSE. However, IGLUE evaluates only non-154

autoregressive transformer-encoders, thus lacking155

state-of-the-art LLMs. In MEGAVERSE, only five156

recent LMMs are evaluated on two datasets.157

3 The M5 Benchmark158

This section describes the setup of the M5 Bench-159

mark introduced by this work. Details about the160

experimental setup, including prompts and hyper-161

parameters, are reported in Appendix A.162

3.1 Models163

We chose the LMMs included in this benchmark for164

the following reasons: Firstly, we focussed on pub-165

licly available models released on Hugging Face166

except for GPT-4 Vision and Gemini Pro. Sec-167

ondly, we included LMMs well-performing on pop-168

ular multimodal English-only benchmark s such as169

MMMU (Yue et al., 2023) and MME (Fu et al.,170

2023). Thirdly, we aimed to cover a mixture of171

different model families and a broad model size172

spectrum, including small models with 3B to 9B,173

medium models with 10B to 19B, and large models174

with 20B to 40B parameters. For an overview of175

all models, including their number of parameters176

and other architectural details, see Table 8.177

3.2 Datasets178

This section briefly introduces the existing datasets179

included in our benchmark. In addition to these,180

we crafted two novel datasets described in Sec-181

tion 4. For details about the languages covered by182

the datasets, please refer to Table 6.183

xGQA The xGQA dataset (Pfeiffer et al., 2022)184

is a cross-lingual visual question-answering dataset.185

Each of the 9666 questions is available in eight186

languages covering five scripts, while the answers187

are in English only. The dataset holds 300 unique 188

images from Visual Genome (Krishna et al., 2017). 189

MaXM The MaXM dataset was introduced 190

by (Changpinyo et al., 2023) and is a VQA dataset 191

comprising seven languages in five scripts. In 192

MaXM, the questions and their respective answers 193

are in the same language. To increase cultural diver- 194

sity, the images were selected to match the region 195

where the target language is spoken. 196

XVNLI The XVNLI dataset (Bugliarello et al., 197

2022) introduces the task of Cross-lingual Vi- 198

sual Natural Language Inference where a model 199

needs to predict whether a textual hypothesis en- 200

tails, contradicts, or is neutral concerning a visual 201

premise. XVNLI comprises five languages cov- 202

ering three scripts and 357 unique images from 203

Visual Genome. 204

MaRVL The MaRVL dataset (Liu et al., 2021) 205

aims to benchmark models on Multicultural Rea- 206

soning over Vision and Language. A task sample 207

comprises two images, a textual statement, and a 208

binary true or false answer grounded in the im- 209

ages. MaRVL comprises five languages covering 210

three scripts and 4914 culturally diverse images 211

that match the respective languages. 212

XM3600 The XM3600 dataset (Thapliyal et al., 213

2022) is a large multilingual image captioning 214

dataset comprising 36 languages with 261375 cap- 215

tions for 100 unique images per language. The 216

images are selected to match the language’s cul- 217

tural background, ensuring cultural and linguistic 218

diversity. 219

xFlickrCO The xFlickrCO dataset (Bugliarello 220

et al., 2022) is an image captioning dataset and com- 221

prises 1000 images from Flickr30k (Young et al., 222

2014) and 1000 images from COCO (Lin et al., 223

2014). Each image is captioned in eight languages, 224

covering four different scripts. 225

4 Novel M5 Datasets 226

In addition to the existing datasets introduced in 227

the previous section, we crafted two novel multi- 228

modal and multilingual evaluation datasets. The 229

principal motivation behind this is to fill the gap 230

in existing vision-language datasets concerning the 231

lack of underrepresented languages, tasks, and cul- 232

tural diversity. Moreover, we aim to enable further 233

examination of LMMs and their performance on 234

non-English and non-Western data with a particular 235
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focus on African and Asian regions. Details, statis-236

tics, and examples are reported in Appendix B.237

Common Characteristics238

Languages Both datasets comprise samples in239

12 languages covering seven scripts (see Table 6):240

Amharic, Berber, Bengali, German, English, Fil-241

ipino, Hausa, Hindi, Russian, Swahili, Thai, Zulu.242

The languages were selected to enrich the set of243

languages covered by existing datasets, focusing244

on underrepresented languages from Asian and245

African countries or regions. To our knowledge,246

no other visio-linguistic evaluation dataset covers247

Amharic, Berber, Hausa, or Zulu.248

Depicting Cultural Diversity The images in249

our datasets originate from the Dollar Street250

dataset (Gaviria Rojas et al., 2022), comprising251

around 38K photos taken in 63 different regions252

or countries around the globe. These photos de-253

pict the lives of families, including their homes,254

neighborhoods, or everyday objects, in a culturally255

diverse way. Further, each image in the original256

dataset is tagged with one or more “topics” that257

roughly describe its visual content.258

Image Basis For our datasets, we sampled a259

subset of images from the dataset taken in re-260

gions where our 12 target languages are spoken.261

In this subset, which forms the visual basis for262

both of our datasets and is referred to as B, each263

image itl ∈ B is tagged with exactly one topic264

t ∈ T = {t0, . . . , t86} and was taken in a region rl265

where language l ∈ L = {l0, . . . , l11} is spoken.266

4.1 M5-VGR267

Figure 3: An Zulu example of the novel M5-VGR
dataset. Hypothesis: “Isithombe sokuqala nesithombe
sesibili sibonisa iqanda elisehhokweni. (The first pic-
ture and the second picture show the egg on the head.)”,
Label: False

Inspired by MaRVL, the goal of the M5-VGR268

dataset is to provide a visually grounded reason-269

ing (VGR) evaluation dataset that covers a wide270

range of topologically different languages and, at 271

the same time, visually represents a diverse set of 272

cultures in which the respective languages are spo- 273

ken. However, since the MaRVL dataset contains 274

only five languages, we chose 11 additional topo- 275

logically diverse languages for our dataset. To guar- 276

antee visual and linguistic diversity and high data 277

quality in our dataset, we hired professional native- 278

speaker annotators of the respective languages to 279

annotate the data. Moreover, we performed several 280

rounds of data quality assessment in close collabo- 281

ration with the annotators. 282

A task sample s in M5-VGR contains two im- 283

ages ia and ib, a textual visually grounded hypoth- 284

esis h, and a binary label c which is either true or 285

false concerning the two visual premises (see Fig- 286

ure 3). More specifically, for each language l ∈ L, 287

we created 120 tasks sl ∈ Sl as follows: In the first 288

step, we sampled 120 unique images atl ∈ B from 289

our image basis so that each topic t ∈ T occurs at 290

least once across all 12 languages. Then, for each 291

of the 120 images, we randomly selected another 292

image btl2 ∈ B associated with another language 293

l2 ̸= l ∈ L that shares the topic t. In the third 294

step, we asked the native-speaker annotators of the 295

language l to manually create a hypothesis h and a 296

label c which is either true or false concerning the 297

image premises
(
atl , b

t
l2

)
. Further, the annotators 298

were instructed to generate a hypothesis semanti- 299

cally related to the topic t if possible. 300

4.2 M5-VLOD 301

Figure 4: A Swahili example of the novel M5-VLOD
dataset. Hypothesis: “Picha zote zinaonyesha sabuni
inayotumika kwa mikono na mwili bila mtu yeyote. (All
the images show soap applied to the hands and body
without anyone.)”, Outlier: 1.

With the M5-VLOD dataset, we introduce a 302

novel multimodal task: Visio-Linguistic Outlier 303

Detection. The objective of the task is to detect 304

an outlier image from a set of images consider- 305

ing a textual statement. An example of the task is 306

shown in Figure 4, where five images related to the 307

topic “soap for hands and body” are shown. The 308

machine-translated English statement is: “All the 309

images show soap applied to the hands and body 310

without anyone.”. Because only the first image 311
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shows a person, the statement is incorrect for the312

first image and, therefore, is considered the outlier313

image.314

The dataset was collected similarly to M5-VGR,315

as described in the previous section. The major dif-316

ference is that instead of sampling only one image317

in the second step, we sample four images so that318

a sample sl0 ∈ Sl0 for language l0 ∈ L comprises319

of five images: {atl0 , b
t
l1
, ctl2 , d

t
l3
, etl4 , } associated320

with five different languages {l0, . . . , l4 ∈ L} that321

share one topic t ∈ T. In the third step, we asked322

the native-speaker annotators of the language l to323

manually create a textual statement h, valid for all324

but one of the images labeled as the outlier image.325

5 General Results Discussion326

This section discusses the models’ performance on327

the datasets considered in our benchmark. Table 1328

provides an overview of the performance in En-329

glish compared to non-English languages for all330

models and datasets. Note that we use friendly331

names for the models for better readability (see Ta-332

ble 8). Detailed results for each dataset and all their333

respective languages are provided in Appendix D.334

5.1 Summary of Findings335

Table 1 shows a clear pattern: Generally, LMMs336

perform significantly worse in non-English lan-337

guages across all tasks. More specifically, the av-338

erage performance across all models and datasets339

in English is 0.63 versus 0.47 in non-English lan-340

guages. Most models have an average performance341

difference from English to non-English larger or342

equal to 0.12. However, for GPT 4V and despite343

their much smaller size also for mBlip BloomZ,344

and mBlip T0, the difference is smaller than 0.1.345

For the two mBLIP models, the authors explicitly346

stated in their paper the language distribution in the347

training data, which covers 96 languages. Hence, it348

can be assumed that this is the reason for this slight349

absolute performance difference, and, further, this350

might indicate that GPT 4V was also trained in a351

multilingual fashion. Due to the difference in size352

and the architecture2 of the mBlip models and GPT353

4V, applying this multilingual training strategy for354

LMMs would generally lead to more robust multi-355

lingual performance.356

The average performance difference of the mod-357

els is most significant on the MaXM, XM3600,358

2While the architecture of GPT 4V is not known, it is likely
different from the mBlip models’ architecture, which employs
Q-Formers, rarely used in state-of-the-art LMMs.

