
Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

NEAR-OPTIMAL LEARNING OF EXTENSIVE-FORM
GAMES WITH IMPERFECT INFORMATION

Yu Bai
Salesforce Research
yu.bai@salesforce.edu

Chi Jin
Princeton University
chij@princeton.edu

Song Mei
UC Berkeley
songmei@berkeley.edu

Tiancheng Yu
MIT
yutc@mit.edu

ABSTRACT

This paper resolves the open question of designing near-optimal algorithms for
learning imperfect-information extensive-form games from bandit feedback. We
present the first line of algorithms that require only Õ((XA+ Y B)/ε2) episodes
of play to find an ε-approximate Nash equilibrium in two-player zero-sum games,
where X,Y are the number of information sets and A,B are the number of ac-
tions for the two players. This improves upon the best known sample complex-
ity of Õ((X2A + Y 2B)/ε2) by a factor of Õ(max{X,Y }), and matches the
information-theoretic lower bound up to logarithmic factors. We achieve this
sample complexity by two new algorithms: Balanced Online Mirror Descent, and
Balanced Counterfactual Regret Minimization. Both algorithms rely on novel ap-
proaches of integrating balanced exploration policies into their classical coun-
terparts. We also extend our results to learning Coarse Correlated Equilibria in
multi-player general-sum games.

1 INTRODUCTION

Imperfect Information Games—games where players can only make decisions based on partial in-
formation about the true underlying state of the game—constitute an important challenge for mod-
ern artificial intelligence. The celebrated notion of Imperfect-Information Extensive-Form games
(IIEFGs) (Kuhn, 1953) offers a formulation for games with both imperfect information and sequen-
tial play. IIEFGs have been widely used for modeling real-world imperfect information games such
as Poker (Heinrich et al., 2015; Moravčı́k et al., 2017; Brown & Sandholm, 2018), Bridge (Tian
et al., 2020), Scotland Yard (Schmid et al., 2021), etc, and achieving strong performances therein.

A central question in IIEFGs is the problem of finding a Nash equilibrium (NE) (Nash, 1950) in
a two-player zero-sum IIEFG with perfect recall. There is an extensive line of work for solving
this problem with full knowledge of the game (or full feedback), by either reformulating as a linear
program (Koller & Megiddo, 1992; Von Stengel, 1996; Koller et al., 1996), first-order optimization
methods (Hoda et al., 2010; Kroer et al., 2015; 2018; Munos et al., 2020; Lee et al., 2021), or
Counterfactual Regret Minimization (Zinkevich et al., 2007; Lanctot et al., 2009; Johanson et al.,
2012; Tammelin, 2014; Schmid et al., 2019; Burch et al., 2019).

However, in the more challenging bandit feedback setting where the game is not known and can
only be learned from random observations by repeated playing, the optimal sample complexity (i.e.,
the number of episodes required to play) for learning an NE in IIEFGs remains open. Various ap-
proaches have been proposed recently for solving this, including model-based exploration (Zhou
et al., 2019; Zhang & Sandholm, 2021), Online Mirror Descent with loss estimation (Farina et al.,
2021; Kozuno et al., 2021), and Monte-Carlo Counterfactual Regret Minimization (MCCFR) (Lanc-
tot et al., 2009; Farina et al., 2020c; Farina & Sandholm, 2021). In a two-player zero-sum IIEFG with
X , Y information sets (infosets) and A, B actions for the two players respectively, the current best
sample complexity for learning an ε-approximate NE is Õ((X2A+Y 2B)/ε2) achieved by a sample-
based variant of Online Mirror Descent with implicit exploration (Kozuno et al., 2021). However,

1

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Algorithm OMD CFR Sample Complexity
Zhang & Sandholm (2021) - (model-based) Õ

(
S2AB/ε2

)
Farina & Sandholm (2021) X Õ(poly (X,Y,A,B) /ε4)

Farina et al. (2021) X Õ
((
X4A3 + Y 4B3

)
/ε2
)

Kozuno et al. (2021) X Õ
((
X2A+ Y 2B

)
/ε2
)

Balanced OMD (Algorithm 1) X Õ
(
(XA+ Y B) /ε2

)
Balanced CFR (Algorithm 2) X Õ

(
(XA+ Y B) /ε2

)
Lower bound (Theorem F.1) - - Ω

(
(XA+ Y B) /ε2

)
Table 1: Sample complexity (number of episodes required) for learning ε-NE in IIEFGs from bandit feedback.

this sample complexity scales quadratically in X , Y and still has a gap from the information-
theoretic lower bound Ω((XA + Y B)/ε2) which only scales linearly. This gap is especially con-
cerning from a practical point of view as the number of infosets is often the dominating measure of
the game size in large real-world IIEFGs (Johanson, 2013).

In this paper, we resolve this open question by presenting the first line of algorithms that achieve
Õ((XA + Y B)/ε2) sample complexity for learning ε-NE in an IIEFG. Our contributions can be
summarized as follows.

• We design a new algorithm Balanced Online Mirror Descent (Balanced OMD) that achieves
Õ(
√
XAT) regret for the max player against adversarial opponents, and learns an ε-NE within

Õ((XA + Y B)/ε2) episodes of play when run by both players in a self-play fashion (Section 3).
These improve over the best existing results by a factor of

√
X and max{X,Y } respectively, and

match the information-theoretic lower bounds (Appendix F) up to poly(H) and logarithmic factors.
The main feature within Balanced OMD is a new balanced dilated KL as the distance function in its
mirror descent step.

• We design another new algorithm Balanced Counterfactual Regret Minimization (Balanced CFR)
that also achieves Õ((XA + Y B)/ε2) sample complexity for learning an ε-NE (Section 4). Bal-
anced CFR can be seen as an instantiation of the MCCFR framework that integrates the balanced
exploration policies within both the sampling and the local regret minimization steps.

• We extend our results to multi-player general-sum IIEFGs, where we show that both Balanced
OMD and Balanced CFR can learn an approximate Normal-Form Coarse Correlated Equilibrium
(NFCCE) sample-efficiently when run by all players simultaneously via self-play (Appendix I).

Review of additional related work can be found in Appendix A.

2 PRELIMINARIES

We consider two-player zero-sum IIEFGs using the formulation via Partially Observable Markov
Games (POMGs), following (Kozuno et al., 2021). In the following, ∆(A) denotes the probability
simplex over a set A.

Partially observable Markov games We consider finite-horizon, tabular, two-player zero-
sum Markov Games with partial observability, which can be described as a tuple
POMG(H,S,X ,Y,A,B,P, r), where H is the horizon length; S =

⋃
h∈[H] Sh is the (underly-

ing) state space with |Sh| = Sh and
∑H
h=1 Sh = S; X =

⋃
h∈[H] Xh is the space of information

sets (henceforth infosets) for the max-player with |Xh| = Xh and X :=
∑H
h=1Xh. At any state

sh ∈ Sh, the max-player only observes the infoset xh = x(sh) ∈ Xh, where x : S → X is the
emission function for the max-player; Y =

⋃
h∈[H] Yh is the space of infosets for the min-player

with |Yh| = Yh and Y :=
∑H
h=1 Yh. An infoset yh and the emission function y : S → Y are defined

similarly. A, B are the action spaces for the max-player and min-player respectively, with |A| = A

2

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

and |B| = B1. P = {p0(·) ∈ ∆(S1)} ∪ {ph(·|sh, ah, bh) ∈ ∆(Sh+1)}(sh,ah,bh)∈Sh×A×B, h∈[H−1]

are the transition probabilities, where p1(s1) is the probability of the initial state being s1, and
ph(sh+1|sh, ah, bh) is the probability of transitting to sh+1 given state-action (sh, ah, bh) at step
h; r = {rh(sh, ah, bh) ∈ [0, 1]}(sh,ah,bh)∈Sh×A×B are the (random) reward functions with mean
rh(sh, ah, bh).

Policies, value functions As we consider partially observability, each player’s policy can only
depend on the infoset rather than the underlying state. A policy for the max-player is de-
noted by µ = {µh(·|xh) ∈ ∆(A)}h∈[H],xh∈Xh

, where µh(ah|xh) is the probability of tak-
ing action ah ∈ A at infoset xh ∈ Xh. Similarly, a policy for the min-player is de-
noted by ν = {νh(·|yh) ∈ ∆(B)}h∈[H],yh∈Yh

. A trajectory for the max player takes the form
(x1, a1, r1, x2, . . . , xH , aH , rH), where ah ∼ µh(·|xh), and the rewards and infoset transitions de-
pend on the (unseen) opponent’s actions and underlying state transition. The overall game value
for any (product) policy (µ, ν) is denoted by V µ,ν := Eµ,ν

[∑H
h=1 rh(sh, ah, bh)

]
. The max-player

aims to maximize the value, whereas the min-player aims to minimize the value.

Tree structure and perfect recall We use a POMG with tree structure and the perfect re-
call assumption as our formulation for IIEFGs, following (Kozuno et al., 2021). We assume
that our POMG has a tree structure: For any h and sh ∈ Sh, there exists a unique history
(s1, a1, b1, . . . , sh−1, ah−1, bh−1) of past states and actions that leads to sh. We also assume that
both players have perfect recall: For any h and any infoset xh ∈ Xh for the max-player, there exists
a unique history (x1, a1, . . . , xh−1, ah−1) of past infosets and max-player actions that leads to xh
(and similarly for the min-player). We further define Ch′(xh, ah) ⊂ Xh′ to be the set of all infos-
ets in the h′-the step that are reachable from (xh, ah), and define Ch′(xh) = ∪ah∈ACh′(xh, ah).
Finally, define C(xh, ah) := Ch+1(xh, ah) as a shorthand for immediately reachable infosets.

With the tree structure and perfect recall, under any product policy (µ, ν), the probability of reaching
state-action (sh, ah, bh) at step h takes the form

Pµ,ν(sh, ah, bh) = p1:h(sh)µ1:h(xh, ah)ν1:h(yh, bh), (1)
where we have defined the sequence-form transition probability as

p1:h(sh) := p0(s1)
∏

h′≤h−1

ph′(sh′+1|sh′ , ah′ , bh′),

where {sh′ , ah′ , bh′}h′≤h−1 are the histories uniquely determined from sh by the tree structure, and
the sequence-form policies as

µ1:h(xh, ah) :=

h∏
h′=1

µh′(ah′ |xh′), ν1:h(yh, bh) :=

h∏
h′=1

νh′(bh′ |yh′),

where xh′ = x(sh′) and yh′ = y(sh′) are the infosets for the two players (with {xh′ , ah′}h≤h−1 are
uniquely determined by xh by perfect recall, and similar for {yh′ , bh′}h≤h−1).

We let Πmax denote the set of all possible policies for the max player (Πmin for the min player).
In the sequence form representation, Πmax is a convex compact subset of RXA specified by the
constraints µ1:h(xh, ah) ≥ 0 and

∑
ah∈A µ1:h(xh, ah) = µ1:h−1(xh−1, ah−1) for all (h, xh, ah),

where (xh−1, ah−1) is the unique pair of prior infoset and action that reaches xh (understanding
µ0(x0, a0) = µ0(∅) = 1).

Regret and Nash Equilibrium We consider two standard learning goals: Regret and Nash Equi-
librium. For the regret, we focus on the max-player, and assume there is an arbitrary (potentially
adversarial) opponent as the min-player who may determine her policy νt based on all past infor-
mation (including knowledge of µt) before the t-th episode starts. Then, the two players play the
t-th episode jointly using (µt, νt). The goal for the max-player’s is to design policies {µt}Tt=1 that
minimizes the regret against the best fixed policy in hindsight:

RT := max
µ†∈Πmax

T∑
t=1

(
V µ
†,νt

− V µ
t,νt
)
. (2)

1While this assumes the action space at each infoset have equal sizes, our results can be extended directly
to the case where each infoset has its own action space with (potentially) unequal sizes.

3

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

We say a product policy (µ, ν) is an ε-approximate Nash equilibrium (ε-NE) if

NEGap(µ, ν) := max
µ†∈Πmax

V µ
†,ν − min

ν†∈Πmin

V µ,ν
†
≤ ε,

i.e. µ and ν are each other’s ε-approximate best response. Using online-to-batch conversion, it is a
standard result that sublinear regret for both players ensures that the pair of average policies (µ, ν)
is an approximate NE (see e.g. (Kozuno et al., 2021, Theorem 1)):

Proposition 1 (Regret to Nash conversion). For any sequence of policies {µt}Tt=1 ∈ Πmax and
{νt}Tt=1 ∈ Πmin, the average policies µ := 1

T

∑T
t=1 µ

t and ν := 1
T

∑T
t=1 ν

t (averaged in the
sequence form, cf. (17)) satisfy

NEGap(µ, ν) = (RT
max + RT

min)/T,

where RT
max := maxµ†∈Πmax

∑T
t=1(V µ

†,νt − V µt,νt

) and RT
min := maxν†∈Πmin

∑T
t=1(V µ

t,νt −
V µ

t,ν†) denote the regret for the two players respectively.

Therefore, an approximate NE can be learned by letting both players play some sublinear regret
algorithm against each other in a self-play fashion.

Bandit feedback Throughout this paper, we consider the interactive learning (exploration) setting
with bandit feedback, where the max-player determines the policy µt, the opponent determines νt
(either adversarially or by running some learning algorithm, depending on the context) unknown to
the max-player, and the two players play an episode of the game using policy (µt, νt). The max
player observes the trajectory (xt1, a

t
1, r

t
1, . . . , x

t
H , a

t
H , r

t
H) of her own infosets and rewards, but not

the opponent’s infosets, actions, or the underlying states.

2.1 CONVERSION TO ONLINE LINEAR REGRET MINIMIZATION

The reaching probability decomposition (1) implies that the value function V µ,ν is bilinear in (the
sequence form of) (µ, ν). Thus, fixing a sequence of opponent’s policies {νt}Tt=1, we have the linear
representation

V µ,ν
t

=

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)
∑

sh∈xh,bh∈B

p1:h(sh)νt1:h(y(sh), bh)rh(sh, ah, bh).

Therefore, defining the loss function for round t as

`th(xh, ah) :=
∑

sh∈xh,bh∈B

p1:h(sh)νt1:h(y(sh), bh)(1− rh(sh, ah, bh)) (3)

the regret RT (2) can be written as

RT = max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉
, (4)

where the inner product 〈µ, `t〉 :=
∑H
h=1

∑
xh,ah

µ1:h(xh, ah)`th(xh, ah) for any µ ∈ Πmax.

