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Abstract: Monte Carlo methods have become increasingly relevant for control
of non-differentiable systems, approximate dynamics models and learning from
data. These methods scale to high-dimensional spaces and are effective at the
non-convex optimizations often seen in robot learning. We look at sample-based
methods from the perspective of inference-based control, specifically posterior
policy iteration. From this perspective, we highlight how Gaussian noise priors
produce rough control actions that are unsuitable for physical robot deployment.
Considering smoother Gaussian process priors, as used in episodic reinforcement
learning and motion planning, we demonstrate how smoother model predictive
control can be achieved using online sequential inference. This inference is real-
ized through an efficient factorization of the action distribution and a novel means
of optimizing the likelihood temperature to improve importance sampling accu-
racy. We evaluate this approach on several high-dimensional robot control tasks,
matching the sample efficiency of prior heuristic methods while also ensuring
smoothness. Simulation results can be seen at monte-carlo-ppi.github.io.
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Figure 1: High-dimensional, contact-rich tasks such as manipulation (left) can be performed effec-
tively using sample-based model predictive control. While prior work uses correlated actuator noise
to improve sample-efficiency and exploration, these methods do not preserve the smoothness in the
downstream actuation a, resulting in aggressive control (center). We use smooth Gaussian process
priors to infer posterior actions (right), which preserves smoothness while maintaining performance
and sample efficiency, as both are using only 32 samples. Rewards r show quartiles over 25 seeds.

1 Introduction
Learning robot control requires optimization to be performed on sampled transitions of the envi-
ronment [1]. Monte Carlo methods [2] provide a principled means to approach such algorithms,
bridging black-box optimization and approximate inference techniques. These methods have been
adopted extensively by the community for their impressive simulated [3, 4, 5, 6] and real-world
[7, 8, 9, 10, 11, 12, 13, 14, 15] robot learning results. Their appeal includes requiring only function
evaluations of the dynamics and objective, so can be applied to complex environments with min-
imal overhead (Figure 1). Moreover, their stochastic nature also avoids issues with local minima
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that occur with gradient-based solvers [16, 17]. Finally, while Monte Carlo sampling is expensive,
shooting methods can be effectively parallelized across processes and the advent of simulations on
GPUs also provides a means of acceleration [18, 13]. However, some aspects of black-box opti-
mization are open to criticism. Sample-based solvers such as the cross-entropy method (CEM) [19]
appear ‘wasteful’, ignoring computation by throwing away the majority of samples, while others
enforce high-entropy search distributions to avoid premature convergence [18]. Moreover, many
design decisions and hyperparameters are heuristic in nature, which is undesirable from both the
user- and research perspective when interpreting, tuning or advancing these methods.

In this work, we consider Monte Carlo optimal control through the broader perspective of inference-
based control [20, 21, 22, 23, 24, 25, 26, 27], where optimization is achieved through importance
sampling [28]. This approach covers settings such as policy search [29], motion planning [8, 30] and
model predictive control (MPC) [18]. From this view point, we highlight two key design decisions:
the likelihood temperature and the distribution over action sequences. An adaptive temperature
scheme is crucial for controlling the optimization behavior across objectives and distributions, but in
many methods this aspect is ignored or opaque. Moreover, correlated action sequences are equally
crucial for performing effective exploration and control in practical settings. Smoothness, arising
from such correlations, is an aspect of human motion [31]. Smooth priors have taken many forms
across domains, such as movement primitives [32], smoothed- [11, 12] or coloured noise [4]. We
use Gaussian processes [33] as action priors and show how they can be scaled to high-dimensional
action spaces through factorization of the covariance. Evaluating on simulated robotic systems,
we reproduce prior results on policy search while transferring these ideas to MPC, matching prior
performance with respect to sample efficiency while ensuring smooth actuation.