and xFlickrCo datasets, for which the models are 359

required to generate non-English text. 360

Interestingly, for the M5-VLOD dataset, the 361

models that performed worse than the random base- 362

line of 0.2 in English performed better in non- 363

English languages. An explanation for this could 364

be false assumptions drawn from the English text. 365

This finding also explains why the average English 366

versus non-English performance disparity across 367

all models is equal for the dataset and lies around 368

the random baseline, indicating the challenge intro- 369

duced by our dataset. 370

5.1.1 Dataset-Specific Discussion 371

Note that due to brevity constraints, we report ex- 372

act numbers and diagrams of the language-specific 373

results for each dataset in Appendix D. 374

xGQA All models perform best in English 375

mostly, with a significant gap in accuracy to the 376

second-best language from up to 0.62 in English 377

to 0.36 in Russian for LLaVA 1.6 7B. In Bengali, 378

where the models have the lowest average accuracy 379

of 0.19, all models besides GPT 4V, which achieves 380

0.44, perform worst by far. The best-performing 381

model in English and the best-performing model on 382

average over all languages are the InternVL v1.2 383

and InternVL v1.1 models. Notably, despite their 384

(estimated) much larger size, GPT 4V and Gemini 385

Pro V are among the worst-performing models 386

in English. After manually inspecting the results, 387

we found the reason for this to be that the models 388

did not respond in a single word but with a brief 389

sentence, which is considered a false answer ac- 390

cording to the applied metric (see Appendix A.2 391

and Section 8.2). 392

MaXM The average accuracy of the models for 393

Hindi (0.22), Hebrew (0.19), Romanian (0.27), 394

Thai (0.25), and Chinese (0.24) is much lower than 395

for English (0.51) and French (0.35). It is also 396

worth pointing out that most models, regardless of 397

their size, perform remarkably worse in languages 398

other than English (and French). In contrast, on 399

xGQA, which is also a VQA dataset, the differ- 400

ences between the languages are much more minor. 401

This is likely due to the difference between the two 402

datasets, i.e., that xGQA has multilingual questions 403

but only English answers, while MaXM has mul- 404

tilingual questions and expects the answers in the 405

respective language, too. We further underline this 406

in our language fidelity analysis in Section 6.3. 407
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Model Dataset

xGQA MaXM XVNLI MaRVL M5-VLOD M5-VGR xFlickrCO XM3600 ALL
E NE E NE E NE E NE E NE E NE E NE E NE E NE ∆

CogVLM 0.59 0.30 0.43 0.02 0.47 0.29 0.60 0.51 0.10 0.08 0.68 0.55 0.87 0.60 0.88 0.65 0.58 0.38 −0.20
BakLLaVA 0.62 0.32 0.53 0.08 0.48 0.34 0.59 0.53 0.14 0.20 0.71 0.48 0.91 0.63 0.88 0.64 0.61 0.40 −0.21
LLaVA 1.6 7B 0.60 0.34 0.34 0.16 0.59 0.45 0.62 0.53 0.14 0.21 0.55 0.42 0.88 0.64 0.88 0.67 0.57 0.43 −0.15
LLaVA 1.5 7B 0.62 0.30 0.52 0.15 0.60 0.47 0.57 0.52 0.15 0.20 0.48 0.42 0.92 0.68 0.89 0.67 0.59 0.43 −0.17
Yi-VL 6B 0.57 0.32 0.53 0.20 0.56 0.38 0.59 0.53 0.20 0.19 0.73 0.61 0.91 0.64 0.91 0.66 0.62 0.44 −0.18
MiniCPM-V 0.55 0.31 0.56 0.19 0.66 0.49 0.61 0.53 0.20 0.20 0.80 0.56 0.91 0.65 0.90 0.65 0.65 0.45 −0.20
LLaVA 1.5 13B 0.62 0.34 0.56 0.19 0.59 0.49 0.60 0.54 0.16 0.21 0.57 0.46 0.91 0.69 0.90 0.69 0.61 0.45 −0.16
Qwen-VL 0.59 0.33 0.50 0.23 0.62 0.54 0.60 0.53 0.16 0.21 0.82 0.54 0.89 0.62 0.90 0.65 0.64 0.46 −0.18
Yi-VL 34B 0.58 0.38 0.53 0.20 0.59 0.51 0.62 0.58 0.26 0.19 0.77 0.52 0.91 0.64 0.90 0.66 0.65 0.46 −0.19
Gemini Pro V 0.46 0.34 0.48 0.23 0.49 0.49 0.55 0.55 0.52 0.36 0.79 0.66 0.86 0.67 0.63 0.41 0.60 0.46 −0.13
OmniLMM 12B 0.49 0.36 0.48 0.11 0.64 0.54 0.64 0.56 0.19 0.21 0.78 0.59 0.91 0.66 0.89 0.68 0.63 0.46 −0.16
LLaVA 1.6 13B 0.65 0.38 0.46 0.24 0.61 0.55 0.65 0.65 0.14 0.21 0.78 0.50 0.90 0.67 0.88 0.68 0.63 0.48 −0.15
mBliP BloomZ 0.44 0.39 0.55 0.29 0.40 0.44 0.55 0.56 0.14 0.21 0.69 0.56 0.92 0.72 0.91 0.71 0.58 0.49 −0.09
InternVL V1.1 0.63 0.48 0.58 0.34 0.61 0.56 0.63 0.60 0.13 0.21 0.73 0.62 0.92 0.66 0.91 0.68 0.64 0.52 −0.12
LLaVA 1.6 34B 0.65 0.46 0.58 0.32 0.62 0.58 0.64 0.66 0.26 0.22 0.87 0.64 0.89 0.68 0.88 0.70 0.67 0.53 −0.14
mBliP mT0 0.44 0.40 0.50 0.42 0.59 0.57 0.60 0.63 0.12 0.17 0.74 0.69 0.92 0.73 0.91 0.71 0.60 0.54 −0.07
InternVL V1.2+ 0.67 0.43 0.60 0.42 0.63 0.58 0.68 0.61 0.28 0.23 0.86 0.68 0.92 0.71 0.90 0.70 0.69 0.55 −0.15
GPT 4V 0.45 0.41 0.49 0.53 0.69 0.68 0.64 0.66 0.70 0.42 0.88 0.81 0.90 0.70 0.89 0.72 0.70 0.62 −0.09

Average 0.57 0.37 0.51 0.24 0.58 0.50 0.61 0.57 0.22 0.22 0.73 0.57 0.90 0.67 0.88 0.66 0.63 0.47 −0.15

Table 1: Average performance in English (E) and non-English languages (NE) on all datasets for all models. For
each dataset and the ∆ column, the heatmaps are created individually, indicated by the column gutter. The column
“ALL” represents the average across all datasets. For xFlickrCO and XM3600, we report BertScore F1 and for the
rest of the datasets, we report the relaxed accuracy.

XVNLI English accuracy is the best for most408

models, with an average of 0.58, whereas Arabic409

accuracy is the worst, with an average of 0.43. The410

performance drop from English to the other lan-411

guages, i.e., Spanish (0.51), French (0.52), and412

Russian, with average accuracy scores of 0.51,413

0.52, and 0.52, is less substantial. Note that414

XVNLI is an NLI dataset, i.e., the random base-415

line is at 1
3 . All models surpass this baseline in416

all languages, except for CogVLM in Arabic (0.26)417

and French (0.27). The best-performing model is418

GPT4 V with an average accuracy across all lan-419

guages of 0.68, followed by LLaVA 1.6 34B and420

InternVL V1.2+ with average scores of 0.59 and421

0.58, respectively.422

MaRVL The dataset’s random baseline is 0.5,423

which is often only slightly surpassed by most mod-424

els, especially for Swahili and Tamil languages,425

with an average accuracy of 0.53 and 0.54, respec-426

tively. Notably, only 8 of 18 models perform best427

in English, with an average accuracy of 0.61. For428

the other models, the English performance is sur-429

passed by Chinese, Indonesian, or Turkish, with430

an average accuracy of 0.60, 0.60, and 0.59, re-431

spectively. GPT-4V is on par with LLaVA 1.6 34B432

despite the latter having much fewer parameters.433

M5-VGR As with MaRVL, this dataset’s ran-434

dom baseline is at 0.5. Only one of 18 models,435

i.e., InternVL V1.2+, could surpass or reach this436

baseline in all languages. As expected, most mod-437

els performed best in English, German, or Rus-438

sian, with average accuracies of 0.73, 0.68, and439

0.69, respectively. They performed worst in low-440

resource languages such as Amharic, Berber, Ben- 441

gali, Hausa, or Zulu, with an average accuracy 442

of 0.53, 0.49, 0.55, and 0.52, respectively. Only 443

three models, i.e., Gemini Pro V, mBlip mT0, and 444

GPT 4V, consistently and significantly surpass the 445

random baseline in all languages except for Berber. 446

The only languages where the average performance 447

is significantly higher than the 0.5 random baseline 448

are English (0.73), German (0.68), Russian (0.69), 449

and Thai (0.62). The average scores of the other 450

languages range from 0.49 in Berber to 0.57 in 451

Hindi. 452

M5-VLOD The dataset’s random baseline is 0.2 453

since the models need to find the outlier within 454

five images. Only GPT 4V and Gemini Pro V sig- 455

nificantly surpassed that baseline in all languages, 456

with an average accuracy of 0.42 and 0.36, respec- 457

tively. They achieve the best scores in English with 458

an average accuracy of 0.70 (GPT 4V) and 0.52 459

(Gemini Pro V. However, in Berber, both mod- 460

els only achieve scores around the random base- 461

line. All other models do not surpass the random 462

baseline in all languages, including English, by 463

more than 0.1, with average scores between 0.08 464

(CogVLM) and 0.23 (InternVL V1.2+) This high- 465

lights the challenge introduced by our dataset and 466

the performance gap between proprietary and open- 467

source models. 468

xFlickrCO The majority of models perform best 469

in English, often with a significant margin in av- 470

erage chrF++, i.e., 24.93 in English and 12.49 in 471

non-English languages. Other languages where 472

the modes perform comparably well are German 473
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and Spanish, with average chrF++ scores of 19.95474

and 19.55, respectively. Interestingly, all mod-475

els perform worse in non-Latin script languages,476

i.e., Russian (9.70), Chinese (4.53), and Japanese477

(4.05). Unexpectedly, the proprietary models GPT478

4V and Gemini Pro V are surpassed by mBliP479

BloomZ, mBliP mT0, and InternVL V1.2+, which480

are much smaller open-source models. Even in481

English, most open-source models outperform the482

proprietary models.483

XM3600 Note that due to limited resources, we484

evaluated GPT 4V only on a subset of 12 of 36485

languages. Most models perform best in English486

(27.14 average chrF++) by a large margin, followed487

by other Latin scripts in high-resource languages488

such as French (23.65), Spanish (23.52), or Dutch489

(21.01). On average, the models perform worst on490

non-Latin script languages like Korean (3.50), Tel-491

ugu (4.79), and Bengali (5.11). However, although492

the chrF++ metric claims to be script and language-493

independent, the low scores in high-resource lan-494

guages like Chinese (3.95) and Japanese (5.13)495

make the metric questionable. While detailed anal-496

ysis is out of the scope of this work, in future497

work, we will investigate this issue further (see498

Section 8.1).499

6 Aggregated Result Analyses500

6.1 Performance per Language501

Figure 5 shows the average performances ag-502

gregated by language3 or language taxonomy503

classes (Joshi et al., 2020). These taxonomy classes504

indicated how well a respective language is rep-505

resented and considered within the research field506

of NLP based on papers published at CL confer-507

ences. High-resource languages such as English508

or German are in Class 5, whereas low-resource509

languages such as Berber are in Class 0. For details510

about the languages and their taxonomy classes,511

please refer to Table 7.512

As can be observed from Figure 5a and Fig-513

ure 5b, the models perform best in English, fol-514

lowed by other European languages across all515

datasets. Our newly presented M5-VLOD dataset516

is an exception, where the average performance517

for all languages is around the random baseline,518

indicating the challenge it implies. As expected,519

the models consistently perform worse on low-520

3We do not show all 36 languages of XM3600 for better
readability.

resource languages than on high-resource lan- 521

guages on all datasets. This is also displayed in 522

Figure 5c, where it can be observed that the av- 523

erage performance decreases with the language 524

taxonomy class. Note that this is not precisely true 525

for xFlickrCO and XVNLI because the average 526

on Class-5 languages is lowered by outliers, as in- 527

dicated by the large error bars. In contrast, the 528

models performed comparably well in only one 529

Class 3 or 4 language, respectively.
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gated by language.
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(c) Performance on datasets aggregated by language taxonomy
class as introduced by Joshi et al. (2020).

