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Abstract

A core aim in theoretical and systems neuroscience is to develop models that help us
better understand biological intelligence. Such models range broadly in both com-
plexity and biological plausibility. One widely-adopted example is task-optimized
recurrent neural networks (RNNs), which have been used to generate hypotheses
about how the brain’s neural dynamics may organize to accomplish tasks. However,
task-optimized RNNSs typically have a fixed weight matrix representing the synaptic
connectivity between neurons. From decades of neuroscience research, we know
that synaptic weights are constantly changing, controlled in part by chemicals
such as neuromodulators. In this work we explore the computational implications
of synaptic gain scaling, a form of neuromodulation, using task-optimized low-
rank RNNs. In our neuromodulated RNN (NM-RNN) model, a neuromodulatory
subnetwork outputs a low-dimensional neuromodulatory signal that dynamically
scales the low-rank recurrent weights of an output-generating RNN. In empirical
experiments, we find that the structured flexibility in the NM-RNN allows it to
both train and generalize with a higher degree of accuracy than low-rank RNNs on
a set of canonical tasks. Additionally, via theoretical analyses we show how neu-
romodulatory gain scaling endows networks with gating mechanisms commonly
found in artificial RNNs. We end by analyzing the low-rank dynamics of trained
NM-RNNS, to show how task computations are distributed.

1 Introduction

Humans and animals show an innate ability to adapt and generalize their behavior across various
environments and contexts. This suggests that the neural computations producing these behaviors
must have flexible dynamics that are able to adjust to these novel conditions. Given the popularity of
recurrent neural networks (RNNs) in studying such neural computations, a key question is whether
this flexibility is (1) adequately and (2) accurately portrayed in RNN models of computation.

Traditional RNN models have fixed input, recurrent, and output weight matrices. Thus, the only way
for an input to impact a dynamical computation is via the static input weight matrix. Prior work
has shown that flexible, modular computation is possible with these models [1], but looking to the
biology suggests alternative ways of modeling. In particular, experimental neuroscience research
has shown that synaptic strengths in the brain (akin to weight matrix entries in RNNs) are constantly
changing — in part due to the influence of neuromodulatory signals [2].

Neuromodulatory signals are powerful and prevalent influences on neural activity and subsequent
behavior. Dopamine, a well-known example, is implicated in motor deficits resulting from Parkinson’s
disease and has been the subject of extensive study by neuroscientists [3]. For computational study,
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neuromodulators are especially interesting because of their effects on synaptic connections and
learning [4]. In particular, neuromodulators have been shown to alter synaptic strength between
neurons, effectively reconfiguring circuit dynamics [5].

In this work, we seek to incorporate a neuromodulatory signal into task-trained RNN models. We
propose a model consisting of a pair of RNNs: a small “neuromodulatory” RNN and a larger,
low-rank “output-generating” RNN. The neuromodulatory RNN controls the weights of the output-
generating RNN by scaling each rank-1 component of its recurrent weight matrix. This allows the
network to produce flexible, yet structured dynamics that unfold over the course of a task. We first
review background work in both the machine learning and computational neuroscience literature.
Next, we introduce the model and provide some intuition for the impact of neuromodulation on the
model’s dynamics, relating our model to the canonical long short-term memory (LSTM) network.
We end by presenting the performance and generalization capabilities of neuromodulated RNNs on
a variety of neuroscience and machine learning tasks, showcasing the ability of a relatively simple,
biologically-motivated augmentation to enhance the capacity of RNN models.

2 Background

First, we review related work in the theoretical neuroscience and machine learning literature.

