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ABSTRACT

Predictive coding (PC) is an influential computational model of visual learning
and inference in the brain. Classical PC was proposed as a top-down genera-
tive model, where the brain actively predicts upcoming visual inputs, and infer-
ence minimises the prediction errors. Recent studies have also shown that PC
can be formulated as a discriminative model, where sensory inputs predict neu-
ral activities in a feedforward manner. However, experimental evidence suggests
that the brain employs both generative and discriminative inference, while unidi-
rectional PC models show degraded performance in tasks requiring bidirectional
processing. In this work, we propose bidirectional PC (bPC), a PC model that
incorporates both generative and discriminative inference while maintaining a bi-
ologically plausible circuit implementation. We show that bPC matches or outper-
forms unidirectional models in their specialised generative or discriminative tasks,
by developing an energy landscape that simultaneously suits both tasks. We also
demonstrate bPC’s superior performance in two biologically relevant tasks includ-
ing multimodal learning and inference with missing information, suggesting that
bPC resembles biological visual inference more closely.

1 INTRODUCTION

Visual inference plays a critical role in the brain, providing information processing for interpret-
ing and interacting with the environment. Two frameworks have emerged to explain how the brain
could implement visual inference. The first describes vision as a bottom-up discriminative pro-
cess, where sensory stimuli are progressively filtered through layered neural architectures, predict-
ing behaviourally relevant outputs (Hubel & Wiesel, 1962). This framework resembles inference
in feedforward neural networks commonly employed in machine learning for image classification.
The other framework formalises vision as a generative process, where the brain constructs a prob-
abilistic model of sensory inputs (Knill & Pouget, 2004). From this perspective, the brain learns a
top-down generative model with priors over incoming sensory activity, and neural responses arise
from the Bayesian inversion of this model, estimating posterior probabilities of brain states given
sensory information. Various neural implementations of this inversion have been proposed, includ-
ing variational methods (Friston, 2005; 2010) or sampling approaches (Fiser et al., 2010; Orbán
et al., 2016; Haefner et al., 2016). Experimental evidence suggests that visual perception may be
a combination of both frameworks (Teufel & Fletcher, 2020; Peters et al., 2024). Discriminative
models explain the rapid initial responses to visual stimuli through efficient bottom-up processing
of the brain (Peters et al., 2024), whereas generative models capture the probabilistic computations
critical for optimally integrating noisy sensory inputs with prior knowledge, as displayed in percep-
tion and behaviour (Ernst & Banks, 2002; Wolpert et al., 1995; Knill & Richards, 1996; van Beers
et al., 1999).

One computational model capable of capturing both generative and discriminative processing modes
in the brain is predictive coding (PC). In its generative formulation, PC accounts for a broad range
of biological data from the visual system (Srinivasan et al., 1982; Rao & Ballard, 1999; Hosoya
et al., 2005) and is successful in tasks such as associative memory (Salvatori et al., 2021) and image
generation (Oliviers et al., 2024). In its discriminative formulation, PC matches backpropagation-
trained neural networks in image classification (Whittington & Bogacz, 2017; Pinchetti et al., 2025)
while also explaining neural data (Song et al., 2024). Crucially, PC relies on local computations
and Hebbian learning rules consistent with biological constraints (Hebb, 1949; Posner et al., 1988;
Lisman, 2017) and implementable in realistic neural circuits (Bogacz, 2017), making it a strong
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candidate for modelling both generative and discriminative learning in the brain. However, current
PC formulations remain restricted to a single inference mode. Hybrid approaches that combine
generative and discriminative versions exist (Tscshantz et al., 2023) but sacrifice performance in at
least one domain, leaving open how a single PC model could flexibly support both inference modes
as required for biological vision.

In this work, we propose bidirectional predictive coding (bPC), a novel model of biological vision.
bPC provides a biologically grounded neural mechanism that explains how the brain can simulta-
neously perform generative and discriminative inference based on PC. We focus on evaluating and
understanding bPC’s performance in a range of computational tasks, where PC models with either
generative or discriminative inference have been individually successful. Our key contributions can
be summarised as follows:

• We propose bidirectional predictive coding, a biologically plausible model of visual per-
ception employing both generative and discriminative inference that naturally arises from
minimising a single energy function;

• We show that bPC performs as well as its purely discriminative or generative counterparts
on both supervised classification tasks and unsupervised representation learning tasks, and
outperforms precedent hybrid models;

• We provide an explanation for the superior performance of bPC in both tasks, by showing
that it learns an energy landscape that better captures the training data distribution than its
unidirectional counterparts;

• We further show that bPC outperforms other PC models in two biologically relevant tasks,
including learning in a bimodal model architecture and inference with occluded visual
scenes, indicating its potential as a more faithful model for visual inference in the brain.

2 BACKGROUND AND RELATED WORK

Discriminative predictive coding. Recent research has explored PC models that employ bottom-
up predictions from sensory inputs to latent neural activities (Whittington & Bogacz, 2017; Song
et al., 2024), analogous to traditional feedforward neural networks. These models are structured as
hierarchical Gaussian models consisting of L layers, each characterized by neural activity xl, where
x1 corresponds to the sensory input and xL represents a label. PC learns this hierarchical Gaussian
structure by minimizing an energy function corresponding to the negative joint log-likelihood of the
model:

Edisc(x, V ) =
∑L

l=2

1

2
∥xl − Vl−1f(xl−1)∥22, (1)

where x denotes the set of neural states from x1 to xL, the parameters V include the bottom-up
weights Vl of each layer l, and f represents an activation function. We refer to this model as discrim-
inative predictive coding (discPC) and illustrate it in the top panel of Figure 1A. In discPC, inference
is performed by a forward pass from x1 to xl’s, and the learning rule of this model approximates BP,
using only local computations and Hebbian plasticity (Whittington & Bogacz, 2017). Recent work
showed that discPC performs comparably to BP in classifying MNIST, Fashion-MNIST and CIFAR-
10 (Pinchetti et al., 2025) and outperforms BP at learning scenarios encountered by the brain, such
as online and continual learning (Song et al., 2024). However, discPC lacks unsupervised learning
capabilities due to the non-uniqueness of the solution to its generative dynamics (Sun & Orchard,
2020).

Generative predictive coding. Classically, PC uses top-down predictions from neural activities
to sensory data, based on the hypothesis that the brain learns by minimizing the error between its
predicted sensory inputs and the actual sensory input (Rao & Ballard, 1999; Friston, 2005). With
neurons arranged hierarchically, the negative joint log-likelihood can be written as:

Egen(x,W ) =
∑L−1

l=1

1

2
∥xl −Wl+1f(xl+1)∥22, (2)

where x1 is set to sensory data and xL can be clamped to a label for supervised learning or remain
free for unsupervised learning. The parameters Wl are top-down weights. We refer to this formu-
lation of predictive coding as generative predictive coding (genPC). In genPC, inference of latent
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Figure 1: Model architectures used in our experiments. Arrows indicate the direction of pre-
diction and error propagation. Dashed arrows represent initialisation. Discriminative models (red)
are parametrised by bottom-up mappings from sensory inputs to brain states, generative models
(blue) are parametrised by top-down mappings from brain states to sensory inputs, and bidirectional
models incorporate both directions. Models in the top row employ local computations and error
propagation that are considered biologically plausible, whereas those in the bottom row utilise non-
local, backpropagation-based error computations that lack biological plausibility.

activities xl is performed by clamping x1 to sensory inputs and iteratively updating xl’s via gradient
descent on the energy Egen. genPC’s top-down predictions are illustrated in the top-left panel of
Figure 1B. genPC has explained various visual phenomena, such as extra-classical receptive field
effects and repetition suppression (Rao & Ballard, 1999; Hohwy et al., 2008; Auksztulewicz &
Friston, 2016). More recently, genPC has been employed to model associative memory (Salvatori
et al., 2021) and unsupervised image generation (Oliviers et al., 2024; Zahid et al., 2024). The
computational framework of genPC can be implemented within neural networks that utilize local
computations and Hebbian plasticity (Bogacz, 2017). However, genPC has poor performance in
supervised learning tasks (Tscshantz et al., 2023).

Predictive coding models with mixed inference modes. In this work, we benchmark our bPC
model primarily against hybrid predictive coding (hybridPC) (Tscshantz et al., 2023). In hybridPC,
iterative inference proceeds in the same way as in genPC. However, an additional bottom-up network
is introduced to provide a feedforward initialisation of neural activities. This network only sets the
initial states and does not influence the subsequent dynamics, as illustrated in the top-right panel of
Figure 1B. Although hybridPC performs both supervised and unsupervised learning, its supervised
performance falls short of discPC. In this work, we show that bPC performs supervised learning on
par with discPC, and we provide an explanation of hybridPC’s inferior performance through the lens
of bPC (see SM H). Sun & Orchard (2020) noted the energy-minimising nature of PC models could
theoretically allow image generation in discPC (Eq. 1), by clamping xL to a label and iteratively
updating x1. However, the generated images appear nonsensical due to the non-unique inferential
dynamics solutions. Salvatori et al. (2022) generalised the idea of Sun & Orchard (2020) to a PC
model where all neurons are interconnected with each other. However, it only slightly outperforms
the classification performance of a linear classifier. Finally, Qiu et al. (2023) proposed a bidirectional
PC model in which the connections between separate layers share the same weights, e.g. the bottom-
up weights from layer l − 1 to l equal the top-down weights from layer l to l + 1. It is unlikely that
the brain shares synaptic connections between separate layers of processing.

Discriminative and generative models of the brain. Cortical processing models are often di-
vided into discriminative, which use feedforward networks to filter inputs (Yamins et al., 2014;
Fukushima, 1980), and generative, grounded in the Bayesian Brain hypothesis (Helmholtz, 1866;
Knill & Pouget, 2004) and theories such as predictive coding (Rao & Ballard, 1999; Friston, 2005)
or adaptive resonance (Grossberg, 2012). Growing evidence suggests the brain combines these ap-
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proaches (Lamme & Roelfsema, 2000; Teufel & Fletcher, 2020; Peters et al., 2024): for example, it
might employ a discriminative approach to rapidly extract important features, and perform Bayesian
inference on these features to form high-level perceptions such as object categories (Yildirim et al.,
2024). Few models explicitly integrate both. The wake-sleep algorithm used to train the Helmholtz
machine (Dayan et al., 1995) is analogous to a generative-discriminative process. The Symmetric
Predictive Estimator (Xu et al., 2017) models bidirectional processing, though only on toy tasks.
A related bidirectional model based on information maximization (Bozkurt et al., 2023) improves
biological plausibility but requires two inference phases per update. Interactive activation mod-
els (Rumelhart & McClelland, 1982) also perform bidirectional inference, but do not incorporate a
learning mechanism.

Discriminative and generative models in machine learning. Research in machine learning has
likewise sought to integrate discriminative and generative pathways. Encoder–decoder architec-
tures such as U-Nets (Ronneberger et al., 2015) combine bottom-up and top-down processing via
skip connections, while models including VAVAE (Yang & Wang, 2025) and VAR (Tian et al.,
2024) unify both pathways within a shared latent representation. Other approaches, exemplified
by PredNet (Lotter et al., 2016), take more explicit inspiration from cortical circuitry to implement
bidirectional information flow. Despite their strong empirical performance, these models depend on
non-local learning signals and therefore do not provide a biologically plausible account of bidirec-
tional learning in the brain.

