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Abstract

AI-generated synthetic data, in addition to protecting the privacy of original data
sets, allows users and data consumers to tailor data to their needs. This paper
explores the creation of synthetic data that embodies Fairness by Design, focusing
on the statistical parity fairness definition. By equalizing the learned target prob-
ability distributions of the synthetic data generator across sensitive attributes, a
downstream model trained on such synthetic data provides fair predictions across
all thresholds, that is, strong fair predictions even when inferring from biased,
original data. This fairness adjustment can be either directly integrated into the
sampling process of a synthetic generator or added as a post-processing step. The
flexibility allows data consumers to create fair synthetic data and fine-tune the
trade-off between accuracy and fairness without any previous assumptions on the
data or re-training the synthetic data generator.

1 Introduction

In recent years, the advent of privacy-preserving, AI-generated synthetic data, which we will refer
to as synthetic data in the following, has brought a revolutionary change to data privacy. Privacy-
preserving synthetic data offers Privacy by Design by strongly mitigating data privacy risks for data
consumers. Once a data set is replaced with its privacy-preserving synthetic version, privacy risks are
mitigated for all subsequent downstream applications. However, the utility of synthetic data extends
far beyond privacy. It enables data consumers to fine-tune data sets to meet their needs, making it
a highly adaptable tool. In this paper, we explore the ability of synthetic data to provide not only
Privacy by Design but also Fairness by Design.
The process of generating synthetic data involves training generative models on the original data sets,
resulting in the creation of entirely new records that faithfully reflect the statistical patterns contained
in the source data. When the original data set contains biases, the synthetic data inadvertently
maintains these biases. This phenomenon is not unique to synthetic data but applies to any algorithm
as machine learning models tend to inherit biases from their training data.
Responsible AI strives to design, develop, and deploy artificial intelligence systems in a way that,
ideally, everyone profits and no one is harmed. One of the pillars of responsible AI is fairness which
ensures that the algorithm should not discriminate against people because of their race, gender, age,
socioeconomic status, and other, so-called, sensitive attributes.
In this work, we focus on the generation of synthetic data adhering to the statistical parity fairness
definition, as statistical parity has a direct relationship to the data and can be readily controlled
during synthetic data generation, without the need to feed back information and performance metrics
from any downstream tasks. We investigate how training a classifier on fair synthetic data affects its
predictions on biased original data.
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The common approach in machine learning involves training a classifier while carefully tuning
the decision threshold. This threshold separates the probabilities predicted by a machine-learning
model into different classes. For example, in a binary classification, we have a predicted probability
indicating the likelihood of a positive outcome for each individual record. If the predicted probability
for a truly positive record exceeds the threshold, the instance is classified as positive; otherwise, it is
classified as negative making it a “false negative”. Vice versa, if the predicted probability for a truly
negative instance exceeds the threshold, it is classified as positive, making it a "false positive". When
deploying a classifier, it is usually necessary to tune the threshold and evaluate whether the resulting
model meets the domain- and business-specific needs. As these needs are often subject to change
and differ from application to application, the primary objective of this research paper is to achieve
fairness across all thresholds simultaneously.
Just as it is important to create synthetic data that is privacy-preserving, it is equally important, in
the context of fairness, to be aware of the shortcomings of “naively fair synthetic data”. Naively
fair synthetic data conform to the definitions of fairness (statistical parity) within the synthetic data
itself but fail to propagate fairness to the final predictions of downstream classifiers trained on said
naively fair synthetic data. In the context of statistical parity, naively fair data can be produced by
simply re-sampling records from unprivileged groups with favorable target outcomes to equalize the
proportion of favorable outcomes across different sensitive groups. In contrast, truly fair synthetic
data are carefully constructed to ensure fair predictions when used to train downstream classifiers.
Our work is based on techniques developed in fairness research, which are capable of producing
predictions that are fair across all thresholds. In this paper, we extend these techniques to the
creation of fair synthetic data and show the stability of this fair synthetic data to propagate fairness
to downstream models. These threshold-independent fair predictions bring us a step closer to
establishing Fairness by Design.