2.1 Modeling neuromodulatory signals

Our work builds on a body of literature dating back to the 1980s, when pioneering computational
neuroscientists added neuromodulation to small biophysical circuit models (for reviews, see [6—8]).
These models consist of coupled differential equations whose biophysical parameters are carefully
specified to simulate biologically-accurate spiking activity. As Marder relates in her retrospective
review [5], such neuromodulatory models were created in response to neuronal circuit models which
viewed circuit dynamics as “hard-wired”. Neuromodulatory mechanisms offered an answer to
experimental observations that anatomically fixed biological circuits were capable of producing
variable outputs [9, 10]. Of particular relevance to this work, in his 1990 paper Abbott [11] showed
that adding a neuromodulatory parameter to an ODE model of spiking activity allows a network of
neurons to display capacity for both long- and short-term memory and gate the learning process,
anticipating the LSTMs that would become prominent a few years later. We also draw comparisons
between our model and the LSTM in the sections that follow. However, our work does not aim to
model any specific biophysical system; rather, it aims to begin to bridge the gap between these highly
biologically-accurate models and general network models (i.e. RNNs) of neuronal activity by adding
a biologically-motivated form of structured flexibility.

More recent attempts to model neuromodulation have taken advantage of increased computational
power. Prior work has investigated modulatory influence in spiking neural networks, for example
by linearly scaling the firing rates of a subset of neurons [12], incorporating arousal-mediated
modulatory signals to induce phase transitions [13], and facilitating credit assignment during learning
[14]. Stroud et al. [15] use a balanced excitatory/inhibitory RNN to model motor cortex, and
incorporate modulatory signals as constant multipliers on each neuron’s activity. Our work similarly
proposes a modulatory signal that impacts network activity, but we instead allow this signal to
scale factors of the recurrence matrix. Duong et al. [16] use a similar factor scaling approach to
model adaptive whitening in early sensory processing. Our approach differs by focusing on low-rank
recurrence matrices in a task-oriented setting. In addition to RNN models, gain modulation has been
explored in neural ODEs [17] and feedforward networks [18].

The works of Tsuda et al. [19] and Vecoven et al. [20] are most similar to what we present here. In
Tsuda et al. [19], the authors train RNNs using constant, multiplicative neuromodulatory signals
applied to pre-specified subsets of the recurrent weights. They show that these neuromodulatory
signals allow an otherwise fixed network to perform variations of a task. In contrast, we employ
time-dependent neuromodulatory signals that allow dynamics to evolve throughout tasks. Instead
of pre-specifying the values and regions of impact of neuromodulators, we allow the model to learn
the time-varying neuromodulatory signal and what segment of the neuronal population it impacts.
Vecoven et al. [20] use a two-network approach in which a neuromodulatory network processes
contextual information to alter the activation functions of a “main” feedforward deep neural network.
They show that this “Neuro-Modulated Network” outperforms RNNs on meta-RL benchmarks. We
also use a two-network approach in which one network modulates the parameters of the other, but
instead applied to recurrent neural networks in a non-RL paradigm.



2.2 Hypernetworks

Our approach is closely related to recent work using hypernetworks to enhance model capacity. Ha
et al. [21] use small networks (termed hypernetworks) to generate parameters for layers of larger
networks. In their HyperRNN, a hypernetwork generates the weight matrix of an RNN as the linear
combination of a learned set of matrices. We also allow our neuromodulatory network to specify
the weight matrix of a larger RNN as a linear combination of a learned set of matrices; however,
our learned matrices are rank-1 to facilitate easier dynamical analysis and faster training. It is also
worth noting that in practice, Ha et al. [21] simplify their HyperRNN so that the hypernetwork scales
the rows of a learned weight matrix, which could be seen as postsynaptic scaling in our model.
Similarly, von Oswald et al. [22] study the ability of hyper-

neuromodulatory subnetwork networks to learn in the multitask and continual learning

setting. They find that hypernetworks trained to produce
task-specific weight realizations achieve high performance
on continual learning benchmarks. In exploring potential
neuroscience applications of their work, they remark that
while their approach might be unrealistic, a hypernetwork
that outputs lower-dimensional modulatory signals could
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For a variety of tasks of interest, measured neural record-
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latent variables [23, 24] (although see [25, 26] for an alter-
native view). Likewise, artificial neural networks trained
to solve tasks that mimic those found in neural experi-
ments also often exhibit low-rank structure [27]. Based
on these findings, recurrent neural networks with low-rank
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3 Neuromodulated recurrent neural networks