2.2 BALANCED EXPLORATION POLICY

Our algorithms make crucial use of the following balanced exploration policies.

Definition 2 (Balanced exploration policy). For any 1 ≤ h ≤ H , the (max-player’s) balanced
exploration policy for layer h, denoted as µ?,h ∈ Πmax, is defined as

µ?,hh′ (ah′ |xh′) :=

{|Ch(xh′ , ah′)|/|Ch(xh′)|, h′ ∈ {1, . . . , h− 1},
1/A, h′ ∈ {h, . . . ,H}.

(5)

In words, at time steps h′ ≤ h − 1, the policy µ?,h plays actions proportionally to their number of
descendants within the h-th layer of the game tree. At time steps h′ ≥ h, it plays the uniform policy.

Note that there are H such balanced policies, one for each layer h ∈ [H]. The balanced policy for
layer h = H is equivalent to the balanced strategy of Farina et al. (2020c) (cf. their Section 4.2
and Appendix A.3) which plays actions proportionally to their number descendants within the last
(terminal) layer. The balanced policies for layers h ≤ H − 1 generalize theirs by also counting the
number of descendants within earlier layers. We remark in passing that the key feature of µ?,h for
our analyses is its balancing property, which we state in Lemma D.4.

4

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Requirement on knowing the tree structure The construction of µ?,h requires knowing the num-
ber of descendants |Ch(xh′ , ah′)|, which depends on the structure2 of the game tree for the max
player. Therefore, our algorithms that use µ?,h requires knowing this tree structure beforehand. Al-
though there exist algorithms that do not require knowing such tree structure beforehand (Zhang &
Sandholm, 2021; Kozuno et al., 2021), this requirement is relatively mild as the structure can be
extracted efficiently from just one tree traversal. We also remark our algorithms using the balanced
policies do not impose any additional requirements on the game tree, such as the existence of a
policy with lower bounded reaching probabilities at all infosets.

3 ONLINE MIRROR DESCENT

We now present our first algorithm Balanced Online Mirror Descent (Balanced OMD) and its theo-
retical guarantees.

3.1 BALANCED DILATED KL
At a high level, OMD algorithms work by designing loss estimators (e.g. using importance weight-
ing) and solving a regularized optimization problem in each round involving the loss estimator and
a distance function as the regularizer. OMD has been successfully deployed for solving IIEFGs by
using various dilated distance generating functions over the policy set Πmax (Kroer et al., 2015).

The main ingredient of our algorithm is the balanced dilated KL, a new distance measure between
policies in IIEFGs.

Definition 3 (Balanced dilated KL). The balanced dilated KL distance between two policies µ, ν ∈
Πmax is defined as

Dbal(µ‖ν) :=

H∑
h=1

∑
xh,ah

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
log

µh(ah|xh)

νh(ah|xh)
. (6)

The balanced dilated KL is a reweighted version of the dilated KL (a.k.a. the dilated entropy
distance-generating function) that has been widely used for solving IIEFGs (Hoda et al., 2010;
Kroer et al., 2015):

D(µ‖ν) =

H∑
h=1

∑
xh,ah

µ1:h(xh, ah) log
µh(ah|xh)

νh(ah|xh)
. (7)

Compared with (7), our balanced dilated KL (6) introduces an additional reweighting term
1/µ?,h1:h(xh, ah) that depends on the balanced exploration policy µ?,h (5). This reweighting term
is in general different for each (xh, ah), which will introduce a balancing effect into our algorithm.

3.2 ALGORITHM AND THEORETICAL GUARANTEE

We now describe our Balanced OMD algorithm in Algorithm 1. Our algorithm is a variant of the
IXOMD algorithm of Kozuno et al. (2021) by using the balanced dilated KL. At a high level, it
consists of the following steps:

• Line 3 & 5 (Sampling): Play an episode using policy µt (against the opponent νt) and observe the
trajectory. Then construct the loss estimator using importance weighting and IX bonus (Neu, 2015):

˜̀t
h(xh, ah) :=

1 {(xth, ath) = (xh, ah)} · (1− rth)

µt1:h(xh, ah) + γµ?,h1:h(xh, ah)
. (8)

Note that the IX bonus γµ?,h1:h(xh, ah) on the denominator makes (8) a slightly downward biased
estimator of the true loss `th(xh, ah) defined in (3).

• Line 6 (Update policy): Update µt+1 by OMD with loss estimator ˜̀t and the balanced dilated
KL distance function. Due to the sparsity of ˜̀t, this update admits an efficient implementation that
updates the conditional form µth(·|xh) at the visited infoset xh = xth only (described in Algorithm 5).

We are now ready to present the theoretical guarantees for the Balanced OMD algorithm.
2By this “structure” we refer to the parenting structure of the game tree only (which xh+1 is reachable from

which (xh, ah)), not the transition probabilities and rewards.

5

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Algorithm 1 Balanced OMD (max-player)
Require: Learning rate η > 0; IX parameter γ > 0.
1: Initialize µ1

h(ah|xh)← 1/Ah for all (h, xh, ah).
2: for Episode t = 1, . . . , T do
3: Play an episode using µt, observe a trajectory

(xt1, a
t
1, r

t
1, . . . , x

t
H , a

t
H , r

t
H).

4: for h = H, . . . , 1 do
5: Construct loss estimator

{˜̀t
h(xh, ah)

}
(xh,ah)∈Xh×A

by

˜̀t
h(xh, ah)←

1
{
(xth, a

t
h) = (xh, ah)

}
· (1− rth)

µt1:h(xh, ah) + γµ?,h1:h(xh, ah)
.

6: Update policy

µt+1 ← argmin
µ∈Πmax

〈
µ, ˜̀t〉+

1

η
Dbal(µ‖µt) (9)

using the efficient implementation in Algorithm 5.

Theorem 4 (Regret bound for Balanced OMD). Algorithm 1 with learning rate η =√
XA logA/(H3T) and IX parameter γ =

√
XAι/(HT) achieves the following regret bound

with probability at least 1− δ:

RT ≤ O
(√

H3XATι
)
,

where ι := log(3HXA/δ) is a log factor.

Letting both players run Algorithm 1, the following corollary for learning NE follows immediately
from the regret-to-Nash conversion (Proposition 1).

Corollary 5 (Learning NE using Balanced OMD). Suppose both players run Algorithm 1 (and
its min player’s version) against each other for T rounds, with choices of η, γ specified in The-
orem 4. Then, for any ε > 0, the average policy (µ, ν) = (1

T

∑T
t=1 µ

t, 1
T

∑T
t=1 ν

t) achieves
NEGap(µ, ν) ≤ ε with probability at least 1− δ, as long as the number of episodes

T ≥ O
(
H3(XA+ Y B)ι/ε2

)
,

where ι := log(3H(XA+ Y B)/δ) is a log factor.

Theorem 4 and Corollary 5 are the first to achieve Õ(poly(H) ·
√
XAT) regret and Õ(poly(H) ·

(XA + Y B)/ε2) sample complexity for learning an ε-approximate NE for IIEFGs. Notably, the
sample complexity scales only linearly in X , Y and improves significantly over the best known
Õ((X2A + Y 2B)/ε2)) achieved by the IXOMD algorithm of (Kozuno et al., 2021) by a factor of
max {X,Y }. The proof of Theorem 4 (and a brief overview) can be found in Appendix E.2.

Lower bound We accompany our results with information-theoretic lower bounds (stated in The-
orem F.1) showing that our Õ(

√
H3XAT) regret and Õ(H3(XA + Y B)/ε2) sample complexity

are both near-optimal modulo poly(H) and log factors.

4 COUNTERFACTUAL REGRET MINIMIZATION

Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007) is another widely used class of
algorithms for solving IIEFGs. In this section, we present a new variant Balanced CFR that also
achieves sharp sample complexity guarantees.

Different from OMD, CFR-type algorithms maintain a “local” regret minimizer at each infoset xh
that aims to minimize the immediate counterfactual regret at that infoset:

Rimm,T
h (xh) := max

µ∈∆(A)

T∑
t=1

〈
µth(·|xh)− µ(·), Lth(xh, ·)

〉
,

6

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

where Lth(xh, ah) is the counterfactual loss function

Lth(xh, ah) := `th(xh, ah) +

H∑
h′=h+1

∑
(xh′ ,ah′)∈Ch′ (xh,ah)×A

µt(h+1):h′(xh′ , ah′)`
t
h′(xh′ , ah′). (10)

Controlling all the immediate counterfactual regrets Rimm,T
h (xh) will also control the overall regret

of the game RT , as guaranteed by the counterfactual regret decomposition (Zinkevich et al., 2007)
(see also our Lemma G.1).

4.1 ALGORITHM DESCRIPTION

Our Balanced CFR algorithm, described in Algorithm 2, can be seen as an instantiation of the Monte-
Carlo CFR (MCCFR) framework (Lanctot et al., 2009) that incorporates the balanced policies in its
sampling procedure. Algorithm 2 requires regret minimization algorithms Rxh

for each xh as its
input, and performs the following steps in each round:

• Line 4-6 (Sampling): Play H episodes using policies
{
µt,(h)

}
h∈[H]

, where each µt,(h) =

(µ?,h1:hµ
t
h+1:H) is a mixture of the balanced exploration policy µ?,h with the current maintained pol-

icy µt over time steps. Then, compute L̃th(xh, ah) by (12) that are importance-weighted unbiased
estimators of the true counterfactual loss Lth(xh, ah) in (10).

• Line 8 (Update regret minimizers): For each (h, xh), send the loss estimators {L̃th(xh, a)}a∈A to
the local regret minimizer Rxh

, and obtain the updated policy µt+1
h (·|xh).

Similar as existing CFR-type algorithms, Balanced CFR has the flexibility of allowing different
choices of regret minimization algorithms as Rxh

. We will consider two concrete instantiations of
Rxh

as Hedge and Regret Matching in the following subsection.

4.2 THEORETICAL GUARANTEE

To obtain a sharp guarantee for Balanced CFR, we first instantiateRxh
as the Hedge algorithm (a.k.a.

Exponential Weights, or mirror descent with the entropic regularizer; cf. Algorithm 3). Specifically,
we let each Rxh

be the Hedge algorithm with learning rate ηµ?,h1:h(xh, a)3. With this choice, Line 8
of Algorithm 2 takes the following explicit form:

µt+1
h (a|xh) ∝a µth(a|xh) · e−ηµ

?,h
1:h (xh,a)·L̃t

h(xh,a). (11)

We are now ready to present the theoretical guarantees for the Balanced CFR algorithm.

Theorem 6 (“Regret” bound for Balanced CFR). Suppose the max player plays Algorithm 2 where
each Rxh

is instantiated as the Hedge algorithm (11) with η =
√
XAι/(H3T). Then, the policies

µt achieve the following “regret” bound with probability at least 1− δ:

R̃T := max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉
≤ O(

√
H3XATι),

where ι = log(10XA/δ) is a log factor.

The Õ(
√
H3XAT) “regret” achieved by Balanced CFR matches that of Balanced OMD. However,

we emphasize that the quantity R̃T is not strictly speaking a regret, as it measures performance
of the policy {µt} maintained in the Balanced CFR algorithm, not the sampling policy µt,(h) that
the Balanced CFR algorithm have actually played. Nevertheless, we remark that such a form of
“regret” bound is the common type of guarantee for all existing MCCFR type algorithms (Lanctot
et al., 2009; Farina et al., 2020c).

Self-play of Balanced CFR Balanced CFR can also be turned into a PAC algorithm for learning
ε-NE, by letting the two players play Algorithm 2 against each other for T rounds of self-play using
the following protocol: Within each round, the max player plays policies

{
µt,(h)

}H
h=1

while the

min player plays the fixed policy νt; then symmetrically the min player plays
{
νt,(h)

}H
h=1

while the

3Note that this quantity depends on xh but not a.

7

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Algorithm 2 Balanced CFR (max-player)
Require: Regret minimization algorithm Rxh for all (h, xh).
1: Initialize policy µ1

h(ah|xh)← 1/A for all (h, xh, ah).
2: for round t = 1, . . . , T do
3: for h = 1, . . . , H do
4: Set policy µt,(h) ← (µ?,h1:hµ

t
h+1:H).

5: Play an episode using µt,(h) × νt, observe a trajectory

(x
t,(h)
1 , a

t,(h)
1 , r

t,(h)
1 , · · · , xt,(h)

H , a
t,(h)
H , r

t,(h)
H).

6: Compute loss estimators for all (h, xh, ah):

L̃th(xh, ah) :=
1
{
(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}
µ?,h1:h(xh, ah)

(
H − h+ 1−

H∑
h′=h

r
t,(h)

h′

)
. (12)

7: for all h ∈ [H] and xh ∈ Xh do
8: Update the regret minimizer at xh and obtain policy:

µt+1
h (·|xh)← Rxh .UPDATE({L̃th(xh, a)}a∈A). (13)

max player plays the fixed µt. Overall, each round plays 2H episodes. Theorem 6 directly implies
the following corollary for the above self-play algorithm on learning ε-NE, by the regret-to-Nash
conversion (Proposition 1).

Corollary 7 (Learning NE using Balanced CFR). Let both players play Algorithm 2 in a self-
play fashion against each other for T rounds, where each Rxh

is instantiated as the Hedge al-
gorithm (11) with η specified in Theorem 6. Then, for any ε > 0, the average policy (µ, ν) =

(1
T

∑T
t=1 µ

t, 1
T

∑T
t=1 ν

t) achieves NEGap(µ, ν) ≤ ε with probability at least 1− δ, as long as

T ≥ O(H3(XA+ Y B)ι/ε2),

where ι := log(10(XA+ Y B)/δ) is a log factor. The total amount of episodes played is at most

2H · T = O(H4(XA+ Y B)ι/ε2).

Corollary 7 shows that Balanced CFR requires Õ(H4(XA + Y B)/ε2) episodes for learning an
ε-NE, which is H times larger than Balanced OMD but otherwise also near-optimal with re-
spect to the lower bound (Theorem F.1) modulo an Õ(poly(H)) factor. This improves signifi-
cantly over the current best sample complexity achieved by CFR-type algorithms, which are ei-
ther poly(X,Y,A,B)/ε4 (Farina & Sandholm, 2021), or potentially poly(X,Y,A,B)/ε2 using
the MCCFR framework of (Lanctot et al., 2009; Farina et al., 2020c) but without any known such
instantiation. The proof of Theorem 6 (and a brief overview) can be found in Appendix G.2.