3 BIDIRECTIONAL PREDICTIVE CODING

In contrast to genPC and discPC, bPC neurons perform both top-down and bottom-up predictions,
as shown in the top panel of Figure 1C. bPC achieves this bidirectional inference by unifying the
energy functions of genPC and discPC into a single formulation, enabling both generative and dis-
criminative prediction within the same circuit. Using the notations previously introduced, the energy
function of bPC given by:

E(x,W, V ) =
∑L−1

l=1

αgen

2
∥xl −Wl+1f(xl+1)∥22 +

∑L

l=2

αdisc

2
∥xl − Vl−1f(xl−1)∥22, (3)

where Wl are the top-down weights and Vl are the bottom-up weights. αgen and αdisc are scalar
weighting constants, which are needed to account for magnitude differences in the errors of bottom-
up and top-down predictions. The weighting constants can be viewed as learnable precision parame-
ters (Friston, 2005); however, they are tuned and kept constant in our implementation for simplicity.

In each trial of learning, we first initialise the layers of neural activity using a feedforward sweep
from layer x1 to xL along the bottom-up predictions, similar to discPC (Whittington & Bo-
gacz, 2017). For instance, the second and third layers are initialised as x2 = V1f(x1) and
x3 = V2f(V1f(x1)) respectively. This initialisation strategy can be interpreted as a mechanism
for fast amortised inference when a sensory input is initially encountered, which is also observed in
the brain (Thorpe et al., 1996; Lamme & Roelfsema, 2000). All bPC experiments used this activ-
ity initialisation scheme. After, we update the neural activities to minimise E via several gradient
descent steps (neural dynamics) following:

dxl

dt
∝ −∇xE = −ϵgenl − ϵdiscl + f ′(xl)⊙

(
W⊤

l ϵgenl−1 + V ⊤
l ϵdiscl+1

)
+N (0, σ2I), (4)

where
ϵgenl := αgen(xl −Wl+1f(xl+1)), ϵdiscl := αdisc(xl − Vl−1f(xl−1)) (5)

denote the top-down and bottom-up prediction errors of neurons in layer l respectively. f ′ denotes
the derivative of the function f , and ⊙ is the element-wise product. The normally distributed noise
N is zero-mean, temporally uncorrelated, and independent across neurons. By default, we set σ2 =
0, yielding deterministic dynamics that converge to the maximum a posteriori estimate. Unless
stated otherwise, all experiments in this paper use these inference dynamics. Setting σ2 = 1 induces
stochastic dynamics that sample from the model’s posterior (Oliviers et al., 2024). These dynamics
enable learning the distributions of sensory inputs.

After updating neural activities, the weights are updated to minimise E via a single gradient descent
step:

∆Wl ∝ −∇Wl
E = ϵgenl−1f(xl)

⊤, ∆Vl ∝ −∇Vl
E = ϵdiscl+1 f(xl)

⊤. (6)
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3.1 NEURAL IMPLEMENTATION

Figure 2: Neural implementation of
bPC (left) and discPC (right).

The computations described in Eqs 4 and 6 can be imple-
mented in a neural network with fully local computation and
plasticity, as illustrated in Figure 2. This network contains
value neurons, which encode xl, error neurons, which repre-
sent prediction errors, and synaptic connections, which en-
code the model parameters. All computations are local, rely-
ing solely on pre- and post- synaptic activity. Value neuron
dynamics depend on local error signals, their own activity,
and incoming synaptic weights. Similarly, error neuron ac-
tivity depends only on adjacent value neurons and synaptic
weights. The plasticity of the weights is also Hebbian, as it is
a product of pre- and post-synaptic activity. The local imple-
mentation of bPC inherits that of genPC or discPC (shown in
Figure 2 right), although it has two distinct error neurons per
value neuron for bottom-up and top-down prediction errors.

3.2 FLEXIBLE LEARNING

bPC can be trained both in supervised and unsupervised settings. In all cases, neurons in inter-
mediate layers (layer 2 to L − 1) are un-clamped and evolve according to the neural dynamics in
equation 4. In supervised settings, the first layer x1 is clamped to the input, while the top layer xL is
clamped to the target labels. In unsupervised settings, xL is left unclamped, allowing bPC to learn
compressed representations of the input. A mixed setting is also possible, where only a subset of
neurons in xL are clamped to label information, while others remain free. In this setting, the model
can jointly infer labels and learn an compressed representation.

4 EXPERIMENTS

4.1 BPC PERFORMS SIMULTANEOUSLY WELL IN CLASSIFICATION AND GENERATION

Figure 3: bPC accurately classifies and generates class
average images on MNIST and Fashion-MNIST. A:
Training set-up. The models are trained with x1 fixed to
images and xL fixed to labels. B: Classification accuracy of
models. C: Examples of the generated images conditional
on class labels (left) and RMSEs between generated images
and mean images of each class (right). Error bars denote the
standard error of the mean (s.e.m.) across 5 seeds.

In this experiment, we assessed
bPC’s capacity for both clas-
sification (discriminative) and
class-conditional image generation
(generative). We compared bPC
with discPC, genPC, hybridPC, and
their backpropagation equivalents
on MNIST and Fashion-MNIST,
using identical architectures with
two hidden layers of 256 neurons
each. Additional baselines, including
bPC with shared bottom-up and
top-down weight as proposed by
Qui et al (2023), are provided in the
supplementary material (SM) C.

During training, the input layer x1

was clamped to images and the out-
put layer xL = x4 to their corre-
sponding one-hot labels (Figure 3A).
After training, discriminative perfor-
mance was assessed by fixing x1 to
an input image and inferring the label
at xL over 100 inference steps. Gen-
erative performance was evaluated by
clamping xL to a class label and mea-
suring the root mean squared error
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Figure 4: bPC matches the performance of hybridPC at unsupervised learning. A: Training
set-up, where only x1 is clamped to input images. B: Reconstruction RMSE from representations.
C: Example reconstructions. D: Linear decoding accuracy from representations. E: Fréchet Incep-
tion Distance of samples generated by models with stochastic dynamics, with examples shown. T
denotes the number of inference steps used during training. Error bars show s.e.m. across 5 seeds.

(RMSE) between the inferred image at x1 (after 100 inference steps) and the average image for
that class.

The results are shown in Figure 3B. On both datasets, bPC achieved classification accuracy compa-
rable to discPC and discBP, while genBP and hybridPC performed less well. For generation, bPC
obtained RMSE scores similar to genPC, hybridPC, and genBP, whereas discPC exhibited much
higher errors. Visualizations in Figure 3C further illustrate these differences: discPC generated im-
ages with little class-relevant structure, while bPC and other bidirectional models produced clear
and representative samples.

These findings align with previous reports that unidirectional PC models excel only in their special-
ized domain (Sun & Orchard, 2020; Tscshantz et al., 2023), and demonstrate that bPC can integrate
both discriminative and generative capabilities within a single framework. Notably, this integration
uses the same number of error neurons but only half the value neurons required for maintaining
separate unidirectional pathways for the two tasks. This indicates that bPC is more energy-efficient,
especially as error signals can be handled in the dendrites of neurons rather than by a separate neu-
ron population (Mikulasch et al., 2023). We observed that the discriminative weighting parameter
(αdisc) must be set higher than the generative weighting (αgen) due to the larger magnitude of top-
down prediction errors. An exploration of the trade-off between αdisc and αgen is provided in SM
D.

4.2 BPC PERFORMS UNSUPERVISED REPRESENTATION AND DISTRIBUTION LEARNING

Next, we show that bPC learns compressed representations and data distributions in the absence of
supervision. We compared bPC, genPC, hybridPC, and their backpropagation (BP) equivalents on
MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100, excluding discPC since it cannot perform
unsupervised learning. We clamped only x1 to input images, leaving all other layers free (see Figure
4A). For MNIST and Fashion-MNIST, models used two hidden layers (256 neurons each) and a 30-
neuron representation layer xL, trained with only 8 inference steps per update to test fast inference.
CIFAR models had five convolutional layers and a 256-neuron representation layer, trained with 32
inference steps. An activity decay term at xL stabilized learning and regularized representations.
After training, representations were obtained from xL using 100 inference steps. We evaluated
these representations in two ways. First, reconstruction quality was measured by reinitializing layers
x1-xL−1, clamping xL, and running 100 inference steps, with RMSE computed against the input.
Second, linear readout classification accuracy was measured from xL.

To assess distribution learning, we compared bPC, genPC, hybridPC, and a VAE (Kingma et al.,
2013) on MNIST, extending all PC models with stochastic dynamics to infer full posteriors (σ2 = 1

6
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in equation 4, see SM A.5 for more details). Architectures matched those above, trained with 50
or 250 inference steps. Models were evaluated using Fréchet Inception Distance (FID). Samples
were generated ancestrally by following top-down predictions starting from sampling xL from its
Gaussian prior and propagating downward through conditional Gaussians.

As shown in Figure 4B-E, bPC consistently outperformed genPC, yielding lower reconstruction
RMSE, higher decoding accuracy, and better FID. It matched hybridPC across most tasks, and on
CIFAR datasets significantly surpassed it in reconstruction error, approaching BP-based baselines.
Reconstructions and generated samples (Figures 4C, E) illustrate these differences.

These results highlight that bPC outperforms genPC when inference steps are limited, and matches
hybridPC despite the latter’s amortized pathway. This suggests that bPC’s bottom-up pathway also
serves as amortized inference, rapidly initializing neural activities toward the optimal state. The
slight edge of bPC over hybridPC likely arises from the active involvement of bottom-up weights Vl

during iterative inference, which continuously deliver sensory information to latent neurons. This
effect becomes more pronounced with complex inputs such as CIFAR.

4.3 BPC PERFORMS COMBINED SUPERVISED AND UNSUPERVISED LEARNING

In this experiment, we combined the supervised and unsupervised settings described above to test
whether bPC can simultaneously develop discriminative capabilities and compact representations.
This setting is motivated both computationally and biologically: real-world learning rarely occurs
in isolation, and cortical circuits appear to integrate categorical supervision (e.g., from higher-order
areas) with unsupervised structure learning from sensory input.

We trained bPC, hybridPC, and their BP equivalents on MNIST, Fashion-MNIST, and CIFAR-10.
During training, the input layer x1 was clamped to images, while the top layer xL was partially
clamped to one-hot labels, leaving the remaining neurons free to learn complementary representa-
tions (Figure 5A). For MNIST and Fashion-MNIST, models had two hidden layers of 256 neurons
each, and xL comprised 40 neurons (10 for labels, 30 for representations). For CIFAR-10, we used a
convolutional architecture with four hidden convolutional layers and a 266-neuron latent layer (xL,
with 10 label and 256 representation neurons). Activity decay was applied to the representational
subpopulation in xL to regularize learning. Classification accuracy was evaluated as in Section 4.1,
by presenting only images and inferring labels at xL. Generative quality was assessed as in Section
4.2, but with reconstructions conditioned jointly on the inferred representation and the label.

Figure 5: bPC is the only PC model that can jointly learn
low-dimensional representations of images and accurately
classify them. A: Training set-up, where the latent layer is
only partially clamped to class labels. B: Classification accu-
racy. C: Example reconstructions on MNIST and CIFAR10. D:
Reconstruction RMSEs. Error bars show s.e.m. across 5 seeds.