Contribution. First, we present a perspective of episodic inference-based control based on Gibbs
posteriors. Using this view, we then present novel Monte Carlo variants that incorporate the approx-
imate inference error due to importance sampling, simplifying the hyperparameter while providing
regularization. Thirdly, we demonstrate how richer Gaussian process priors can be combined with
these regularized Gibbs posteriors for Monte Carlo MPC using online sequential inference, which
achieves greater smoothness and sample efficiency than standard white noise priors. We highlight
connections between this approach to MPC and effective prior approaches to episodic policy search.

2 Monte Carlo Methods for Optimal Control

This section outlines the problem setting and introduces variational optimization and posterior pol-
icy iteration methods. We consider the standard (stochastic) optimal control setting in discrete-
time, with states s ∈ Rds , actions a ∈ Rda . Optimization is framed as maximizing a reward
r :Rds ×Rda→R under dynamics p(st+1 | st,at) and initial state distribution p(s1),

max
a1,...,aT

E
[∑T

t=1 r(st,at)
]

s.t. st+1 ∼ p(· | st,at), s1 ∼ p(s1). (1)

This work focuses on the episodic setting, where optimization is performed after evaluating the
current solution over a finite-time horizon T . We frequently use the episodic return R, where
R(S,A) =

∑T
t=1 r(st,at), using upper-case to denote sequences, e.g. A := {a1, . . . ,aT }.

2.1 Variational Optimization with Gibbs Posteriors

The optimization outlined above is amenable to gradient-based solvers such as stochastic differential
dynamic programming [34]. However, to aid optimization through exploration and regularization,
we can consider optimizing a parametric belief over action sequences q ∈Q. The variational for-
mulation (Equation 3) generalizes Bayes’ rule beyond optimizing likelihoods and resembles many
learning algorithms [35, 36]. This work concerns optimizing an open-loop action sequence to max-
imize an episodic return. Bayesian inference of an action sequence from data, known as input esti-
mation, can be performed using message passing of the appropriate probabilistic graphical model,
capturing the sequential structure of the problem and necessary priors [27]. If the measurement
log-likelihood is replaced with the control objective, this inference computation can be shown to
have precise dualities with dynamic programming-based optimal control [37]. While this switch in
objective provides a powerful suite of inference tools for efficient computation, it requires treating
the control objective as a Markovian log-likelihood, which is not the case for episodic objectives.
The Gibbs likelihood is a general treatment of the objective-as-likelihood (Definition 1) [38, 39].
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Definition 1. (Gibbs likelihoods and posteriors) For a loss f and prior p(x), the Gibbs posterior
qα for parameter x is derived by constructing the Gibbs likelihood exp(−α f(x)) from the loss,

qα(x) =
1

Zα
exp(−α f(x)) p(x), Zα =

∫
exp(−α f(x)) p(x) dx, α ≥ 0. (2)

This posterior minimizes the following objective

qα = arg minq∈Q Ex∼q(·)[f(x)] + 1
αDKL[q(x) || p(x)]. (3)

This objective appears in PAC-Bayes methods [38], mirror descent methods [40] and Bayesian
inference as the evidence lower bound objective when f(x) is a negative log-likelihood [39].

Augmenting the variational optimization objective with prior regularization (Equation 3), we obtain
an expression of the optimal belief in the action sequence (Equation 2). The parameter α has a range
of meanings, depending on context. In PAC-Bayes it is the dataset size, in mirror descent it is an
update step size and in risk-sensitive control it is the sensitivity [41, 42]. Example 1 in Appendix A
examines a tractable linear-quadratic-Gaussian example of this update, demonstrating its relation to
Newton-like optimization and highlighting the effect α has on the regularized update.