In Appendix H we show that Balanced CFR can also be instantiated with Regret Matching (Hart &
Mas-Colell, 2000) and enjoys similar sharp in X,Y sample complexities (though worse in A,B).

5 EXTENSION TO MULTI-PLAYER GENERAL-SUM GAMES

Both Balanced OMD and Balanced CFR can be extended to learning Coarse Correlated Equilib-
ria (Celli et al., 2019) in multi-player general-sum IIEFGs. Due to space constraint, we defer the
definitions and the result to Appendix I and Theorem I.3.

6 CONCLUSION

This paper presents the first line of algorithms for learning an ε-NE in two-player zero-sum IIEFGs
with near-optimal Õ((XA + Y B)/ε2) sample complexity. We achieve this by new variants of
both OMD and CFR type algorithms that incorporate suitable balanced exploration policies. We
believe our work opens up many interesting future directions, such as empirical verification of our
balanced algorithms, or how to learn IIEFGs with large state/action spaces efficiently using function
approximation.

8

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

REFERENCES

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming
the monster: A fast and simple algorithm for contextual bandits. In International Conference on
Machine Learning, pp. 1638–1646. PMLR, 2014.

Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 551–560. PMLR, 2020.

Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play. arXiv
preprint arXiv:2006.12007, 2020.

Noam Brown and Tuomas Sandholm. Regret transfer and parameter optimization. In Workshops at
the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

Noam Brown and Tuomas Sandholm. Regret-based pruning in extensive-form games. In NIPS, pp.
1972–1980, 2015.

Noam Brown and Tuomas Sandholm. Reduced space and faster convergence in imperfect-
information games via pruning. In International conference on machine learning, pp. 596–604.
PMLR, 2017.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418–424, 2018.

Noam Brown, Christian Kroer, and Tuomas Sandholm. Dynamic thresholding and pruning for regret
minimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret mini-
mization. In International conference on machine learning, pp. 793–802. PMLR, 2019.

Neil Burch, Matej Moravcik, and Martin Schmid. Revisiting cfr+ and alternating updates. Journal
of Artificial Intelligence Research, 64:429–443, 2019.

Andrea Celli, Stefano Coniglio, and Nicola Gatti. Computing optimal ex ante correlated equilibria in
two-player sequential games. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 909–917, 2019.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Zixiang Chen, Dongruo Zhou, and Quanquan Gu. Almost optimal algorithms for two-player markov
games with linear function approximation. arXiv preprint arXiv:2102.07404, 2021.

Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Independent policy gradient methods
for competitive reinforcement learning. Advances in neural information processing systems, 33:
5527–5540, 2020.

Gabriele Farina and Tuomas Sandholm. Model-free online learning in unknown sequential decision
making problems and games. arXiv preprint arXiv:2103.04539, 2021.

Gabriele Farina, Tommaso Bianchi, and Tuomas Sandholm. Coarse correlation in extensive-form
games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1934–
1941, 2020a.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive
blackwell approachability: Connecting regret matching and mirror descent. arXiv preprint
arXiv:2007.14358, 2020b.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Stochastic regret minimization in
extensive-form games. In International Conference on Machine Learning, pp. 3018–3028.
PMLR, 2020c.

Gabriele Farina, Robin Schmucker, and Tuomas Sandholm. Bandit linear optimization for sequential
decision making and extensive-form games. arXiv preprint arXiv:2103.04546, 2021.

9

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Richard Gibson, Marc Lanctot, Neil Burch, Duane Szafron, and Michael Bowling. Generalized sam-
pling and variance in counterfactual regret minimization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 26, 2012a.

Richard G Gibson, Neil Burch, Marc Lanctot, and Duane Szafron. Efficient monte carlo counter-
factual regret minimization in games with many player actions. In NIPS, pp. 1889–1897, 2012b.

Andrew Gilpin, Javier Pena, and Tuomas W Sandholm. First-order algorithm with o (ln (1/ε))
convergence for-equilibrium in two-person zero-sum games. 2008.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.
Econometrica, 68(5):1127–1150, 2000.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games.
In International conference on machine learning, pp. 805–813. PMLR, 2015.

Samid Hoda, Andrew Gilpin, Javier Pena, and Tuomas Sandholm. Smoothing techniques for com-
puting nash equilibria of sequential games. Mathematics of Operations Research, 35(2):494–512,
2010.

Baihe Huang, Jason D Lee, Zhaoran Wang, and Zhuoran Yang. Towards general function approxi-
mation in zero-sum markov games. arXiv preprint arXiv:2107.14702, 2021.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentral-
ized algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021a.

Chi Jin, Qinghua Liu, and Tiancheng Yu. The power of exploiter: Provable multi-agent rl in large
state spaces. arXiv preprint arXiv:2106.03352, 2021b.

Michael Johanson. Measuring the size of large no-limit poker games. arXiv preprint
arXiv:1302.7008, 2013.

Michael Johanson, Nolan Bard, Marc Lanctot, Richard G Gibson, and Michael Bowling. Efficient
nash equilibrium approximation through monte carlo counterfactual regret minimization. In AA-
MAS, pp. 837–846. Citeseer, 2012.

Daphne Koller and Nimrod Megiddo. The complexity of two-person zero-sum games in extensive
form. Games and economic behavior, 4(4):528–552, 1992.

Daphne Koller, Nimrod Megiddo, and Bernhard Von Stengel. Efficient computation of equilibria
for extensive two-person games. Games and economic behavior, 14(2):247–259, 1996.

Tadashi Kozuno, Pierre Ménard, Rémi Munos, and Michal Valko. Model-free learning for
two-player zero-sum partially observable markov games with perfect recall. arXiv preprint
arXiv:2106.06279, 2021.

Christian Kroer, Kevin Waugh, Fatma Kilinç-Karzan, and Tuomas Sandholm. Faster first-order
methods for extensive-form game solving. In Proceedings of the Sixteenth ACM Conference on
Economics and Computation, pp. 817–834, 2015.

Christian Kroer, Gabriele Farina, and Tuomas Sandholm. Solving large sequential games with the
excessive gap technique. arXiv preprint arXiv:1810.03063, 2018.

Harold W Kuhn. Extensive games and the problem of information. In Contributions to the Theory
of Games (AM-28), Volume II, pp. 193–216. Princeton University Press, 1953.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael H Bowling. Monte carlo sampling for
regret minimization in extensive games. In NIPS, pp. 1078–1086, 2009.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Chung-Wei Lee, Christian Kroer, and Haipeng Luo. Last-iterate convergence in extensive-form
games. Advances in Neural Information Processing Systems, 34, 2021.

10

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Viliam Lisỳ, Marc Lanctot, and Michael H Bowling. Online monte carlo counterfactual regret
minimization for search in imperfect information games. In AAMAS, pp. 27–36, 2015.

Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. A sharp analysis of model-based reinforce-
ment learning with self-play. In International Conference on Machine Learning, pp. 7001–7010.
PMLR, 2021.

Weichao Mao and Tamer Başar. Provably efficient reinforcement learning in decentralized general-
sum markov games. Dynamic Games and Applications, pp. 1–22, 2022.

Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Remi Munos, Julien Perolat, Jean-Baptiste Lespiau, Mark Rowland, Bart De Vylder, Marc Lanctot,
Finbarr Timbers, Daniel Hennes, Shayegan Omidshafiei, Audrunas Gruslys, et al. Fast computa-
tion of nash equilibria in imperfect information games. In International Conference on Machine
Learning, pp. 7119–7129. PMLR, 2020.

John F Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 36(1):48–49, 1950.

Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic bandits.
arXiv preprint arXiv:1506.03271, 2015.

Martin Schmid, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf Kadlec, and Michael Bowling.
Variance reduction in monte carlo counterfactual regret minimization (vr-mccfr) for extensive
form games using baselines. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 2157–2164, 2019.

Martin Schmid, Matej Moravcik, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin Waugh, Nolan
Bard, Finbarr Timbers, Marc Lanctot, Zach Holland, et al. Player of games. arXiv preprint
arXiv:2112.03178, 2021.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):
1095–1100, 1953.

Aaron Sidford, Mengdi Wang, Lin Yang, and Yinyu Ye. Solving discounted stochastic two-player
games with near-optimal time and sample complexity. In International Conference on Artificial
Intelligence and Statistics, pp. 2992–3002. PMLR, 2020.

Ziang Song, Song Mei, and Yu Bai. When can we learn general-sum markov games with a large
number of players sample-efficiently? arXiv preprint arXiv:2110.04184, 2021.

Oskari Tammelin. Solving large imperfect information games using cfr+. arXiv preprint
arXiv:1407.5042, 2014.

Yuandong Tian, Qucheng Gong, and Tina Jiang. Joint policy search for multi-agent collaboration
with imperfect information. arXiv preprint arXiv:2008.06495, 2020.

Bernhard Von Stengel. Efficient computation of behavior strategies. Games and Economic Behavior,
14(2):220–246, 1996.

Kevin Waugh, Dustin Morrill, James Andrew Bagnell, and Michael Bowling. Solving games with
functional regret estimation. In Twenty-ninth AAAI conference on artificial intelligence, 2015.

Chen-Yu Wei, Yi-Te Hong, and Chi-Jen Lu. Online reinforcement learning in stochastic games.
arXiv preprint arXiv:1712.00579, 2017.

Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Last-iterate convergence of
decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games.
In Conference on Learning Theory, pp. 4259–4299. PMLR, 2021.

11

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. Learning zero-sum simultaneous-
move markov games using function approximation and correlated equilibrium. In Conference on
Learning Theory, pp. 3674–3682. PMLR, 2020.

Brian Hu Zhang and Tuomas Sandholm. Finding and certifying (near-) optimal strategies in black-
box extensive-form games. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 5779–5788, 2021.

Kaiqing Zhang, Sham M Kakade, Tamer Başar, and Lin F Yang. Model-based multi-agent rl in
zero-sum markov games with near-optimal sample complexity. arXiv preprint arXiv:2007.07461,
2020.

Yichi Zhou, Jialian Li, and Jun Zhu. Posterior sampling for multi-agent reinforcement learning:
solving extensive games with imperfect information. In International Conference on Learning
Representations, 2019.

Yichi Zhou, Tongzheng Ren, Jialian Li, Dong Yan, and Jun Zhu. Lazy-cfr: fast and near-optimal
regret minimization for extensive games with imperfect information. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
rJx4p3NYDB.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
in games with incomplete information. Advances in neural information processing systems, 20:
1729–1736, 2007.

A RELATED WORK

Computing NE from full feedback When the full game (transitions and rewards) is known, the
problem of finding the NE is a min-max optimization problem over the two policies. Early works
consider casting this min-max problem over the sequence-form policies as a linear program (Koller
& Megiddo, 1992; Von Stengel, 1996; Koller et al., 1996). First-order algorithms are later proposed
for solving the min-max problem directly, in particular by using proper regularizers such as the
dilated KL distance (Gilpin et al., 2008; Hoda et al., 2010; Kroer et al., 2015; Lee et al., 2021).
Another prevalent approach is Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007),
which works by minimizing (local) counterfactual regrets at each infoset separately using any re-
gret minimization algorithm over the probability simplex such as Regret Matching or Hedge (Tam-
melin, 2014; Burch et al., 2019; Zhou et al., 2020; Farina et al., 2020b). As each CFR iteration
involves traversing the entire game tree which can be slow or memory-inefficient, techniques based
on sampling or approximation have been proposed to address this, such as Monte-Carlo CFR (MC-
CFR) (Lanctot et al., 2009; Gibson et al., 2012b;a; Johanson et al., 2012; Lisỳ et al., 2015; Schmid
et al., 2019), function approximation of counterfactual values (Waugh et al., 2015; Brown et al.,
2019), and pruning (Brown & Sandholm, 2015; Brown et al., 2017; Brown & Sandholm, 2017).

Learning NE from bandit feedback The MCCFR framework (Lanctot et al., 2009) provides a
first line of approaches for learning an ε-NE in IIEFGs from bandit feedback, by feeding in sample-
based unbiased loss estimators to CFR algorithms. This framework is then generalized by Farina
et al. (2020c) to any regret minimization algorithm (not necessarily CFR). They analyze the con-
centration between the true regret and the regret on loss estimators, and propose to sample with
a “balanced strategy” (equivalent to a special case of our balanced exploration policy) to enable
a small concentration term. However, they do not bound the regret on loss estimators or give an
end-to-end sample complexity guarantee. Farina & Sandholm (2021) instantiate this framework to
give a sample complexity guarantee of Õ(poly(X,Y,A,B)/ε4), by using an exploration rule that
favors larger sub-games (similar to our balanced exploration policy but defined through the number
of terminal states instead of infosets). Our Balanced CFR algorithm (Section 4) can be seen as an in-
stantiation of this framework using a more general balanced exploration policy in both the sampling
and the local regret minimization steps.

Another line of work considers sample-based variants of Online Mirror Descent (OMD) algorithms.
Farina et al. (2021) provide an algorithm with Õ((X4A3 + Y 4B3)/ε2) sample complexity4 by

4By plugging in an Õ(X) upper bound for the dilated KL distance and optimizing the regret bound by
setting η = 1/

√
X2A3T in their Theorem 3.

12

https://openreview.net/forum?id=rJx4p3NYDB
https://openreview.net/forum?id=rJx4p3NYDB

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

OMD with an unbiased loss estimator and the dilated KL distance. Kozuno et al. (2021) propose
the IXOMD algorithm that achieves Õ((X2A + Y 2B)/ε2) sample complexity using an implicit-
exploration loss estimator. Our Balanced OMD (Section 3) can be seen as a variant of the IXOMD
algorithm by using a new variant of the dilated KL distance.

Finally, Zhou et al. (2019); Zhang & Sandholm (2021) propose model-based exploration approaches
combined with planning on the estimated models. Specifically, Zhou et al. (2019) use posterior sam-
pling to obtain an Õ(SAB/ε2) sample complexity under the Bayesian setting assuming a correct
prior. Zhang & Sandholm (2021) achieve Õ(S2AB/ε2) sample complexity by constructing confi-
dence bounds for the transition model. Both sample complexities are polynomial in S (the number
of underlying states) due to their need of estimating the full model, which could be much higher
than poly(X,Y). A comparison between the above existing results and ours is given in Table 1.