Motivated by the appealing dynamical structure of low-rank RNNs and the ability of neuromodulation
to add structured flexibility, we propose the neuromodulated RNN (NM-RNN). The NM-RNN consists
of two linked subnetworks corresponding to neuromodulation and output generation. The output
generating subnetwork is a low-rank RNN, which admits a natural way to implement neuromodulation.
We allow the output of the neuromodulatory subnetwork to scale the low-rank factors of the output
generating subnetwork’s weight matrix. In particular, we propose incorporating neuromodulatory
drive via a coupled ODE with neuromodulatory subnetwork state z(t) € R and output-generating
state z(t) € RV:

80— at) + W (=) 6((t) + Boult) @
y(t) =Cz(t) + d, ©



A - B . C .
Irrlu_)act of neuromodulation on w(t) Schematic of the LSTM Schematic of the NM-RNN
s Cr_—% o . [ X1 tanh X t X
[ —_— . 4 tanh
I A S A RN
P o o tanh O L w. o
3 h_, L L L B, %y tenh —4 L dli %
0 _J
U

o 2 4 6 8 10
time

Figure 2: A. Illustration of how neuromodulatory signals s(t) affect decay rates of the state w(t) in
a 1-D, simplified model (derived in Section 3.1), calculated with prespecified s(t) signal. As s(t)
approaches 0, w(t) decays more rapidly. B. & C. Visual comparison of an LSTM and an NM-RNN.
Corresponding parts of the networks are highlighted with shaded rectangles. Blue: a forget gate
computation. Green: an input gate to recurrent dynamics. Purple: recurrent feedback onto the
modulatory state variable.

where the dynamics matrix W, (2(t)) is a function of the neuromodulatory subnetwork state z(t)
via a neuromodulatory signal s(z(t)) € R which scales each low-rank component of W ,:

K
s(z(t)) = o(A.z(t) +b.) Wo(z(t) =) si(z(t)) lery. 4)
k=1

The output-generating subnetwork is modeled as a size-N low-rank RNN where u(t) € R are the
inputs, B, € RV are the input weights, and ¢(-) is the tanh nonlinearity. The neuromodulatory
subnetwork is modeled as a small vanilla RNN with its own time-constant 7,, recurrence weights
W, € RMXM and input weights B, € RM*P_ To limit the capacity of the neuromodulatory
subnetwork, we take its dimension M to be smaller than the output-generating subnetwork’s dimen-
sion N. We set 7, > 7, since neuromodulatory signals are believed to evolve relatively slowly [31].
The neuromodulatory subnetwork state z(t) alters the rank-K dynamics matrix W, € RV XY via a
K -dimensional linear readout s(z(t)), where o (-) is the sigmoid nonlinearity. The components of s
act as linear scaling factors on each rank-1 component Ekr;cr € RM*M of W . For ease of notation,
in the rest of the text we write s(¢) to mean s(z(t)). The output y(t) € R of the paired networks is
a linear readout of x(t).

This augmentation to the RNN framework allows for structured flexibility in computation. In tradi-
tional RNNSs, the recurrent weight matrix is fixed, and thus the inputs to the system can only perturb
the state of the network. In the NM-RNN, the neuromodulatory subnetwork can use information
from the inputs to dynamically up- and down-weight different low-rank components of the recurrent
weight matrix, offering greater computational flexibility. As we will see below, this flexibility also
allows the network to reuse dynamical components across different tasks and task conditions.

3.1 Mathematical intuition

To gain some intuition for the potential impacts of neuromodulation on RNN dynamics, first consider
the case where W, is symmetric (i.e., £, = 7, Vk), where {€) }1<x<x forms an orthonormal set,
where the nonlinearity is removed (i.e., ¢(x) = x), and where there are no inputs (i.e., u(t) = 0V¢).

We can then reparameterize the system with a new hidden state w(t) = L' x(t), where L € RN XK
is the matrix whose columns are £, (so that LY L = I). This produces decoupled dynamics:

dw(t)
T
where S(t) = diag (s(t)). Solving this ODE gives an equation for the components of w(¢):

wi(t) = wi (0) exp (— / Az a(t) dt/)

Tx

— —w(t) + S(t)w(t) S

From this equation and the visualization in Fig. 2A, we see that the decay rate of each component
wy(t) is governed by its corresponding neuromodulatory signal s (¢). In this way, s(t) can effectively
speed up or slow down decay of dynamic modes, similar to gating in an LSTM.