2.2 Posterior Policy Iteration

The optimal control problem (Equation 1) is ambiguous regarding whether the action sequence or
state-action trajectory is the optimization variable. Applying the Gibbs posterior to the optimal con-
trol setting recovers Rawlik et al.’s posterior policy iteration [41], which can be implemented using
the joint distribution or policy. We consider the following joint state-action distribution, that fac-
torizes in the following Markovian fashion p(S,A) = p(s1)

∏T
t=1 p(st+1 | st,at) p(at | st). Pos-

terior policy iteration updates the state-action distribution through the policy, constructing a Gibbs
likelihood from the reward, as the dynamics and initial state distribution are constant.
Definition 2. (Posterior policy iterations (PPI) [43]) As the initial distribution and dynamics
are shared by the prior and posterior joint state-action distribution, the joint Gibbs posterior
qα(S,A) ∝ exp(αR(S,A)) p(S,A) can be alternatively expressed using the policy posterior
update qα(A | S) ∝ exp(αR(S,A)) p(A | S).

Using this update, the key decisions are choosing p(A | S), α and the inference approximation. If
p and qα are Gaussian, then PPI involves iterative refinement of the distribution. In the Monte Carlo
setting, qα takes the form of an importance-weighted empirical distribution. To apply iteratively, p
is updated using the M-projection, following the objective (Equation 3), i.e. a weighted maximum
likelihood fit of the policy parameters [29]. This approach is a stochastic approximate expectation
maximization (SAEM) method [44] and described fully in Algorithm 1 in the Appendix. We argue a
key aspect of PPI methods is how to specify the inverse temperature α during optimization (Section
3), as it has a strong influence on the posterior, which is important when fitting rich distributions
such as Gaussian processes (Section 4) from samples. Gaussian process action priors can be applied
to several control settings, such as policy search and model predictive control (Section 6).

3 Posterior Policy Constraints for Monte Carlo Optimization

The Gibbs posterior in Definition 2 has been adopted widely in control, albeit from a range of dif-
ferent perspectives, such as Bayesian smoothing [23], solutions to the Feynman-Kac equation [45],
maximum entropy [26], mirror descent [46] and entropy-regularized reinforcement learning [47].
An open question is how best to set α for Monte Carlo optimization? Relative entropy policy search
(Definition 3), provides a principled and effective means of deriving α for stochastic optimization,
using the constrained optimization view of entropy-regularized optimal control.
Definition 3. (Episodic relative entropy policy search (eREPS) [29]) Maximize the expected return,
subject to a hard KL bound ε on the policy update,

maxθ Est+1∼p(·|st,at),at∼qθ(·|st),s1∼p(·)[R(st,at)] s.t. DKL[qθ(A|S) || p(A|S)] ≤ ε.
The posterior policy takes the form qθ(A|S)∝ exp(αR) p(A|S), where α is derived from Lagrange
multiplier calculated by minimizing the empirical dual G(·) using N samples,

minα G(α) = ε
α + 1

α log
∫
p(S,A) exp(αR(S,A)) dS dA ≈ ε

α + 1
α log 1

N

∑N
n=1 exp(αRn).
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While REPS is a principled approach to stochastic optimization, we posit two weaknesses: The hard
KL constraint ε is difficult to specify, as it depends on the optimization problem, distribution family
and dimensionality. Secondly, the Monte Carlo approximation of the dual has no regularization and
may poorly adhere to the KL constraint without sufficient samples. Therefore, we desire an alterna-
tive approach that resolves these two issues, capturing the Monte Carlo approximation error with a
simpler hyperparameter. To tackle this problem, we interpret the REPS update as a pseudo-posterior,
where the temperature is calculated using the KL constraint. We make this interpretation concrete
by reversing the objective and constraint, switching to an equality constraint for the expectation,
minθ DKL[qθ(A | S) || p(A | S)] s.t. Est+1∼p(·|st,at),at∼qθ(·|st), s1∼p(·)[

∑
t r(st,at)] = R∗.

This objective is a minimum relative entropy problem [48], which yields the same Gibbs posterior
as eREPS (Lemma 1, Appendix A). With exact inference, a suitable prior and oracle knowledge
of the maximum return, this program computes the optimal policy in a single step by setting R∗
to the optimal value. However, in this work, the expectation constraint requires self-normalized
importance sampling (SNIS) on sampled returns R(n) using samples from the current policy prior,

Est+1∼p(·|st,at),at∼qθ(·|st), s1∼p(·)[
∑
t r(st,at)] ≈

∑
nw

(n)
q/pR

(n) =

∑
nR

(n) exp(αR(n))∑
n exp(αR(n))

= R∗.