Markov games without tree structure A related line of work considers learning equilibria in
Markov Games (MGs) (Shapley, 1953) with perfect information, but without the tree structure as-
sumed in IIEFGs. Sample-efficient algorithms for learning MGs from bandit feedback have been
designed for learning NE in two-player zero-sum MGs either assuming access to a “simulator” or
certain reachability assumptions, e.g. (Sidford et al., 2020; Zhang et al., 2020; Daskalakis et al.,
2020; Wei et al., 2021) or in the exploration setting, e.g. (Wei et al., 2017; Bai & Jin, 2020; Xie
et al., 2020; Bai et al., 2020; Liu et al., 2021; Chen et al., 2021; Jin et al., 2021b; Huang et al., 2021),
as well as learning (Coarse) Correlated Equilibria in multi-player general-sum MGs, e.g. (Liu et al.,
2021; Song et al., 2021; Jin et al., 2021a; Mao & Başar, 2022). As the settings of MGs in these work
do not allow imperfect information, these results do not imply results for learning IIEFGs.

B TECHNICAL TOOLS

The following Freedman’s inequality can be found in (Agarwal et al., 2014, Lemma 9).

Lemma B.1 (Freedman’s inequality). Suppose random variables {Xt}Tt=1 is a martingale differ-
ence sequence, i.e. Xt ∈ Ft where {Ft}t≥1 is a filtration, and E[Xt|Ft−1] = 0. Suppose Xt ≤ R

almost surely for some (non-random) R > 0. Then for any λ ∈ (0, 1/R], we have with probability
at least 1− δ that

T∑
t=1

Xt ≤ λ ·
T∑
t=1

E
[
X2
t |Ft−1

]
+

log(1/δ)

λ
.

C BOUNDS FOR REGRET MINIMIZERS

Here we collect regret bounds for various regret minimization algorithms on the probability simplex.
For any algorithm that plays policy pt in the t-th round and observes loss vector {`t(a)}a∈[A] ∈ RA≥0,
define its regret as

Regret(T) := max
p?∈∆([A])

T∑
t=1

〈
pt, ˜̀t〉− 〈p?, ˜̀t〉 .

C.1 HEDGE

Algorithm 3 Regret Minimization with Hedge (HEDGE)
Require: Learning rate η > 0.

1: Initialize p1(a)← 1/A for all a ∈ [A].
2: for iteration t = 1, . . . , T do
3: Receive loss vector

{˜̀
t(a)

}
a∈[A]

.

4: Update action distribution via mirror descent:

pt+1(a) ∝a pt(a) exp
(
−η˜̀t(a)

)
.

The following regret bound for Hedge is standard, see, e.g. (Lattimore & Szepesvári, 2020, Propo-
sition 28.7).

13

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Lemma C.1 (Regret bound for Hedge). Algorithm 3 with learning rate η > 0 achieves regret bound

Regret(T) ≤ logA

η
+
η

2

T∑
t=1

∑
a∈[A]

pt(a)˜̀t(a)2.

C.2 REGRET MATCHING

Algorithm 4 Regret Minimization with Regret Matching (REGRETMATCHING)
1: Initialize p1(a)← 1/A and R0(a)← 0 for all a ∈ [A].
2: for iteration t = 1, . . . , T do
3: Receive loss vector

{˜̀
t(a)

}
a∈[A]

.

4: Update instantaneous regret and cumulative regret for all a ∈ [A]:

rt(a)←
〈
pt, ˜̀t〉− ˜̀t(a) and Rt(a)← Rt−1(a) + rt(a).

5: Compute action distribution by regret matching:

pt+1(a)←
[Rt(a)]+∑

a′∈[A] [Rt(a′)]+
=

[∑T
t=1

〈
pt, ˜̀

t

〉
− ˜̀t(a)

]
+∑

a′∈[A]

[∑T
t=1

〈
pt, ˜̀

t

〉
− ˜̀t(a′)]

+

.

In the edge case where [Rt(a)]+ = 0 for all a ∈ [A], set pt+1(a) ← 1/A to be the uniform
distribution.

The following regret bound for Regret Matching is standard, see, e.g. (Cesa-Bianchi & Lugosi, 2006;
Brown & Sandholm, 2014). For completeness, here we provide a proof along with an alternative
form of bound useful for our purpose (Remark C.3). Note that here η is not the learning rate but
rather an arbitrary positive value (i.e. the right-hand side is an upper bound on the regret for any
η > 0). Algorithm 4 itself does not require any learning rate.

Lemma C.2 (Regret bound for Regret Matching). Algorithm 4 achieves the following regret bound
for any η > 0:

Regret(T) ≤
[T∑
t=1

∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2]1/2
≤ 1

η
+
η

4

T∑
t=1

∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2

.

Proof. By the fact that (a+ b)2
+ ≤ a2

+ + 2a+b+ b2, we have

[Rt(a)]2+ ≤ [Rt−1(a)]2+ + 2[Rt−1(a)]+rt(a) + rt(a)2. (14)

Then by the definition of pt(a) and rt(a), we have∑
a∈[A]

[Rt−1(a)]+rt(a) =
∑
a∈[A]

[Rt−1(a)]+

(∑
a′∈[A]

pt(a
′)˜̀t(a′)− ˜̀t(a)

)
=
∑
a∈[A]

[Rt−1(a)]+ ˜̀t(a)−
∑
a∈[A]

[Rt−1(a)]+ ˜̀t(a) = 0.
(15)

Then summing over a in Eq. (14) and using Eq. (15), we get∑
a∈[A]

[RT (a)]2+ ≤
∑
a∈[A]

[RT−1(a)]2+ + 2
∑
a∈[A]

[RT−1(a)]+rT (a) +
∑
a∈[A]

rT (a)2

=
∑
a∈[A]

[RT−1(a)]2+ +
∑
a∈[A]

rT (a)2 ≤
T∑
t=1

∑
a∈[A]

rt(a)2.

14

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Using that maxaRT (a) ≤ maxa[RT (a)]+ ≤ (
∑
a∈[A][RT (a)]2+)1/2 gives the regret bound

Regret(T) = max
a∈[A]

RT (a) ≤

 T∑
t=1

∑
a∈[A]

rt(a)2

1/2

=

 T∑
t=1

∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2

1/2

.

The claimed bound with η follows directly from the inequality
√
z ≤ 1/η + ηz/4 for any η > 0,

z ≥ 0.

Remark C.3. The quantity
∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2

above can be upper bounded as

∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2

≤
∑
a∈[A]

(〈
pt, ˜̀t〉2

+ ˜̀t(a)2

)

= A
〈
pt, ˜̀t〉2

+
∥∥∥˜̀t∥∥∥2

2
≤ A

∑
a∈[A]

(
pt(a)˜̀t(a)2 + (1/A)˜̀t(a)2

)
= 2A

∑
a∈[A]

p̄t(a)˜̀t(a)2,

where p̄t(a) = [pt(a) + (1/A)]/2 is a probability distribution over [A].

As a consequence, we get an upper bound on the regret of Regret Matching algorithm by

Regret(T) ≤ 1

η
+
η

2

T∑
t=1

∑
a∈[A]

(Ap̄t(a))˜̀t(a)2.

Comparing to the bound of Hedge (Lemma C.1), the above regret bound for Regret Matching has a
similar form except for replacing logA by 1 and replacing pt by Ap̄t.

D PROPERTIES OF THE GAME

D.1 BASIC PROPERTIES

For any opponent (min-player) policy ν ∈ Πmin, define

pν1:h(xh) :=
∑
sh∈xh

p1:h(sh)ν1:h−1(y(sh−1), bh−1) for all h ∈ [H], xh ∈ Xh.

Intuitively, pν1:h(xh) measures the environment and the opponent’s contribution in the reaching prob-
ability of xh.

Lemma D.1 (Properties of pν1:h(xh)). The following holds for any ν ∈ Πmin:

(a) For any policy µ ∈ Πmax, we have∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)pν1:h(xh) = 1.

(b) 0 ≤ pν1:h(xh) ≤ 1 for all h, xh.

Proof. For (a), notice that

µ1:h(xh, ah)pν1:h(xh) =
∑
sh∈xh

p1:h(sh) · µ1:h(xh, ah) · ν1:h−1(y(sh−1), bh−1)

=
∑
sh∈xh

Pµ,ν(visit (sh, ah)) = Pµ,ν(visit (xh, ah)).

Summing over all (xh, ah) ∈ Xh ×A, the right hand side sums to one, thereby showing (a).

15

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

For (b), fix any xh ∈ Xh. Clearly pν1:h(xh) ≥ 0. Choose any ah ∈ A, and choose policy µxh,ah ∈
Πmax such that µxh,ah

1:h (xh, ah) = 1 (such µxh,ah exists, for example, by deterministically taking all
actions prescribed in infoset xh at all ancestors of xh). For this µxh,ah , using (a), we have

pν1:h(xh) = µxh,ah
1:h (xh, ah) · pν1:h(xh) ≤

∑
(x′h,a

′
h)∈Xh×A

µxh,ah
1:h (x′h, a

′
h) · pν1:h(x′h) = 1.

This shows part (b).

Corollary D.2. For any policy µ ∈ Πmax and h ∈ [H], we have∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)`th(xh, ah) ≤ 1.

Proof. Notice by definition

`th(xh, ah) =
∑

sh∈xh,bh∈Bh

p1:h(sh)νt1:h(y(sh), bh)(1− rh(sh, ah, bh)) ≤ pν1:h(xh),

and the result is implied by Lemma D.1 (b).

Lemma D.3. For any h ∈ [H], the counterfactual loss function Lth defined in (10) satisfies the
bound

(a) For any policy µ ∈ Πmax, we have∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)Lth(xh, ah) ≤ H − h+ 1.

(b) For any (h, xh, ah), we have

0 ≤ Lth(xh, ah) ≤ pν
t

1:h(xh) · (H − h+ 1).

Proof. Part (a) follows from the fact that

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)Lth(xh, ah) = Eµ,νt

[
H∑

h′=h

rh′

]
≤ H − h+ 1,

where the first equality follows from the definition of the loss functions `h and Lh in (3), (10).

For part (b), the nonnegativity follows clearly by definition. For the upper bound, take any policy
µxh,ah ∈ Πmax such that µxh,ah

1:h (xh, ah) = 1. We then have

Lth(xh, ah) = µxh,ah
1:h (xh, ah)Lth(xh, ah) = Eµxh,ah ,νt

[
1 {visit xh, ah} ·

H∑
h′=h

rh′

]

= Pµxh,ah ,νt(visit xh, ah) · Eµxh,ah ,νt

[
H∑

h′=h

rh′

∣∣∣∣visit xh, ah

]
≤ µxh,ah

1:h (xh, ah)pν
t

1:h(xh) · (H − h+ 1) = pν
t

1:h(xh) · (H − h+ 1).

Definition of average policies For two-player zero-sum IIEFGs, we define the average policy of
the max-player µ = 1

T

∑T
t=1 µ

t (in conditional form) by

µh(ah|xh) :=

∑T
t=1 µ

t
1:h (xh, ah)∑T

t=1 µ
t
1:h−1 (xh)

, (16)

16

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

for any h and (xh, ah) ∈ Xh ×A. It is straightforward to check that this µ is exactly the averaging
of µt in the sequence-form representation (see e.g. (Kozuno et al., 2021, Theorem 1)):

µ1:h(xh, ah) =
1

T

T∑
t=1

µt1:h(xh, ah) for all (h, xh, ah). (17)

Both expressions above can be used as the definition interchangably. The average policy of the
min-player ν = 1

T

∑T
t=1 ν

t is defined similarly.

D.2 BALANCED EXPLORATION POLICY

Lemma D.4 (Balancing property of µ?,h). For any max-player’s policy µ ∈ Πmax and any h ∈ [H],
we have ∑

(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
= XhA.

Lemma D.4 states that µ?,h is a good exploration policy in the sense that the distribution mismatch
between it and any µ ∈ Πmax has bounded L1 norm. Further, the bound XhA is non-trivial—For
example, if we replace µ?,h1:h with the uniform policy µunif

1:h (xh, ah) = 1/Ah, the left-hand side can
be as large as XhA

h in the worst case.

Proof of Lemma D.4 We have∑
xh,ah

µ1:h(xh, ah)

µ?,h1:h(xh, ah)

=
∑

xh−1,ah−1

∑
(xh,ah)∈C(xh−1,ah−1)×A

µ1:(h−1)(xh−1, ah−1) · µh(ah|xh)

µ?,h1:(h−1)(xh−1, ah−1) · (1/A)

(i)
= A ·

∑
xh−1,ah−1

∑
xh∈C(xh−1,ah−1)

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)

= A ·
∑

xh−1,ah−1

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)
· |Ch(xh−1, ah−1)|

(ii)
= A ·

∑
xh−2,ah−2

∑
(xh−1,ah−1)∈C(xh−2,ah−2)×A

µ1:(h−2)(xh−2, ah−2)µh−1(ah−1|xh−1)

µ?,h1:(h−2)(xh−2, ah−2) · |Ch(xh−1, ah−1)|/|Ch(xh−1)|
· |Ch(xh−1, ah−1)|

= A ·
∑

xh−2,ah−2

∑
(xh−1,ah−1)∈C(xh−2,ah−2)×A

µ1:(h−2)(xh−2, ah−2)µh−1(ah−1|xh−1)

µ?,h1:(h−2)(xh−2, ah−2)
· |Ch(xh−1)|

= A ·
∑

xh−2,ah−2

∑
(xh−1,ah−1)∈C(xh−2,ah−2)×A

µ1:(h−2)(xh−2, ah−2)µh−1(ah−1|xh−1)

µ?,h1:(h−2)(xh−2, ah−2)
· |Ch(xh−1)|

(iii)
= A ·

∑
xh−2,ah−2

µ1:(h−2)(xh−2, ah−2)

µ?,h1:(h−2)(xh−2, ah−2)
· |Ch(xh−2, ah−2)|

= . . .

= A ·
∑
x1,a1

µ1(a1|x1)

|Ch(x1, a1)|/|Ch(x1)|
· |Ch(x1, a1)|

= A ·
∑
x1,a1

µ1(a1|x1) · |Ch(x1)|

= A ·
∑
x1

|Ch(x1)| = A · |Ch(∅)| = XhA.

Above, (i) used the definition of µ?,hh and the fact that
∑
ah∈A µh(ah|xh) = 1 for any µ, xh; (ii) used

the definition of µ?,hh−1; (iii) used the fact that
∑
xh−1∈C(xh−2,ah−2) |Ch(xh−1)| = |Ch(xh−2, ah−2)|

17

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

which follows by the additivity of the number of descendants; and the rest followed by performing
the same operations repeatedly.

The following corollary is similar to the lower bound in (Farina et al., 2020c, Appendix A.3).