Figure 5: Models’ performances on all datasets aggre-
gated by language or language taxonomy classes. 530

6.2 Performance vs. Model Parameters 531

In Figure 6, we plot the English and non-English 532

average performance on the employed datasets ver- 533

sus the models’ sizes in multiple regression plots. 534

Note that, on the x-axes, we indicated the unknown 535

sizes of GPT 4V and Gemini Pro V by “???”, which 536

are estimated to be of magnitudes larger than all 537

other models evaluated in this benchmark hence 538

should be much further right. However, we did not 539

do so to improve the readability of the plots. 540

In the figures, we can make several observa- 541

tions: Firstly, the average English performance 542

is higher than the non-English performance for 543

all models on all datasets. Secondly, the mark- 544
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ers, which represent the average performance of a545

specific model on a dataset, show that the largest546

model does not always perform best and that the547

difference between smaller and larger models is of-548

ten neglectable. The same finding is shown by the549

relatively flat slope of the regression lines. How-550

ever, for the M5-VLOD and VGR datasets, the551

regression line for the average English scores is552

steeper, meaning that larger models perform con-553

siderably better than the smaller models. Since this554

work introduces the datasets and M5-VLOD even555

introduces a novel task, it can be concluded that556

larger models can better generalize to unseen data.557
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Figure 6: Regression plots showing the English and
average non-English performance versus model size
on different datasets. On the x-axis, we indicated the
unknown sizes of GPT 4V and Gemini Pro V by “???”.

6.3 Language Fidelity Analysis558

Inspired by Holtermann et al. (2024), we report559

the results of a language fidelity analysis, which560

assesses how often a model responds in the re-561

quested language on average. For this, we used562

GlotLIDv3 (Kargaran et al., 2023) to predict the563

language based on the output text of the respective564

models. Since it is hard to predict the language of565

a word or a multi-word expression due to ambigu-566

ity, we selected the xFlickrCO dataset, where the567

expected response of a model is an image caption,568

i.e., a sentence, in one of eight languages. As it can569

be observed from Table 2, all models achieve (al-570

most) perfect fidelity in English where, whereas for571

Japanese, Russian, and Turkish, the average fidelity572

drops to two-thirds. Interestingly, the small-sized573

mBLIP models have almost perfect fidelity in all574

languages, (slightly) surpassing larger models like575

InternVL V1.2+ and GPT 4V.576

While the language fidelity of a model focuses577

Table 2: Language fidelity results on the xFlickrCO
dataset.

Model Language

zh en de id ja ru es tr Avg.

BakLLaVA .00 1.0 .39 .06 .00 .00 .44 .00 .24
Yi-VL 6B .14 1.0 .20 .00 .20 .01 .57 .00 .28
Qwen-VL .95 .99 .18 .11 .15 .08 .15 .07 .33
Yi-VL 34B .43 1.0 .79 .45 .58 .22 .25 .33 .51
CogVLM .44 .95 .74 .76 .38 .43 .82 .54 .63
LLaVA 1.5 13B .88 1.0 .75 .55 .90 .26 .75 .40 .69
LLaVA 1.5 7B .83 1.0 .96 .83 .09 .22 .97 .67 .70
MiniCPM-V .21 1.0 .93 .79 .89 .96 .91 .68 .80
LLaVA 1.6 7B .99 .99 .66 .91 .59 .88 .91 .89 .85
InternVL V1.1 .96 1.0 .93 .78 .88 .89 .97 .66 .89
OmniLMM 12B .63 1.0 .95 .92 .83 .92 .98 .88 .89
Gemini Pro .95 .95 .95 .88 .91 .96 .97 .96 .94
LLaVA 1.6 13B 1.0 1.0 .90 .96 .91 .87 .97 .93 .94
LLaVA 1.6 34B .88 1.0 .99 .99 .86 .99 .99 .99 .96
GPT 4V .97 1.0 1.0 .98 .88 .99 .99 1.0 .98
InternVL V1.2+ .99 1.0 1.0 .95 .97 .99 .99 .96 .98
mBliP BloomZ .96 1.0 1.0 .99 .99 1.0 1.0 .99 .99
mBliP mT0 .96 1.0 1.0 .99 .99 1.0 1.0 1.0 .99
Avg. .73 .99 .79 .72 .67 .65 .81 .66 .75

on the generated text, we argue that the fidelity 578

is also an indicator of the model’s general lan- 579

guage capabilities. To prove this hypothesis, we 580

computed Pearson correlation coefficients between 581

the reported fidelity and the models’ performance 582

on the datasets for the xFlickrCO languages. As 583

shown in Table 17, there is a positive moderate or 584

high correlation between the average fidelity and 585

the average score for most datasets. However, for 586

xGQA and M5-VLOD, there is only a minor posi- 587

tive average correlation. 588

7 Conclusion 589

We introduced M5, a diverse benchmark in 590

which we evaluated 18 Large Multimodal Mod- 591

els (LMMs) with varying sizes across five visio- 592

linguistic tasks in eight datasets comprising 41 593

unique languages. Further, we presented two novel 594

datasets – M5-VGR and M5-VLOD – which focus 595

on underrepresented languages and depict cultur- 596

ally diverse scenes. With M5-VLOD, we intro- 597

duce a new visio-linguistic outlier detection task 598

in which only proprietary models achieve reason- 599

able scores. Our experiments revealed that model 600

size does not always correlate with better perfor- 601

mance, especially in non-English languages, un- 602

derscoring the importance of diverse, multilingual 603

training data and robust architectures. Performance 604

disparities were prominent between high-resource 605

languages like English and low-resource languages 606

across all datasets and models, highlighting on- 607

going challenges in achieving globally equitable 608

multilingual AI. With M5, we aim to impel the de- 609

velopment of more inclusive models suitable for 610

diverse languages and cultures. 611
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8 Limitations612

This section outlines several limitations of our cur-613

rent study that will be addressed in future work.614

8.1 Metrics for Multilingual Image615

Captioning616

Our benchmark and current research generally lack617

robust metrics for evaluating multilingual image618

captioning, especially for non-Latin script lan-619

guages. The issue, which is the same for ma-620

chine translation tasks, arises because of the na-621

ture of most metrics, such as chrF (Popović, 2017),622

CIDEr (Vedantam et al., 2015), ROUGE (Lin,623

2004), BLUE (Papineni et al., 2002), or ME-624

TEOR (Banerjee and Lavie, 2005), which are based625

on comparing word or character n-grams between626

the source and target sequence. For non-Latin627

scripts, tokenization or segmentation can be chal-628

lenging because it might not contain spaces or punc-629

tuation, or the characters are logographic. Hence,630

their usability or effectiveness is doubtful in such631

scenarios because the metrics rely on tokenization.632

Other metrics, such as BERTScore (Zhang633

et al., 2020), CLIPScore (Hessel et al., 2021), or634

COMET (Rei et al., 2020), do not rely on the cap-635

tions’ surface forms but on their token or sentence636

embeddings. However, they suffer from other is-637

sues: They require strong multilingual or cross-638

lingual encoder models capable of computing em-639

beddings for many languages, which itself is a chal-640

lenging task. Further, the scores computed with641

these metrics are often not calibrated across lan-642

guages and thus not directly comparable between643

different languages.644

A promising currently popular solution might645

be the use of robust multilingual state-of-the-art646

LLMs such as GPT 4o4, Claude 3 Opus5, or Gem-647

ini 1.5 Ultra6 as a judge (Zheng et al., 2024). How-648

ever, this would require more computational and649

financial resources and, most importantly, more650

investigation.651

8.2 VQA Metrics for Generative Models652

The problem when employing and evaluating gener-653

ative language models on question-answering tasks654

is that the models can generally output arbitrary655

token sequences. However, the gold label answers656

4https://openai.com/index/hello-gpt-4o/
5https://www.anthropic.com/news/

claude-3-family
6https://blog.google/technology/ai/

google-gemini-next-generation-model-february-2024/

are limited and often comprise only a short phrase, 657

a single word, or even a binary label. Hence, map- 658

ping the predicted answers to their gold labels is 659

not straightforward, and the difficulty drastically 660

increases in multilingual scenarios. The relaxed 661

accuracy metric employed in this study (see Sec- 662

tion A.1) has been found to occasionally incorrectly 663

classify correct answers, leading to false negatives, 664

especially in open vocabulary visual question an- 665

swering (VQA). One way to address this issue is 666

to leverage strong state-of-the-art LLMs as judges, 667

as described above, to enhance the accuracy of the 668

evaluations. 669

8.3 Influence of Prompting 670

Another limitation of this and most, if not all, other 671

current studies is grounded in the model prompting. 672

Since different models might react differently to 673

specific prompting styles, and we only employ a 674

single prompt per dataset for all models7 (see Fig- 675

ure 7), the results might not be optimal. This issue 676

has been partially addressed by Ahuja et al. (2023a) 677

but is out of the scope of this work. 678

8.4 “Outdated” Models 679

Since the pace of current research in NLP, CV, and 680

multimodal machine learning is swift, the models 681

employed in our benchmarking exercise might be 682

considered slightly outdated. Note that we consid- 683

ered models released until March 2024. Since then, 684

numerous improved LMMs based on state-of-the- 685

art LLMs, such as Llama38 and novel image en- 686

coders techniques such as NaVIT (Dehghani et al., 687

2024), have been publicly released. Because this 688

was foreseeable, we designed our benchmark to be 689

easily extendable with newer models, which we 690

will include in future work. 691

8.5 Small M5 Datasets 692

This work introduced two datasets, M5-VGR and 693

M5-VLOD, which comprise about 115 samples 694

for each of the 12 languages. Compared to other 695

datasets, they can be considered small. We will 696

increase their sizes in future work to obtain more 697

robust and generalizable results. 698

7We do apply the model-specific prompt or chat templates,
though.

8https://ai.meta.com/blog/meta-llama-3
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8.6 Missing multimodal and Multilingual699

Datasets700

Currently, the M5 Benchmark comprises 5 text-701

image tasks, i.e., VQA, VGR, VNLI, and image702

captioning, thus missing other suitable tasks like703

multimodal and multilingual summarization. Fur-704

ther, other multimodal multilingual VQA and VGR705

datasets have emerged while writing this paper. We706

will include both new tasks and new datasets in707

future versions of the M5.708

References709

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,710
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,711
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-712
rat Behl, et al. 2024. Phi-3 Technical Report: A713
Highly Capable Language Model Locally On Your714
Phone. ArXiv, 2404.14219.715

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama716
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,717
Diogo Almeida, Janko Altenschmidt, Sam Altman,718
Shyamal Anadkat, et al. 2023. GPT-4 Technical Re-719
port. ArXiv, 2303.08774.720

Kabir Ahuja, Harshita Diddee, Rishav Hada, Milli-721
cent Ochieng, Krithika Ramesh, Prachi Jain, Ak-722
shay Nambi, Tanuja Ganu, Sameer Segal, Mohamed723
Ahmed, Kalika Bali, and Sunayana Sitaram. 2023a.724
MEGA: Multilingual Evaluation of Generative AI.725
In Proceedings of the 2023 Conference on Empiri-726
cal Methods in Natural Language Processing, pages727
4232–4267, Singapore.728

Sanchit Ahuja, Divyanshu Aggarwal, Varun Gumma,729
Ishaan Watts, Ashutosh Sathe, Millicent Ochieng,730
Rishav Hada, Prachi Jain, Maxamed Axmed, Ka-731
lika Bali, et al. 2023b. MEGAVERSE: Bench-732
marking Large Language Models Across Languages,733
Modalities, Models and Tasks. arXiv preprint734
arXiv:2311.07463.735

01. AI, :, Alex Young, Bei Chen, Chao Li, Chen-736
gen Huang, Ge Zhang, Guanwei Zhang, Heng Li,737
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong738
Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang,739
Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang,740
Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng741
Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai,742
Zhenyu Gu, Zhiyuan Liu, and Zonghong Dai. 2024.743
Yi: Open Foundation Models by 01.AI. Preprint,744
arXiv:2403.04652.745