Rather than specifyingR∗ here, we identify that this estimator is fundamentally limited by inference
accuracy. We capture this error by applying an IS-derived concentration inequality to this estimate
(Theorem 1) [49]. This lower bound can be used as an objective for optimizing α, balancing policy
improvement with approximate inference accuracy.
Theorem 1. (Importance sampling estimator concentration inequality (Theorem 2, [49])) Let q and
p be two probability densities such that q� p and d2[q || p] < +∞. Let x1,x2, . . . ,xN i.i.d.
random variables sampled from p and f :X →R be a bounded function (||f ||∞ < +∞). Then, for
any 0 < δ ≤ 1 and N > 0 with probability at least 1− δ:

Ex∼q(·)[f(x)] ≥ 1
N

∑N
i=1wq/p(xi)f(xi)− ||f ||∞

√
(1− δ)d2[q(x) || p(x)]

δ N
. (4)

The divergence term d2[q|| p] is the exponentiated Rényi-2 divergence, expD2[q|| p]. While this is
tractable for the multivariate Gaussian, it is otherwise not available in closed form. Fortunately, we
can use the effective sample size (ESS) [50] as an approximation, as N̂α≈N /d2[qα|| p] [49, 51]
(Lemma 2, see Section A of the Appendix). Combining Equation 4 with our constraint, instead of
setting R∗, we maximize the IS lower bound R∗LB to form an objective for the inverse temperature α
which incorporates the inference accuracy due to the sampling given inequality probability 1− δ,

max
α

R∗LB(α, δ) = Eqα/p[R]− ER(δ, N̂α), ER(δ, N̂α) = ||R||∞
√

(1− δ)
δ

1√
N̂α

. (5)

We refer to this approach as lower-bound policy search (LBPS). This objective combines the ex-
pected performance of qα, based on the IS estimate Eqα/p[·], with regularization ER based on the
return and inference accuracy. Treating p, N , ||R||∞ as task-specific hyperparameters, the only al-
gorithm hyperparameter δ ∈ [0, 1) defines the probability of the bound. In practice, self-normalized
importance sampling is used for PPI, as the normalizing constants of the Gibbs likelihoods are not
available. While Metelli et al. also derive an SNIS lower bound [49], we found, as they did, that
the IS lower bound with SNIS estimates work better in practice due to the conservatism of the SNIS
bound. An interpretation of this approach is that the Rényi-2 regularization constrains the Gibbs
posterior to be one that can be estimated from the finite samples, as the divergence is used in eval-
uating IS sample complexity [52, 53]. Moreover, the role of the ESS for regularization is similar to
the ‘elite’ samples in CEM. Connecting these two mechanisms as robust maximum estimators (Sec-
tion A), we also propose effective sample size policy search (ESSPS), which optimizes α to achieve a
desired ESS N∗, i.e. a Rényi-2 divergence bound, using the objective minα |N̂α−N∗|. More details
regarding PPI (Section A) and temperature selection methods (Table 1) are in the Appendix.

This section introduces two methods, LBPS and ESSPS, for constraining the Gibbs posteriors for
Monte Carlo optimization. These methods provide statistical regularization through soft and hard
constraints involving the effective sample size, which avoids the pitfall of fitting high-dimensional
distributions to a few effective samples. A popular setting for these methods is MPC, which performs
episodic optimization over short planning horizons while adapting each time step to the current state.
Moreover, for optimal control, we also need to specify a suitable prior over action sequences. To
apply PPI to the MPC setting, we must implement online optimization given this prior over actions.
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Figure 2: A practical aspect of Monte Carlo control methods for robotics is optimizing smooth ac-
tion sequence. This example shows a non-smooth optimal sequence , which may be undesirable,
though optimal, to fit exactly. Prior methods struggle at providing both effective smooth solutions
in the mean and action samples , as they ultimately fit the action distribution in an inde-
pendent fashion. Using kernel-derived covariance function provides both. The line denotes the
optimization horizon, beyond which is exploratory actions derived from both the posterior and prior.