Corollary D.5. We have

µ?,h1:h(xh, ah) ≥ 1

XhA

for any h ∈ [H] and (xh, ah) ∈ Xh ×A.

Proof. Choose some deterministic policy µ s.t. µ1:h(xh, ah) = 1 in Lemma D.4 and noticing each
term in the summation is non-negative,

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
≤ XhA.

D.2.1 INTERPRETATION AS A TRANSITION PROBABILITY

We now provide an intepretation of the balanced exploration policy µ?,h1:h: its inverse 1/µ?,h1:h can be
viewed as the (product) of a “transition probability” over the game tree for the max player. As a
consequence, this interpretation also provides an alternative proof of Lemma D.4.

For any 1 ≤ h ≤ H and 1 ≤ k ≤ h− 1, denote p?,hk (xk+1|xk, ak) = |Ch(xk+1)|/|Ch(xk, ak)| (we
use the convention that |Ch(xh)| = 1). By this definition, p?,hk (·|xk, ak) is a probability distribution
over Ch(xk, ak) and can be interpreted as a balanced transition probability from (xk, ak) to xk+1.
We further denote the sequence form of the balanced transition probability by

p?,h1:h(xh) =
|Ch(x1)|
Xh

h−1∏
k=1

p?,hk (xk+1|xk, ak) =
|Ch(x1)|
Xh

h−1∏
k=1

|Ch(xk+1)|
|Ch(xk, ak)|

. (18)

Lemma D.6. For any (xh, ah) ∈ Xh × A, the sequence form of the transition p?,h1:h(xh) and the
sequence form of balanced exploration strategy µ?,h1:h(xh, ah) are related by

p?,h1:h(xh) =
1

XhA · µ?,h1:h(xh, ah)
. (19)

Furthermore, for any max player’s policy µ ∈ Πmax and any h ∈ [H], we have∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)p?,h1:h(xh) = 1. (20)

Proof of Lemma D.6 By the definition of the balanced transition probability as in Eq. (18) and
the balanced exploration strategy as in Eq. (5), we have

1

XhA · µ?,h1:h(xh, ah)
=

1

XhA

h−1∏
k=1

|Ch(xk)|
|Ch(xk, ak)|

×A =
|Ch(x1)|
Xh

h−1∏
k=1

|Ch(xk+1)|
|Ch(xk, ak)|

= p?,h1:h(xh).

where the second equality used the property that |Ch(xh)| = 1. This proves Eq. (19). The proof of
Eq. (20) is similar to the proof of Lemma D.1 (a).

Alternative proof of Lemma D.4 Lemma D.4 follows as a direct consequence of Eq. (19) and
(20) in Lemma D.6.

18

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

D.3 BALANCED DILATED KL

Lemma D.7 (Bound on balanced dilated KL). Let µunif ∈ Πmax denote the uniform policy:
µunif
h (ah|xh) = 1/A for all (h, xh, ah). Then we have

max
µ†∈Πmax

Dbal(µ†‖µunif) ≤ XA logA.

Proof. We have

max
µ†∈Πmax

Dbal(µ†‖µunif) = max
µ†∈Πmax

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)

µ?,h1:h(xh, ah)
log

µ†h(ah|xh)

µunif
h (ah|xh)

= max
µ†∈Πmax

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)

µ?,h1:h(xh, ah)

(
logµ†h(ah|xh) + logA

)
(i)

≤ logA

H∑
h=1

max
µ†∈Πmax

∑
xh,ah

µ†1:h(xh, ah)

µ?,h1:h(xh, ah)

(ii)
= logA

H∑
h=1

XhA = XA logA,

where (i) is because µ†h(ah|xh) logµ†h(ah|xh) ≤ 0 (recalling that each sequence form µ†1:h(xh, ah)

contains the term µ†h(ah|xh)), and (ii) uses the balancing property of µ?,h (Lemma D.4).

D.3.1 INTERPRETATION OF BALANCED DILATED KL
We present an interpretation of the balanced dilated KL (6) as a KL distance between the reaching
probabilities under the “balanced transition” (18) on the max player’s game tree.

For any policy µ ∈ Πmax, we define its balanced transition reaching probability Pµ,?h (xh, ah) as

Pµ,?h (xh, ah) = µ1:h(xh, ah)p?,h1:h(xh). (21)

This is a probability measure onXh×A ensured by Lemma D.6. For any two probability distribution
p and q, we denote KL(p‖q) to be their KL divergence.

Lemma D.8. For any tuple of max-player’s policies µ, ν ∈ Πmax, we have

Dbal(µ‖ν) =

H∑
h=1

(XhA)KL(Pµ1:h,?
h ‖Pµ1:h−1νh,?

h). (22)

Proof of Lemma D.8 By Eq. (21) and by the definition of KL divergence, we have

(XhA)Dkl(Pµ1:h,?
h ‖Pµ1:h−1νh,?

h)

= (XhA)
∑

(xh,ah)∈Xh×A

µ1:h(xh, ah)p?,h1:h(xh) log
[µ1:h(xh, ah)p?,h1:h(xh)

µ1:h−1(xh−1, ah−1)νh(xh|ah)p?,h1:h(xh)

]
=

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
log
[µh(ah|xh)

νh(ah|xh)

]
,

(23)
where the last equality is by Lemma D.6. Comparing with the definition of Dbal as in Eq. (6)
concludes the proof.

19

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Algorithm 5 Implementation of Balanced OMD update
Require: Current policy µt; Trajectory (xt1, a

t
1, . . . , x

t
H , a

t
H); learning rate η > 0;

Loss vector
{˜̀t

h(xh, ah)
}
h,xh,ah

that is non-zero only on (xh, ah) = (xth, a
t
h).

1: Set ZtH+1 ← 1.
2: for h = H, . . . , 1 do
3: Compute normalization constant

Zth ← 1− µth(ath|xth) + µth(a
t
h|xth) · exp

(
−ηµ?,h1:h(x

t
h, a

t
h)˜̀th(xth, ath) + µ?,h1:h(x

t
h, a

t
h) logZ

t
h+1

µ?,h+1
1:h+1(x

t
h+1, a

t
h+1)

)
.

4: Update policy at xth:

µt+1
h (ah|xth)←


µth(ah|xth) · exp

(
−ηµ?,h1:h(x

t
h, a

t
h)˜̀th(xth, ath) + µ?,h1:h(x

t
h, a

t
h) logZ

t
h+1

µ?,h+1
1:h+1(x

t
h+1, a

t
h+1)

− logZth

)
if ah = ath,

µth(ah|xth) · exp(− logZth) otherwise.

5: Set µt+1
h (·|xh)← µth(·|xh) for all xh ∈ Xh \

{
xth
}

.
Ensure: Updated policy µt+1.

E PROOFS FOR SECTION 3
E.1 EFFICIENT IMPLEMENTATION FOR UPDATE (9)
Lemma E.1. Algorithm 5 indeed solves the optimization problem (9):

µt+1 ← arg min
µ∈Πmax

〈
µ, ˜̀t〉+

1

η
Dbal(µ‖µt).

Proof. First, by the sparsity of the loss estimator ˜̀t (cf. (8)), the above objective can be written
succinctly as〈

µ, ˜̀t〉+
1

η
Dbal(µ‖µt) (24)

=

H∑
h=1

∑
xh,ah

µ1:h(xh, ah)

[˜̀t
h (xh, ah) +

1

ηµ?,h1:h(xh, ah)
log

µh(ah|xh)

µth(ah|xh)

]

=

H∑
h=1

∑
xh

µ1:h−1(xh)

[〈
µh(·|xh), ˜̀th (xh, ·)

〉
+

KL (µh(·|xh)||µth(·|xh))

ηµ?,h1:h(xh, ah)

]

=

H∑
h=1

µ1:h−1(xth)

[
µh(ath|xth)˜̀th (xth, ath)+

KL (µh(·|xh)||µth(·|xh))

ηµ?,h1:h(xth, ah)

]
+
∑
xh 6=xt

h

µ1:h−1(xh)
KL (µh(·|xh)||µth(·|xh))

ηµ?,h1:h(xh, ah)

.
(25)

We now show the equivalence by backward induction over h = H, . . . , 1. For h = H , we can
optimize over the H-th layer directly to see

µt+1
H (aH |xtH) ∝aH µtH(aH |xtH) exp

{
−ηµ?,h1:h(xth, ah)˜̀tH(xtH , aH)

}
= µtH(aH |xtH) exp

{
−η˜̀tH(xtH , aH)− logZtH

}
,

where ZtH > 0 is the normalization constant. For all non-visited xH 6= xtH , by equation (25) and
non-negativity of KL divergence, the object must be minimized at µt+1

H (·|xH) = µth(·|xH).

If the claim holds from layer h+ 1 to H , consider the h-th layer. Plug in the proved optimizer after
layer h, the objective (25) can be written as

H∑
h′=1

∑
xh′ ,ah′

µ1:h′(xh′ , ah′)

[˜̀t
h′ (xh′ , ah′) +

1

ηµ?,h
′

1:h′ (xh′ , ah′)
log

µh′(ah′ |xh′)
µth′(ah′ |xh′)

]

20

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

=

H∑
h′=1

∑
xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ˜̀th′ (xh′ , ·)〉+

KL (µh′(·|xh′)||µth′(·|xh′))
ηµ?,h

′

1:h′ (xh′ , ah′)

]

=

h∑
h′=1

∑
xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ˜̀th′ (xh′ , ·)〉+

KL (µh′(·|xh′)||µth′(·|xh′))
ηµ?,h

′

1:h′ (xh′ , ah′)

]

+

H∑
h′=h+1

[
µ1:h′(x

t
h′ , a

t
h′) logZth′+1

ηµ?,h
′+1

1:h′+1(xth′+1, a
t
h′+1)

−
µ1:h′−1(xth′−1, a

t
h′−1) logZth′

ηµ?,h
′

1:h′ (x
t
h′ , a

t
h′)

]

=

h∑
h′=1

∑
xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ˜̀th′ (xh′ , ·)〉+

KL (µh′(·|xh′)||µth′(·|xh′))
ηµ?,h

′

1:h′ (xh′ , ah′)

]
−
µ1:h(xth, a

t
h) logZth+1

ηµ?,h+1
1:h+1(xth+1, a

t
h+1)

=

h−1∑
h′=1

∑
xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ˜̀th′ (xh′ , ·)〉+

KL (µh′(·|xh′)||µth′(·|xh′))
ηµ?,h

′

1:h′ (xh′ , ah′)

]

+ µ1:h−1(xth)

[
µh(ath|xth)

(˜̀t
h

(
xth, a

t
h

)
−

logZth+1

ηµ?,h+1
1:h+1(xth+1, a

t
h+1)

)
+

KL (µh(·|xth)||µth(·|xth))

ηµ?,h1:h(xth, ah)

]

+
∑
xh 6=xt

h

µ1:h−1(xh)
KL (µh(·|xh)||µth(·|xh))

ηµ?,h1:h(xh, ah)
.

Thus in the h layer we can optimize by setting

µt+1
h (ah|xth) = µth(ah|xth) exp

{
−

[
ηµ?,h1:h(xth, ah)˜̀th(xth, ah)−

µ?,h1:h(xth, ah)

µ?,h+1
1:h+1(xth+1, a

t
h+1)

logZth+1

]
1
{
ah = ath

}
− logZth

}
.

For all non-visited xh 6= xth, by non-negativity of KL divergence, the object must be minimized at
µt+1
h (·|xh) = µth(·|xh). This is exactly the update rule in Algorithm 5.

E.2 PROOF OF THEOREM 4
Overview of proof Our proof follows the usual analysis of OMD algorithms where the key is to
bound a distance term and an algorithm-specific “stability” like term (cf. Lemma E.4 and its proof).
Compared with existing OMD algorithms using the original dilated KL (Kozuno et al., 2021), our
balanced dilated KL creates a “balancing effect” that preserves the distance term (Lemma D.7) and
shaves off an X factor in the stability term (Lemma E.11 & E.12), which combine to yield a

√
X

improvement in the final regret bound.

Decompose the regret as

RT = max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉
(26)

≤
T∑
t=1

〈
µt, `t − ˜̀t〉︸ ︷︷ ︸
BIAS1

+ max
µ†∈Πmax

T∑
t=1

〈
µ†, ˜̀t − `t〉︸ ︷︷ ︸

BIAS2

+ max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, ˜̀t〉︸ ︷︷ ︸

REGRET

. (27)

We now state three lemmas that bound each of the three terms above. Their proofs are presented in
Section E.4, E.5, and E.6 respectively. Below, ι := log(3HXA/δ) denotes a log factor.

Lemma E.2 (Bound on BIAS1). With probability at least 1− δ/3, we have

BIAS1 ≤ H
√

2Tι+ γHT.

Lemma E.3 (Bound on BIAS2). With probability at least 1− δ/3, we have

BIAS2 ≤ XAι/γ.

21

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Lemma E.4 (Bound on REGRET). With probability at least 1− δ/3, we have

REGRET ≤ XA logA

η
+ ηH3T +

ηH2XAι

γ
.

Putting the bounds together, we have that with probability at least 1− δ,

RT ≤ XA logA

η
+ ηH3T +

ηH2XAι

γ
+H
√

2Tι+ γHT +
XAι

γ
.

Set η =
√

XA logA
H3T and γ =

√
XAι
TH , we have

RT ≤ 6
√
XAH3Tι+HXAι.

Additionally, recall the naive bound RT ≤ HT on the regret (which follows as 〈µt, `t〉 ∈ [0, H] for
any µ ∈ Πmax, t ∈ [T]), we get

RT ≤ min
{

6
√
XAH3Tι+HXAι,HT

}
≤ HT ·min

{
6
√
XAHι/T +XAι/T, 1

}
.

For T > HXAι, the min above is upper bounded by 7
√
HXAι/T . For T ≤ HXAι, the min

above is upper bounded by 1 ≤ 7
√
HXAι/T . Therefore, we always have

RT ≤ HT · 7
√
HXAι/T = 7

√
H3XATι.

This is the desired result.

The rest of this section is devoted to proving the above three lemmas.

E.3 A CONCENTRATION RESULT

We begin by presenting a useful concentration result. This result is a variant of (Kozuno et al., 2021,
Lemma 3) and (Neu, 2015, Lemma 1) suitable to our loss estimator (8) where the IX bonus on the
denominator depends on (xh, ah).