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,746
Antoine Miech, Iain Barr, Yana Hasson, Karel747
Lenc, Arthur Mensch, Katherine Millican, Malcolm748
Reynolds, et al. 2022. Flamingo: A Visual Language749
Model for Few-Shot Learning. Advances in neural750
information processing systems, 35:23716–23736.751

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean- 752
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 753
Schalkwyk, Andrew M Dai, Anja Hauth, et al. 2023. 754
Gemini: A Family of Highly Capable Multimodal 755
Models. ArXiv, 2312.11805. 756

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hes- 757
sel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, 758
Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. 759
2023. OpenFlamingo: An Open-Source Framework 760
for Training Large Autoregressive Vision-Language 761
Models. arXiv preprint arXiv:2308.01390. 762

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, 763
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, 764
and Jingren Zhou. 2023. Qwen-VL: A Versatile 765
Vision-Language Model for Understanding, Local- 766
ization, Text Reading, and Beyond. 767

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, 768
Amanda Askell, Jackson Kernion, Andy Jones, Anna 769
Chen, Anna Goldie, Azalia Mirhoseini, Cameron 770
McKinnon, et al. 2022. Constitutional AI: Harmless- 771
ness From AI Feedback. ArXiv, 2212.08073. 772

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: 773
An Automatic Metric for MT Evaluation with Im- 774
proved Correlation with Human Judgments. In Pro- 775
ceedings of the ACL Workshop on Intrinsic and Ex- 776
trinsic Evaluation Measures for Machine Transla- 777
tion and/or Summarization, pages 65–72, Ann Arbor, 778
Michigan. 779

BIG bench authors. 2023. Beyond the Imitation Game: 780
Quantifying and extrapolating the capabilities of lan- 781
guage models. Transactions on Machine Learning 782
Research. 783

Emanuele Bugliarello, Fangyu Liu, Jonas Pfeiffer, Siva 784
Reddy, Desmond Elliott, Edoardo Maria Ponti, and 785
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A Experimental Setup Details 1010

This section details the employed metrics, prompts, and generation hyperparameters. 1011

Note that we ran all experiments on A6000 (50GB) and A100 (80GB) GPUs. The largest evaluated 1012

model (40B) fits on an A100. 1013

A.1 Metrics 1014

Following Geigle et al. (2023), we report a relaxed accuracy metric for the xGQA, MaXM, XVNLI, and 1015

MaRVL datasets due to the generative nature of the considered models. More specifically, we post-process 1016

the generated answers by, e.g., lowercasing, stripping, or removing punctuation. We then consider the 1017

processed generated answer correct if it matches the gold answer or starts or ends with the gold answer. 1018

Further, we allow synonyms for boolean and numerical values. Examples can be found in Table A.2. 1019

Inspired by Ahuja et al. (2023b), we report the chrF++ (Popović, 2017) metric for the xFlickrCo and 1020

XM3600 datasets. 1021

A.2 Relaxed Accuracy Metric 1022

Table 3: Examples of generated answers considered correct or incorrect in the relaxed accuracy metric used to
measure the performance on the xGQA, MaXM, MaRVL, XVNLI, M5-VGR, and M5-VLOD datasets. For more
details, please refer to our GitHub repository.

Generated Answer Gold Answer Considered Correct

{Yes, 1, True} true yes
{No, 0, False} false yes
A car. car yes
Yes, it is correct. yes yes
It is not correct, no. no yes
The color of the leaf is green. green yes
There are three birds. three birds yes
Five 5 yes
{yes, true} entailment yes
{no, false} contradiction yes
maybe neutral yes
There are three birds in the image. three birds no
There are three birds. 3 no
three birds 3 no
three birds 3 birds no

A.3 Prompts 1023

Figure 7 presents the dataset-specific textual prompts we used for all models in this benchmark. Note that 1024

this does not include model-specific prompt templates, image placeholders, special tags, or symbols, only 1025

the ”raw” textual prompt, which is then embedded in the template as required by the respective model. 1026

The placeholders {QUESTION}, {LANGUAGE}, or {HYPOTHESIS} are replaced by the sample specific text. 1027

The prompts are partially inspired by Geigle et al. (2023) or Bugliarello et al. (2022). 1028

A.4 Hyperparameters 1029

This section briefly reports hyperparameters used within our experiments for better reproducibility. 1030

A.4.1 Generation Parameters 1031

We used the same generation hyperparameters to generate responses with all the employed open-source 1032

models on all datasets (see Table 4). Those are inspired by the default parameters in the “transformers” 1033
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xGQA

Question: {QUESTION} Short answer in English:

MaXM

Question: {QUESTION} Short answer in {LANGUAGE}:

MaRVL

Based on the two images, is it correct to say “{HYPOTHESIS}”? Yes or no? One word answer in
English:

XVNLI

Is it guaranteed true that “{HYPOTHESIS}”? Yes, no, or maybe? One word answer in English:

M5-VGR

Based on the two images, is it correct to say “{HYPOTHESIS}”? Yes or no? One word answer in
English:

M5-VLOD

Based on the 5 images ordered from top-left to bottom-right, which image does not match the
hypothesis “{HYPOTHESIS}”? Choose one from [A, B, C, D, E] and only output a single letter:

xFlickrCo

Brief caption in {LANGUAGE}:

XM3600

Brief caption in {LANGUAGE}:

Figure 7: Prompts employed for the different datasets.

library9. Because for CogVLM, beam search is not supported, we set “num_beams” to 1. For GPT 4V1034

and Gemini Pro V, we use the default parameters of the respective Python clients.

Table 4: Generation hyperparameters to generate responses with all the employed models on all datasets.

Parameter Value

num_beams 2
do_sample True
max_new_tokens 50
temperature 1.0
top_k 50
top_p 0.95

1035

A.4.2 Image Order for Multi-Image Datasets1036

Most models employed in our dataset only support a single image per prompt. For datasets where a1037

sample comprises more than one image, i.e., for MaRVL, M5-VGR, and M5-VLOD, we use the following1038

strategy: We first stack the images horizontally with a gutter of 10 pixels, provide them as a single image1039

in the prompt, and generate the response. Then, we do the same again but stack the images vertically. For1040

9https://huggingface.co/docs/transformers/en/main_classes/text_generation
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M5-VLOD, we also create a stacked image with two columns and three rows. The reported scores are the 1041

average of all variants. 1042
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B Dataset Details1043

B.1 M5-VGR and M5-VLOD Details1044

B.1.1 M5-VGR Examples1045

ID: a06bcb6431fb4a7cb4335bbfb02e2047
Topic: paper
Language: Amharic
Hypothesis:

      
Machine Translation:
Both images show papers sitting on a table.
Answer: True

Figure 8: Amharic M5-VGR Sample.

ID: 90059df935e843f3a59b3b86c36cee96
Topic: tooth paste
Language: Bengali
Hypothesis:

            
Machine Translation:
The left picture shows two toothpaste tubes and one toothpaste tube is shown on the right
Answer: True

Figure 9: Bengali M5-VGR Sample.

ID: acc84d8170bc4cf492af35235731f437
Topic: water outlet
Language: Berber
Hypothesis:

        .
Machine Translation:

        .
Answer: False

Figure 10: Berber M5-VGR Sample.

ID: 7b86a95366dd424e8d24597936e89434
Topic: paper
Language: English
Hypothesis:
The first image shows green paper in a printer, and the second image shows yellow paper on a wooden floor.
Machine Translation:
The first image shows green paper in a printer, and the second image shows yellow paper on a wooden floor.
Answer: False

Figure 11: English M5-VGR Sample.
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ID: cc82590e83a846cb9edbebcf753055e6
Topic: water outlet
Language: Filipino
Hypothesis:
Ang pinagmumulan ng tubig ay marumi at nagkalat sa parehong larawan.
Machine Translation:
The source of the water is dirty and scattered in the same picture.
Answer: False

Figure 12: Filipino M5-VGR Sample.

ID: e0740bcbc03c406cb099eaa5c2040eda
Topic: table with food
Language: German
Hypothesis:
Das erste Bild zeigt eine Frau, die am Tisch Weintrauben isst, während das zweite Bild Essen für drei Personen zeigt.
Machine Translation:
The first image shows a woman eating grapes at the table, while the second image shows food for three people.
Answer: False

Figure 13: German M5-VGR Sample.

ID: 1668e4ad23d247909860a3d32eb2dba2
Topic: lock on front door
Language: Hausa
Hypothesis:
Dukka hotunan biyu kofar aki ne wanda aka rufe da kwa on rufe aki
Machine Translation:
Both pictures are a closed room with a closed door.
Answer: True

Figure 14: Hausa M5-VGR Sample.

ID: ba3a8016212e4ba58c2f8adeaa3a42ba
Topic: shower
Language: Hindi
Hypothesis:

     
Machine Translation:
Both pictures are of the bath house.
Answer: False

Figure 15: Hindi M5-VGR Sample.

ID: 1610f5e020a9435f9e773ef424033e73
Topic: shower
Language: Russian
Hypothesis:

      ,        .
Machine Translation:
In the first image, the shower walls are yellow, and in the second image in the shower walls, they are red.
Answer: False

Figure 16: Russian M5-VGR Sample.
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ID: eb2af5af22c2418ea83c7d148c125687
Topic: wardrobe
Language: Swahili
Hypothesis:
Katika picha zote mbili kuna kabati la nguo.
Machine Translation:
In both pictures there is a dresser cupboard.
Answer: False

Figure 17: Swahili M5-VGR Sample.

ID: 53ecad00e365421b8cfc9c220468e9ca
Topic: washing clothes/cleaning
Language: Thai
Hypothesis:

Machine Translation:
Both images are of people doing laundry.
Answer: False

Figure 18: Thai M5-VGR Sample.