4 Online Posterior Policy Iteration & Prior Design

In this section, we derive the online realization of posterior policy iteration that uses and maintains
correlated action priors, computing the finite-horizonH future actions given a likelihood on a subset
of actions from the past. R represents the return-based Gibbs likelihood term (Definition 1),
qα(at:t+H | R1:τ ) =

∫
qα(a1:t+H | R1:τ ) da1:t−1 ∝

∫
p(R1:τ | a1:τ ) p(a1:t+H) da1:t−1, (6)

where τ ≤ t+H . As an analogy, this is equivalent to combining forecasting with state estimation,
i.e. p(xt:t+H |y1:t) for states x and measurements y. For correlated priors on the action space,
this computation is tractable if working with Gaussian processes. In fact, a recurring aspect across
several many posterior policy iteration-like approaches is the use of Gaussian process policies,

p(A | S) =


∏
tN (µt,Σt), (Independent Gaussian noise, e.g. [18]),
N (µ>wφ(t), φ(t)>Σwφ(t)), (Bayesian linear regression, e.g. ProMP [32]),∏
tN (kt +Kts,Σt), (time-varying linear Gaussian e.g. [41, 54, 42]),
GP(µ(s),Σ(s)), (non-parametric Gaussian process [55]).

Despite the simplicity of Gaussian action noise, for robotics, more sophisticated noise is often de-
sired for safety and effective exploration [56, 29]. Prior work has proposed first-order smoothing
[11, 12]. Using v(n)

t ∼N (0, I), β ∈ [0, 1] and Σt = LtL
>
t , actions are sampled using

a
(n)
t = µt +Ltn

(n)
t , n

(n)
t = βv

(n)
t + (1− β)n

(n)
t−1, or n(n)

t = βv
(n)
t +

√
(1− β2)n

(n)
t−1.

However, in practice it is also implemented as a(n)
t = β(µt +Ltv

(n)
t ) + (1− β)a

(n)
t−1

1. While this
approach directly smooths the actuation, it also introduces a lag, which may deteriorate performance.
Other approaches have used colored noise for sampling the noise n [4]. Contrast these approaches
to Gibbs sampling a multivariate Gaussian joint distribution with 1-step cross-correlations [58],
which is a(n)

t|t−1 =µ
(n)
t|t−1 + Lt|t−1v

(n)
t , where µ(n)

t|t−1 = µt + Σt,t−1Σ
−1
t−1(a

(n)
t−1 − µt−1), and

Σt|t−1 = Σt −Σt,t−1Σ
−1
t−1Σ

>
t,t−1. The differences are subtle, but important. The initial proposed

sampling scheme essentially adds correlated noise to the mean for exploration, but does not con-
sider the smoothness of the mean itself. The practical implementation incorporates the previous
action, but through exponential smoothing, which introduces a fixed lag that potentially degrades
the quality of the mean action sequence. Correct sampling of the joint distribution has neither of
these issues and naturally extends to correlations over several time steps. We do this in a gen-
eral fashion by considering the (continuous time) Gaussian process (see Section G, Appendix), so
p(at) = N (µti:tj ,Σti:tj ) = GP(µ(t),Σ(t)) for a discrete-time sequence t = [ti, . . . , tj ]. Propo-
sition 1 shows how the time shift for MPC can be implemented in a general fashion when using GPs.
Proposition 1. Given a Gaussian process prior GP(µ(t),Σ(t)) and multivariate normal posterior
qα(at1:t2) =N (µt1:t2|R,Σt1:t2|R) for t1 to t2, the posterior for t3 to t4 is expressed as

µt3:t4|R =µt3:t4+ Σt3:t4,t1:t2νt1:t2 , Σt3:t4|R = Σt3:t4−Σt3:t4,t1:t2Λt1:t2Σ
>
t3:t4,t1:t2 , (7)

where νt1:t2=Σ−1
t1:t2(µt1:t2|R−µt1:t2) and Λt1:t2=Σ−1

t1:t2(Σt1:t2−Σt1:t2|R)Σ−1
t1:t2 .