Lemma E.5. For some fixed h ∈ [H], let αth (xh, ah) ∈
[
0, 2γµ?,h1:h (xh, ah)

]
be F t−1-measurable

random variable for each (xh, ah) ∈ Xh ×A. Then with probability 1− δ,

T∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
≤ log (1/δ) .

Proof. Define the unbiased importance sampling estimator

̂̀t
h :=

1− rth
µt1:h(xth, a

t
h)
· 1
{
xh = xth, ah = ath

}
.

We first have

˜̀t
h (xh, ah) =

1− rth
µt1:h(xh, ah) + γµ?,h1:h(xh, ah)

· 1
{
xh = xth, ah = ath

}
≤ 1− rth
µt1:h(xh, ah) + γµ?,h1:h(xh, ah) (1− rth)

· 1
{
xh = xth, ah = ath

}
≤ 1

2γµ?,h1:h(xh, ah)

2γµ?,h1:h(xh, ah) (1− rth)1 {xh = xth, ah = ath} /µt1:h(xh, ah)

1 + γµ?,h1:h(xh, ah) (1− rth)1 {xh = xth, ah = ath} /µt1:h(xh, ah)

=
1

2γµ?,h1:h(xh, ah)

2γµ?,h1:h(xh, ah)̂̀th(xh, ah)

1 + γµ?,h1:h(xh, ah)̂̀th(xh, ah)

(i)

≤ 1

2γµ?,h1:h(xh, ah)
log
(

1 + 2γµ?,h1:h(xh, ah)̂̀th(xh, ah)
)
,

22

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

where (i) is because for any z ≥ 0, z
1+z/2 ≤ log (1 + z).

As a result, we have the following bound on the moment generating function:

E

{
exp

{∑
xh,ah

αth (xh, ah) ˜̀th (xh, ah)

}
|F t−1

}

≤E

{
exp

{∑
xh,ah

αth (xh, ah)

2γµ?,h1:h(xh, ah)
log
(

1 + 2γµ?,h1:h(xh, ah)̂̀th(xh, ah)
)}
|F t−1

}
(i)

≤E

{
exp

{∑
xh,ah

log
(

1 + αth (xh, ah) ̂̀th(xh, ah)
)}
|F t−1

}

=E

{ ∏
xh,ah

(
1 + αth (xh, ah) ̂̀th(xh, ah)

)
|F t−1

}
(ii)
= E

{
1 +

∑
xh,ah

αth (xh, ah) ̂̀th(xh, ah)|F t−1

}
=1 +

∑
xh,ah

αth (xh, ah) `th(xh, ah)

≤E

{
exp

{∑
xh,ah

αth (xh, ah) `th(xh, ah)

}
|F t−1

}
,

where (i) is because z log (1 + z′) ≤ log (1 + zz′) for any 0 ≤ z ≤ 1 and z′ > −1, and (ii) follows
from the fact that for any h, at most one of ̂̀th(xh, ah) is non-zero, so the cross terms disappear.

Repeating the above argument,

E

{
exp

{
T∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}}

≤E

{
exp

{
T−1∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}
E

{
exp

{∑
xh,ah

αTh (xh, ah)
(˜̀T
h (xh, ah)− `Th (xh, ah)

)}
|FT−1

}}

≤E

{
exp

{
T−1∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}}
≤ · · · ≤ 1.

Therefore, we can apply the Markov inequality and get

P

{
T∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
> log (1/δ)

}

=P

{
exp

{
T−1∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}
> 1/δ

}

≤δ · E

{
exp

{
T∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}}
≤ δ.

This is the desired result.

Corollary E.6. We have

23

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

(a) For some fixed h ∈ [H] and (xh, ah), let αth (xh, ah) ∈
[
0, 2γµ?,h1:h (xh, ah)

]
be F t−1-

measurable random variable. Then with probability 1− δ,

T∑
t=1

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
≤ log (1/δ) .

(b) For some fixed h ∈ [H] and xh, let αth (xh, ah) ∈
[
0, 2γµ?,h1:h (xh, ah)

]
be F t−1-

measurable random variable for each ah ∈ A. Then with probability 1− δ,

T∑
t=1

∑
ah∈A

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
≤ log (1/δ) .

Proof. For (a), using Lemma E.5 with (αth)
′
(x′h, a

′
h) = αth (x′h, a

′
h)1 {x′h = xh, a

′
h = ah},

T∑
t=1

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
=

T∑
t=1

∑
x′h,a

′
h

αth (xh, ah)1 {x′h = xh, a
′
h = ah}

[˜̀t(x′h, a′h)− `t(x′h, a′h)
]
≤ log (1/δ) .

Claim (b) can proved similarly.

E.4 PROOF OF LEMMA E.2
We further decompose BIAS1 to two terms by

BIAS1 =

T∑
t=1

〈
µt, `t − ˜̀t〉 =

T∑
t=1

〈
µt, `t − E

{˜̀t|F t−1
}〉

︸ ︷︷ ︸
(A)

+

T∑
t=1

〈
µt,E

{˜̀t|F t−1
}
− ˜̀t〉︸ ︷︷ ︸

(B)

.

To bound (A), plug in the definition of loss estimator,

T∑
t=1

〈
µt, `t − E

{˜̀t|F t−1
}〉

=

T∑
t=1

H∑
h=1

∑
xh,ah

µt1:h(xh, ah)

[
`th(xh, ah)− µt1:h(xh, ah)`th(xh, ah)

µt1:h(xh, ah) + γµ?,h1:h(xh, ah)

]

=

T∑
t=1

H∑
h=1

∑
xh,ah

µt1:h(xh, ah)`th(xh, ah)

[
γµ?,h1:h(xh, ah)

µt1:h(xh, ah) + γµ?,h1:h(xh, ah)

]

≤
T∑
t=1

H∑
h=1

∑
xh,ah

γµ?,h1:h(xh, ah)`th(xh, ah)

(i)

≤
T∑
t=1

H∑
h=1

γ =γHT,

where (i) is by using Corollary D.2 with policy µ?,h for each layer h.

To bound (B), first notice〈
µt, ˜̀t〉 =

H∑
h=1

∑
xh,ah

µt1:h(xh, ah)
(1− rth)1 {xh = xth, ah = ath}
µt1:h(xh, ah) + γµ?,h1:h(xh, ah)

24

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

≤
H∑
h=1

∑
xh,ah

1
{
xh = xth, ah = ath

}
=

H∑
h=1

1 = H.

Then by Azuma-Hoeffding, with probability at least 1− δ/3,
T∑
t=1

〈
µt,E

{˜̀t|F t−1
}
− ˜̀t〉 ≤ H√2T log(3/δ) ≤ H

√
2Tι.

Combining the bounds for (A) and (B) gives the desired result.

E.5 PROOF OF LEMMA E.3
We have

BIAS2 = max
µ†∈Πmax

T∑
t=1

〈
µ†, ˜̀t − `t〉

= max
µ†∈Πmax

T∑
t=1

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)
[˜̀t
h(xh, ah)− `th(xh, ah)

]

= max
µ†∈Πmax

T∑
t=1

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)

γµ?,h1:h(xh, ah)
γµ?,h1:h(xh, ah)

[˜̀t
h(xh, ah)− `th(xh, ah)

]

= max
µ†∈Πmax

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)

γµ?,h1:h(xh, ah)

T∑
t=1

γµ?,h1:h(xh, ah)
[˜̀t
h(xh, ah)− `th(xh, ah)

]
(i)

≤ log (XA/δ)

γ

H∑
h=1

max
µ†∈Πmax

∑
xh,ah

µ†1:h(xh, ah)

µ?,h1:h(xh, ah)

(ii)

≤ ι

γ

H∑
h=1

XhA = XAι/γ,

where (i) is by applying Corollary E.6 for each (xh, ah) pair and taking union bound, and (ii) is by
Lemma D.4.

E.6 PROOF OF LEMMA E.4
We begin by stating the following lemma, which roughly speaking relates the task of bounding the
regret to bounding the term

〈
µ, ˜̀t〉+ 1

ηµ?,1
1:1 (xt

1,a1)
logZt1.

Lemma E.7. For any policy µ ∈ Πmax,

Dbal(µ‖µt+1)−Dbal(µ‖µt) = η
〈
µ, ˜̀t〉+

1

µ?,11:1(xt1, a1)
logZt1.

Proof. By definition of Dbal and the conditional form update rule in Algorithm 1,

Dbal(µ‖µt+1)−Dbal(µ‖µt)

=

H∑
h=1

∑
xh,ah

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
log

µth(ah|xh)

µt+1
h (ah|xh)

=

H∑
h=1

∑
ah

µ1:h(xth, ah)

µ?,h1:h(xth, ah)
log

µth(ah|xth)

µt+1
h (ah|xth)

=

H∑
h=1

µ1:h(xth, a
t
h)

µ?,h1:h(xth, a
t
h)

[
ηµ?,h1:h(xth, a

t
h)˜̀th − µ?,h1:h(xth, a

t
h)

µ?,h+1
1:h+1(xth+1, a

t
h+1)

logZth+1

]
+

H∑
h=1

∑
ah

µ1:h(xth, ah)

µ?,h1:h(xth, ah)
logZth

=η

H∑
h=1

µ1:h(xth, a
t
h)˜̀th(xth, a

t
h)−

H∑
h=1

µ1:h(xth, a
t
h)

µ?,h+1
1:h+1(xth+1, a

t
h+1)

logZth+1 +

H∑
h=1

µ1:h−1(xth−1, a
t
h−1)

µ?,h1:h(xth, a
t
h)

logZth

25

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

=η
〈
µ, ˜̀t〉+

1

µ?,11:1(xt1, a1)
logZt1.

Additional notation We introduce the following notation for convenience throughout the rest of
this subsection. Define

βth := ηµ?,h1:h(xth, a
t
h).

For simplicity, when there is no confusion, we write

µth := µth(ath|xth), µth:h′ :=

h′∏
h′′=h

µth′′ ,

and ˜̀t
h := ˜̀t

h

(
xth, a

t
h

)
=

1− rth
µt1:h(xth, a

t
h) + γµ?1:h(xth, a

t
h)
.

Define the normalized log-partition function as

Ξth :=
1

βth
logZth =

1

βth
log
(

1− µth + µth exp
[
βth

(
Ξth+1 − ˜̀th)]) .

Note that this value can be seen as an H-variate function of the loss estimator
{˜̀t

h

}
h∈[H]

. To make

this dependence more clear, for any ˜̀∈ [0,∞)H , we define the function {Ξth (·)}Hh=1 recursively by
(overloading notation)

Ξth

(˜̀) = Ξth

(˜̀
h:H

)
:=


log
(

1− µth + µth exp
[
−βth ˜̀h]) /βth if h = H,

log
(

1− µth + µth exp
[
βth

(
Ξh+1

(˜̀
h+1:H

)
− ˜̀h)]) /βth otherwise.

With this definition, we have Ξth = Ξth

(˜̀t) where ˜̀t is the actual loss estimator. Note that, im-

portantly, Ξth(˜̀h:H) has a compositional structure: It is a function of ˜̀h (h-th entry of the loss) and
Ξth+1 (which is itself a function of ˜̀h+1:H). This compositional structure is key to proving bounds
on its gradients and Hessians.

The rest of this subsection is organized as follows. In Section E.6.1, we bound the gradients and
Hessians of the function Ξt1(·) in an entry-wise fashion, and then use the Mean-Value Theorem to
give a bound on Ξt1 = Ξt1(˜̀t) (Lemma E.11). We then combine this result with Lemma E.7 to prove
the main lemma that bounds REGRET (Section E.6.2).

E.6.1 BOUNDING Ξt1

Lemma E.8. For ˜̀∈ [0,∞)H and any h ∈ [H], Ξth

(˜̀) ≤ 0. Furthermore, Ξth (0) = 0.

Proof. We show the first claim by backward induction. For h = H ,

ΞtH

(˜̀
H

)
= log

(
1− µtH + µtH exp

[
−βtH ˜̀H]) /βtH ≤ log

(
1− µtH + µtH

)
/βtH ≤ 0,

because ˜̀tH ≥ 0.

Assume Ξth+1

(˜̀) ≤ 0, then for the previous step h,

Ξth

(˜̀
h:H

)
= log

(
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀
h+1:H

)
− ˜̀h)]) /βth ≤ log

(
1− µth + µth

)
/βth ≤ 0.

The second claim follows as all inequalities become equalities at ˜̀= 0.

26

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Lemma E.9 (Bounds on first derivatives). For ˜̀ ∈ [0, 1]H and any h ∈ [H], the derivatives are
bounded by

0 ≤ ∂Ξth
∂Ξth+1

≤ µth and − µth ≤
∂Ξth

∂ ˜̀h ≤ 0.

Furthermore,
∂Ξth

∂ ˜̀h′
∣∣∣∣˜̀=0

=

{
− µth:h′ if h′ ≥ h,
0 otherwise.

Proof. By chain rule and the compositional structure of the functions Ξth(·), for any h′ ≥ h,

∂Ξth

∂ ˜̀h′ =
∂Ξth
∂Ξth′

· ∂Ξth′

∂ ˜̀h′ =

h′−1∏
h′′=h

∂Ξth′′

∂Ξth′′+1

 · ∂Ξth′

∂ ˜̀h′ .
For any h, the derivatives are bounded by

∂Ξth
∂Ξth+1

=
µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)] ∈
[
0, µth

]
,

∂Ξth

∂ ˜̀h = −
µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)] ∈
[
−µth, 0

]
.

The inequalities hold because the function f (z) =
µt
hz

1−µt
h+µt

hz
= 1 − 1−µt

h

1−µt
h+µt

hz
is increasing on

z ∈ [0, 1], and exp
[
βth

(
Ξth+1

(˜̀)− ˜̀h)] ∈ [0, 1] by Lemma E.8.

Putting them together, at ˜̀= 0, the derivative is just ∂Ξt
h

∂ ˜̀h′
∣∣∣˜̀t=0

= −µth:h′ if h′ ≥ h. If h′ < h, since

Ξth only depends on loss in the later layers, ∂Ξt
h

∂ ˜̀h′ |˜̀t=0 = 0.

Lemma E.10 (Bounds on second derivatives). For ˜̀ ∈ [0, 1]H and any h ∈ [H], if h′ ≥ h and
h′′ ≥ h, the second-order derivatives are bounded by

∂2Ξth

∂ ˜̀h′∂ ˜̀h′′ ≤
min{h′,h′′}∑
h′′′=h

βth′′′µ
t
h:h′µ

t
h′′′+1:h′′ =

min{h′,h′′}∑
h′′′=h

βth′′′µ
t
h:h′′′µ

t
h′′′+1:h′µ

t
h′′′+1:h′′ .