3.2 Connection to LSTMs

Having observed that neuromodulation can alter the timescales of dynamics, note further that the
low-rank update for the linearized NM-RNN in eq. (5) mirrors the cell-state update equation for a
long short-term memory (LSTM) cell [32]. Specifically, the neuromodulatory signal s(t) resembles
the forget gate of an LSTM (fig. 2B). Indeed, as in eq. (5), if we linearize the output-generating
subnetwork of the NM-RNN and assume that L = R (so that W, is symmetric) and LTL = I, then

for w(t) = L"(t) and 7, = 1, the discretized low-rank dynamics are given by
w; =5 O wey + LT Boug ©)

LSTM:s have two states that recurrently update across each timestep ¢: a hidden state h; € RNs™
and a cell state ¢, € RMNst™, Equation (6) closely mirrors the cell-state update of the LSTM:

ci=fOc1+14,0¢ @)

Here, the forget gate f; is a form of modulation that depends on the LSTM hidden state h;, much
like the NM-RNN’s neuromodulatory signal s(¢) is a form of modulation depending on the NM-
RNN’s neuromodulatory subnetwork state z(¢). The second term 4, ® ¢; can be viewed as a gated
transformation of the input signal w(t). In fact, under suitable assumptions, we show that the
dynamics of an NM-RNN can be reproduced by those of an LSTM (see Supplementary Material,
Proposition 1).

As a gated analog of the RNN, the LSTM has enjoyed greater success than ordinary RNNs in
performing tasks that involve keeping track of long-distance dependencies in the input signal [33].
Thus, highlighting the connection between the NM-RNN and LSTM suggests the NM-RNN’s ability
to successfully model long-timescale dependencies, unlike regular RNNs (see Section 6).

4 Time interval reproduction

To evaluate the potential of neuromodulated RNNs to add structured flexibility, we first consider
a timing task since neuromodulators such as dopamine are implicated in time measurement and
perception [34]. In the Measure-Wait-Go (MWG) task (Fig. 3A) [35], the network receives a 3-
channel input containing the measure, wait, and go cues. The network must measure the interval
between the measure and wait cues, and reproduce it at the go cue by outputting a linear ramp of
the same duration. Tasks such as this one are commonly used to study the neural underpinnings of
timing perception in humans and non-human primates [36, 37].

4.1 Experiment matches theory for rank-1 networks

To investigate how the NM-RNN’s neuromodulatory signal is constrained by the task requirements,
we first consider a class of analytically tractable NM-RNNs: networks for which the output-generating
subnetwork is linear (i.e., the tanh nonlinearity is replaced with the identity function) and rank-1. In
this case, there is one pair of row and column factors, £ and 7, respectively. If the target output signal
is given by f(t) and there are no inputs, then an NM-RNN that successfully produces this output
signal will precisely have the neuromodulatory signal,

fO) +7f'(t)—d

=B = (€7r) (f(t) — cTwt (0)et/7 — d) + (cT£) (rTwk(0)e~t/7)’

where our readout is y = ¢« + d and w(t) := x(t) — WEET:B(t) is the component of x(t)

evolving outside of the column space of £ (viewed as a matrix in R"Y*1). For the full derivation, see
the Supplementary Material, Section B. If we assume further that w(0) is sufficiently small and 7,
is also sufficiently small, then we may make the approximation,