This update combines the new sequence prior from t3 to t4 and the previous likelihood used in the
update for t1 to t2, obtained from the posterior and prior. Note, the cross-covariance Σt3:t4,t1:t2 is
computed using the covariance function of the prior GP. The proof is in Appendix A.

1See the source code for Nagabandi et al. [11] and MBRL-lib [57].
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For a stationary kernel, fixed planning horizon and fixed control frequency, the term Σ−1
t1:t2 is Σ−1

t:t+H
and is constant, so can be computed at initialization to avoid repeated inversion. Figure 2 demon-
strates how this update lets us combine our prior with previous posterior in a principled fashion.
Moreover, its continuous-time construction means that the time resolution can be updated, not just
the time window, for planning at different timescales [30].

Compared to the independence assumption, modeling correlations between actions introduces com-
plexity. The full covariance over (flattened) time and action has a complexity R(T 3d3

a), which is
infeasible to work with. Assuming independence between actions, a GP per action has a complexity
of R(T 3da), requiring da GPs to be fit, which is not desirable for online methods such as MPC. To
avoid the linear scaling w.r.t. da, we propose using the matrix Normal distribution (Definition 4) for
scalability, as it is parameterized into single T and da-dimensional covariances,
Definition 4. (Matrix Normal Distribution (MaVN) [59]) For a random matrix X ∈Rn×p, it fol-
lows the distributionX ∼MN (M ,K,Σ), whereM ∈Rn×p,K ∈Sn+ and Σ∈Sp+, if and only if
vec(X)∼N (vec(M),Σ⊗K), for Kronecker product⊗ and Sk+={X∈Rk×k|X>=X,X� 0}.
Using the Kronecker-structured covariance provides a useful decomposition of the time-based co-
variance K, that defines correlations between time steps, and an action covariance Σ that captures
correlations between actions. Typically we assume actions are independent, but cross-correlations
could be learned from experience for richer coordination. While this Kronecker structure does not
fully capture the correlations between time and actions, the structure is very useful for MPC on
robotic systems, where the actions space could be very high but the planning horizon is sufficiently
small for covariance estimation using a reasonable number of Monte Carlo rollouts.

Feature Approximations. Despite the matrix Normal factorization, computing the correlations be-
tween actions still requires a dense H×H covariance matrixK for planning horizon H . To sparsify
this quantity, we consider kernel approximations, such as the canonical basis functions

∑
n k(·,xn)

and spectral approximations using random features
∑
n φn(·) [60], for a Bayesian linear model

φ>t W . Focusing on the squared exponential (SE) kernel, this results in radial basis function (RBF)
and random Fourier features (RFF) respectively. Interestingly, RBF features are closely related to
probabilistic movement primitives, used extensively in policy search for robotics [32]. For one-
dimensional inputs, RFFs are effectively approximated by applying Gauss-Hermite quadrature [61]
to the random weights [62]. RBF features and RFFs approximate w.r.t. time and frequency respec-
tively and could be combined [63]. Using these continuous-time features, the optimization is now
abstracted from planning horizon and control frequency, providing much greater flexibility. Sec-
ondly, due to the features, a factorized weight covariance approximation does not sacrifice smooth-
ness. Moreover, the moment updates described above are not needed, as only φt is updated.