ID: c50c1001121a4454aed3b1884ff04167
Topic: guest bed
Language: Zulu
Hypothesis:
Isithombe sokuqala yigumbi elicocwe kahle elinezingubo zokulala ezimhlophe kanti isithombe sesibili yigumbi elingacocwe kahle elidlala ezingane.
Machine Translation:
The first picture is a well-cleaned room with white bedding and the second picture is a poorly cleaned room that plays with children.
Answer: False

Figure 19: Zulu M5-VGR Sample.
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B.1.2 M5-VLOD Examples 1046

ID: f07848da8e4544a8a34d6c3e8141e88c
Topic: source of cool
Language: Amharic
Hypothesis:

      
Machine Translation:
All images show a device that we use to cool ourselves.
Outlier: 5

Figure 20: Amharic M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 11a37d8036f841d8ba028a501cf856c2
Topic: bedroom
Language: Bengali
Hypothesis:

     
Machine Translation:
Bed room bed contins in all images
Outlier: 2

Figure 21: Bengali M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: c5149f4ac81e439ea4be741e1f2e722d
Topic: cooking utensils
Language: Berber
Hypothesis:

       .
Machine Translation:

       .
Outlier: 4

Figure 22: Berber M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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ID: 843fac7edeff4fb4a2edc7c3ad1db388
Topic: drainage
Language: English
Hypothesis:
All images show a drain or drainage in a metal, ceramic surface or outside the house.
Machine Translation:
All images show a drain or drainage in a metal, ceramic surface or outside the house.
Outlier: 2

Figure 23: English M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 9af172b955dd4bb29e4d1c8601d504b2
Topic: armchair
Language: Filipino
Hypothesis:
Ang mga upuan sa mga larawan ay may armchair.
Machine Translation:
The chairs in the pictures have armchairs.
Outlier: 5

Figure 24: Filipino M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 8f4008857b4c4bfab8135d40a9419219
Topic: plate of food
Language: German
Hypothesis:
Die Bilder zeigen Teller mit Essen, das gegessen wird.
Machine Translation:
The pictures show plates of food being eaten.
Outlier: 4

Figure 25: German M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 97ba6f364e38430eb779c56ad24cf89c
Topic: drainage
Language: Hausa
Hypothesis:
Dukka hotunan akwai hanyyoin magudanar ruwa na waje da cikin gida.
Machine Translation:
All images are available on the exterior and exterior of the house.
Outlier: 3

Figure 26: Hausa M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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ID: efa9c9642f4545849405e080a666ee56
Topic: hand washing
Language: Hindi
Hypothesis:

            
Machine Translation:
All of these images include handwashing or handwashing things
Outlier: 4

Figure 27: Hindi M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: da46b1729e8b4871bd1c401d48fa4715
Topic: dish washing brush/cloth
Language: Russian
Hypothesis:

       .
Machine Translation:
The image shows an unwrapped surface cleaning item.
Outlier: 2

Figure 28: Russian M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: a0f64574c38f45b888b18da6032d5547
Topic: bathroom privacy
Language: Swahili
Hypothesis:
Picha zote zinaonyesha faragha ya bafuni.
Machine Translation:
All photos show the privacy of the bathroom.
Outlier: 5

Figure 29: Swahili M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 47d9120f8ff541d19aeb988cab28d62b
Topic: dish racks
Language: Thai
Hypothesis:

 
Machine Translation:
Every picture is a picture of a different type of plate place.
Outlier: 1

Figure 30: Thai M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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ID: a8e7cc284e8c4d4794f5a811d09df92e
Topic: storage room
Language: Zulu
Hypothesis:
Izithombe zibonisa amagumbi agcwele izinto zasekhaya ezingasetyenziswa.
Machine Translation:
Pictures show rooms full of usable household items.
Outlier: 3

Figure 31: Zulu M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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B.1.3 Topics 1047

Table 5: Number of images tagged with a certain topic in the M5-VGR (A) and M5-VLOD (B) datasets.

Topic Language
Amharic Berber Bengali German English Filipino Hausa Hindi Russian Swahili Thai Zulu
A B A B A B A B A B A B A B A B A B A B A B A B

armchair 1 2 1 1 1 1 1 1 1 2 3 1 1 1 1 1 2 1 3 1 1 1 1 1
backyard 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1
bathroom privacy 1 1 3 3 1 1 2 1 1 1 3 4 1 1 1 1 1 1 2 1 1 1 1 1
bathroom/toilet 1 2 3 1 1 2 1 3 2 1 1 1 2 1 1 1 1 1 3 3 1 1 1 1
bed 1 1 1 2 2 1 1 1 1 3 1 2 4 1 1 1 2 2 1 1 4 1 1 1
bedroom 2 4 1 2 2 2 1 1 1 2 1 1 3 1 1 2 1 1 2 1 1 1 1 1
books 2 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1
ceiling 1 2 1 1 2 1 1 1 2 2 1 1 1 4 2 1 2 1 2 2 2 1 1 2
children room 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1
cleaning equipment 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
cooking pots 1 1 2 2 2 1 1 1 1 1 2 1 2 2 1 1 2 1 1 2 1 2 1 1
cooking utensils 1 1 3 2 1 3 1 1 1 1 1 1 1 3 2 1 1 1 1 1 2 1 1 1
couch 1 1 1 1 1 1 1 2 2 1 3 3 3 1 1 1 2 1 2 1 1 1 3 1
cups/mugs/glasses 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
cutlery 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 2 1 1 1 1 1 2 1 1
dish racks 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1
dish washing brush/cloth 2 1 1 1 3 1 1 1 1 3 1 1 1 1 3 2 1 2 1 1 1 1 1 1
dish washing soap 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 2 2 2 2 2 1 2 1 1
drainage 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1
drinking water 3 4 2 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 4 2
drying 3 1 1 1 5 1 1 1 1 1 2 2 1 2 3 1 1 1 1 1 1 1 1 1
everyday shoes 1 2 1 2 2 1 3 1 1 1 2 1 2 3 1 1 1 2 1 2 2 1 2 2
family 2 2 4 1 2 1 3 2 1 1 2 1 3 3 1 1 1 2 1 1 2 2 2 2
floor 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1
front door 2 1 4 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 4 1 3 2 1 1
grains 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1
guest bed 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1
hair brush/comb 1 1 1 1 3 1 2 3 1 1 1 1 2 2 1 1 2 1 1 2 1 1 3 1
hand back 1 2 1 1 1 1 1 1 1 1 2 2 3 1 2 1 2 1 1 1 1 2 1 2
hand palm 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1
hand washing 2 1 3 2 1 1 1 5 1 1 1 4 2 1 1 3 2 2 2 1 2 1 2 3
home 1 1 3 2 2 1 2 1 1 2 1 4 1 1 5 1 1 2 1 2 2 2 1 2
jewelry 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1
kitchen 2 1 1 2 1 1 1 1 4 1 2 2 1 1 1 1 2 2 1 2 2 2 1 1
kitchen sink 1 2 2 2 1 1 4 2 1 2 2 1 1 2 1 2 1 1 1 3 1 1 3 3
light source in kitchen 1 1 2 1 2 3 2 2 3 2 1 1 1 1 3 1 1 1 2 1 1 1 1 1
light source in livingroom 1 2 2 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1
living room 1 1 1 1 1 1 1 2 2 1 3 1 1 1 1 1 2 2 1 1 2 1 1 1
lock on front door 1 1 1 1 1 4 1 1 3 1 1 1 2 1 1 3 1 2 1 1 2 3 1 1
make up 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1
meat or fish 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
medication 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1
most loved item 1 1 1 1 1 2 3 1 2 2 3 3 2 1 2 2 2 2 2 0 1 1 4 4
most loved toy 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1
nicest shoes 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 1 1 1 1 2 2 2 1 1
oven 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1
paper 2 1 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
pen/pencils 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1
phone 2 2 1 1 2 1 1 1 2 3 1 3 2 1 2 1 2 1 1 3 1 1 2 1
place where eating dinner 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 2 1 1
plate of food 2 1 1 4 1 1 2 3 1 1 2 1 3 1 1 1 1 2 1 1 1 1 1 1
plates 2 1 1 1 2 2 1 1 1 1 1 3 1 1 1 1 1 2 1 1 2 1 1 1
play area 1 1 2 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1
power outlet 1 2 1 1 1 1 3 4 2 1 1 1 1 1 3 1 1 1 1 1 1 4 2 1
refrigerator 1 1 1 1 2 1 4 4 1 3 1 3 1 1 1 3 2 1 1 1 1 1 1 1
roof 2 1 1 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
shampoo 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 2 1 1
shower 1 1 1 2 1 1 1 1 1 2 1 2 1 1 1 1 2 2 1 1 1 1 1 1
sitting area 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
soap for hands and body 1 1 2 2 2 2 1 2 1 1 1 1 2 1 2 1 2 1 1 1 2 2 1 1
social drink 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
sofa 1 1 1 1 1 1 1 1 1 2 1 1 2 4 1 1 1 1 1 1 2 1 1 1
source of cool 1 1 1 1 2 1 1 1 2 1 1 1 2 1 2 2 1 1 1 1 1 1 1 2
spices 1 2 1 1 2 1 1 3 3 3 2 1 1 1 2 1 2 2 1 2 1 2 1 3
storage room 1 2 1 1 1 2 1 1 1 1 5 1 2 1 1 2 1 2 1 1 1 1 1 1
stove/hob 2 1 1 2 1 1 1 1 1 3 1 1 1 5 1 2 1 1 2 3 2 1 1 4
street detail 4 1 1 1 1 1 1 1 1 3 2 1 1 2 1 2 2 1 2 1 2 1 1 1
street view 1 1 1 2 1 4 2 1 1 1 1 1 1 2 1 3 1 1 2 1 2 2 1 2
switch on/off 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 3 1 1
table with food 2 4 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
teeth 1 1 1 1 1 1 1 1 1 2 1 2 3 1 1 1 2 2 2 2 1 2 1 1
toilet 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1
toilet paper 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3 2
tooth paste 2 1 1 1 1 2 2 3 2 2 2 1 1 1 4 1 2 2 3 1 1 1 2 3
toothbrush 1 2 1 1 1 1 3 2 1 1 2 1 1 2 1 1 1 2 1 3 1 1 3 3
toys 2 1 2 1 3 5 1 1 1 3 1 2 2 1 1 4 2 3 1 1 2 3 1 1
trash/waste 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
tv 1 1 1 2 3 2 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 2 4 6
vegetables 1 2 2 1 2 1 1 1 3 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1
wall 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
wall clock 2 1 1 2 1 1 1 1 1 1 1 4 1 1 1 2 2 1 1 1 1 2 1 1
wall decoration 1 2 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 2 2 0 2 1 1 1
wall inside 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1
wardrobe 1 3 2 1 2 1 1 2 1 1 2 1 1 1 2 2 1 1 2 2 2 2 1 1
washing clothes/cleaning 1 1 1 2 1 1 1 1 1 2 1 1 1 1 3 1 1 1 4 4 1 3 1 1
washing detergent 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 2 2 1 2 1 1
water outlet 2 1 3 2 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
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Table 6: Language support of the datasets considered in this work. More details one the languages are reported in
Table 7.

Language Script MaXM xGQA XNLVI MaRVL M5-VLOD M5-VGR xFlickrCO XM3600

Amharic Ethiopic no no no no yes yes no no

Arabic Arabic no no yes no no no no yes

Bengali Bengali no yes no no yes yes no yes

Berber Tifinagh no no no no yes yes no no

Chinese Hanzi yes yes no yes no no yes yes

Croatian Latin no no no no no no no yes

Czech Latin no no no no no no no yes

Danish Latin no no no no no no no yes

Dutch Latin no no no no no no no yes

English Latin yes yes yes no yes yes yes yes

Filipino Latin no no no no yes yes no yes

Finnish Latin no no no no no no no yes

French Latin yes no yes no no no no yes

German Latin no yes no no yes yes yes yes

Greek Greek no no no no no no no yes

Hausa Latin no no no no yes yes no no

Hebrew Hebrew yes no no no no no no yes

Hindi Devanagari yes no no no yes yes no yes

Hungarian Latin no no no no no no no yes

Indonesian Latin no yes no yes no no yes yes

Italian Latin no no no no no no no yes

Japanese Japanese no no no no no no yes yes

Korean Hangul no yes no no no no no yes

Maori Latin no no no no no no no yes

Norwegian Latin no no no no no no no yes

Persian Perso-Arabic no no no no no no no yes

Polish Latin no no no no no no no yes

Portuguese Latin no yes no no no no no yes

Quechua Latin no no no no no no no yes

Romanian Latin yes no no no no no no yes

Russian Cyrillic no yes yes no yes yes yes yes

Spanish Latin no no yes no no no yes yes

Swahili Latin no no no yes yes yes no yes

Swedish Latin no no no no no no no yes

Tamil Tamil no no no yes no no no no

Telugu Telugu no no no no no no no yes

Thai Thai yes no no no yes yes no yes

Turkish Latin no no no yes no no yes yes

Ukrainian Cyrillic no no no no no no no yes

Vietnamese Latin no no no no no no no yes

Zulu Latin no no no no yes yes no no

Unique Languages 7 8 5 5 12 12 8 36
Unique Scripts 4 5 3 3 7 7 4 12
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Table 7: Details and statistics of languages comprised in the datasets of this benchmark. The continent and subregion columns refer to the content or subregion where the respective
language is mostly spoken. The number of speakers is an estimate of the number of L1 and L2 speakers based on different public sources such as Wikipedia10, Ethnologue 11, and
Statista12. The “Taxonomy” column indicates the taxonomy class of the language based on Joshi et al. (2020).