Otherwise ∂2Ξt
h

∂ ˜̀h′∂ ˜̀h′′ = 0.

Proof. By symmetry of the second derivatives and the right-hand side with respect to h′ and h′′, it
suffices to prove the claim for h′′ ≥ h′ only.

By chain rule and the compositional structure of the functions Ξth(·),

∂2Ξth

∂ ˜̀h′∂ ˜̀h′′ =
∂2Ξth

∂Ξth′∂
˜̀
h′′
· ∂Ξth′

∂ ˜̀h′ +
∂Ξth
∂Ξth′

· ∂2Ξth′

∂ ˜̀h′∂ ˜̀h′′ .
If h′′ = h′ = h,
∂2Ξth

∂ ˜̀2h = βthµ
t
h exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)] 1− µth{
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]}2 ≤ β
t
hµ

t
h.

If h′ = h, h′′ > h,

∂2Ξth

∂ ˜̀h∂ ˜̀h′′ = −
(1− µth)βthµ

t
h exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)](
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)])2 ·
∂Ξth+1

∂ ˜̀h′′ ≤ βthµth:h′′ .

27

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

If h < h′ < h′′, we can compute the Hessian by induction. Notice once h′ > h we have

∂Ξth

∂ ˜̀h′ =
∂Ξth
∂Ξth+1

·
∂Ξth+1

∂ ˜̀h′ .
Take second derivative,

∂2Ξth

∂ ˜̀h′∂ ˜̀h′′ =
∂Ξth
∂Ξth+1

·
∂2Ξth+1

∂ ˜̀h′∂ ˜̀h′′︸ ︷︷ ︸
(i)

+
∂2Ξth

∂Ξth+1∂
˜̀
h′′
·
∂Ξth+1

∂ ˜̀h′︸ ︷︷ ︸
(ii)

.

We first bound the second term,

(ii) =
(1− µth)βthµ

t
h exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)](
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)])2 ·
∂Ξth+1

∂ ˜̀h′′ · ∂Ξth+1

∂ ˜̀h′
≤ βthµth · µth+1:h′′ · µth+1:h′

≤ βthµth:h′µ
t
h+1:h′′ .

The first term can be simplified to

(i) ≤
µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]
∂2Ξth+1

∂ ˜̀h′∂ ˜̀h′′ ≤ µth ∂
2Ξth+1

∂ ˜̀h′∂ ˜̀h′′ .
Now plug in ∂2Ξt

h′

∂ ˜̀h′∂ ˜̀h′′ ≤ βth′µth′:h′′ and backward induction from h′ to h gives:

∂2Ξth

∂ ˜̀h′∂ ˜̀h′′ ≤
h′∑

h′′′=h

βth′′′µ
t
h:h′µ

t
h′′′+1:h′′ .

We can check this expression is also correct for the above special cases when h′ = h. The second
claim holds because Ξth only depends on loss in the later layers.

Lemma E.11 (Bound on Ξt1). We have

Ξt1 ≤ −
〈
µt, ˜̀t〉+

ηH

2

H∑
h=1

 H∑
h′=h

∑
xh′ ,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′ , ah′)

˜̀t
h′ (xh′ , ah′)

.
Proof. We apply the Mean-value Theorem to function Ξt1

(˜̀) at ˜̀= 0,

Ξt1 = Ξt1

(˜̀t) = Ξt1 (0) +
〈
∇˜̀Ξt1∣∣˜̀=0

, ˜̀t〉+
1

2

〈
∇2˜̀ Ξt1

∣∣˜̀=ξt ˜̀t, ˜̀t〉 ,
where ξt lies on the line segment between 0 and ˜̀t.
By Lemma E.8, the initial term is just zero. By Lemma E.9, the first-order term is just −

〈
µt, ˜̀t〉.

It thus remains to bound the second-order term. Applying the entry-wise upper bounds in
Lemma E.10 at h = 1 (which hold uniformly at all nonnegative loss values, including ξt), we
have〈
∇2˜̀ Ξt1

∣∣˜̀=ξt ˜̀t, ˜̀t〉 =

H∑
h=1

H∑
h′=1

∂2Ξt1

∂ ˜̀h∂ ˜̀h′
∣∣∣∣˜̀=ξt ˜̀th ˜̀th′

28

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

(i)

≤
H∑
h=1

H∑
h′=1

min{h,h′}∑
h′′=1

βth′′µ
t
1:hµ

t
h′′+1:h′

˜̀t
h
˜̀t
h′

=

H∑
h=1

µt1:h
˜̀t
h

H∑
h′=1

min{h,h′}∑
h′′=1

βth′′µ
t
h′′+1:h′

˜̀t
h′

(ii)

≤H max
h∈[H]

H∑
h′=1

min{h,h′}∑
h′′=1

βth′′µ
t
h′′+1:h′

˜̀t
h′

=H

H∑
h′=1

h′∑
h′′=1

βth′′µ
t
h′′+1:h′

˜̀t
h′

=H

H∑
h′′=1

H∑
h′=h′′

βth′′µ
t
h′′+1:h′

˜̀t
h′

=ηH

H∑
h′′=1

(
H∑

h′=h′′

µ?,h
′′

1:h′′

(
xth′ , a

t
h′
)
µth′′+1:h′

˜̀t
h′

)

(iii)
= ηH

H∑
h′′=1

 H∑
h′=h′′

∑
xh′ ,ah′

µ?,h
′′

1:h′′ (xh′ , ah′)µ
t
h′′+1:h′ (xh′ , ah′)

˜̀t
h′(xh′ , ah′)

,
where (i) is by Lemma E.10; (ii) follows from the bound

H∑
h=1

µt1:h
˜̀t
h =

H∑
h=1

µt1:h ·
1− rth

µt1:h + γµ?,h1:h

≤ H;

and (iii) is because ˜̀th′(xh′ , ah′) = 0 at all (xh′ , ah′) 6= (xth′ , a
t
h′).

Lemma E.12. With probability at least 1− δ/3,

T∑
t=1

Ξt1 ≤ −
T∑
t=1

〈
µt, ˜̀t〉+ ηH3T +

ηXAH2ι

γ
,

where ι := log(H/δ).

Proof. Using Lemma E.11 and take the summation with respect to t ∈ [T] we have

T∑
t=1

Ξt1 ≤ −
T∑
t=1

〈
µt, ˜̀t〉+

ηH

2

H∑
h=1

H∑
h′=h

T∑
t=1

∑
xh′,ah′

µ?,h1:h (xh′, ah′)µ
t
h+1:h′ (xh′, ah′)

˜̀t
h′ (xh′, ah′)︸ ︷︷ ︸

:=∆t
h,h′

.

(28)

Observe that the random variables ∆t
h,h′ satisfy the following:

• ∆t
h,h′ ≤ Xh′A/γ almost surely:

∆t
h,h′ =

∑
xh′,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′)

(1− rth′)1 {xh′ = xth′ , ah′ = ath′}
µt1:h′ (xh′, ah′) + γµ?,h

′

1:h′ (xh′, ah′)

≤ 1

γ

∑
xh′,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′)

µ?,h
′

1:h′ (xh′, ah′)

(i)

≤ Xh′A

γ
,

where (i) is by using Lemma D.4 with the mixture of µ?,h and µt.

29

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

• E[∆t
h,h′|Ft−1] ≤ 1, where Ft−1 is the σ-algebra containing all information after iteration

t− 1:

E[∆t
h,h′|Ft−1] =

∑
xh′,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′) `

t
h′ (xh′, ah′)

(i)

≤ 1,

where (i) is by using Corollary D.2 with the mixture policy of µ?,h and µt.

• The conditional variance E[(∆t
h,h′)

2|Ft−1] can be bounded as

E[(∆t
h,h′)

2|Ft−1]
(i)
=
∑
xh′,ah′

(µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′)

(1− rth′)1 {xh′ = xth′ , ah′ = ath′}
µt1:h′ (xh′, ah′) + γµ?,h

′

1:h′ (xh′, ah′)

)2


≤
∑
xh′,ah′

(
µ?,h1:h (xh′ , ah′)µ

t
h+1:h′ (xh′, ah′)

µt1:h′ (xh′, ah′) + γµ?,h
′

1:h′ (xh′, ah′)

)2

µt1:h′ (xh′, ah′)

≤ 1

γ

∑
xh′,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′)

µ?,h
′

1:h′ (xh′, ah′)

(ii)

≤ Xh′A

γ
,

where (i) follows from the fact that for any h, at most one of indicators is non-zero, so the
cross terms disappear and (ii) is using Corollary D.2 with the mixture policy of µ?,h and
µt.

Therefore, we can apply Freedman’s inequality (Lemma B.1) and union bound to get that, with
probability at least 1−δ/3, for some fixed λh,h′ ∈ (0, γ/Xh′A], the following holds simultaneously
for all h, h′:

T∑
t=1

∆t
h,h′ ≤

λh,h′Xh′AT

γ
+

2 log(H/δ)

λh,h′
+ T,

Take λh,h′ = γ/Xh′A, we have
T∑
t=1

∆t
h,h′ ≤

Xh′A · 2 log(H/δ)

γ
+ 2T.

Plug into equation (28), we have
T∑
t=1

Ξt1 ≤ −
T∑
t=1

〈
µt, ˜̀t〉+ ηH3T +

ηH2XAι

γ
,

where ι := log(H/δ) is a log factor.

E.6.2 PROOF OF MAIN LEMMA

By Lemma E.7, for any policy µ† ∈ Πmax,
1

η

(
Dbal(µ†‖µt+1)−Dbal(µ†‖µt)

)
=
〈
µ†, ˜̀t〉+ Ξt1.

Taking the summation w.r.t. t ∈ [T] and using Lemma E.12, we have with probability at least
1− δ/3, the following holds simultaneously over all µ† ∈ Πmax:

1

η

(
Dbal(µ†‖µT)−Dbal(µ†‖µ1

)
) =

T∑
t=1

〈
µ†, ˜̀t〉+

T∑
t=1

Ξt1

≤
T∑
t=1

〈
µ† − µt, ˜̀t〉+ ηH3T +

ηH2XAι

γ
.

Rerranging the terms we have

max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, ˜̀t〉 ≤ max

µ†∈Πmax

1

η

(
Dbal(µ†‖µ1)−Dbal(µ†‖µT)

)
+ ηH3T +

ηH2XAι

γ

30

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

≤ max
µ†∈Πmax

1

η
Dbal(µ†‖µ1) + ηH3T +

ηH2XAι

γ

≤XA logA

η
+ ηH3T +

ηH2XAι

γ
,

where the last inequality above follows by recalling that µ1 is taken to be the uniform policy
(µ1
h(ah|xh) = 1/A for all (h, xh, ah)) in Algorithm 1, and applying the bound on the balanced

dilated KL (Lemma D.7). This proves Lemma E.4.

F LOWER BOUND FOR LEARNING IIEFGS

Theorem F.1 (Lower bound for learning IIEFGs). For any A ≥ 2, H ≥ 1, we have (c > 0 is an
absolute constant)

(a) (Regret lower bound) For any algorithm that controls the max player and plays policies {µt}Tt=1
where T ≥ XA, there exists a game with B = 1 on which

E
[
RT
]

= E

[
max

µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉]
≥ c ·

√
XAT.

(b) (PAC lower bound for learning NE) For any algorithm that controls both players and outputs
a final policy (µ̂, ν̂) with T episodes of play, and any ε ∈ (0, 1], there exists a game on which the
algorithm suffers from E[NEGap(µ̂, ν̂)] ≥ ε, unless

T ≥ c · (XA+ Y B)/ε2.

The proof of Theorem F.1 constructs a hard instance with X = Θ(XH) = Θ(AH−1) that is equiv-
alent to AH -armed bandit problems, and follows by a reduction to standard bandit lower bounds.
We remark that our lower bounds are tight in X but did not explicitly optimize the H dependence
(which is typically lower-order compared to X).

Proof. Both the regret and PAC lower bounds follow from a direct reduction to stochastic multi-
armed bandits. For completeness, we first state the lower bound for stochastic bandits (Lattimore &
Szepesvári, 2020, Exercise 15.4 & Exercise 33.1) as follows. Below, c is an absolute constant.

Proposition F.2 (Lower bound for stochastic bandits). Let K ≥ 2 denote the number of arms.

(a) (Regret lower bound) Suppose T ≥ K. For any bandit algorithm that plays policy µt ∈ ∆([K])
(either deterministic or random) in round t ∈ [T], there exists some K-armed stochastic bandit
problem with Bernoulli rewards with mean vector r ∈ [0, 1]K , on which the algorithm suffers from
the following lower bound on the expected regret:

E

[
max

µ†∈∆([K])

T∑
t=1

〈
µ† − µt, r

〉]
≥ c ·

√
KT.

(b) (PAC lower bound) For any bandit algorithm that plays for t rounds and outputs some policy
µ̂ ∈ ∆([K]), there exists some K-armed stochastic bandit problem with Bernoulli rewards with
some mean vector r ∈ [0, 1]K , on which policy µ̂ is at least ε away from optimal:

E
[

max
µ†∈∆([K])

〈
µ† − µ̂, r

〉]
≥ ε,

unless T ≥ cK/ε2.

We now construct a class of IIEFGs with XH = AH−1 (the minimal possible number of infosets),
and show that any algorithm that solves this class of games will imply an algorithm for stochastic
bandits with AH arms with the same regret/PAC bounds, from which Theorem F.1 follows.

Our construction is as follows: For any A ≥ 2 and H ≥ 1, we let Sh = Ah−1 for all h ∈ [H]
(in particular, S1 = 1) and B = 1 (so that there is no opponent effectively). By the tree structure,

31

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

each state is thus uniquely determined by all past actions sh = (a1, . . . , ah−1), and the transition is
deterministic: ((a1, . . . , ah−1), ah) ∈ Sh×A transits to (a1, . . . , ah) ∈ Sh+1 with probability one.
Further, we let xh = x(sh) = sh, so that there is no partial observability, and thus Xh = Sh for all
h. Only the H-th layer yields a Bernoulli reward with some mean ra1:H := E[rH(a1:H−1, aH)] ∈
[0, 1], for all a1:H ∈ XH . The reward is zero within all previous layers.

Under this model, the expected reward under any policy µ ∈ Πmax can be succinctly written as

〈µ, r〉 =
∑

(xH ,aH)∈XH×A

µ1:H(xH , aH)E[rH(xh, aH)] =
∑

a1:H∈AH

µ1:H(a1:H)ra1:H .