5 Related Work

Inference-based control. Posterior policy iteration was proposed by Rawlik et al. [41] and cov-
ers prior methods developed from Bayesian smoothing [23, 37], expectation maximization [22, 56],
entropy regularization [47, 9] and path integral [64] perspectives. For MPC specifically, the path
integral-based MPPI was proposed [18], with alternative formulations based on mirror descent [46]
and variational inference [5, 65, 66]. Mukadam et al. [25] models the optimal state-action distri-
bution as a sparse Gaussian process and uses linearization for approximate inference. The same
approach is used for Gaussian process motion planning [30], which are also optimized using sam-
pling [8]. Gaussian quadrature is also used for inference-based MPC [27]. Concurrent work uses the
ESS for a temperature adjusting heuristic for MPPI [15] and also combines policy search with MPC
using PPI techniques [67]. See Section B for a more in-depth discussion on these related works.

Policy design and regularization. Smooth actuation is important in robot learning for safety and
exploration, having been proposed for Monte Carlo MPC [11, 12, 4] and more broadly incorporated
using augmented objectives, parameter sampling and policy design, e.g. [68, 69, 70].

Stochastic search. Probabilistic interpretations of black-box optimization algorithms are well es-
tablished [71, 72, 73], however prior work did not connect the ESS and elite samples. CEM and
extensions have also been adopted widely as a solver for MPC [3, 4, 6].

Gaussian processes for control. This work adopts GPs for correlated action priors. This is distinct
from prior work which uses GPs to approximate dynamics or value functions, e.g. [74, 75, 76, 77].
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Figure 3: MPC return and smoothness with white noise priors. Displaying quartiles over 50 seeds.
These priors require a large number of samples for good performance, across methods and tasks.

6 Experimental Results

We assess the Gibbs posterior methods and policy design empirically across various settings. Black-
box optimization (Section 6.1) considers standard benchmarks, while policy search (Section 6.2)
optimizes action sequences for a robotic task. For MPC (Section 6.3), we evaluate online PPI ap-
proaches with white noise and smooth priors on high-dimensional, contact-rich tasks. For the code,
see github.com/JoeMWatson/monte-carlo-posterior-policy-iteration.

6.1 Black-box Optimization

To understand the behaviour of the proposed PPI variants, the performance of LBPS and ESSPS on a
range of standard black-box optimization functions over a range of hyperparameters, with eREPS and
CEM as baselines, are shown in Appendix D.1. Figures 7 – 10 show that ESS is a useful metric for
these methods, as each solver exhibits consistent ESS for a given hyperparameter value. However,
the uniform weights used by CEM (Figure 7) maintain entropy longer than ESSPS (Figure 8), which
can lead to better optima, so the ESS is not sufficient to fully capture the behavior of these solvers.

6.2 Policy Search

As LBPS and ESSPS are closely related to eREPS, we repeat the experiment from prior work perform-
ing the ‘ball in a cup’ task using policy search using a Barret WAM [14], which has been shown to
transfer to the physical system [78, 14, 79], as a benchmark task. Moreover, we replace ProMPs with
Matrix normal RBF and RFF policies. From the kernel perspective, this feature approximation is mo-
tivated by the large (T ' 1000) task horizon. The results in Appendix D.2 confirm that these solvers
are all capable of solving the task, based on success rate, where RBF (Figure 11) and RFF features
(Figure 12) perform equally well w.r.t. the convergence of the success rate for each approach.

6.3 Model Predictive Control with Oracle Dynamics

We evaluate online PPI across a range of high-dimensional robotic control tasks in MuJoCo [80],
including HumanoidStandup-v2 in Gym [81] and door-v0, hammer-v0 from mj envs, using the
Adroit hand (Figure 1) [82]. To measure smoothness, we adopt the FFT-based score 2

Nfs

∑N
i=1 aifi

[68], with sampling frequency fs and N resolvable frequencies f with amplitudes a. We compute
the Euclidean norm of the action sequence over time and apply the smoothness measure to this
signal. For the evaluation, we focus on a low computational budget, with 1 or 2 iterations per
timestep. To assess the impact of approximate inference, we assess performance over an logarithmic
range of sample rollouts, following prior work [4]. Details may be found in Appendix E.2.