Language ISO 639 Lang. Family Script Continent Subregion Taxonomy Speakers / 106

Arabic ar Afro-Asiatic Arabic Afrika & Asia North Africa & Middle East 5 630.00
Chinese zh Sino-Tibetan Hanzi Asia Northeastern Asia 5 1330.00
English en Indo-European Latin America North America 5 1457.00
French fr Indo-European Latin Europe Western Europe 5 310.00
German de Indo-European Latin Europe Western Europe 5 175.00
Japanese ja Japonic Japanese Asia Northeastern Asia 5 128.00
Spanish es Indo-European Latin Europe Southern Europe 5 600.00
Croatian hr Indo-European Latin Europe Central & Eastern Europe 4 6.80
Czech cs Indo-European Latin Europe Central & Eastern Europe 4 11.00
Dutch nl Indo-European Latin Europe Western Europe 4 30.00
Finnish fi Uralic Latin Europe Northern Europe 4 5.80
Hindi hi Indo-European Devanagari Asia Central & South Asia 4 600.00
Hungarian hu Uralic Latin Europe Central & Eastern Europe 4 17.00
Italian it Indo-European Latin Europe Southern Europe 4 68.00
Korean ko Koreanic Hangul Asia Northeastern Asia 4 82.00
Persian fa Indo-European Perso-Arabic Asia Middle East 4 130.00
Polish pl Indo-European Latin Europe Central & Eastern Europe 4 41.00
Portuguese pt Indo-European Latin Europe & America Southern Europe & South America 4 360.00
Russian ru Indo-European Cyrillic Asia Central Asia 4 260.00
Swedish sv Indo-European Latin Europe Northern Europe 4 13.00
Turkish tr Turkic Latin Asia Middle East 4 90.00
Vietnamese vi Austroasiatic Latin Asia Southeastern Asia 4 85.00
Bengali bn Indo-European Bengali Asia Central & South Asia 3 270.00
Danish da Indo-European Latin Europe Western Europe 3 6.00
Filipino fil Austronesian Latin Asia Southeastern Asia 3 83.00
Greek el Indo-European Greek Europe Central & Eastern Europe 3 13.50
Hebrew he & iw Afro-Asiatic Hebrew Asia Middle East 3 9.00
Indonesian id Austronesian Latin Asia Southeastern Asia 3 300.00
Romanian ro Indo-European Latin Europe Central & Eastern Europe 3 28.50
Tamil ta Dravidian Tamil Asia Central & South Asia 3 86.00
Thai th Kra-Dai Thai Asia Southeastern Asia 3 80.00
Ukrainian uk Indo-European Cyrillic Europe Central & Eastern Europe 3 32.80
Amharic am Afro-Asiatic Ethiopic Africa Eastern Africa 2 57.00
Hausa ha Afro-Asiatic Latin Africa Western Africa 2 79.00
Swahili sw Niger-Congo Latin Africa Eastern Africa 2 73.00
Zulu zu Niger-Congo Latin Africa Southern Africa 2 28.00
Maori mi Austronesian Latin Australia & Oceania Australia & Oceania 1 0.19
Norwegian no Indo-European Latin Europe Northern Europe 1 4.32
Quechua quz Quechuan Latin America South America 1 9.00
Telugu te Dravidian Telugu Asia Central & South Asia 1 96.00
Berber ber Afro-Asiatic Tifinagh Africa Northern Africa 0 26.20

3https://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers
4https://www.ethnologue.com/
5https://www.statista.com/statistics/266808/the-most-spoken-languages-worldwide/
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Table 8: Architectural details of the LMMs evaluated in this study. The columns LM, VM, and ML are “Language
Model”, “Vision Model”, and “Mapping Modules”, respectively, and show the number of parameters of the
particular module. “|Total|” shows all parameters of the model. Note that we report friedly names of the models
which are enriched with hyperlinks pointing to the respective Huggingface repositories (when viewed digitally). For
Gemini Pro Vision and GPT-4 Vision, we used the gemini-1.0-pro-vision and gpt-4-1106-vision-preview
variants, respectively.

Model LM VM MM |Total| |LM| |VM| |MM|

MiniCPM-V [27; 49] MiniCPM-2B SigLIP 400M MLP 3.43B 3.01B 397.75M 29.51M
mBliP mT0 [22] Flan-T5-XL EVA01 CLIP-ViT-g QFormer 4.84B 3.74B 985.95M 106.71M
Yi-VL 6B [5] Yi-6B-Chat CLIP-ViT-H-14 MLP 6.71B 5.80B 631.75M 22.04M
LLaVA 1.6 7B [37] Vicuna-7B-v1.5 CLIP-ViT-L MLP 6.76B 6.61B 303.51M 20.98M
LLaVA 1.5 7B [38] Vicuna-7B-v1.5 CLIP-ViT-L MLP 7.06B 6.74B 303.51M 20.98M
BakLLaVA [38] Mistral 7B v0.1 CLIP-ViT-L MLP 7.57B 7.24B 303.51M 20.98M
mBliP BloomZ [22] BloomZ 7B EVA01 CLIP-ViT-g QFormer 8.16B 7.07B 985.95M 108.29M
Qwen-VL [9] Qwen-7B CLIP-VIT-bigG CrossAttn 9.66B 7.10B 1.94B 80.00M
OmniLMM 12B [49] Zephyr 7B β EVA02 CLIP ViT-E MLP 11.61B 7.24B 4.28B 93.36M
LLaVA 1.6 13B [37] Vicuna-13B-v1.5 CLIP-ViT-L MLP 13.05B 12.85B 303.51M 31.47M
LLaVA 1.5 13B [38] Vicuna-13B-v1.5 CLIP-ViT-L MLP 13.35B 13.02B 303.51M 31.47M
CogVLM [47] Vicuna-7B-v1.5 EVA02 CLIP ViT-E CrossAttn 17.64B 6.74B 4.28B 6.62B
InternVL V1.1 [15] Llama-2-13B InternViT 6B MLP 19.11B 13.12B 5.91B 91.79M
LLaVA 1.6 34B [37] Nous-Hermes-2-Yi-34B CLIP-ViT-L MLP 34.45B 33.93B 303.51M 58.73M
Yi-VL 34B [5] Yi-34B-Chat CLIP-ViT-H MLP 35.08B 33.93B 631.75M 60.60M
InternVL V1.2+ [15] Nous-Hermes-2-Yi-34B InternViT-6B V1-2 MLP 40.07B 34.39B 5.54B 143.17M
Gemini Pro Vision [7] ? ? ? ? ? ? ?
GPT-4 Vision [39] ? ? ? ? ? ? ?
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Figure 32: A bar plot showing the average accuracy per language and model on the xGQA dataset. The models on
the x-Axis are ordered by their average score across all languages so that the best performing model is on the right
and the worst is on the left.

Table 9: The average accuracy per language and model on the xGQA dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
bn de en id ko pt ru zh NEA

LLaVA 1.5 7B 0.06 0.35 0.62 0.33 0.29 0.35 0.36 0.35 0.30
CogVLM 0.05 0.38 0.59 0.34 0.30 0.33 0.33 0.37 0.30
MiniCPM-V 0.11 0.42 0.55 0.33 0.40 0.45 0.35 0.08 0.31
BakLLaVA 0.06 0.39 0.62 0.16 0.34 0.37 0.44 0.45 0.32
Yi-VL 6B 0.11 0.39 0.57 0.35 0.34 0.39 0.41 0.22 0.32
Qwen-VL 0.13 0.43 0.59 0.34 0.34 0.37 0.39 0.31 0.33
LLaVA 1.6 7B 0.07 0.42 0.60 0.37 0.33 0.39 0.37 0.38 0.34
Gemini Pro V 0.33 0.37 0.46 0.34 0.34 0.34 0.31 0.35 0.34
LLaVA 1.5 13B 0.10 0.44 0.62 0.34 0.31 0.38 0.40 0.40 0.34
OmniLMM 12B 0.21 0.42 0.49 0.35 0.37 0.38 0.41 0.39 0.36
LLaVA 1.6 13B 0.11 0.52 0.65 0.37 0.39 0.40 0.44 0.41 0.38
Yi-VL 34B 0.18 0.50 0.58 0.42 0.39 0.47 0.41 0.32 0.38
mBliP BloomZ 0.40 0.38 0.44 0.41 0.29 0.43 0.39 0.41 0.39
mBliP mT0 0.39 0.42 0.44 0.39 0.39 0.41 0.41 0.40 0.40
GPT 4V 0.44 0.42 0.45 0.42 0.41 0.41 0.38 0.41 0.41
InternVL V1.2+ 0.22 0.51 0.67 0.46 0.49 0.52 0.47 0.37 0.43
LLaVA 1.6 34B 0.21 0.54 0.65 0.48 0.44 0.52 0.50 0.56 0.46
InternVL V1.1 0.31 0.53 0.63 0.48 0.48 0.51 0.49 0.55 0.48

Average 0.19 0.43 0.57 0.37 0.37 0.41 0.40 0.37 0.37
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Figure 33: A bar plot showing the average accuracy per language and model on the MaXM dataset. The models on
the x-Axis are ordered by their average score across all languages so that the best performing model is on the right
and the worst is on the left.

Table 10: The average accuracy per language and model on the MaXM dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
en fr hi iw ro th zh NEA

CogVLM 0.43 0.03 0.01 0.04 0.02 0.00 0.03 0.02
BakLLaVA 0.53 0.14 0.02 0.02 0.06 0.14 0.07 0.08
OmniLMM 12B 0.48 0.28 0.03 0.01 0.17 0.13 0.06 0.11
LLaVA 1.5 7B 0.52 0.34 0.13 0.05 0.16 0.09 0.12 0.15
LLaVA 1.6 7B 0.34 0.38 0.09 0.11 0.14 0.10 0.12 0.16
LLaVA 1.5 13B 0.56 0.35 0.09 0.05 0.32 0.12 0.19 0.19
MiniCPM-V 0.56 0.28 0.12 0.09 0.13 0.13 0.39 0.19
Yi-VL 34B 0.53 0.21 0.14 0.14 0.16 0.23 0.31 0.20
Yi-VL 6B 0.53 0.32 0.13 0.16 0.12 0.18 0.29 0.20
Qwen-VL 0.50 0.37 0.15 0.20 0.20 0.29 0.17 0.23
LLaVA 1.6 13B 0.46 0.43 0.13 0.16 0.38 0.17 0.17 0.24
mBliP BloomZ 0.55 0.23 0.53 0.18 0.32 0.19 0.42 0.31
LLaVA 1.6 34B 0.58 0.44 0.25 0.27 0.43 0.25 0.32 0.32
InternVL V1.1 0.58 0.47 0.33 0.22 0.36 0.28 0.40 0.34
mBliP mT0 0.50 0.42 0.50 0.37 0.41 0.58 0.24 0.42
InternVL V1.2+ 0.60 0.52 0.35 0.35 0.44 0.31 0.55 0.42
Gemini Pro V 0.48 0.50 0.47 0.43 0.43 0.61 0.29 0.45
GPT 4V 0.49 0.55 0.52 0.62 0.53 0.64 0.31 0.53

Average 0.51 0.35 0.22 0.19 0.27 0.25 0.24 0.25
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Figure 34: A bar plot showing the average accuracy per language and model on the XVNLI dataset. The models on
the x-Axis are ordered by their average score across all languages so that the best performing model is on the right
and the worst is on the left.