! !
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In the MWG task, no inputs are provided to the network during the ramping period following the
go cue, so eq. (8) applies. In fig. 3B, we show that the neuromodulatory signal of a trained rank-1
NM-RNN during the ramping period matches closely with the theoretical prediction made by eq. (8)
for both trained and extrapolated target intervals.
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Figure 3: A. Visualization of Measure-Wait-Go task. B. Theoretical predictions (dashed lines)
match closely with empirical results (solid lines) for rank-1 network. C. L2 loss comparsion of four
model types on MWG task. We trained 10 randomly initialized parameter-matched low-rank RNNss,
NM-RNNS, vanilla RNNs, and LSTMs. Median losses shown by bars. Performance of visualized
LR-RNN and NM-RNN are starred (example visualizations for all four models shown in Supp. Fig.
1). D. Comparison of model-generated output ramps for both trained (purple) and extrapolated (red,
blue) intervals. Dashed lines show target outputs. E.Three-dimensional neuromodulatory signal s(t)
for trained/extrapolated intervals. Left, traces are aligned to start of trial. Right, traces are aligned to
‘go’ cue. F. Resulting output traces when ablating each component of s(t). In all panels, colors reflect
trained/extrapolated intervals (see legend). For output plots, dashed grey lines are targets. Additional
model visualizations in Supp. Fig. 1-2.

4.2 Improved generalization and interpretability on timing task for rank-3 networks

To continue our analysis of NM-RNNs on the MWG task, we increase the rank of the output-
generating subnetwork to three. We do this to compare to the networks shown in Beiran et al. [35]
and to showcase networks with more degrees of structured flexibility. In Beiran et al. [35], the authors
show that rank-3 low-rank RNNs perform and extrapolate better on this task when provided a tonic
context-dependent input, which varies depending on the length of the desired interval. As we have
mentioned, such sensory inputs to the network may only alter the resulting dynamics by being passed
through the input weight matrix. We propose the NM-RNN as an alternative mechanism by which
inputs may alter the network dynamics.

We trained parameter-matched NM-RNNs (N = 100, M = 5, K = 3, 7, = 10, 7, = 100),
LR-RNNs (V. =106, K = 3, 7 = 10), vanilla RNNs (N = 31, 7 = 10), and LSTMs (N = 15)
to reproduce four intervals, then tested their extrapolation to longer and shorter intervals. In the
LR-RNN and NM-RNN, the low-rank matrix was chosen to have rank 3, as in Beiran et al. [35]. In
fig. 3C, we plot the L2 losses for ten instances of each model. We see that although the vanilla RNN,
LSTM, and NM-RNN are all able to train accurately, the NM-RNN consistently achieves a lower loss
on the extrapolated intervals. In fig. 3D, we then show outputs for a typical LR-RNN and NM-RNN



(performance of these visualized networks indicated by stars in fig. 3C, visualizations of vanilla RNN
and LSTM shown in Supp. Fig. 1). The outputs of the NM-RNN have more accurate slope and shape
for both trained and extrapolated intervals, with the LR-RNN failing to reproduce shorter and longer
extrapolated intervals.

We then investigate how the neuromodulatory signal s(¢) contributes to the task computation. Fig-
ure 3E shows the three dimensions of s(t) plotted over the full range of trained and extrapolated
intervals. Each dimension shows activity correlated to particular stages of the task. In fig. 3E (right),
we see that s1 () and s3(¢) have activity highly correlated to the measured interval. In particular,
we can see that between the wait and go cues, s () separates shorter intervals from longer ones,
setting up initial dynamics for the go period when the ramp is generated. The third component s5(t)
appears to be involved with ending the output ramp, since it saturates first for the shorter intervals
and then the longer ones. Figure 3F shows the result of ablating each dimension of s(t) by keeping
that component fixed around its initial value. We see that performance suffers in all cases, especially
when ablating the effect of s;(t) and s3(¢). Most dramatically, ablating s3(¢) destroys the ability
of the network to change the slope of the output ramp appropriately. These results show that the
network uses its neuromodulatory signal to process timing information and generalize across task
conditions.

5 Reusing dynamics for multitask learning

Next, we move beyond generalization within a single task to investigate the capabilites of the NM-
RNN when switching between tasks. There has been recent interest in studying how neural network
models might reassemble learned dynamical motifs to accomplish multiple tasks [1, 38]. Driscoll
et al [1] showed that an RNN trained to perform an array of tasks shares modular dynamical motifs
across task periods and between tasks. With this result in mind, we were curious how the NM-RNN
might use its neuromodulatory signal to flexibly reconfigure dynamics across tasks.