White noise priors. Figure 3 shows MPC with white noise priors using LBPS and ESSPS, with MPPI,
CEM and PI2 baselines (see Table 1). While each solver performs comparably for 1024 rollouts, the
low sample regime shows greater performance variance. While MPPI seems particularly effective,
Figure 13 shows that its average ESS is particularly low, ' 1 for many cases. Combined with
the fixed variances, this suggests optimization is closer to greedy random search than importance
sampling. The poor door-v0 performance of ESSPS is due to slow opening, rather than task failure.
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Figure 4: MPC return and smoothness with smooth action priors. Displaying quartiles over 50 seeds.
Compared to white noise priors, smooth action priors improve sample efficiency dramatically, but
only PPI methods (LBPS, ESSPS) preserve this smoothness in the downstream control.
Policy design for smooth control. Figure 4 shows online PPI with action priors. LBPS, ESSPS and
MPPI use the SE kernel, with iCEM [4] and MPPI with smooth actions and noise as a baseline. The
smooth action distributions greatly improves performance across models, tasks and sample sizes,
due to effective exploration. As desired, the richer SE kernel provides much greater smoothness, by
up to a factor of 2 compared to baselines, with limited impact to performance. It is unsurprising that
the smoothness bias reduces performance if optimal behavior is non-smooth, as illustrated in Figure
2. Appendix D.3.2 shows some of the action sequences from Figure 4, where we see GP smoothness
varies with increasing rollout samples and also results in significant actuator amplitude reduction.

Comparing kernel- and feature-based policies. To assess feature approximations for smooth MPC,
we replace the SE kernel with RBF and RFF features, while keeping the lengthscale fixed. These
policies perform worse given fewer samples, but are comparable to the true kernel with sufficient
samples (Figure 15). We attribute this to the compounding errors of kernel approximation and fewer
effective samples. In contrast to the policy search task, RFFs appear superior to RBF features.

Learning priors from data. A benefit of using GP priors is the ability to optimize hyperparameters
from expert demonstrations through the likelihood or a divergence. Moreover, the matrix normal
distribution is useful for analyzing high-dimensional action sequences, as it decomposes temporal-
and action correlations into viewable covariance matrices. Section D.3.3 shows the matrix normal
distributions of expert demonstrations of the tasks, obtained through human and RL experts. The
results show that, surprisingly, the demonstrations are rougher than the smoothness achievable with
MPC. We attribute this to control artifacts from demonstration collection and the use of Gaussian
noise by RL agents. Applying the same methodology to the demonstrations of the smooth MPC
agents proposed here extracts the expected action correlations across tasks. This analysis also raises
the question of whether smoothness is an inductive bias we enforce for practicality, or a phenom-
ena we expect to arise from optimality. If the latter, it may be that the simulated environments or
objectives considered are lacking components that encourage smoothness, such as energy efficiency.

7 Conclusion
We present a broad perspective on episodic posterior policy iteration method for robotics and new
methods for the Monte Carlo setting, based on regularizing the IS approximations. By considering
vector-valued Gaussian processes for action priors, we have demonstrated how sample-efficient MPC
can be performed as online inference and with greater control over actuator smoothness, connecting
Monte Carlo MPC to prior work on policy search. This approach was validated on a set of high-
dimensional MPC tasks closely matching baseline performance while achieving greater smoothness.

Limitations. Much of the prior work is motivated by simplicity, minimizing hyperparameter tuning
and numerical procedures such as matrix inversion [64]. In contrast, the contributions of this work
introduces complexity, i.e. online temperature optimization and the use of dense covariance matrices
in order to perform more sophisticated approximate inference. While this additional complexity has
an impact on execution time (Table 2, Appendix), we hope the sample-efficiency when combined
with accelerations such as GPU-integration should produce real-time algorithms [13].
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