Table 11: The average accuracy per language and model on the XVNLI dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
ar en es fr ru NEA

CogVLM 0.26 0.47 0.31 0.27 0.32 0.29
BakLLaVA 0.32 0.48 0.33 0.33 0.36 0.34
Yi-VL 6B 0.34 0.56 0.38 0.39 0.41 0.38
mBliP BloomZ 0.40 0.40 0.45 0.48 0.44 0.44
LLaVA 1.6 7B 0.36 0.59 0.46 0.50 0.46 0.45
LLaVA 1.5 7B 0.34 0.60 0.52 0.53 0.50 0.47
Gemini Pro V 0.46 0.49 0.48 0.50 0.52 0.49
LLaVA 1.5 13B 0.39 0.59 0.53 0.54 0.52 0.49
MiniCPM-V 0.36 0.66 0.53 0.57 0.51 0.49
Yi-VL 34B 0.39 0.59 0.55 0.56 0.54 0.51
OmniLMM 12B 0.43 0.64 0.55 0.57 0.59 0.54
Qwen-VL 0.46 0.62 0.57 0.57 0.57 0.54
LLaVA 1.6 13B 0.49 0.61 0.57 0.56 0.57 0.55
InternVL V1.1 0.50 0.61 0.57 0.57 0.57 0.56
mBliP mT0 0.55 0.59 0.56 0.57 0.58 0.57
InternVL V1.2+ 0.53 0.63 0.59 0.60 0.59 0.58
LLaVA 1.6 34B 0.54 0.62 0.59 0.60 0.59 0.58
GPT 4V 0.67 0.69 0.66 0.68 0.70 0.68

Average 0.43 0.58 0.51 0.52 0.52 0.50
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Figure 35: A bar plot showing the average accuracy per language and model on the MaRVL dataset. Note that
MaRVL does not contain English data originally and we machine-translated English from the other languages and
averaged the results. The models on the x-Axis are ordered by their average score across all languages so that the
best performing model is on the right and the worst is on the left.

Table 12: The average accuracy per language and model on the MaRVL dataset. Note that MaRVL does not contain
English data originally and we machine-translated English from the other languages and averaged the results. The
column “NEA” stands for the average of Non-English languages.

Model Language
en id sw ta tr zh NEA

CogVLM 0.60 0.53 0.51 0.49 0.51 0.53 0.51
LLaVA 1.5 7B 0.57 0.53 0.51 0.51 0.51 0.53 0.52
BakLLaVA 0.59 0.54 0.51 0.50 0.53 0.55 0.53
LLaVA 1.6 7B 0.62 0.57 0.51 0.50 0.51 0.54 0.53
Qwen-VL 0.60 0.52 0.50 0.50 0.54 0.59 0.53
Yi-VL 6B 0.59 0.53 0.49 0.50 0.54 0.61 0.53
MiniCPM-V 0.61 0.53 0.50 0.50 0.56 0.58 0.53
LLaVA 1.5 13B 0.60 0.60 0.51 0.50 0.54 0.56 0.54
Gemini Pro V 0.55 0.55 0.53 0.55 0.56 0.55 0.55
OmniLMM 12B 0.64 0.62 0.51 0.51 0.57 0.57 0.56
mBliP BloomZ 0.55 0.57 0.56 0.57 0.56 0.56 0.56
Yi-VL 34B 0.62 0.62 0.53 0.51 0.59 0.65 0.58
InternVL V1.1 0.63 0.61 0.54 0.58 0.65 0.63 0.60
InternVL V1.2+ 0.68 0.67 0.53 0.53 0.64 0.70 0.61
mBliP mT0 0.60 0.63 0.60 0.64 0.66 0.62 0.63
LLaVA 1.6 13B 0.65 0.66 0.60 0.65 0.69 0.64 0.65
LLaVA 1.6 34B 0.64 0.72 0.56 0.57 0.70 0.76 0.66
GPT 4V 0.64 0.71 0.59 0.63 0.73 0.66 0.66

Average 0.61 0.60 0.53 0.54 0.59 0.60 0.57
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Figure 36: A bar plot showing the average accuracy per language and model on the M5-VGR dataset. The models
on the x-Axis are ordered by their average score across all languages so that the best performing model is on the
right and the worst is on the left.

Table 13: The average accuracy per language and model on the M5-VGR dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
am ber bn de en fil ha hi ru sw th zu NEA

LLaVA 1.5 7B 0.43 0.50 0.36 0.44 0.47 0.52 0.42 0.38 0.41 0.36 0.38 0.36 0.42
LLaVA 1.6 7B 0.43 0.50 0.36 0.47 0.55 0.52 0.42 0.39 0.45 0.36 0.36 0.36 0.42
LLaVA 1.5 13B 0.43 0.50 0.37 0.65 0.57 0.52 0.42 0.45 0.56 0.37 0.41 0.36 0.46
BakLLaVA 0.42 0.51 0.37 0.62 0.71 0.55 0.48 0.37 0.68 0.42 0.48 0.33 0.48
LLaVA 1.6 13B 0.44 0.50 0.36 0.79 0.78 0.49 0.42 0.53 0.81 0.33 0.48 0.37 0.50
Yi-VL 34B 0.43 0.50 0.51 0.74 0.77 0.60 0.42 0.44 0.69 0.40 0.57 0.36 0.52
Qwen-VL 0.30 0.17 0.60 0.63 0.82 0.53 0.57 0.56 0.66 0.63 0.62 0.61 0.54
CogVLM 0.53 0.46 0.54 0.74 0.68 0.53 0.54 0.59 0.61 0.54 0.60 0.41 0.55
mBliP BloomZ 0.46 0.50 0.64 0.61 0.69 0.50 0.42 0.64 0.60 0.60 0.46 0.69 0.56
MiniCPM-V 0.61 0.64 0.55 0.69 0.80 0.55 0.43 0.64 0.68 0.38 0.56 0.41 0.56
OmniLMM 12B 0.51 0.69 0.58 0.65 0.78 0.62 0.49 0.51 0.78 0.47 0.64 0.51 0.59
Yi-VL 6B 0.62 0.31 0.64 0.74 0.72 0.54 0.70 0.62 0.72 0.55 0.63 0.59 0.61
InternVL V1.1 0.48 0.50 0.63 0.76 0.73 0.68 0.47 0.68 0.75 0.58 0.81 0.47 0.62
LLaVA 1.6 34B 0.51 0.65 0.57 0.80 0.87 0.58 0.47 0.67 0.82 0.63 0.74 0.59 0.64
Gemini Pro V 0.71 0.50 0.64 0.62 0.79 0.63 0.62 0.66 0.68 0.68 0.83 0.66 0.66
InternVL V1.2+ 0.51 0.55 0.66 0.78 0.86 0.73 0.54 0.67 0.85 0.64 0.90 0.66 0.68
mBliP mT0 0.81 0.42 0.67 0.68 0.74 0.56 0.87 0.67 0.75 0.67 0.75 0.73 0.69
GPT 4V 0.82 0.47 0.80 0.81 0.88 0.84 0.93 0.79 0.88 0.80 0.94 0.83 0.81

Average 0.53 0.49 0.55 0.68 0.73 0.58 0.53 0.57 0.69 0.52 0.62 0.52 0.57
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Figure 37: A bar plot showing the average accuracy per language and model on the M5-VLOD dataset. The models
on the x-Axis are ordered by their average score across all languages so that the best performing model is on the
right and the worst is on the left.

Table 14: The average accuracy per language and model on the M5-VLOD dataset. The column “NEA” stands for
the average of Non-English languages.

Model Language
am ber bn de en fil ha hi ru sw th zu NEA

CogVLM 0.10 0.07 0.08 0.06 0.10 0.07 0.09 0.08 0.06 0.06 0.07 0.09 0.08
mBliP mT0 0.14 0.22 0.16 0.10 0.12 0.24 0.24 0.15 0.10 0.22 0.15 0.14 0.17
Yi-VL 6B 0.14 0.21 0.20 0.12 0.20 0.26 0.21 0.21 0.13 0.24 0.22 0.19 0.19
Yi-VL 34B 0.15 0.22 0.14 0.27 0.26 0.21 0.17 0.27 0.21 0.16 0.16 0.17 0.19
MiniCPM-V 0.17 0.19 0.20 0.11 0.20 0.19 0.22 0.16 0.15 0.29 0.23 0.24 0.20
LLaVA 1.5 7B 0.18 0.22 0.15 0.13 0.15 0.19 0.25 0.19 0.19 0.25 0.27 0.19 0.20
BakLLaVA 0.25 0.19 0.21 0.12 0.14 0.21 0.22 0.15 0.17 0.22 0.26 0.26 0.20
LLaVA 1.5 13B 0.18 0.23 0.19 0.17 0.16 0.24 0.25 0.14 0.13 0.26 0.28 0.20 0.21
InternVL V1.1 0.18 0.22 0.20 0.11 0.12 0.24 0.29 0.16 0.11 0.29 0.29 0.19 0.21
LLaVA 1.6 7B 0.17 0.22 0.18 0.14 0.14 0.24 0.27 0.18 0.15 0.29 0.27 0.19 0.21
LLaVA 1.6 13B 0.18 0.23 0.19 0.13 0.14 0.25 0.29 0.16 0.13 0.28 0.26 0.22 0.21
Qwen-VL 0.18 0.22 0.20 0.14 0.16 0.25 0.29 0.16 0.13 0.29 0.27 0.19 0.21
mBliP BloomZ 0.20 0.20 0.19 0.15 0.14 0.24 0.29 0.17 0.12 0.26 0.28 0.21 0.21
OmniLMM 12B 0.18 0.16 0.25 0.17 0.19 0.25 0.30 0.17 0.25 0.20 0.21 0.22 0.21
LLaVA 1.6 34B 0.19 0.24 0.20 0.14 0.26 0.30 0.28 0.16 0.19 0.26 0.25 0.18 0.22
InternVL V1.2+ 0.24 0.20 0.28 0.29 0.28 0.20 0.14 0.20 0.24 0.24 0.28 0.24 0.23
Gemini Pro V 0.33 0.19 0.37 0.42 0.52 0.43 0.27 0.38 0.40 0.43 0.37 0.39 0.36
GPT 4V 0.36 0.22 0.38 0.42 0.70 0.53 0.38 0.47 0.50 0.44 0.48 0.46 0.42

Average 0.20 0.20 0.21 0.18 0.22 0.25 0.25 0.20 0.19 0.26 0.26 0.22 0.22
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Figure 38: A bar plot showing the average chrF++ score per language and model on the xFlickrCO dataset. The
models on the x-Axis are ordered by their average score across all languages so that the best performing model is on
the right and the worst is on the left.

Table 15: The average chrF++ score per language and model on the xFlickrCO dataset. The column “NEA” stands
for the average of Non-English languages.