2 Related work

There are three different places in an ML pipeline where strategies for mitigating bias can be
implemented [1]. Pre-processing strategies focus on modifying the data set before it is used to train
machine learning models. The aim is to remove or mitigate any potential biases present in the data
with respect to the protected attributes. In-processing strategies aim to directly modify the learning
algorithm to make it fair during the training process. These methods try to optimize fairness as part
of the model’s training objective. Post-processing strategies modify the model’s predictions/outputs
after it has been trained to ensure fairness without changing the original data or the training process.
Considering a complete ML pipeline, fair synthetic data generation falls in the pre-processing category
as it changes the data used for training the final downstream model. For the remainder of this paper,
we focus on the generation of fair synthetic data alone. Pre-, in-, and post-processing steps are,
therefore, considered relative to the synthetic data generator.
Pre-processing strategies typically identify and remove original biased samples [2] before they even
enter the synthetic data generator. The majority of contributions to fair synthetic data generation
focuses on in-processing strategies trying to modify the synthetic data generator algorithm/training
in order to generate fair synthetic data [3, 4, 5]. Many studies introduce fairness by adding one or
multiple fairness constraints to the objective function governing the training of the synthetic data
generator. However, in-processing approaches exhibit limitations in terms of flexibility. They require
tailoring the synthetic generator training to one or many specific sensitive columns and one target
column. Additionally, the weight of the fairness constraints in the loss function can only be modified
before or during training the generator. Striking the right balance between accuracy and fairness
requires multiple iterations of training the synthetic-data generator which consumes valuable time
and resources.
Moreover, studies have demonstrated that generating synthetic data that adheres to fairness definitions
does not always guarantee fairness in downstream models [6]. This is studied in detail in the DECAF
approach [7], where the objective extends beyond generating fair synthetic data to ensuring fairness
in downstream model predictions. The DECAF algorithm enables inference-time debiasing, where
edges between features can be strategically removed to satisfy user-defined fairness requirements.
Consequently, this approach is more adaptable and focused on preserving fairness in downstream
model predictions. However, it does come with the requirement that the data-generating process must
be represented by a user-defined and causally sufficient directed acyclical graph. Causality-based
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fairness is also discussed in [8].
Our contribution is two-fold:

1. We make the generation of fair-synthetic data flexible. We present a post-processing
algorithm that adjusts synthetic data, that is the probability distributions outputted by the
synthetic data generator which allows data consumers to select sensitive and target columns,
and tune the strength of the fairness correction without retraining the synthetic data generator
and without representing the original data in a causally sufficient graph.

2. We ensure that downstream classifiers trained on fair synthetic data yield fair predictions
across arbitrary thresholds even when inferring from biased original data.

Our approach is rooted in findings in fairness research [9, 10, 11, 12], which advocate the necessity
of guaranteeing fair model predictions across all possible thresholds. Moving to the post-processing
stage of the synthetic data generation process and inducing fairness across all possible thresholds
makes our approach flexible for data consumers and provides strong statistical parity for downstream
model predictions.

3 Concept

Consider a feature space X ⊆ Rd, a set of K protected attributes denoted as S = {s1, s2, ..., sK},
and a binary target variable Y = {0, 1}, where 1 signifies the positive class and 0 the negative class.
The primary goal of a fair learning algorithm is to learn insights about the target variable Y in a way
that the conditional probability P (Y |X) closely approximates P (Y |X,S).
This paper explores strong demographic parity, an algorithmic fairness concept that ensures equally
favorable outcomes across different protected attributes. With the model’s output Z, typically a
classification score, and the decision threshold t, strong demographic parity is defined as

P (Z ≥ t|S = si) = P (Z ≥ t|S = sj) for i, j ∈ {1, 2, . . . ,K}, ∀t ∈ Z.