We performed our analysis using the four-task set from Duncker et al. [39], which includes the tasks
DelayPro, DelayAnti, MemoryPro, and MemoryAnti illustrated in fig. 4A. In the DelayPro task, the
network receives a three-channel input consisting of a fixation input and two sensory inputs which
encode an angle 6 € [0, 27) as (sin(#), cos(f)). The fixation input starts and remains at 1, then drops
to 0 to signal the start of the readout period, when the network must generate its response. The
sensory inputs appear after a delay, and persist throughout the trial. The goal of the network is to
produce a three-channel output which reproduces the fixation and sensory inputs. In the MemoryPro
task, the sensory inputs disappear before the readout period, requiring the network to store 6. In the
‘Anti’ tasks, the networks must instead produce the opposite sensory outputs, (sin(f+ ), cos(6 + 7)),
during the readout period. The task context is fed in as an additional one-hot input. These tasks
are analogous to variants of the center-out reaching task, which has been used to study the neural
mechanisms of motion in non-human primates [40].

To study the potential of NM-RNNss to flexibly reconfigure dynamics to perform a new task, we
only fed the contextual inputs to the neuromodulatory subnetwork, and not to the output-generating
subnetwork. This required the model to reuse the output-generating subnetwork’s weights when
adding a new task. We trained an NM-RNN to perform the first three tasks in the set (DelayPro,
DelayAnti, MemoryPro), then froze the weights of the output-generating subnetwork and retrained
only the neuromodulatory subnetwork’s weights on the fourth task, MemoryAnti. We compared this
to retraining the input weights of LR-RNNSs, vanilla RNNs, and LSTMs, to investigate two strategies
of processing context.

We trained parameter-matched NM-RNNs (N = 100, M = 20, K = 3, 7, = 10, 7, = 100),
LR-RNNs (N =100, K = 3, 7 = 10), vanilla RNNs (N = 18, 7 = 10), and LSTMs (N = 8) in
this training/retraining framework. Figure 4B shows performance of example networks on the trained
and retrained tasks, using the percent correct metric from Driscoll et al. [1]. The NM-RNN matches
the performance of the LSTM and higher-rank vanilla RNN, and considerably outperforms the LR-
RNN with no modulation. This performance gain over LR-RNNS is not the result of retraining more
parameters; in fact, due to the contrasting sizes of the neuromodulatory and low-rank subnetworks,
the input weight matrix of the comparison LR-RNN contains more parameters than the entire
neuromodulatory subnetwork, since it must process all inputs (context, sensory, and fixation). To see
exactly how the recurrent dynamics were rearranged for this new task, we plotted the neuromodulatory
signal of an example network for learned and extrapolated tasks in fig. 4C.
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Figure 4: A. Depiction of inputs and targets for four tasks. Networks were trained on the first three
tasks, then context-processing weights were retrained on the fourth task (final row). B. Performance
comparison for four model types in multitask setting, for three initially trained tasks and retrained
MemoryAnti task. Median performance shown by bars, with color of bar split in case of overlapping.
We trained 10 randomly initialized parameter-matched low-rank RNNs, NM-RNNs, vanilla RNNs,
and LSTMs. C. Neuromodulatory signal for an example network. D. Dynamical analysis of network
activity during different stages of the tasks. (Left) PCs 1&2 during the stimulus period show a ring
attractor which stores the measured angle. (Right) Sign of PC5 during readout period corresponds to
Pro/Anti. Additional model visualizations in Supp. Fig. 3-4.