Model Language
de en es id ja ru tr zh NEA

Qwen-VL 9.00 18.68 8.69 4.88 0.77 0.74 3.91 5.62 4.80
Yi-VL 6B 11.53 24.54 14.61 8.37 0.78 0.90 8.15 0.79 6.45
CogVLM 11.08 16.76 12.32 11.27 0.56 3.71 7.62 0.46 6.72
BakLLaVA 13.21 26.79 14.17 10.48 0.06 0.75 9.49 0.09 6.89
Yi-VL 34B 17.02 24.62 11.36 11.79 2.00 2.57 9.50 2.44 8.10
MiniCPM-V 19.05 27.43 18.81 14.62 4.69 10.73 13.18 1.40 11.78
InternVL V1.1 18.21 27.98 20.74 14.69 4.31 7.07 8.67 9.38 11.87
LLaVA 1.5 7B 23.22 28.32 21.95 17.58 0.44 4.45 10.77 5.29 11.96
LLaVA 1.5 13B 21.66 29.39 19.37 15.59 6.63 5.02 10.45 6.72 12.21
LLaVA 1.6 7B 19.70 19.31 21.48 19.32 4.60 11.27 13.14 6.78 13.75
OmniLMM 12B 23.39 30.76 22.05 20.50 2.89 13.29 14.55 2.59 14.18
LLaVA 1.6 13B 22.55 23.94 21.98 20.73 7.57 13.26 14.79 6.39 15.33
LLaVA 1.6 34B 24.38 23.52 23.98 22.36 5.08 16.40 15.05 6.34 16.23
GPT 4V 24.56 24.17 22.82 23.29 4.73 15.82 17.58 5.60 16.34
mBliP BloomZ 24.39 25.99 25.12 23.56 7.18 15.31 17.16 3.93 16.67
Gemini Pro V 24.17 22.13 23.50 23.10 5.75 17.28 18.03 5.24 16.73
InternVL V1.2+ 25.81 28.41 24.13 20.48 7.25 17.34 16.73 8.54 17.18
mBliP mT0 26.10 26.07 24.74 22.41 7.56 18.64 19.58 3.87 17.56

Average 19.95 24.93 19.55 16.95 4.05 9.70 12.69 4.53 12.49
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Figure 39: A bar plot showing the average chrF++ score per language and model on the XM3600 dataset. Due to
resource restrictions, we evaluated GPT 4V only on a subset of languages. The models on the x-Axis are ordered by
their average score across all languages so that the best performing model is on the right and the worst is on the left.
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Table 16: The average chrF++ score per language and model on the XM3600 dataset. Due to resource restrictions,
we evaluated GPT 4V only on a subset of languages. The column “NEA” stands for the average of Non-English
languages.

Model Language
ar bn cs da de el en es fa fi fil fr

CogVLM 0.07 0.04 9.30 11.92 12.50 0.25 24.26 14.25 0.02 10.52 10.96 13.18
BakLLaVA 0.21 0.22 8.65 11.45 14.33 0.24 25.39 17.13 0.64 10.02 11.41 18.33
Qwen-VL 2.08 0.17 9.89 14.38 13.14 2.32 27.89 16.00 4.09 7.13 11.36 14.70
Yi-VL 6B 4.65 2.98 9.48 13.55 15.58 4.54 28.59 18.58 3.50 9.29 12.42 17.12
Yi-VL 34B 4.24 4.14 9.52 15.40 17.00 8.00 27.11 17.86 10.06 9.17 14.73 16.93
MiniCPM-V 6.38 1.96 9.05 15.52 19.60 2.98 28.53 23.54 3.57 12.33 16.19 23.98
Gemini Pro V 14.90 4.94 17.79 18.32 17.63 10.36 21.81 18.64 0.21 14.50 2.25 20.15
LLaVA 1.5 7B 6.30 3.71 13.80 15.93 21.18 7.42 26.02 23.60 7.45 15.67 17.38 23.83
mBliP mT0 12.68 10.79 17.20 19.43 18.74 15.76 28.68 20.71 16.19 13.26 20.79 20.52
InternVL V1.1 12.23 2.55 14.74 22.82 23.77 10.20 32.10 27.91 11.94 16.47 19.20 25.95
mBliP BloomZ 18.10 14.92 16.99 19.16 21.17 11.03 28.05 26.73 15.59 11.86 14.47 25.28
OmniLMM 12B 9.48 3.51 14.24 23.15 25.05 7.37 24.42 26.75 10.65 13.78 20.92 28.18
LLaVA 1.6 7B 12.52 6.13 15.79 14.50 24.06 11.11 26.41 27.37 13.07 17.23 17.76 27.48
LLaVA 1.5 13B 7.07 1.80 14.75 21.74 24.15 6.49 29.55 26.59 14.90 19.51 22.91 29.14
InternVL V1.2+ 13.59 6.19 15.34 24.85 27.05 11.20 29.84 29.50 15.69 17.01 27.22 29.80
LLaVA 1.6 13B 14.07 5.42 17.51 22.30 25.95 11.90 26.42 28.39 14.72 20.44 23.14 29.42
LLaVA 1.6 34B 13.85 6.20 16.94 24.44 26.51 12.17 26.52 28.90 16.09 18.08 28.35 29.83
GPT 4V 22.67 16.27 - - 29.24 - 26.89 30.86 - - - 31.82

Average 9.73 5.11 12.83 17.16 20.92 7.41 27.14 23.52 8.80 13.13 16.19 23.65

Model Language
he hi hr hu id it ja ko mi nl no pl

CogVLM 0.52 0.38 10.25 8.25 10.70 13.11 0.07 0.13 10.00 13.59 11.73 9.98
BakLLaVA 1.07 0.71 10.33 8.98 12.59 16.12 0.07 0.16 10.62 14.56 11.48 10.97
Qwen-VL 0.58 2.32 11.33 9.60 11.50 13.76 2.75 0.70 8.73 15.91 12.64 10.59
Yi-VL 6B 2.78 3.86 9.82 9.12 10.90 14.69 2.40 1.32 8.81 16.04 13.30 10.88
Yi-VL 34B 5.58 5.64 10.31 9.23 13.30 16.55 2.21 2.02 9.55 17.43 13.79 10.40
MiniCPM-V 4.86 2.36 11.96 10.91 16.94 19.06 2.92 0.39 10.49 18.47 14.27 11.51
Gemini Pro V 7.12 6.98 13.48 9.22 16.98 18.44 6.63 6.43 3.55 19.67 17.43 17.29
LLaVA 1.5 7B 3.76 6.29 13.05 11.69 19.33 20.73 3.48 3.93 10.10 23.30 19.79 16.10
mBliP mT0 11.16 12.08 10.26 14.59 17.39 17.92 5.79 6.00 11.88 24.20 19.97 14.49
InternVL V1.1 8.80 6.47 15.05 12.49 24.31 23.13 6.09 4.83 15.93 25.02 22.45 17.58
mBliP BloomZ 9.16 16.18 9.78 13.84 21.44 21.39 6.53 3.67 5.99 26.17 17.35 16.07
OmniLMM 12B 3.99 9.91 18.84 16.72 25.07 22.50 3.16 2.31 14.94 26.47 21.36 19.16
LLaVA 1.6 7B 10.61 10.26 16.52 18.26 24.05 24.71 6.66 6.09 13.12 25.07 20.49 19.38
LLaVA 1.5 13B 11.63 9.13 16.87 16.54 25.13 26.11 8.16 6.86 13.98 27.52 23.77 17.96
InternVL V1.2+ 10.88 7.69 17.07 14.70 24.65 25.94 7.96 5.53 14.17 29.11 23.02 18.37
LLaVA 1.6 13B 12.54 11.00 19.99 19.52 26.15 26.66 8.27 6.95 13.73 27.15 21.19 21.03
LLaVA 1.6 34B 11.30 7.27 18.16 16.57 27.69 27.40 7.75 5.60 16.69 28.42 24.45 19.49
GPT 4V - 17.16 - - 33.24 - 11.46 - - - - -

Average 6.46 7.54 12.95 12.23 20.08 19.35 5.13 3.50 10.68 21.01 17.14 14.51

Model Language
pt quz ro ru sv sw te th tr uk vi zh NEA

CogVLM 12.87 9.75 11.23 0.86 12.57 9.41 0.51 0.26 9.58 0.46 6.74 0.29 7.04
BakLLaVA 14.00 9.00 11.30 0.85 11.61 9.37 1.47 0.57 9.36 0.31 7.11 0.03 7.58
Qwen-VL 14.17 8.25 13.60 4.30 13.59 8.75 1.44 1.28 8.26 5.66 5.76 6.20 8.20
Yi-VL 6B 13.77 8.25 10.04 6.57 15.64 8.94 4.93 2.57 9.55 2.65 7.76 2.61 8.82
Yi-VL 34B 14.57 7.64 10.95 6.95 14.42 9.71 5.62 2.92 10.84 4.19 8.74 2.82 9.78
MiniCPM-V 18.21 7.21 14.94 3.69 15.36 11.16 1.83 2.24 13.47 1.74 8.88 2.46 10.30
Gemini Pro V 20.60 4.72 10.98 15.27 20.60 15.80 1.87 12.45 15.62 10.82 16.48 4.88 12.37
LLaVA 1.5 7B 21.57 9.55 12.38 10.08 20.68 9.59 2.23 5.51 11.78 5.84 14.34 3.87 12.44
mBliP mT0 19.35 7.70 13.05 14.63 20.66 14.45 12.42 14.76 14.13 13.60 18.73 2.59 14.80
InternVL V1.1 24.47 7.91 17.55 16.39 23.40 9.82 4.73 6.85 13.22 11.26 10.80 7.76 14.97
mBliP BloomZ 23.93 4.32 14.59 16.25 18.31 14.82 14.12 9.19 15.34 13.35 22.14 2.65 15.20
OmniLMM 12B 22.75 10.61 18.61 17.49 22.09 13.68 5.41 6.84 14.68 17.49 16.58 3.00 15.34
LLaVA 1.6 7B 23.42 10.04 15.55 15.18 21.42 11.69 4.60 9.62 14.81 11.40 15.54 5.58 15.46
LLaVA 1.5 13B 26.51 9.70 21.33 8.53 24.80 13.81 3.39 10.84 15.98 6.36 21.66 6.22 16.05
InternVL V1.2+ 26.63 6.20 18.06 19.30 26.27 14.83 7.79 5.30 17.30 13.79 17.22 7.71 17.05
LLaVA 1.6 13B 25.07 10.60 21.96 14.86 21.01 14.80 5.18 11.11 17.03 14.03 21.44 6.02 17.44
LLaVA 1.6 34B 22.85 10.39 20.08 20.11 24.92 18.73 8.70 7.19 18.83 15.36 16.23 7.02 17.79
GPT 4V 30.13 - 25.41 - - - - - 25.70 - - - 24.91

Average 20.83 7.88 15.65 10.63 18.19 11.63 4.79 6.08 14.19 8.24 13.12 3.98 13.64

D.2 Language Fidelity Analysis1061
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Table 17: Pearson correlation coefficients between language fidelity on xFlickrCO and Performance on other
datasets.

Dataset Language

Avg. zh en de id ja ru es tr

xFlickrCO .91 .85 .65 0.86 .88 .91 .92 .90 .84
XM3600 .81 .74 .63 0.63 .69 .74 .76 .67 .82
MaXM .55 .17 .43 - - - - - -
XVNLI .51 - .46 - - - .47 .20 -
MaRVL .46 .21 .41 - .50 - - - .50
M5-VGR .34 - .11 0.15 - - .42 - -
xGQA .21 .35 .47 0.08 .37 - -.04 - -
M5-VLOD .14 - .44 0.20 - - .14 - -
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