We focus on a binary classification problem as the downstream task, where 0 ≤ Z ≤ 1, and two
protected groups: a privileged group (S = s1) and an unprivileged group (S = s2). The objective
of strong demographic parity is to ensure that the unprivileged group receives the same favorable
outcome (Z ≥ t) as the privileged group for any arbitrary threshold value t.
Our aim is to achieve an equal positive rate (PR) for both the unprivileged and privileged groups,
as defined by the chosen threshold. The final goal of a fair learning algorithm under the strong
demographic parity condition is to maximize the true positive rate (TPR) while minimizing the false
positive rate (FPR), given the condition that the PR remains the same for both sensitive groups.
Equal PR translates to having the same P (Z ≥ t), which is equivalent to having the same 1−P (Z <
t). In probability theory, P (Z ≤ t) = Ft, is the cumulative distribution function that describes
the probability distribution of the random variable Z. The objective of having the same probability
distribution can be mathematically expressed as minimizing the Wasserstein distance [13] between
two probability distributions: P (Z|X,S = s1) and P (Z|X,S = s2). This concept of fairness is
theoretically described in [9], [14].
In our implementation, we approximately align the empirical conditional probability distribution
of the unprivileged group P (Y |X,S = s2) with the one of the privileged group P (Y |X,S = s1).
Both distributions are extracted either directly from the synthetic generator G or an independent post-
processing classifier C trained on the synthetic data. We align both distributions by learning a linear
function f which transforms a set of M = 100 equidistantly spaced quantiles of P (Y |X,S = s2)
to match the same set of quantiles of P (Y |X,S = s1). f is then applied to the probability
P (Y = 1|X,S = s2) of each synthetic instance of the unprivileged group in the sampling stage of
either G or C to yield the modified probabilities P ∗(Y = 1|X,S = s2) = f(P (Y = 1|X,S = s2).
We use the free version of the MOSTLY AI synthetic data generator [15] to create synthetic data
subjects and then train the post-processing classifier C, a LightGBM model, to predict the target
variable Y on the synthetic data. f is trained on P (Y |X,S = sj) of C and then used to get the
modified probabilities P ∗(Y = 1|X,S = s2). Finally, we use the P ∗(Y = 1|X,S = s2)s for
sampling [16] in order to assign each synthetic data subject of the unprivileged group either the value
0 or 1 in the target variable. This fair synthetic data is then used in the downstream task.
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In order to ensure that the fairness in the synthetic data is propagated to the downstream task
predictions, two requirements are key: first, a synthetic data generator capable of preserving the
distribution of the real data, and second, the capability of the downstream model to predict the target
variable to a comparable extent as the synthetic data generator.
To assess the first assumption, one can compare the distributions of the original and synthetic data,
especially the positive rates in the target variable for the privileged and unprivileged groups. The
second assumption requires the use of robust prediction models capable of accurately describing
the relationship between the target variable and other attributes, thus yielding a strong performance
metric.
For balancing the strength of the fairness correction, we introduce the parameter λ ranging from
zero to one. We define a new set of sampling probabilities by forming the convex combination
Pλ(Y = 1|X,S = s2) = λP ∗(Y = 1|X,S = s2) + (1− λ)P (Y = 1|X,S = s2). For λ = 0, no
fairness correction is applied while for λ = 1 we fully match - within the limits of our numerical
approach - the sampling probabilities of the unprivileged class to the ones of the privileged class, i.e.
we apply the strongest possible fairness correction.

4 Experiments

4.1 Data sets

We select two publicly available data sets that are commonly used in fairness-aware machine learning
[17]. Both data sets are characterized by a substantial statistical disparity. Further, to reasonably
examine statistical parity, we select data sets in which each unprivileged group in the holdout data set
contains a sample size exceeding 1000 observations, given our 80:20 split of the data into training
and holdout subsets.

The Adult data set [18] involves a binary classification task: determining whether an individual’s
annual income exceeds $50,000 based on demographic attributes. It consists of 48,842 instances,
each described by 15 attributes. Following the recommendation in [17], we omit the fnlwgt attribute.
Additionally, we excluded the education-num column, as it represents a one-to-one mapping of the
education attribute, expressed in numerical form. The class attribute is income = {≤ 50K, > 50K},
the positive class is labeled as >50K, and the sensitive attribute is gender, sex = {Male, Female}. 30%
of males fall into the high-income category, while only 11% of females do.