Figure 5B reveals that bPC
achieves classification accuracy
on par with BP models across
all datasets. Furthermore, it
significantly surpasses hybridPC,
particularly on CIFAR-10, where
hybridPC exhibits more than
45% lower accuracy than bPC. In
terms of generative quality, Figure
5D shows that bPC achieves
reconstruction errors similar to
hybridPC across all datasets.
The reconstructed examples in
Figure 5C illustrate that bPC goes
beyond generating class-average
images, capturing features such as
shape, color, and spatial locations
(e.g., it generates ‘4’s in different
styles). However, fine details
are absent in bPC’s CIFAR-10
reconstructions due to artefacts
introduced by max-pooling op-
erations in the discriminative
bottom-up pathway, affecting the
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Figure 6: bPC develops energy landscape suitable for both generation and classification. A:
We compare bPC (bottom) to training a discPC and a genPC separately (top). B: Visualisation of
the models’ energy landscape after training on XOR. Shown are the discriminative, generative, and
summed energies. C: MNIST samples considered highly likely (bottom 10% energy) by the models.

generative top-down reconstruction process. Consequently, bPC shows stronger grid-like artefacts
than hybridPC, which uses only max-pooling for initialization, and than BP models with separate
generative and discriminative layers. While removing max-pooling removes artefacts, it reduces
classification accuracy (see SM E). Nonetheless, even without max-pooling, bPC’s classification
accuracy significantly outperforms hybridPC, while generative performance remains comparable.
Future research could refine bPC’s architecture to balance classification accuracy with artefact-free
generation.

4.4 BPC’S SHARED LATENT LAYERS PREVENT BIASED OR OVERCONFIDENT ENERGY
LANDSCAPE

In this experiment, we investigated why bPC can perform both discriminative and generative tasks
effectively, focusing on the role of its shared latent layers in shaping the energy landscape (Eq. 3).
As a toy example, we considered the XOR problem, where the landscape can be directly visualized.
We trained bPC, discPC, and genPC (each with two hidden layers of 16 neurons) by clamping x1 to
2D inputs of XOR and x4 to scalar outputs (Figure 6A). bPC used the same number of parameters
as discPC and genPC combined but half the neurons.

An ideal XOR landscape has well-localized minima only at valid input-label pairs ([0,1] and [1,0]
for one class; [0,0] and [1,1] for the other). Figure 6B top shows that discPC instead develops broad
low-energy regions, indicating overconfidence even for implausible or out-of-distribution (OOD)
inputs. genPC collapses each class into a single mean, failing to capture the true structure. A
combined discPC+genPC model inherits both flaws. In contrast, bPC learns sharp, class-specific
minima centred on valid inputs (Figure 6B bottom).

To test generality, we evaluated the models from Section 4.1 by sampling MNIST digits. We
clamped xL to a label, initialized x1 randomly, and iterated inference until reaching energies within
the lowest 10% of those observed on test images. For the combined discPC+genPC model, we re-
quired the generated samples to satisfy this low-energy criterion for both components. This set-up
serves as a sampling process, allowing us to inspect images considered as highly likely by the mod-
els. As shown in Figure 6C, bPC produced realistic digits, while the combined model yielded poorly
formed shapes. Quantitatively, bPC achieved higher Inception Scores (6.05± 0.17 vs. 3.62± 0.03)
and lower FID (44.4± 2.2 vs. 140.5± 2.1). Similar trends held for BP-based baselines (see SM F).

These results clarify the observations in Section 4.1. discPC fails at generation because it produces
broad, overconfident minima that admit many nonsensical and OOD inputs, leading to the noisy
conditional generations in Figure 3 and in Sun & Orchard (2020). genPC, by contrast, learns narrow
minima around class means, which rejects OOD inputs but identifies deviations from training-set
mean as high-energy states, ultimately sacrificing discriminative precision. bPC integrates the two:
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Figure 7: bPC performance in a bimodal architecture and robustness against missing infor-
mation. A: Bimodal bPC and genPC. Note that bimodal bPC is fully equivalent to unimodal bPC
in Section 4.1; it is bent here to serve visual purposes. B: Classification accuracy of bimodal PC
models. C & D: Generation RMSE and examples. E: Model evaluation with partially occluded
sensory inputs. F & G: Classification accuracy against percentage of missing pixels with MNIST
and Fashion-MNIST respectively. H: Activity of x1 after inference for genPC and bPC. Error bars
and shaded region show s.e.m. across 5 seeds.

bidirectional predictions effectively regularize each other, sharpening discriminative minima while
anchoring them to specific data points through the generative process. Shared latent layers thus
prevent solutions overly biased to training mean or those that are overconfident, yielding superior
performance in both classification and generation.

4.5 LEARNING IN BIOLOGICALLY RELEVANT TASKS

In this section, we demonstrate that bPC outperforms other predictive coding models in two biolog-
ically relevant scenarios: (1) learning in a model architecture with two input streams analogous to
two sensory modalities, and (2) classifying images from partially occluded inputs, similar to how
human vision includes regions with missing sensory information, such as the retinal blind spot.

Bimodal model architecture. The brain often develops neural representations through associa-
tions across modalities, such as linking spoken names to visual objects (Rosen et al., 2018). To
test whether bPC can form such associations, we trained bPC and a bimodal variant of genPC on
MNIST and Fashion-MNIST, with one latent layer connected to two inputs: an image and its one-
hot label (Figure 7A; note that bPC is naturally bimodal and thus requires no restructuing). bPC
incorporated both bottom-up and top-down connections for each modality, whereas genPC relied
only on top-down pathways. After training, we evaluated cross-modal transfer by providing input
to one modality and measuring inference quality in the other, classification accuracy for labels and
RMSE for reconstructed images. As shown in Figure 7B-D, bPC significantly outperformed bimodal
genPC on both tasks. This result is consistent with Sections 4.1: bPC’s bidirectional pathways nat-
urally support associative coding, while genPC must be restructured to handle multimodal inputs,
where one pathway predicts the image (similar to genPC) and the other predicts the label (similar to
discPC) and inherits the weaknesses of both genPC and discPC.

Robustness to missing information. The cortex can recognize objects even when sensory input
is incomplete or occluded (Komatsu, 2006). We therefore tested the classification performance of
the trained models from Section 4.1 (bPC, genPC, discPC, and discBP) under progressive occlu-
sion of MNIST and Fashion-MNIST inputs, masking up to 90% of pixels (Figure 7E). Observed
pixels were clamped in x1, while missing ones were left free and initialized to zero. We then run
inference on the missing pixels and in latent layers, with extended iterations to accommodate slower
convergence. Results (Figure 7F-G) show that bPC maintained high classification accuracy even

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

with 80% missing pixels. genPC also retained some robustness but at consistently lower accuracy.
In contrast, discPC and discBP collapsed beyond 50% occlusion. Visualizations in Figure 7H reveal
that bPC actively reconstructed missing inputs via top-down priors, integrating them with observed
evidence. genPC shared this generative capacity but lacked strong discriminative accuracy, while
purely discriminative models could not compensate for missing information at all.

4.6 GENERATIVE AND DISCRIMINATIVE PROCESSING IN DEEP MODELS

To investigate whether bPC scales effectively to deeper models and more complex datasets, we
trained bPC, discPC and discBP using the following architecture-dataset combinations: VGG-5 on
CIFAR-10, VGG-9 on CIFAR-100, and VGG-16 on Tiny-ImageNet. After training, we evaluated
discriminative performance by measuring the model’s classification accuracy. Additionally, we as-
sessed generative capabilities by evaluating classification accuracy when 30% and 50% of the input
pixels were missing, following the methodology outlined in Section 4.5. To efficiently simulate
the predictive coding models in this experiment, we employed error optimisation (Goemaere et al.,
2025). This approach prevents energy decay in predictive coding models and enables the training of
larger architectures. Refer to SM I for more implementation details.

Figure 8 confirms that bPC successfully combines discriminative and generative processing in deep
networks. bPC achieves a classification accuracy comparable to discPC and discBP when full im-
ages are presented and significantly outperforms discPC and discBP on images with missing input
information. For example, when 50% of pixels are missing, bPC classifies more than 60% more
accurately than discPC and discBP on CIFAR-10 (Figure 8A). This improvement stems from bPC’s
generative processing, which fills in missing information. Figure 8D illustrates this effect: after
inference, the activity of the input layer x1 reveals that neurons lacking inputs have been updated
to predict the missing values. Once the missing information is inferred, bPC classifies images ac-
curately. Overall, even in larger models, bPC effectively balances discriminative and generative
performance by jointly minimising bottom-up and top-down prediction errors.

Figure 8: bPC’s discriminative and generative properties scale to deep networks. A & B & C:
Classification accuracy against the percentage of missing pixels for bPC, discPC and discBP on the
architecture-dataset combinations: VGG-5 on CIFAR-10, VGG-9 on CIFAR-100, and VGG-16 on
Tiny-ImageNet. D: Activity of input neurons x1 after inference for bPC trained on Tiny-ImageNet.
Error bars show s.e.m. across 5 seeds.

5 CONCLUSION

Inspired by empirical and theoretical insights into visual processing, we propose bidirectional pre-
dictive coding, a biologically plausible computational model of visual inference that integrates gen-
erative and discriminative processing. We demonstrate that bPC performs effectively across both
supervised classification and unsupervised representation learning tasks, consistently outperform-
ing or matching traditional predictive coding models. Our experiments reveal that the performance
of bPC emerges from its ability to develop an energy landscape optimized simultaneously for both
discriminative and generative tasks, thereby improving its robustness to out-of-distribution data.
Furthermore, we show bPC’s effectiveness in biologically relevant scenarios such as multimodal
integration and inference with partially missing inputs. Overall, bPC offers a hypothesis for how
flexible inference could emerge in the brain, while also providing a method to enhance the robust-
ness of discriminative models in machine learning applications.
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REPRODUCIBILITY STATEMENT

A detailed description of all experiments is provided in the first section of the supplementary materi-
als. The complete anonymised codebase is also attached to the supplementary materials to facilitate
the reproducibility of our results.
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Ralf M. Haefner, Pietro Berkes, and József Fiser. Perceptual decision-making as probabilis-
tic inference by neural sampling. Neuron, 90(3):649–660, 2016. ISSN 0896-6273. doi:
10.1016/j.neuron.2016.03.020.

Donald Hebb. The Organization of Behavior. Wiley, New York, 1949.

H von Helmholtz. Concerning the perceptions in general. Treatise on physiological optics,, 1866.

Jakob Hohwy, Andreas Roepstorff, and Karl Friston. Predictive coding explains binocular rivalry:
An epistemological review. Cognition, 108(3):687–701, 2008.

Takahiro Hosoya, Stephen A. Baccus, and Markus Meister. Dynamic predictive coding by the retina.
Nature, 436(7047):16001064, July 2005. doi: 10.1038/nature03689.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex. The Journal of physiology, 160(1):106, 1962.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

11

https://arxiv.org/abs/2505.20137
https://arxiv.org/abs/2505.20137


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

David Knill and Whilman Richards. Perception as Bayesian Inference. Cambridge University Press,
New York, 1996.

David C Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural coding
and computation. TRENDS in Neurosciences, 27(12):712–719, 2004.

Hidehiko Komatsu. The neural mechanisms of perceptual filling-in. Nature Reviews Neuroscience,
7(3):220–231, 2006. doi: 10.1038/nrn1869.

Victor AF Lamme and Pieter R Roelfsema. The distinct modes of vision offered by feedforward and
recurrent processing. Trends in neurosciences, 23(11):571–579, 2000.

John Lisman. Glutamatergic synapses are structurally and biochemically complex because of
multiple plasticity processes: long-term potentiation, long-term depression, short-term potenti-
ation and scaling. Philos. Trans. R. Soc. Lond. B Biol. Sci., 372(1715):20160260, 2017. doi:
10.1098/rstb.2016.0260.