We then analyzed the dynamical structure of one of the NM-RNNs by performing PCA on the
output-generating subnetwork’s state a(t) for a variety of input angles. Figure 4D shows the first two
PCs of the neural activity during the stimulus presentation period (before the stimulus shut off for
Memory trials). During this period, the neural activity spreads out to arrange on a ring according to
the measured angle. After the stimulus disappears in the MemoryPro/Anti tasks, the neural activity
decays back along these axes, but it is still decodable based on its angle from the origin (see Supp.
Fig. 4). To find how this model encoded Pro/Anti versions of tasks, we performed another PCA on
the neural activity during the readout period. As shown in fig. 4E, the sign of PC5 during this period
is correlated with whether the task is Pro or Anti. Curiously, the positive/negative relationship flips
for 6 € (m, 27), likely relating to the symmetric structure of sine and cosine. These results show the
ability of the NM-RNN to flexibly reconfigure the dynamics of the output-generating subnetwork,
both to solve multiple tasks simultaneously and to generalize to a novel task.

6 Capturing long-term dependencies via neuromodulation

Inspired by the similarity between the coupled NM-RNN and the LSTM (see section 3.2), we designed
a sequence-related task with long-term dependencies, called the Element Finder Task (EFT). On
this task, gated models like the NM-RNN outperform ordinary RNNs. When endowed with suitable
feedback coupling from the output-generating subnetwork to the neuromodulatory subnetwork, the
NM-RNN demonstrates LSTM-like performance on the EFT, while vanilla RNNs (with matched
parameter count) fail to solve this task.

In the EFT (fig. 5A), the input stream consists of a query index, ¢ € {0, 1,...,7 — 1} followed by a
sequence of 7' randomly chosen integers. The goal of the model is to recover the value of the element
at index q from the sequence of integers. At each time for ¢ > 1, the ¢th element of the sequence is



passed as a one-dimensional input to the model. At time ¢ = T, the model must output the value of
the element at index ¢ in the sequence. For our results (shown below), we took T' = 25.

We trained several NM-RNNs, LR-RNNs, full-rank RNNs, and LSTMs on the EFT, conserving the
total parameter count across networks. To emphasize its connection to the LSTM, each NM-RNN
included an additional feedback coupling from x(t) to z(t):

dz(t)
dt

Each model used a linear readout with no readout bias. The resulting performances of each model
tested are shown in fig. 5B. Figure 5C moreover illustrates the learning dynamics (as measured by
MSE loss) for a single run of selected networks. Like LSTMs, NM-RNNs successfully perform the
task, whereas low- and full-rank RNNss largely fail to do so.

To understand how a particular NM-RNN (N = 18 M = 5, K = 8,7, = 2,7, = 10) uses
neuromodulatory gating to solve the EFT, we visualize the trial-averaged behavior of different
components of s(t) across query indices (¢ = 5, 10, 15, 20), revealing that certain components of
s(t) transition between 0 and 1 on a timescale correlated to the query index ¢ (fig. 5D; left and right);
while other components zero out (fig. 5; middle). Visualizing a low-dimensional projection of z(t)
across different query indices reveals that z(t) settles to a fixed point on an approximate line attractor
encoding query index ¢ (fig. SE). These findings show that z(t) attends to the query index, facilitating
gate-switching behavior in s(¢) upon arrival of the queried element.
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Next, we analyze x(t) by visualizing its top 2 principal components across each combination of
the query indices ¢ = 5, 10, and 15 and the target element values —10, —5,0, 5, and 10 (fig. 5F).
Trajectories with different element values but the same query index start at the same location. Each
trajectory converges towards the origin, and upon arrival of the query timestep, rapidly moves to a
fixed point on an approximate line attractor that encodes element value. The arrangement of fixed
points along this line moreover preserves the ordering of their corresponding element values. In
summary, these results show that the NM-RNN solves the EFT by distributing its computations
across the neuromodulatory subnetwork, which attends to the query index, and the output-generating
subnetwork, which retrieves the target element value.

7 Discussion

As we have shown, neuromodulated RNNs display an increased ability to both perform and generalize
on tasks, demonstrating an important computational implication of synaptic gain scaling. This
enhanced performance is enabled by the structured flexibility neuromodulation adds to the dynamics
of the network, via modulation of the singular values of the low-rank recurrent weight matrix. As we
have shown both theoretically and in practice, this flexibility lends itself particularly well to tasks
with timing-related variability. In addition, we saw performance gains over the LR-RNN for the
multitask paradigm. Curiously, the gating-like dynamics introduced by adding neuromodulation are
reminiscent of the canonical LSTM, and we can prove equivalence under certain conditions.