The Dutch census data set [19] contains information about people in the Netherlands for the year
2001. It comprises 60,420 instances, each characterized by 12 attributes. This data set presents a
binary classification task: predicting a person’s occupation as either a high-level (prestigious) or
low-level profession. The positive class is a high-level profession. The protected attribute here is
also gender sex = {Male, Female}. Nearly 63% of males are associated with prestigious professions,
while only 33% of females hold such positions.

4.2 Downstream models

We use AutoGluon [20], an open-source AutoML toolkit known for its robust predictive performance
across various machine-learning models. Specifically, we leverage CatBoost, LightGBM, Random-
Forest, and XGBoost models using their default parameters. Our training process involves utilizing
80% of the data set, which is also used for training the synthetic data generator model. The remaining
20% of the data set is used as the holdout data set for model evaluation. We synthesize the training
data set 10 times and we report the mean values as well as the standard deviations of selected metrics
for each considered data set.

4.3 Metrics and parameters

Fairness: In assessing fairness, we systematically consider thresholds t ranging from 0 to 1, with
increments of 0.01. We measure fairness using the statistical parity difference (SPD), which is
defined as SPD = P (Z ≥ t |S = s1)−P (Z ≥ t |S = s2), where s1 signifies the privileged group
(males), and s2 represents the unprivileged group (females). We report means of absolute SPD over
all 101 thresholds and 10 synthetic runs along with their standard deviations.
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Table 1: Fairness metric (SPD) and model performance metric (AUC-ROC) for Adult data set. We
report the average and the standard deviation across 10 runs and 101 thresholds.

Metric Training data CatBoost LightGBM RandomForest XGBoost

SP
D

original 0.194± 0.117 0.197± 0.116 0.197± 0.096 0.198± 0.117

synfair_0.0 0.197± 0.121 0.198± 0.122 0.195± 0.098 0.198± 0.122

synfair_0.25 0.144± 0.082 0.145± 0.078 0.141± 0.053 0.144± 0.078

synfair_0.5 0.091± 0.045 0.092± 0.043 0.089± 0.028 0.094± 0.043

synfair_0.75 0.045± 0.026 0.051± 0.03 0.045± 0.016 0.049± 0.025

synfair_1.0 0.012± 0.01 0.015± 0.011 0.019± 0.009 0.013± 0.008
A

U
C

original 0.928 0.927 0.897 0.929

synfair_0.0 0.921± 0.001 0.920± 0.002 0.889± 0.002 0.920± 0.002

synfair_0.25 0.918± 0.002 0.917± 0.002 0.881± 0.003 0.917± 0.002

synfair_0.5 0.912± 0.002 0.910± 0.002 0.873± 0.003 0.911± 0.003

synfair_0.75 0.902± 0.002 0.901± 0.002 0.863± 0.003 0.901± 0.002

synfair_1.0 0.890± 0.003 0.889± 0.003 0.853± 0.003 0.889± 0.003

Model performance: In general, the introduction of the fairness constraint leads to a decrease
in model performance compared to scenarios without this additional correction. The extent of this
performance drop is also dependent on the chosen evaluation metric. In our experiments, we use
the area under the ROC curve (AUC) as our primary performance metric, due to its threshold-
independent nature. We report means of AUC over 10 synthetic runs along with their standard
deviations.

λ parameter: We report results for five distinct values of λ: 0, 0.25, 0.5, 0.75 and 1. Results
are denoted as synfair_λ, where synfair_0.0 and synfair_1.0 showcase results without any and full
fairness correction, respectively.