William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video pre-
diction and unsupervised learning. 05 2016. doi: 10.48550/arXiv.1605.08104.

Fabian A. Mikulasch, Lucas Rudelt, Michael Wibral, and Viola Priesemann. Where is the error?
hierarchical predictive coding through dendritic error computation. Trends in Neurosciences, 46
(1):45–59, 2023. ISSN 0166-2236. doi: 10.1016/j.tins.2022.09.007. URL https://doi.
org/10.1016/j.tins.2022.09.007.

Gaspard Oliviers, Rafal Bogacz, and Alexander Meulemans. Learning probability distributions
of sensory inputs with monte carlo predictive coding. PLOS Computational Biology, 20(10):
1–34, 10 2024. doi: 10.1371/journal.pcbi.1012532. URL https://doi.org/10.1371/
journal.pcbi.1012532.
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SUPPLEMENTAL MATERIAL

The supplementary material is organised as follows:

We begin with a detailed explanation of the methods underlying the experiments presented in the
main paper. Next, we provide summary tables containing the exact values plotted in the figures. We
then explore the learning performance of three additional predictive coding models. Following that,
we examine the effect of scaling the discriminative and generative energies in bPC on both super-
vised and unsupervised learning performance. We also analyse the impact of removing max-pooling
on generative artefacts. We present samples generated by a combined discBP and genBP model. Af-
ter, we perform parameter count matched experiments to validate our results. We then discuss the
relationship between hybridPC and bPC. Finally, we evaluate whether bPC learns effectively in deep
models.

A DETAILS OF EXPERIMENTS

Here, we detail the training setup and the evaluation procedure of the experiments in the paper. The
code with all models and experiments will be available upon publication . Our implementation of
the predictive coding models was adapted from Pinchetti et al. (2025a).

A.1 DATASETS

We evaluate the models on four standard image classification benchmarks: MNIST(LeCun et al.,
2010), Fashion-MNIST(Xiao et al., 2017), CIFAR-10, and CIFAR-100(Krizhevsky, 2009a). Below,
we summarise their properties and how they were subdivided in our experiments for training, vali-
dation and testing. The images of all datasets were normalised so that pixel values varied between
−1 and 1.

• MNIST: A dataset of grayscale handwritten digits (0–9).

• Fashion-MNIST: A dataset of grayscale images of clothing items.

• CIFAR-10: A dataset of colour images categorised into 10 classes of everyday objects.

• CIFAR-100: Similar to CIFAR-10, but with 100 fine-grained object categories.

Table 1: Summary of dataset characteristics. The evaluation set of each dataset is split 50/50 into
validation and test subsets.

Dataset Image Size Channels Classes Train Validation Test
MNIST 28× 28 1 10 60,000 5,000 5,000
Fashion-MNIST 28× 28 1 10 60,000 5,000 5,000
CIFAR-10 32× 32 3 10 50,000 5,000 5,000
CIFAR-100 32× 32 3 100 50,000 5,000 5,000

In addition to these benchmarks, we also consider the XOR learning task. XOR is a simple, non-
linearly separable binary classification problem, often used to test the capacity of neural networks
to learn non-linear functions. The input-output relationship of XOR is given in Table 2.

Table 2: XOR truth table with scaled inputs.
Input 1 Input 2 Output (XOR)

-1 -1 -1
-1 1 1
1 -1 1
1 1 -1
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A.2 MODEL ARCHITECTURES

We consider five different neural architectures in our experiments, selected based on the dataset and
the learning setting.

MLP for MNIST and Fashion-MNIST For MNIST and Fashion-MNIST in Sections 4.1, 4.2 and
4.3, we use a network with neural layers of dimension [784, 256, 256, latent size]. The latent layer
size is set to 10 for supervised experiments, 30 for unsupervised experiments, and 40 for experiments
with partial clamping of the top-layer activity (x4). Both generative and discriminative predictions
between layers follow the form f(Wx + b), where f is a nonlinearity, W is a weight matrix, b is
a bias vector, and x is the activation of the previous layer. This is the transformation of a layer
in a multilayered perceptron (MLP). Consequently, unidirectional models (discPC, genPC, discBP,
genBP) have the architecture of an MLP. hybridPC and bPC have the same number of parameters as
two MLPs (one generative and one discriminative).

CNN for unsupervised learning with CIFAR-10 and CIFAR-100 In the unsupervised representa-
tional learning experiments (Section 4.2) on CIFAR-10 and CIFAR-100, we use a model architecture
with convolutions and a representational layer xL = x6 of 256 neurons. In this model, discrimi-
native predictions consist of 5 strided convolution layers, with a stride of two, and one MLP layer.
Generative predictions mirror the discriminative layers with 5 transposed convolution layers, with
a stride of two, and one MLP layer. The convolutional-based layers perform the transformation
f(c(x)), where c is a (transposed) convolution layer and f is a nonlinearity. A full description of
the convolution-based layers can be found in Table 3.

VGG-5 for combined supervised and unsupervised learning with CIFAR-10 For the CIFAR-10
experiments that combine supervised and unsupervised representational learning in Section 4.3, we
use a VGG-5-style network with a 266-dimensional latent layer xL = x6 (10 neurons for class labels
and 256 for representations). In this model, discriminative predictions consist of 4 convolutional
layers with max pooling and one MLP layer. The generative predictions consist of 4 transposed
convolution layers and one MLP layer. The discriminative convolution layers have a stride of one,
and the transpose convolutions have a stride of two to compensate for the dimensionality reduction
of the max-pooling. A full description of the convolution-based layers can be found in Table 3.

For the above three models, the activation function used in the discriminative prediction from xL−1

to xL is an identity layer (no activation). The generative prediction from layer x2 to x1 uses a tanh(·)
activation to constrain outputs to the range [-1, 1], matching normalised pixel values. The other
activation functions are the same for the whole network and are determined using a hyperparameter
search.

MLP for XOR Task For the XOR task in Section 4.4, we use a network with neural layers of
dimension [2, 16, 16, 1]. The generative and discriminative predictions are equivalent to the ones
used for MNIST and Fashion-MNIST, with the exception that: a sigmoid activation is used for the
prediction from x3 to x4 and an identity activation is used for the prediction from x2 to x1. These
changes stabilise training and help avoid bias because the tanh activation used for (Fashion-)MNIST
saturates near ±1, but never reaches these values, causing the model to systematically under-predict
XOR inputs.

MLP for Bimodal Learning Task In the bimodal generation task of Section 4.5, the network con-
sists of two input layers, with 784 (image) and 10 (label) neurons, and one latent layer with 256
neurons. The predictions between the latent layer and the input layers are MLP layers. The bimodal
bPC model is equivalent to the bPC model trained on (Fashion-)MNIST in Section 4.1, except it
only has one hidden layer. In contrast, the bimodal genPC is different from the models considered
in Section 4.1, and it can be re-interpreted as a unidirectional model with one generative MLP layer
and one discriminative MLP layer. For fair comparison, we include an additional nonlinearity in the
prediction layers of the genPC variant. The MLP layers become f1(Wf2(x) + b). For the image
modality, f1 = tanh(·); for the label modality, f1 is the identity. The additional nonlinearity, f2,
ensures parity with bPC models, which include nonlinear discriminative projections.
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Table 3: Detailed architectures of convolution-based models. Convolution and transposed convolu-
tion have the same kernel sizes and paddings. The values in the brackets give the parameter value
for each convolution-based layer in the model, starting from the layer closest to the input image.

CNN VGG-5
Channel Sizes [32, 64, 128, 256, 512] [128, 256, 512, 512]
Kernel Sizes [3, 3, 3, 3, 3] [3, 3, 3, 3]
Paddings [1, 1, 1, 1,1] [1, 1, 1, 1]
Strides conv. [2, 2, 2, 2,2] [1, 1, 1, 1]
Strides transposed conv. [2, 2, 2, 2,2] [2, 2, 2, 2]
Output Paddings transposed conv. [1, 1, 1, 1,1] [0, 0, 0, 0]
Pooling Window - 2× 2
Pooling Stride - 2

Algorithm 1: Training procedure of PC models.
Require: Model with neural activities x, parameters θ, energy E and initialisation function

init(·). Dataset {yp}Pp=1 with P mini-batches of B elements. Number of epochs N .
Activity optimiser optimx(·), number of activity updates K, and parameter optimiser
optimθ(·)

for n = 1 to N do
for p = 1 to P do

// Independent inference for each sample in batch
xb ← init(yp,b), 1 ≤ b ≤ B
for k = 1 to K do

xb ← optimx(
∂Eb

∂xb
), 1 ≤ b ≤ B

// Sum of parameter updates for batch

θ ← optimθ(
1
B

∑B
b

∂Eb

∂θ )

A.3 TRAINING PROCEDURES

We followed the procedures outlined in Algorithm 1 to train predictive coding models and hybridBP,
and the procedure outlined in Algorithm 2 for the remaining backpropagation models. For a given
task, both algorithms were trained on the same dataset for the same number of epochs.

Optimisers

The optimisation procedures differ between activity updates and parameter updates. In Algorithm
1, neural activities are updated using stochastic gradient descent with momentum. This optimiser
outperforms Adam in PC models (Pinchetti et al., 2025a). In contrast, Algorithm 2 does not include
activity updates and only optimises parameters. For parameter updates in both algorithms, we use the

Algorithm 2: Training procedure of BP models.
Require: Model with parameters θ and forward pass fp(·, θ). Energy function E. Dataset

{yp}Pp=1 with P mini-batches of B elements. Number of epochs N . Parameter
optimiser optimθ(·)

for n = 1 to N do
for p = 1 to P do

// Independent forward pass for each sample in batch
ŷb ← fp(yp,b, θ), 1 ≤ b ≤ B
// Sum of parameter updates for batch

θ ← optimθ(
1
B

∑B
b

∂E(ŷb,yp,b)
∂θ )

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

AdamW optimiser (Loshchilov and Hutter, 2017). The optimiser hyperparameters were determined
via a hyperparameter search.

Initialisation functions

The initialisation procedure in Algorithm 1 generally consists of (1) clamping the activity x1 and xL

to images and labels depending on the learning task and (2) performing a feedforward sweep. This
sweep initialises the activity of each layer by propagating inputs through the model in the direc-
tion of prediction. For example, a bottom-up feedforward sweep for a three-layer model initialises
the second and third layers as: x2 = f(x1) and x3 = V2f(V1f(x1)). This approach, originally
proposed by Whittington and Bogacz (2017), significantly reduces the time required for inference
and improves learning. The following models use bottom-up feedforward initialisation: discPC,
hybridPC, bPC, and hybridBP. The genPC model, by contrast, uses a top-down feedforward initial-
isation. The difference between hybridBP and the other models initialised using a bottom-up sweep
is that hybridBP contains a single layer of neural activities, xL, that can be initialised using a full
bottom-up forward pass.

The bimodal genPC model from Section 4.5 differs from the other PC models in its initialisation
procedure. Because there are no direct prediction paths from the two modality-specific input layers
to the shared latent layer, a standard feedforward sweep cannot be used to initialise the latent layer.
Instead, we tested two alternatives for initialising the latent layer: zero-initialisation and Xavier
uniform initialisation. The best initialisation depended on the task and was determined with a hy-
perparameter search. For the bimodal bPC model, we retained the feedforward sweep used for other
bPC models, using a forward sweep from the image modality to the latent layer.

Energy functions

The energy functions for all PC and BP models are listed in Table 4. For PC models, the energy
functions follow the formulations described in the main text, except that we use a generalised nota-
tion: fl denotes the transformation applied at layer l, allowing for models beyond standard MLPs.
BP model energy functions use squared errors to remain consistent with PC formulations.