Limitations. One limitation of this work relates to the scale of the networks tested. Our networks
were on the scale of NV =~ 100 neurons at their largest, as opposed to other related works which use
neuron counts in the thousands. However, we found that this number of neurons was adequate to
perform the tasks we presented. We also have yet to compare our results to neural data, limiting our
ability to draw biological conclusions.

Future Work. We are excited at the potential of future work to further bridge the gap between
biophysical and recurrent neural network models. To expand on the NM-RNN model, we aim to
embrace the broad range of roles neuromodulation can play in neural circuits. Potential future avenues
include: (1) sparsifying the rank-1 components of the recurrent weight matrix to better imitate the
ability of neuromodulators to act on spatially localized subpopulations of cells; (2) changing the
readout function of s(¢) to enable it to take both negative and positive values, in line with the ability
of neuromodulators to act as both excitatory and inhibitory; and (3) investigating how different
neuromodulatory effects may act on different timescales, both during task completion and learning
over longer timescales [4, 5]. More generally, each neuron (or synapse) could have an internal state
beyond its firing rate which is manipulated by neuromodulators, as in recent work investigating the
role of modulation in generating novel dynamical patterns [41, 42]. Beyond neuromodulators, there
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Figure 5: A. Visualization of the Element Finder Task. B. MSE losses attained across multiple runs
in different classes of models trained on the EFT (median is indicated by black lines). C. Training
loss curves for selected parameter-matched models. The NM-RNNs have hyperparameter counts 1:
(M=5, N=18, R=8), 2: (M=5, N=13, R=12), and 3: (M=10, N=12, R=7). D. Visualization of selected
components of s(t) for an example NM-RNN, shown across different query indices. E. Trajectories
for the top two PCs of z(t) across different query indices. The different trajectories converge to an
approximate line attractor (black) encoding query index. The time at which the queried element
arrives is marked in red. F. Top two PCs of x(t), visualized for different query indices and target
element values. Each trajectory converges to a fixed point on an approximate line attractor encoding
element value. Each curve shown in D, E, and F is averaged over 100 trials. Additional visualizations
in Supp. Fig. 5-6.

exist a multitude of extrasynaptic signaling mechanisms in the brain, such as neuropeptides and
hormones, each with their own computational and modeling implications.

In this work, we only analyzed networks post-training. We are also curious how our computational
mechanism of neuromodulation impacts the network during learning. Prior work has modeled the
role of neuromodulation in learning, for example, by augmenting the traditional Hebbian learning rule
with neuromodulation to implement a three-factor learning rule [43], and by using neuromodulation
to create a more biologically plausible learning rule for RNNs [44]. Our neuromodulatory signal
could induce similar mechanisms during learning.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We believe that the claims made in the introduction (i.e. that the NM-RNN performs and
generalizes better than the LR-RNN) are adequately shown by the results.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention limitations of our approach in the Discussion section of the main paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

¢ The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]
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Justification: All proofs and derivations are included in full in the Supplementary Material.

Guidelines:

The answer NA means that the paper does not include theoretical results.
All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the methods by which we generate synthetic data trials in the main text
and Supplementary Material. We also include specific training details and hyperparameters in the
Supplementary Material.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]

Justification: The necessary code required to reproduce the trained models is included in the Supple-
mentary Material. This code will be made available in a public repository upon publication.

Guidelines:
¢ The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: All training/test details are included in the Supplementary Material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: For most of our results, all performance datapoints are presented, eliminating the need
for error bars. All other statistical information is included accurately in the text.

Guidelines:
* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).
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¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Descriptions of the required compute resources used are included in the Supplementary
Material.

Guidelines:
* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the Code of Ethics and believe our paper conforms to it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: This paper dealt with modeling synthetic data, with no current real-world use cases.
While there are no immediate societal impacts that we anticipate, we believe this kind of work could
contribute to better understanding the human brain, leading to improved treatment for disorders.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not use existing assets.
» The authors should cite the original paper that produced the code package or dataset.
* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.
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15.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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