4.4 Results

For both data sets in the synfair_1.0 case, we successfully reduce the initial SPD to a level well
below 0.1 across all models (tables 1, 2). While achieving statistical parity comes at the cost of overall
accuracy, it is worth noting that this drop is limited to 5 percentage points and that it is adjustable
through the λ parameter. If it is not imperative to achieve near-perfect fairness but rather to simply
reduce the disparity by half, selecting a lambda value of 0.5 allows for a smaller decrease in accuracy.
We also achieve a significant reduction of the initial SPD across all thresholds (fig. 2). Given the
similarity of the results across all models and runs, we present positive rates graphically only for one
run. For the best performing models, XGBoost and LightGBM on the Adult and the Dutch census
data sets, respectively, we show a comparison of positive rates across different thresholds for each
sensitive group (fig. 1). We further demonstrate the performance of the fairness metric (SPD) across
the complete range of selected thresholds for each model (fig. 2).

5 Conclusion

In this study, our primary goal is to investigate the potential of our approach in generating synthetic
data that not only achieves Fairness by Design but also maintains a high degree of flexibility
throughout the synthesis process. By Fairness by Design, we refer to the ability of a model trained on
fair synthetic data, specifically with respect to statistical parity, to consistently produce fair predictions
across various decision thresholds, even when inferring from real-world, biased data. Flexibility,
in our context, signifies the absence of any preexisting assumptions or information requirements
about the input data before training the synthetic data generator and the absence of the necessity for
re-training the synthetic data generator while adjusting the fairness-utility tradeoff.
Our empirical results demonstrate that our approach effectively achieves these objectives. Across the
two data sets subject to our analysis, we are able to reduce the statistical parity difference to levels
well below 0.1 while preserving the desired flexibility. Moreover, even when employing the most
stringent fairness corrections λ = 1, the performance of downstream models, as measured by the
AUC-ROC metric, exhibited a maximum decline of merely 5 percentage points.
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Table 2: Fairness metric (SPD) and model performance metric (AUC-ROC) for Dutch census data set.
We report the average and the standard deviation across 10 runs and 101 thresholds.

Metric Training data CatBoost LightGBM RandomForest XGBoost

SP
D

original 0.292± 0.133 0.288± 0.137 0.293± 0.092 0.289± 0.140

synfair_0.0 0.293± 0.138 0.291± 0.137 0.292± 0.095 0.291± 0.139

synfair_0.25 0.217± 0.112 0.214± 0.112 0.213± 0.073 0.215± 0.115

synfair_0.5 0.143± 0.078 0.140± 0.081 0.143± 0.057 0.142± 0.079

synfair_0.75 0.068± 0.046 0.067± 0.047 0.071± 0.038 0.068± 0.046

synfair_1.0 0.020± 0.014 0.019± 0.011 0.009± 0.006 0.018± 0.011
A

U
C

original 0.914 0.914 0.892 0.913

synfair_0.0 0.911± 0.000 0.911± 0.001 0.888± 0.002 0.911± 0.001

synfair_0.25 0.909± 0.001 0.909± 0.001 0.881± 0.002 0.909± 0.001

synfair_0.5 0.901± 0.001 0.901± 0.001 0.871± 0.001 0.901± 0.001

synfair_0.75 0.886± 0.002 0.885± 0.002 0.855± 0.002 0.885± 0.002

synfair_1.0 0.863± 0.002 0.864± 0.002 0.831± 0.003 0.862± 0.002

Figure 1: Positive rates across thresholds for each sensitive group. For the Adult data set, the PR of
the XGBoost predictions is presented. For the Dutch census data set, the PR of LightGBM predictions
is presented. As λ increases, female positive rates approach male positive rates.

Figure 2: Statistical parity difference across thresholds for each downstream model and each training
data. As λ increases, the statistical parity difference decreases.
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Our approach involves the strategy of relocating the fairness correction to the post-processing stage
of the synthetic data synthesis. We adapt and extend a method from the fairness literature to the
generation of fair synthetic data. Specifically, our methodology ensures that conditional probabilities
for the target column within unprivileged groups closely align with those of privileged groups within
the synthetic population.
Looking ahead, this work sets the stage for the exploration of post-processing fairness strategies
beyond statistical parity for providing Fairness by Design through fair synthetic data.
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