The hybridBP model includes a stop-gradient operation in its energy function. This ensures that its
second loss term is only applied during parameter updates, not iterative inference. This loss term
objective is to improve the discriminative initialisation of the model’s latent layer. In the broader
machine learning literature, hybridBP can be viewed as a generative model that performs Bayesian
inference by combining amortised inference with iterative refinement of the latent variables (Marino
et al., 2018).

In the case of the autoencoder (AE), the energy function departs from standard autoencoders to
accommodate experiments described in Section 4.3, where part of the latent state xL is fixed
to class labels. The AE energy includes an additional term: ∥xL,ae − fp,disc(x1, V )∥22 where
xL,ae := [xL,0:k−1, fp,disc(x1, V )k:D] that combines k fixed neurons and discriminative predic-
tions. This term penalises the error between the fixed components of xL,ae and their prediction from
the discriminative part of the model. Notably, this term is only non-zero for the fixed neurons. The
additional energy term is also equal to zero in the representational learning experiments of Section
4.2 because none of the neurons of xL,ae are fixed. For reference, the discriminative part of our AE
is usually referred to as the encoder and the generative part as the decoder.

In the combined supervised and unsupervised learning task (Section 4.3), we apply separate energy
scaling to different parts of the models. Unsupervised learning benefits from equal weighting of
discriminative and generative energies, while supervised tasks perform better when the generative
energy is down-scaled. To balance these, we set αdisc of the free (unclamped) neurons in xL to αgen.
This allows for the generative energy to be down-scaled in the whole network except for the free
neurons of xL that specialise in unsupervised representational learning. This adjustment was used
for bPC, hybridBP, and AE, but not for hybridPC. In hybridPC, the discriminative weights predicting
free and fixed neurons are independent due to the use of local learning rules. Moreover, these
discriminative weights have minimal influence on the generative weights, as inference is fully driven
by the generative energy. As a result, scaling the discriminative and generative energies in different
parts of the model merely scales the corresponding gradients. This effect has no impact on learning
because the AdamW optimiser normalises gradients. In contrast, in hybridBP, some parameters are
shared in predicting both free and fixed neurons. This introduces a dependency between the scaling
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of energies associated with free and fixed neurons in xL. Therefore, we introduced explicit scaling
factors αdisc and αgen in hybridBP’s energy function for this task.

Model Loss Function

discPC Edisc(x, V ) =
∑L

l=2
1
2∥xl − fl(xl−1, Vl−1)∥22

discBP Ldisc(x1, xL, V ) = 1
2∥xL − fp,disc(x1, V )∥22

genPC Egen(x,W ) =
∑L−1

l=1
1
2∥xl − fl(xl+1,Wl+1)∥22

genBP Lgen(x1, xL,W ) = 1
2∥x1 − fp,gen(xL,W )∥22

hybridPC Ehybrid(x,W, V ) =
∑L−1

l=1
1
2∥xl − fl(xl+1,Wl+1)∥22 +

∑L
l=2

1
2∥sg(xl)− fl(sg(xl−1), Vl−1)∥22

hybridBP Lhybrid(x1, xL,W, V ) = 1
2∥x1 − fp,gen(xL,W )∥22 + 1

2∥sg(xL)− fp,disc(x1, V )∥22

bPC E(x,W, V ) =
∑L−1

l=1
αgen

2 ∥xl − f(xl+1,Wl+1)∥22 +
∑L

l=2
αdisc
2 ∥xl − f(xl−1, Vl−1)∥22

AE L(x1, xL,W, V ) =
αgen

2 ∥x1 − fp,gen(xL,ae,W )∥22 + αdisc
2 ∥xL,ae − fp,disc(x1, V )∥22,

xL,ae := [xL,0:k−1, fp,disc(x1, V )k:D]

Table 4: Energy functions for the predictive coding and backpropagation models considered in the
paper. In the PC models, fl(x, θ) is the transformation between layers with input x and parameters
θ. In the BP models, fp denotes a forward pass and xL,ae is an activity vector composed of k fixed
neurons and fills the remaining outputs of the discriminative forward pass of the AE.

A.4 TRAINING HYPERPARAMETERS

In this Section, we report the hyperparameter search space for the experiments in Sections 4.1, 4.2,
4.3, and 4.5, as well as the training parameters for the models in Section 4.4. All hyperparameter
tuning was performed using Bayesian optimisation from Weights and Biases (Biewald, 2020).

Tables 5, 6, and 7 list the hyperparameter search spaces for the models trained in Sections 4.1, 4.2,
and 4.3, respectively. The hyperparameter search was conducted using the validation sets of each
dataset. In Section 4.1, discPC and genPC were tuned for classification accuracy and generation
RMSE separately, while bPC and hybridPC were jointly tuned on both metrics. This ensures a fair
comparison, as bPC and hybridPC have twice as many parameters as discPC and genPC. For joint
tuning, we combined the two metrics using the objective 2 ·(1−accuracy/100)+RMSE. In Section
4.2, the models were tuned for the image reconstruction MSE, linear decoding accuracy and gener-
ation FID separately. For the reconstruction, the RMSE was reported instead of the MSE for consis-
tency with the generation RMSE. In Section 4.3, all models were jointly optimised for classification
accuracy and reconstruction MSE. We combined the two metrics using 2·(1−accuracy/100)+MSE
for MNIST and Fashion-MNIST, and (1− accuracy/100)+4 ·MSE for CIFAR-10. The RMSE was
also reported after tuning instead of the MSE. The weightings in the combined objectives compen-
sate for the scale difference between the metrics.

Table 8 reports the training parameters for the models used to generate MNIST samples in Section
4.4. The leaky ReLU activation function was used because it generated the best samples across
model types, and the other parameters were set to default values that ensured stable learning across
models.

Table 9 lists the hyperparameter search space for the bimodal bPC and genPC models trained in
Section 4.5. The genPC model was tuned separately for classification accuracy and reconstruction
RMSE, while the bPC model was tuned jointly on both metrics. The joint tuning followed the same
combined metric as described above for MNIST. During training and evaluation, more inference
steps were used for genPC than bPC, as genPC lacks an effective feedforward initialisation scheme,
which slows inference convergence.
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Table 5: Hyperparameter search configuration for experiments in Section 4.1 for both MNIST and
Fashion-MNIST datasets.

Parameter bPC hybridPC discPC genPC genBP discBP
Epoch 25

Batch Size 256
Activation [leaky relu, tanh, gelu]

lrx (1e-3, 5e-1)2 (1e-4, 5e-2)2 -
momentumx [0.0, 0.5, 0.9] -

lrθ (1e-5, 1e-3)2 (1e-6, 1e-4)2 (1e-5, 1e-3)2

weight decayθ (1e-5, 1e-2)2
T 8 -

T eval 100 -
αgen 1e[0,-4;-1]1 - -
αdisc 1 - -

1: “[a, b; c]” denotes a sequence of values from a to b with a step size of c.
2: “(a, b)” represents a log-uniform distribution between a and b.

Table 6: Hyperparameter search configuration for experiments in Section 4.2 for MNIST , Fashion-
MNIST, CIFAR-10, and CIFAR-100 datasets. Parameters unique to the models trained on MNIST
and Fashion-MNIST are indicated with MLP. Parameters unique to the CIFAR datasets are indicated
with CNN.

Parameter bPC genPC hybridPC hybridBP AE
Epoch (MLP) 25
Epoch (CNN) 50

Batch Size 256
Activation [leaky relu, tanh, gelu]

lrx (1e-3, 5e-1)1 -
momentumx [0.0, 0.5, 0.9] -
lrθ (MLP) (1e-5, 1e-3)1

lrθ (CNN) (1e-5, 1e-3)1,2

weight decayθ (1e-5, 1e-2)1
T (MLP) 8 -
T (CNN) 32 -

T eval 100 -
αgen 1 - - 1
αdisc 1 - - 1

1: “(a, b)” represents a log-uniform distribution between a and b.
2 Learning rates of θ were scaled with warmup-cosine-annealing scheduler without restart.

A.5 EVALUATION

In our experiments, we consider six different evaluation procedures discussed below.

Classification accuracy We evaluate classification performance using accuracy, defined as the per-
centage of input images correctly classified by each model.

For the PC models, classification is performed by first setting x1 to the input image. We initialise the
remaining layers using a bottom-up feedforward sweep, followed by 100 steps of iterative inference.
The predicted class is determined by identifying the neuron in the output layer xL (corresponding
to class encoding units) with the highest activity. The bottom-up initialisation significantly reduces
the time required to reach steady state during inference. However, bottom-up initialisation does not
apply to genPC and bimodal genPC due to the absence of bottom-up predictive pathways. In genPC,
we initialise xL to zero and perform a top-down feedforward sweep instead. For bimodal genPC,
the latent layer is initialised identically to the procedure used during training.

For the BP models, classification is performed via a standard discriminative forward pass from the
input image, with the predicted class taken as the one corresponding to the highest output activation.
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Table 7: Hyperparameter search configuration for experiments in Section 4.3. Parameters unique to
the models trained on MNIST and Fashion-MNIST are indicated with MLP. Parameters unique to the
CIFAR-10 dataset are indicated with VGG. Two activity optimisers and two parameter optimisers
are used for the VGG models. This allows the models to have different learning rates for different
task-specific parts of the networks. One activity optimiser was used for the free neurons of xL

with learning rate lrx,free, and another for all other neurons with learning rate lrx. Both activity
optimisers use the same momentum parameter. One parameter optimiser with learning rate lrθ,gen
was used for the generative parameters and the discriminative parameters predicting the free neurons
of xL. The other parameter optimiser was used for the remaining discriminative parameters. Both
parameter optimisers use the same weight decay.

Parameter bPC hybridPC hybridBP AE
Epoch (MLP) 25
Epoch (VGG) 50

Batch Size 256
Activation [leaky relu, tanh, gelu]

lrx (1e-3, 5e-1)1 -
lrx,free (VGG) (1e-3, 5e-1)1 -

momentumx [0.0, 0.5, 0.9] -
lrθ (MLP) (1e-5, 1e-3)1

lrθ,disc (VGG) (1e-5, 1e-3)1,3

lrθ,gen (VGG) (1e-5, 1e-2)1,3

weight decayθ (1e-5, 1e-2)1
T (MLP) 8 -
T (VGG) 32 -

T eval 100 -
αgen (MLP) 1e[0,-4;-1]1 - 1e[0,-4;-1]1 1e[0,-4;-1]1

αgen (VGG) 1e[-4,-7;-1]1 - 1e[0,-8;-1]1 1e[0,-8;-1]1
αdisc 1 - 1 1

1: “(a, b)” represents a log-uniform distribution between a and b.
2: “[a, b; c]” denotes a sequence of values from a to b with a step size of c.

3 Learning rates of θ were scaled with warmup-cosine-annealing scheduler without restart.

Table 8: Hyperparameters for models used to sample MNIST images in Section 4.1.
Parameter bPC genPC discPC

Epoch 25
Batch Size 256
Activation leaky relu

lrx 0.01
momentumx 0.0

lrθ 1e-4
weight decayθ 5e-3

T 8
T eval 100
αgen 1e-4 -
αdisc 1 -

Conditional generation of mean class images We evaluate the generative performance of the mod-
els by computing the root mean squared error (RMSE) between images generated for each class
and the corresponding class-average image. We obtain the class-average image by computing the
average image across all images belonging to that class in the evaluation set. To compute the RMSE,
we calculate the squared error for each pixel between the generated image and the average image
for the corresponding class. These errors are averaged across all pixels and classes, and the square
root of this mean is reported as the final RMSE.
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Table 9: Hyperparameter search configuration for bimodal models in Section 4.5 for both MNIST
and Fashion-MNIST datasets.

Parameter bPC genPC
Epoch 25

Batch Size 256
Activation [leaky relu, tanh, gelu]

lrx (1e-3, 5e-1)2
momentumx [0.0, 0.5, 0.9]

lrθ (1e-5, 1e-3)2

weight decayθ (1e-5, 1e-2)2
T 8 20

T eval 100 1000
αgen 1e[0,-4;-1]1 -
αdisc 1 -

1: “[a, b; c]” denotes a sequence of values from a to b with a step size of c.
2: “(a, b)” represents a log-uniform distribution between a and b.

To generate an image from a PC model conditioned on a class label, we set the top-layer activity
xL to the one-hot encoding of the target label. The remaining layers are then initialised using a top-
down feedforward sweep. One exception is the discPC model, which does not support top-down
initialisation. For discPC, we initialise the input layer x1 to zero activity and then perform a bottom-
up feedforward sweep. Following initialisation, we run 100 steps of iterative inference and extract
the final activity of the input layer x1 as the generated image.

For the BP models, we generate an image by performing a generative forward pass starting from a
one-hot label vector.

Image reconstruction from representations We assess the quality of learned representations by
measuring the RMSE between reconstructed images and their original inputs. RMSE is computed
in the same manner as for conditional image generation.

For PC models and hybridBP, the reconstruction procedure is as follows: (1) clamp x1 to the input
image, (2) initialise the remaining layers via a bottom-up feedforward sweep, (3) perform 100 steps
of iterative inference, (4) clamp xL to its activity after the inference, (5) re-initialise the other layers
using a top-down feedforward sweep, (6) run 100 additional inference steps, and (8) record the final
activity in x1 as the reconstructed image.

For the autoencoder, an image is reconstructed by performing a discriminative forward pass using the
input image to obtain a representation, followed by a generative forward pass from the representation
to get the reconstructed image.

In Section 4.3, where labels are also provided during reconstruction, the above procedure is slightly
modified. For PC models and hybridBP, certain neurons of xL are additionally clamped to the
ground truth label during the first step. During the fourth step, the label components and the re-
maining latent representation (recorded after inference) are clamped in xL. For the AE, we retain
the standard discriminative forward pass, but replace the predicted label portion of its representa-
tion with the true label before passing it through the generative model to produce the reconstructed
image.

Linear readout/decoding accuracy We further evaluate the quality of the learned representations
by measuring their linear readout accuracy. The representations are obtained in the same way as for
image reconstruction. A linear classifier head is then trained with backpropagation for each model
to classify images based on their representations. This evaluation tests whether representations of
different classes are linearly separable. Higher decoding accuracy reflects better representations.

FID of generated image samples. We compare the ability of bPC, genPC, and hybridPC models
to learn probability distributions using stochastic extensions of predictive coding. Predictive coding
can be equipped with stochastic neural dynamics to model distributions of sensory inputs in an
unsupervised manner by injecting noise into the inference process. This idea was originally proposed
in (Oliviers et al., 2024) for the genPC model, and here we apply it to genPC, hybridPC, and bPC.
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When stochastic dynamics are applied, the noisy inference process can be shown to generate samples
from the posterior distribution of the probabilistic model defined by predictive coding, conditioned
on the sensory input. These posterior samples can then be used for parameter learning through
Monte Carlo Expectation Maximisation.

The training procedure mirrors that of the deterministic experiments: each iteration consists of sev-
eral (now noisy) activity updates followed by a single parameter update. This is equivalent to using a
single posterior sample per parameter update, a common practice in related generative models such
as variational autoencoders.

To accelerate inference, we further incorporate momentum into the neural dynamics, as introduced
for predictive coding in (Pinchetti et al., 2025b). The resulting dynamics correspond to a discrete-
time second-order Langevin process. In practice, this is implemented by adding Gaussian noise to
the gradients of the energy function and updating activities with stochastic gradient descent with
momentum:

∆xl = lrxrl, (7)

∆rl = −lrx∇xl
E;−; lrx(1−m)rl; +;

√
2(1−m)lrx, N. (8)

After training, the models can be used to generate input samples. For a top-down predictive
coding model, this is done by ancestral sampling: first sampling the top latent layer xL ∼
N(0, I), and then recursively sampling each lower layer from its conditional Gaussian distribu-
tion N(xl; fl(xl+1,Wl+1), I). The prior distribution on xL emerges from the additional activity
decay applied to xL for the unsupervised learning experiments.

To evaluate generative performance, we compute the Fréchet Inception Distance between generated
and real samples. We use the open-source library pytorch-fid (Seitzer, 2020a), adapted to MNIST
by replacing the standard Inception network with a ResNet-18 trained on MNIST as the feature
extractor.

As a baseline, we include a variational autoencoder (VAE) trained on the same learning task. The
VAE architecture and parameter count are matched to those of hybridPC and bPC to enable a fair
comparison. Training follows the standard VAE procedure: the encoder network approximates the
posterior distribution over latent variables, while the decoder parametrises the generative model.
The model is optimised end-to-end via backpropagation using the standard VAE objective.

Visualisation of Energy Landscapes on XOR We visualise the energy landscapes of trained
genPC, discPC, and bPC models on the XOR task. To generate the landscape, we clamp the in-
put layer neurons to a 2D coordinate within the range [-3,3], sampled at intervals of 0.25 along
both axes. Simultaneously, we clamp the output layer xL to the one-hot encoding of one of the two
classes. For each coordinate–label combination, we run 10,000 steps of iterative inference to ensure
convergence to equilibrium and record the final energy of the model. This procedure is repeated over
the grid of 2D inputs and both class labels, allowing us to plot the full energy landscape. For fair
comparison, we also include the combined energy landscape of discPC and genPC. Together, the
combined parameter count of discPC and genPC matches the total parameter count of bPC. Equal
weighting is applied to the energy values of the discPC and genPC models when adding their en-
ergy, as we use equal weighting for the discriminative and generative components in the bPC model
(αdisc = αgen = 1).

MNIST image generation with PC models We evaluate the generative capabilities of the bPC
model and a combined genPC and discPC model on the MNIST dataset. The goal is to assess how
likely these models are to assign low energy to implausible, label-inconsistent samples.

As a baseline, we first estimate the energy distribution over the test set for each model. For each
test image, we clamp x1 to the image and xL to its associated label. The model is then initialised as
during training, and we run 50,000 steps of iterative inference to reach a steady state. We compute
the 10th percentile from the resulting energy values as an energy threshold for high-quality, in-
distribution samples. This process was repeated independently for bPC, genPC and discPC.

To generate images conditioned on a label, we use the following procedure: (1) randomly initialise
the input layer x1 by sampling each neuron’s activity uniformly from the interval [-1,1], (2) clamp
xL to the target label, (3) initialise all hidden layers to zero, (4) run iterative inference until the
median energy of the batch falls below the previously determined 10th percentile threshold, (5)
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retain the 50% of samples within the batch that fall below or equal to the energy threshold and
discard the rest. Using this method, we generate 256 samples per model.

In the combined genPC and discPC model, the input layer x1 is shared by both models, and its up-
dates during inference are influenced by both energy functions. However, genPC typically exhibits
energy magnitudes significantly larger than those of discPC. To prevent one component from domi-
nating the updates to x1, we scale the generative energy by a factor equal to the ratio of the discPC
energy threshold to the genPC energy threshold. Additionally, inference is only terminated once the
generative and the discriminative energies fall below their respective thresholds.

The models used for sample generation are trained separately from those used in the supervised
experiments from Section 4.1. During preliminary testing, we found that generative quality strongly
depends on the choice of activation function. In particular, leaky-ReLU yielded superior image
samples. As a result, we train all models using leaky-ReLU activations and a shared set of training
hyperparameters. These parameters are selected for their stability and effectiveness across all model
types for classification and generation tasks.

We assess the quality and diversity of the generated samples using two standard metrics:

• Fréchet Inception Distance (FID): The FID measures the distance between the distributions
of real and generated images (Heusel et al., 2017). We use the public implementation of
FID from Seitzer (2020b), but modify it to use a ResNet classifier trained on MNIST,
instead of the original Inception model trained on ImageNet. This ensures that the FID
score better reflects visual quality and diversity on the MNIST domain.

• Inception Score (IS): The Inception Score evaluates how easily a classifier can identify the
class of a generated image (Salimans et al., 2016). We used a publicly available implemen-
tation for the MNIST dataset (Chen, 2020).

Classification accuracy with partially missing inputs

To assess model robustness to missing input data, we evaluate classification accuracy under varying
levels of input occlusion. This evaluation follows the same procedure as standard classification
(described above), but for images missing a random subset of pixels. The proportion of missing
pixels ranges from 10% to 90%, in increments of 10%. Missing pixels are selected uniformly at
random, independently of their spatial location within the image. For all models, missing pixels
in x1 are initialised to zero activity and are left unclamped, allowing the model to update their
values during inference. We repeat the same classification procedure as before, but we increased the
number of inference steps to 600,000 to ensure convergence. This is necessary because predictive
coding models converge more slowly when input information is incomplete (Tang et al., 2023). In
addition to measuring classification accuracy, we also record the post-inference activity of neurons
in x1 to qualitatively assess the model’s ability to fill in the missing input.

A.6 COMPUTE RESOURCES

All experiments were conducted on NVIDIA RTX A6000 GPUs. Training an MLP model for
MNIST and Fashion-MNIST experiments across tasks took less than one minute. Training unsuper-
vised learning models on CIFAR-10 and CIFAR-100 of Section 4.2 took approximately 15 minutes.
Training the combined supervised and unsupervised models of Section 4.3 took approximately one
hour and 15 minutes. The majority of the compute was spent on hyperparameter tuning. The total
training time for hyperparameter tuning of the models of Section 4.1 is±50h. The total training time
for hyperparameter tuning of the models of Section 4.2 is ±30h for MNIST and Fashion-MNIST
and ±400h for CIFAR-10 and CIFAR-100. The total training time for hyperparameter tuning of the
models of Section 4.3 is±25h for MNIST and Fashion-MNIST and±750h for CIFAR-10. The total
training time for the tuning of the bimodal models of Section 4.5 is ±20h.

A.7 LLM USE

ChatGPT Edu was used to polish writing.
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B RESULTS

Tables 10 to 15 report the result illustrated in Figures 3, 4, 5, and 7. These results are obtained on
the test set of the datasets for five different weight initialisations.

Table 10: Classification accuracy and class average image generation for models considered in
Section 4.1. Higher accuracy and lower RMSE are better. We report the mean +/- sem over five
seeds. Results indicated with ∗ are significantly worse in performance than bPC determined using
an independent-samples t-test (n=5, p < 0.05).

Acc % RMSE
Model MNIST Fashion-MNIST MNIST Fashion-MNIST

bPC 98.10±0.05 89.24±0.12 0.0581±0.0004 0.0415±0.0005

hybridPC 86.22±0.15∗ 80.34±0.11∗ 0.0612±0.0003 0.0480±0.0016

genPC 83.48±0.21∗ 77.00±0.16∗ 0.0198±0.0001 0.0140±0.0001

discPC 98.43±0.01 89.74±0.14 0.3133±0.0224∗ 0.3326±0.0024∗

BP 98.48±0.10 89.66±0.11 0.0198±0.0001 0.0128±0.0001

Table 11: Image reconstruction RMSE from latent representations for models considered in Section
4.2. Lower RMSE is better. We report the mean +/- sem over five seeds. Results indicated with ∗ are
significantly worse in performance than bPC determined using an independent-samples t-test (n=5,
p < 0.05).

Model MNIST Fashion-MNIST CIFAR-10 CIFAR-100

bPC 0.2320±0.0010 0.2497±0.0004 0.1311±0.0005 0.1366±0.0007

genPC 0.2473±0.0020∗ 0.2868±0.0013∗ 0.1837±0.0009∗ 0.2077±0.0003∗

hybridPC 0.2401±0.0012∗ 0.2508±0.0007 0.1664±0.0015∗ 0.2089±0.0071∗

AE 0.1565±0.0006 0.1868±0.0001 0.1135±0.0050 0.1171±0.0042

BP 0.1969±0.0004 0.2084±0.0002 0.0964±0.0004 0.0983±0.0002

Table 12: Linear decoding accuracy (%) across datasets for different models considered in Section
4.2. Higher is better. We report the mean ± sem over five seeds. Results indicated with ∗ are
significantly worse in performance than bPC determined using an independent-samples t-test (n=5,
p < 0.05).

Model MNIST Fashion-MNIST CIFAR-10 CIFAR-100

bPC 89.99±0.01 81.82±0.01 50.52±0.01 60.68±0.01

genPC 86.93±0.01∗ 80.44±0.01∗ 48.23±0.02∗ 50.45±0.02∗

hybridPC 89.07±0.01∗ 81.59±0.01 49.61±0.01∗ 59.31±0.01∗

AE 90.76±0.01 83.31±0.01 47.29±0.02 63.78±0.04

hybridBP 93.44±0.01 78.69±0.018∗ 50.63±0.01 85.14±0.01

Table 13: FID scores for different models trained with 50 and 250 activity updates before each
weight update considered in Section 4.2. Lower is better. We report the mean± sem over five seeds.
The VAE only has one value because it does not have iterative inference.

Model FID @ 50 updates FID @ 250 updates

bPC 5.21±0.26 3.34±0.53

genPC 7.86±1.27 4.56±0.30

hybridPC 5.01±0.30 4.28±0.32

VAE 5.79±0.21
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Table 14: Classification accuracy and image reconstruction RMSE from latent representations for
models considered in Section 4.3. Higher accuracy and lower RMSE are better. We report the mean
+/- sem over five seeds. Results indicated with ∗ are significantly worse in performance than bPC
determined using an independent-samples t-test (n=5, p < 0.05).

Acc % RMSE
Model MNIST Fashion-MNIST CIFAR-10 MNIST Fashion-MNIST CIFAR-10

bPC 97.06±0.08 88.24±0.08 85.06±0.11 0.2394±0.0002 0.2531±0.0022 0.3036±0.0014

hybridPC 86.15±0.36∗ 80.11±0.11∗ 37.20±0.43∗ 0.2418±0.0006 0.2527±0.0003 0.3003±0.0051

AE 98.32±0.06 89.49±0.10 89.97±0.12 0.1576±0.0005 0.2164±0.0003 0.1599±0.0002

hybridBP 98.48±0.03 89.61±0.13 90.11±0.11 0.1249±0.0004 0.1707±0.0004 0.1048±0.0011

Table 15: Classification accuracy and class average image generation for bimodal genPC and bPC
considered in Section 4.5. Higher accuracy and lower RMSE are better. We report the mean +/- sem
over five seeds. Results indicated with ∗ are significantly worse in performance than bPC determined
using an independent-samples t-test (n=5, p < 0.05).

Acc % RMSE
Model MNIST Fashion-MNIST MNIST Fashion-MNIST

bPC 97.80±0.05 89.05±0.10 0.0506±0.0007 0.0431±0.0004

genPC 88.28±0.10∗ 80.53±0.14∗ 0.1561±0.0004∗ 0.2027±0.0031∗

C OTHER TYPES OF PREDICTIVE CODING MODELS

In this experiment, we train three additional types of predictive coding models on the supervised
task described in Section 4.1: (1) PC along arbitrary graphs(Salvatori et al., 2022), (2) bPC with
shared weights for discriminative and generative predictions(Qiu et al., 2023), and (3) discPC with
activity decay during generation(Sun and Orchard, 2020).

PC along arbitrary graphs (agPC) differs from bPC in that each neuron has a single energy func-
tion, with predictions computed from all incoming connections. In contrast, bPC uses separate
energy terms for bottom-up (discriminative) and top-down (generative) predictions. In this formula-
tion, the energy associated with an agPC layer xl is given by:

El =
1

2
∥xl − f(Wxl+1 + V xl−1 + b)∥22 ,

where W and V are top-down and bottom-up weights, respectively. We use the same training
algorithm, hyperparameter tuning, and evaluation procedure as bPC, modifying only the energy
function. Initialisation is done using bottom-up sweeps (for training and classification evaluation)
and top-down forward sweeps (for generation evaluation), matching bPC. We also tested zero and
Xavier initialisation. However, this resulted in worse learning performance.

bPC with shared weights (shared bPC) uses a single set of weights for both discriminative and
generative predictions. Its energy function associated with a layer xl is given by:

El =
αgen

2
∥xl − f(Wl+1xl+1)∥22 +

αdisc

2

∥∥xl − f(W⊤
l xl−1)

∥∥2
2
,

where W⊤
l is reused for both directions. This model omits bias terms and relies on non-local com-

putations. We follow the same training, tuning, and evaluation protocol as bPC.

discPC with activity decay (decay discPC) extends standard discPC by adding an activity decay
term during generation. We use the same training and hyperparameter tuning protocol as discPC.
Additionally, we tune an activity decay rate from a log-uniform distribution over the range [10−5, 1].
During generative evaluation, we increase the number of inference steps to 10,000 due to slower
convergence and we initialise neurons to zero activity before generation for consistency with Sun
and Orchard (2020).
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Figure 9: MNIST (left) and Fashion-MNIST (right) class average image generation for agPC, shared
bPC and decay discPC.

Table 16 reports classification accuracy and reconstruction RMSE for these models. Figure 9 illus-
trates the images generated by each model for each MNIST and Fashion-MNIST class. None of the
models match bPC in both classification and generative performance.

Table 16: Classification accuracy and class average image generation for agPC, shared bPC and
decay discPC on the supervised training task of Section 4.1. Higher accuracy and lower RMSE are
better. We report the mean +/- sem over five seeds.

Acc % RMSE
Model MNIST Fashion-MNIST MNIST Fashion-MNIST

arbitrary graph PC 71.47±0.27 62.50±6.05 0.1685±0.0299 0.2426±0.0077

shared-bPC 97.39±0.08 87.99±0.04 0.1380±0.0042 0.2560±0.0093

decay discPC - - 0.4047±0.0005 0.3433±0.0002

D BALANCING DISCRIMINATIVE AND GENERATIVE ENERGIES IN BPC

In this experiment, we investigate how the relative weighting of the discriminative and generative
energy terms (αdisc/αgen) affects bPC’s learning in the supervised and unsupervised settings de-
scribed in Sections 4.1 and 4.2. For each setting, we perform hyperparameter tuning of the bPC
model while constraining the ratio αdisc/αgen, and report the test performance of the model with
the optimal parameters. We use a grid search over the following hyperparameters: the activity learn-
ing rate [0.01, 0.003, 0.001], the parameter learning rate [0.001, 0.0003, 0.0001], and the weight
decay [0., 0.0001, 0.0003, 0.001]. Other settings, including a GeLU activation function and an
activity momentum of 0, are constant. All remaining parameters, such as the number of epochs,
batch size, and number of inference steps during training and evaluation, are kept consistent with
the experiments described in Sections 4.1 and 4.2.

In the supervised case, generation RMSE remains stable across ratios of αdisc/αgen, but classi-
fication accuracy declines as the discriminative energy is down-scaled. We suspect this is due to
a mismatch in energy magnitudes. A typical discPC model has an energy of around 0.1 for test
data samples after training, while genPC has an energy of approximately 50. Thus, the generative
energy dominates when αdisc is not significantly larger than αgen, leading to a poor classification
like genPC models. In contrast, bPC’s unsupervised learning performance is relatively robust across
a wide range of ratios, but degrades sharply when the discriminative energy is too large. We also
observed increased training instability when αdisc ≫ αgen.

These results highlight the importance of appropriately scaling the energy terms based on the task.
Hybrid tasks such as those in Section 4.3 require tailored weighting across the models to ensure
effective learning. Future work could make the energy scaling a learnable parameter. This change
could make bPC learn optimal scalings autonomously.

E EFFECT OF MAX-POOLING ON GENERATIVE ARTIFACTS

In this experiment, we modify the VGG-5 architecture of the models from Section 4.3 by removing
max-pooling layers and increasing the convolutional strides from one to two. We also increase the
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Figure 10: bPC’s supervised (left) and unsupervised (right) learning performance on MNIST de-
pending on the relative weighting of its discriminative and generative energy term.

Figure 11: CIFAR-10 image reconstruction from latent representation and labels for models of
Section 4.3 without max-pooling.

inference time during training to 48 inference steps. All other aspects of the experiment remain
unchanged.

As shown in Figure 11, this change eliminates the checkerboard artefacts in the reconstructed images
and improves reconstruction quality for both bPC and hybridPC. This improvement is reflected in
the lower RMSE values reported in Table 17. However, removing max-pooling reduces classification
accuracy across all models, with bPC experiencing a drop of approximately 25%. Despite this, the
overall trends remain consistent: bPC show a substantially better discriminative performance than
hybridPC for comparable reconstruction RMSE.

Table 17: Classification accuracy and image reconstruction RMSE from latent representations for
CIFAR-10 models considered in Section 4.3 without max-pooling. Higher accuracy and lower
RMSE are better. We report the mean +/- sem over five seeds.

Model Acc % RMSE

bPC 61.67±0.29 0.2178±0.0047

hybridPC 37.36±0.18 0.2196±0.0010

AE 84.58±0.11 0.1777±0.0005

hybridBP 85.79±0.26 0.1095±0.0018

F SAMPLE GENERATION OF COMBINED DISCBP + GENBP MODELS

In this experiment, we repeat the combined model image generation procedure from Section 4.4
using discBP and genBP. The two models share an input layer, which is iteratively updated to min-
imise their energy functions until the energy falls below the 10th percentile of each model’s energy
distribution on the test set. We generate samples using the same procedure as described previously
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Figure 12: Samples generated for the combined discBP + genBP model.

for the discPC + genPC model. We compute the FID and Inception scores to quantify the generation
quality.

Figure 12 displays the generated samples for different classes. While the images resemble the class
averages, they also exhibit noise across pixels and less visual diversity than bPC samples. As shown
in Table 18, the backpropagation-based combined model yields higher FID and lower Inception
scores, indicating that bPC generates samples more consistent with the MNIST distribution than the
backpropagation-based approach.

Table 18: Fréchet inception distance and inception score for samples generated for the combined
discBP + genBP model compared to bPC and discPC + genPC. Results are given for mean +/- sem
for three seeds.

Model Inception FID

bPC 6.05±0.17 44.4±2.2

discPC + genPC 3.62±0.03 140.5±2.1

discBP + genBP 5.00±0.02 99.1±3.5

G PARAMETER COUNT MATCHED EXPERIMENTS

In this section, we repeat both the supervised and unsupervised experiments for genPC and discPC,
but with parameter counts increased to match bPC. Initially, we maintained identical neural layer
dimensions across all models, causing genPC and discPC to have approximately half the number of
trained parameters (weight matrices and biases) compared to bPC and hybridPC.

Here, we replicate the MNIST and Fashion-MNIST experiments described in the main paper, ad-
justing genPC and discPC to match the parameter count of bPC. Specifically, for supervised exper-
iments, the hidden layers of genPC and discPC are expanded to 437 neurons, compared to 256 in
bPC. For the unsupervised experiments, genPC layers have 439 neurons. These neuron counts were
determined by finding the hidden layer sizes (rounded to the nearest integer) that yield the same
parameter count as bPC.

The results, presented in Tables 19 and 20, show that the previous findings remain consistent when
parameter counts are matched. GenPC continues to exhibit lower discriminative performance com-
pared to discPC and bPC, as demonstrated by its poorer classification accuracy. Additionally,
genPC’s unsupervised learning performance remains inferior to that of bPC and hybridPC. DiscPC,
similarly, maintains poor generative performance in supervised tasks.

Overall, these experiments confirm that the main paper’s conclusion remains valid: bPC effectively
integrates the strengths of both genPC and discPC, even when genPC and discPC are scaled to match
bPC’s parameter count.

H RELATIONSHIP BETWEEN HYBRIDPC AND BPC

In this work, we benchmark our bPC model primarily against hybrid predictive coding (Tscshantz
et al., 2023). hybridPC is the only plausible PC model that incorporates both slow, iterative inference
and fast, feedforward inference, to date. In HybridPC, fast inference is enabled by a bottom-up
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Table 19: Classification accuracy and class average image generation for models considered in Sec-
tion 4.1. All models have approximately the same number of trained parameters. Higher accuracy
and lower RMSE are better. We report the mean +/- sem over five seeds.

Acc % RMSE
Model MNIST Fashion-MNIST MNIST Fashion-MNIST

bPC 98.10±0.05 89.24±0.12 0.0581±0.0004 0.0415±0.0005

hybridPC 86.22±0.15 80.34±0.11 0.0612±0.0003 0.0480±0.0016

genPC 83.09±0.80 78.28±0.23 0.0196±0.0002 0.0142±0.0002

discPC 98.68±0.04 89.30±0.26 0.4085±0.0040 0.3209±0.0049

BP 98.66±0.06 89.84±0.08 0.0197±0.0001 0.0133±0.0001

Table 20: Image reconstruction RMSE from latent representations for models considered in Section
4.2. All models have approximately the same number of trained parameters. Lower RMSE is better.
We report the mean +/- sem over five seeds.

Model MNIST Fashion-MNIST

bPC 0.2320±0.0010 0.2497±0.0004

hybridPC 0.2401±0.0012 0.2508±0.0007

genPC 0.2453±0.0007 0.2861±0.0016

network added to the genPC network architecture, which serves solely to initialise neural activities
and does not impact their dynamics.

HybridPC was originally defined with two separate objective functions. One of these is the genPC
energy function. The other is a loss for the bottom-up initialisation parameters. However, the learn-
ing process of hybridPC can also be expressed as a single unified loss function. This formulation
is analogous to the energy function in bPC. The neural dynamics and weight updates in hybridPC
minimise the following energy function:

Ehybrid(x,W, V ) =
∑L−1

l=1

1

2
∥xl−Wl+1f(xl+1)∥22+

∑L

l=2

1

2
∥sg(xl)−Vl−1f(sg(xl−1))∥22 (9)

Unlike in bPC, a stop gradient sg(·) operation is applied. This change ensures that only the top-
down generative predictions drive the neural dynamics. HybridPC can perform both supervised and
unsupervised learning. However, the supervised learning performance of hybridPC is much poorer
than that of discPC. This is due to the stop gradient operation in the bottom-up stream of this model
that prevents it from learning a discriminative model that maps well from x1 to xL (Tscshantz et al.,
2023). , which caps its supervised learning performance to that of genPC (Tscshantz et al., 2023).

In bPC, bottom-up predictions to contribute directly to the inference process, ensuring that the
learned neural activity patterns incorporate discriminative signals from the bottom-up pathway,
thereby significantly enhancing discriminative performance while retaining strong generative ca-
pabilities.

With this reformulation of hybridPC, and given the similarity in objective functions, the bottom-
up weight updates in bPC can be interpreted as learning an inversion of the activity updates. This
inversion provides a mechanism for fast initialisation in bPC, implementing amortised inference.

I SCALING BPC TO DEEPER MODELS

To investigate whether bPC scales effectively to deeper models and more complex datasets, we
trained discPC, discBP, and bPC using the following architecture-dataset combinations: VGG-5 on
CIFAR-10, VGG-9 on CIFAR-100, and VGG-16 on Tiny-ImageNet.

After training, we evaluated their discriminative performance by measuring classification accuracy.
Additionally, we assessed generative capabilities by evaluating classification accuracy when 30%
and 50% of the input pixels were missing, following the methodology outlined in Section 4.5.
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Data Preparation We used the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009b). For
discPC and discBP, images were rescaled to the range [0, 1] and normalized using the mean and
standard deviation shown in Table 21, consistent with Pinchetti et al. (2025b). For bPC, images were
rescaled to the range [-1,1] to align with the effective output range of the tanh activation function,
which served as the output activation for the top-down predictions across all bPC models.

Table 21: Data normalization
Mean (µ) Std (σ)

CIFAR-10 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]
CIFAR-100 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]

Tiny-ImageNET [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

VGG Architectures We utilized deep convolutional neural network architectures from the VGG
family (Simonyan and Zisserman, 2014). Table 22 summarises the specific architectures for VGG-5,
VGG-9, and VGG-16. Following convolutional layers, a single linear layer was used for classifica-
tion. We used the GeLU activation function. Batch normalisation was also used in the VGG-9 and
VGG-16 models after each convolutional layer to stabilise training.

In the bPC models, the top-down architecture mirrored the discriminative (bottom-up) layers. Each
convolutional layer was paired with a transposed convolution sharing identical parameters. How-
ever, when convolutional layers were immediately followed by max-pooling operations, the corre-
sponding transposed convolutional layers used a stride of two and a padding of one (instead of zero)
to compensate for the change in channel width and height introduced by max pooling. No batch
normalisation was used in the top-down predictions.

Table 22: Detailed architectures of VGG models. The locations of the pooling layers correspond to
the indices of the convolutional layers after which the max-pooling operations are applied.

VGG-5 VGG-9 VGG-16
Channel Sizes [128, 256, 512, 512] [128, 128, 256, 256, 512, 512, 512, 512] [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512]
Kernel Sizes [3, 3, 3, 3] [3, 3, 3, 3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Strides [1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Paddings [1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Pool location [0, 1, 2, 3] [0, 2, 4, 6] [1,4, 7,10,13]
Pool window 2 × 2 2 × 2 2 × 2
Pool stride 2 2 2

Learning Rate Schedule The learning rate schedule was structured as follows:

1. During the initial 10% of training, the learning rate linearly increased from w lr to 1.1 ×
w lr.

2. Subsequently, a cosine decay schedule reduced the learning rate smoothly to 0.1 × w lr
over the remaining epochs.

where refers to the tuned weight learning rate.

Simulating PC using Error optimisation To efficiently simulate the predictive coding models,
we employed error optimisation as described in Goemaere et al. (2025). This approach prevents ex-
ponential energy decay in predictive coding models and enables the training of larger architectures.
discPC directly follows the formulation introduced in the paper. bPC can likewise be expressed using
an error reparametrisation: this is done by rewriting the inference energy function of its discrimi-
native component in the same way as for discPC, while leaving the top-down generative prediction
error loss unchanged, i.e., computed directly from the layer activities. We validated this reformu-
lation of bPC by confirming that its iterative inference converges to the same equilibrium point as
the neural dynamics of bPC described in the main paper, but does so more quickly when using error
reparametrisation.

Model Hyperparameters The hyperparameters of discPC and discBP for the VGG5 and VGG9
model were adopted from Goemaere et al. (2025), where they were tuned using Hyperband Bayesian
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optimization (via the Weights & Biases platform) across the combinations listed in Table 23. For
the VGG16 models, we repeated the tuning summarised in 23.

For bPC models, no additional hyperparameter tuning was performed. Instead, we directly applied
the optimal hyperparameters obtained for discPC, while setting bPC’s αdisc = 1, and αgen = 1e−5

for VGG-5, and 1e−8 for VGG-9 and VGG-16.

Table 23: Summary of hyperparameter search space from Goemaere et al. (2025).
Method Tuned hyperparameter range Optimizer Optim steps (T) Epochs (sweep/final)

discPC

e lr: fixed at 0.001
e momentum: fixed at 0.0
w lr: log-uniform [1e-5, 1e-2]
w decay: log-uniform [1e-6, 1e-3]

SGD (error)
Adam (weights)

5 (all models) 25/25

discBP w lr: log-uniform [1e-5, 1e-2]
w decay: log-uniform [1e-6, 1e-3] Adam (weights) NA 25/25

Glossary: w lr: base weight learning rate (see learning rate schedule below), w decay: weight decay, {e,s} lr:
error / state learning rate, {e,s} momentum: error / state momentum, T: nr. of optimization steps

Evaluation We evaluated the models under three conditions: with 0%, 30%, and 50% of input
pixels set to zero across all image channels. Missing pixels were selected uniformly at random,
independent of their spatial locations.

For discPC and discBP models, we obtained classification accuracy directly from a single feedfor-
ward pass, as these models inherently yield zero reconstruction loss for any given input.

For bPC models, missing pixel values in x1 were initialised to zero and left unclamped, allowing
the network to iteratively infer their values. While 600,000 inference steps were previously used
to guarantee convergence for MNIST-trained MLPs, this approach is computationally infeasible for
our larger models. To accelerate convergence, we adopted a two-stage inference process. First, we
performed 1,000 warm-up inference steps with αdisc = 0, facilitating faster completion of missing
pixel values. Subsequently, we restored αdisc = 1 and carried out an additional 2,000 inference
steps to determine final classification accuracy.

Besides measuring classification accuracy, we qualitatively assessed the ability of bPC models to
reconstruct missing inputs by examining post-inference neuron activity in x1.

Results Table 24 shows that bPC achieves classification accuracy comparable to discPC and dis-
cBP when full images are presented, even in deeper VGG architectures.

Tables 25 and 26 demonstrate that bPC significantly outperforms discPC and discBP on images
with missing inputs. This improvement arises from bPC’s iterative inference, which fills in missing
information. Figure 13 illustrates this effect: after inference, the activity of the input layer x1 reveals
that neurons lacking sensory input have been updated to predict the missing values. Once the missing
information is inferred, bPC classifies images accurately. This result holds for both 30% and 50%
missing inputs, highlighting bPC’s robustness to incomplete data.

Overall, even in larger models, bPC effectively balances discriminative and generative performance
by jointly minimising bottom-up and top-down prediction errors.

Model bPC discPC discBP

VGG5/CIFAR10 87.3±0.3/98.9±0.1 87.6±0.2/98.8±0.1 87.8±0.2/98.8±0.1

VGG9/CIFAR100 61.2±0.5 / 84.9±0.3 61.3±0.5 / 84.6±0.2 64.4±0.1 / 81.9±0.2

VGG16/Tiny-ImageNet 50.3±0.4/73.6±0.2 50.0±0.5/72.6±0.2 47.5±0.6 / 70.8±0.3

Table 24: Classification accuracy of bPC, discPC and discBP when whole images are presented.
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Figure 13: Image reconstruction through iterative inference by bPC.
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