This expression coincides with the expression for the expected reward of an AH -armed stochastic
bandit problem.

Now, for any algorithm Alg achieving regret RT on IIEFGs, we claim we can use it to design an
algorithm for solving any AH -armed stochastic bandit problem with Bernoulli rewards, and achieve
the same regret. Indeed, given any AH -armed bandit problem, we rename its arms as a sequence
a1:H = (a1, . . . , aH) ∈ AH . Now, we instantiate an instance of Alg on a simulated IIEFG with
the above structure. Whenever Alg plays policy µt ∈ Πmax, we query an arm a1:H using policy
µt1:H(·) ∈ ∆(AH) in the bandit problem. Then, upon receiving the reward rt from the bandit
problem, we give the feedback that the game transitted to infoset a1:H and yielded reward rt. By
the above equivalence, the regret RT within this simulated game is exactly the same as the regret
for the bandit problem.

Therefore, for T ≥ AH , we can apply Proposition F.2(a) to show that for any such Alg, there exists
one such IIEFG, on which

E
[
RT
]
≥ c ·

√
AHT = c

√
XHAT ≥ c

√
XAT,

where the last inequality follows from the fact that X ≤ XH(1 + 1/A+ 1/A2 + · · ·) ≤ XH/(1−
1/A) ≤ 2XH by perfect recall. This shows part (a).

Part (b) (PAC lower bound) follows similarly from Proposition F.2(b). Using the same reduction,
we can show for any algorithm that controls both players and outputs policy (µ̂, ν̂) ∈ Πmax×Πmin,
there exists one such game of the above form (where only the max player affects the game) where
the algorithm suffers from the PAC lower bound

E[NEGap(µ̂, ν̂)] = E
[

max
µ∈Πmax

V µ
†,ν̂ − V µ̂,ν̂

]
≥ ε

unless T ≥ cXA/ε2. The symmetrical construction for the min player implies that there exists
some game on which E[NEGap(µ̂, ν̂)] ≥ ε unless T ≥ cY B/ε2.

Therefore, if T < c(XA + Y B)/(2ε2), at least one of T ≥ cXA/ε2 and T ≥ cY B/ε2 has to
be false, for which we obtain a game where the expected duality gap is at least ε. This shows part
(b).

G PROOFS FOR SECTION 4

G.1 COUNTERFACTUAL REGRET DECOMPOSITION

Define the immediate counterfactual regret at any xh ∈ Xh, h ∈ [H] as

Rimm,T
h (xh) = max

µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), Lth(xh, ·)

〉
, (29)

where Lth(·, ·) is the counterfactual loss function defined in (10):

Lth(xh, ah) := `th(xh, ah) +

H∑
h′=h+1

∑
(xh′ ,ah′)∈Ch′ (xh,ah)×A

µt(h+1):h′(xh′ , ah′)`
t
h′(xh′ , ah′).

32

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Lemma G.1 (Counterfactual regret decomposition). We have R̃T ≤
∑H
h=1 R

T
h , where

RT
h :=

∑
x1∈X1

max
a1∈A

· · ·
∑

xh−1∈C(xh−2,ah−2)

max
ah−1∈A

∑
xh∈C(xh−1,ah−1)

Rimm,T
h (xh),

= max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) ·Rimm,T
h (xh).

Proof. The bound R̃T ≤
∑H
h=1 R

T
h with the sum-max form expression for R̃T

h has already implic-
itly appeared in the proof of (Zinkevich et al., 2007, Theorem 3), albeit with their slightly different
formulation of extensive-form games (turn-based games with reward only in the last round). For
completeness, here we provide a proof under our formulation.

We first show the bound with the µ form expression for RT
h , which basically follows by a perfor-

mance decomposition argument. We have

R̃T = max
µ†∈Πmax

〈
µt − µ†, `t

〉
= max
µ†∈Πmax

H∑
h=1

〈
µ†1:h−1µ

t
h:H − µ

†
1:hµ

t
h+1:H , `

t
〉

≤
H∑
h=1

max
µ†∈Πmax

〈
µ†1:h−1µ

t
h:H − µ

†
1:hµ

t
h+1:H , `

t
〉

︸ ︷︷ ︸
:=RT

h

.

Note that each term RT
h measures the performance difference between µ†1:h−1µ

t
h:H and µ†1:hµ

t
h+1:H :

RT
h = max

µ†∈Πmax

Esh∼µ†1:h−1×νt

[
Eah∼µt(·|xh)

[
H∑
h′=1

rh′

]
− Eah∼µ†(·|xh)

[
H∑
h′=1

rh′

]]
(i)
= max

µ†∈Πmax

Esh∼µ†1:h−1×νt

[
Eah∼µt(·|xh)

[
H∑

h′=h

rh′

]
− Eah∼µ†(·|xh)

[
H∑

h′=h

rh′

]]
(ii)
= max

µ†∈Πmax

∑
xh∈Xh

µ†1:h−1(xh−1, ah−1) ·
〈
µth(·|xh)− µ†h(·|xh), Lth(xh, ·)

〉
= max
µ†∈Πmax

∑
xh∈Xh

µ†1:h−1(xh−1, ah−1) ·Rimm,T
h (xh).

Above, (i) follows as the rewards for the first h− 1 steps are the same for the two expectations; (ii)
follows by definition of the counterfactual loss function (cumulative loss multiplied by the opponent
and environment’s policy / transition probabilities, as well as the max player’s own policy from step
h onward). The claim (with the µ form expression) thus follows by renaming the dummy variable
µ† as µ.

To verify that the second expression is equivalent to the first expression, it suffices to notice that
the max over µ1:h−1 ∈ Πmax consists of separable optimization problems over µh′(·|xh′) over all
xh′ ∈ Xh′ , h′ ≤ h − 1, due to the perfect recall assumption (different (xh′ , ah′) leads to disjoint
subtrees). Therefore, we can rewrite the above as

RT
h =

∑
x1∈X1

max
µ1(·|x1)∈∆(A)

∑
a1∈A

µ1(a1|x1)
∑

x2∈C(x1,a1)

· · ·

∑
xh−1∈C(xh−2,ah−2)

max
µh−1(·|xh−1)∈∆(A)

∑
ah−1∈A

µh−1(ah−1|xh−1)
∑

xh∈C(xh−1,ah−1)

Rimm,T
h (xh).

Further noticing (backward recursively) that each max over the action distribution is achieved at a
single action yields the claimed sum-max form expression.

33

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

G.2 PROOF OF THEOREM 6

Overview of proof Our proof follows the usual analysis pipeline for MCCFR algorithms that de-
composes the overall regret R̃T into combinations of immediate counterfactual regrets Rimm,T

h (xh),
and bounds each by regret bounds (of the regret minimizer Rxh

) plus concentration terms. We
adopt a sharp application of this pipeline by using a tight counterfactual regret decomposition
(Lemma G.1), as well as using the balancing property of µ?,h which yields sharp bounds on both
the regret and concentration terms (Lemma G.2-G.4).

We now prove our main theorem on the regret of the CFR algorithm.

By Lemma G.1, we have R̃T ≤
∑H
h=1 R

T
h , where for any h ∈ [H] we have

RT
h = max

µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)Rimm,T
h (xh)

= max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) max
µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), Lth(xh, ·)

〉

≤ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) max
µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), L̃th(xh, ·)

〉
︸ ︷︷ ︸

:=R̃imm,T
h (xh)

+ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

T∑
t=1

〈
µth(·|xh), Lth(xh, ·)− L̃th(xh, ·)

〉

+ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) max
µ†h(·|xh)

T∑
t=1

〈
µ†h(·|xh), L̃th(xh, ·)− Lth(xh, ·)

〉
(i)
= max

µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)R̃imm,T
h (xh)︸ ︷︷ ︸

:=REGRETh

+ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1)

T∑
t=1

µth(ah|xh)
[
Lth(xh, ah)− L̃th(xh, ah)

]
︸ ︷︷ ︸

:=BIAS1
h

+ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

T∑
t=1

[
L̃th(xh, ah)− Lth(xh, ah)

]
︸ ︷︷ ︸

:=BIAS2
h

= REGRETh + BIAS1
h + BIAS2

h.

Above, the simplification of the BIAS2
h part in (i) uses the fact that the inner max over µ†h(·|xh) and

the outer max over µ1:(h−1) are separable and thus can be merged into a single max over µ1:h.

We now state three lemmas that bound each term above. Their proofs are deferred to Sections G.3-
G.5.

Lemma G.2 (Bound on BIAS1
h). For any sequence of opponents’ policies νt ∈ Ft−1, using the

estimator L̃h in (12), with probability 1− δ/10, we have

H∑
h=1

BIAS1
h ≤ 2

√
H3XATι+HXι,

where ι = log(10X/δ).

34

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Lemma G.3 (Bound on BIAS2
h). For any sequence of opponents’ policies νt ∈ Ft−1, using the

estimator L̃h in (12), with probability 1− δ/10, we have

H∑
h=1

BIAS2
h ≤ 2

√
H3XATι+HXAι,

where ι = log(10XA/δ).

Lemma G.4 (Bound on REGRETh). Choosing η =
√
XAι/(H3T), we have that with probability

at least 1− δ/10 (over the randomness within the loss estimator L̃th),

H∑
h=1

REGRETh ≤ 2
√
H3XATι+

√
HX3A3ι3/(4T),

where ι = log(10XA/δ).

Combining Lemma G.2, G.3, and G.4, we obtain the following: Choosing η =
√
XAι/(H3T),

with probability at least 1− 3δ/10 ≥ 1− δ, we have

R̃T ≤
H∑
h=1

RT
h ≤

H∑
h=1

REGRETh +

H∑
h=1

BIAS1
h +

H∑
h=1

BIAS2
h

≤ 6
√
H3XATι+ 2HXAι+

√
HX3A3ι3/(4T).

Additionally, recall the naive bound R̃T ≤ HT on the regret (which follows as 〈µt, `t〉 ∈ [0, H] for
any µ ∈ Πmax, t ∈ [T]), we get

R̃T ≤ min
{

6
√
H3XATι+ 2HXAι+

√
HX3A3ι3/4T ,HT

}
≤ HT ·min

{
6
√
HXAι/T + 2XAι/T +

√
X3A3ι3/(4HT 3), 1

}
.

For T > HXAι, the min above is upper bounded by 9
√
HXAι/T . For T ≤ HXAι, the min

above is upper bounded by 1 ≤ 9
√
HXAι/T . Therefore, we always have

R̃T ≤ HT · 9
√
HXAι/T = 9

√
H3XATι.

This is the desired result.

G.3 PROOF OF LEMMA G.2
Rewrite BIAS1

h as

BIAS1
h = max

µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)

·
T∑
t=1

µ?,h1:(h−1)(xh−1, ah−1)µth(ah|xh) ·
[
Lth(xh, ah)− L̃th(xh, ah)

]
= max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)

·
T∑
t=1

∑
ah∈A

µth(ah|xh)

µ?,hh (ah|xh)

[
µ?,h1:h(xh, ah)Lth(xh, ah)−

(
H − h+ 1−

H∑
h′=h

r
t,(h)
h′

)
1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}]
︸ ︷︷ ︸

:=∆̃
xh
t

.

(30)

Observe that the random variables ∆̃xh
t satisfy the following:

35

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

• ∆̃xh
t ≤ H almost surely:

∆̃xh
t ≤

∑
ah∈A

µth(ah|xh)

µ?,hh (ah|xh)
· µ?,h1:h(xh, ah)Lth(xh, ah)

=
∑
ah∈A

µth(ah|xh)µ?,h1:(h−1)(xh−1, ah−1)Lth(xh, ah) ≤ H.

Above, the last bound follows from Lemma D.1(a).

• E[∆̃xh
t |Ft−1] = 0, where Ft−1 is the σ-algebra containing all information after iteration

t− 1;

• The conditional variance E[(∆̃xh
t)2|Ft−1] can be bounded as

E
[(

∆̃xh
t

)2∣∣∣Ft−1

]

≤ E

 ∑
ah∈A

(
µth(ah|xh)

µ?,hh (ah|xh)

)2

·

(
H − h+ 1−

H∑
h′=h

r
t,(h)
h′

)2

1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

} ∣∣∣Ft−1


≤ H2

∑
ah∈A

(
µth(ah|xh)

µ?,hh (ah|xh)

)2

· Pµ
?,h
1:h ,ν

t
(

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

)

= H2
∑
ah∈A

(
µth(ah|xh)

µ?,hh (ah|xh)

)2

· µ?,h1:h(xh, ah) · pν
t

1:h(xh)

= H2
∑
ah∈A

(
µth(ah|xh)

µ?,hh (ah|xh)

)
︸ ︷︷ ︸

≤A

·µ?,h1:h−1(xh−1, ah−1) · µth(ah|xh)pν
t

1:h(xh)

≤ H2A ·
∑
ah∈A

µ?,h1:h−1(xh−1, ah−1) · µth(ah|xh)pν
t

1:h(xh).

Therefore, we can apply Freedman’s inequality (Lemma B.1) and union bound to get that, for any
fixed λ ∈ (0, 1/H], with probability at least 1 − δ/10, the following holds simultaneously for all
(h, xh):

T∑
t=1

∆̃xh
t ≤ λH2A

∑
ah∈A

µ?,h1:h−1(xh−1, ah−1) ·
T∑
t=1

µth(ah|xh)pν
t

1:h(xh) +
ι

λ
,

where ι := log(10X/δ) is a log factor. Plugging this bound into (30) yields that, for all h ∈ [H],

BIAS1
h = max

µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)
·
T∑
t=1

∆̃xh
t

≤ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)
·

[
λH2A

∑
ah∈A

µ?,h1:h−1(xh−1, ah−1) ·
T∑
t=1

µth(ah|xh)pν
t

1:h(xh) +
ι

λ

]

≤ λH2A · max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h−1(xh−1, ah−1)

T∑
t=1

µth(ah|xh)pν
t

1:h(xh)

+
ι

λ
· max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)

(i)
= λH2AT +

ι

λ
· 1

A
max
µ∈Πmax

∑
(xh,ah)∈Xh×A

(µ1:(h−1)µ
unif
h)(xh, ah)

µ?,h1:h(xh, ah)

36

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

(ii)
= λH2AT +

ι

λ
·Xh.

Above, (i) used the fact that
∑

(xh,ah)∈Xh×A µ1:h−1(xh−1, ah−1)µth(ah|xh)pν
t

1:h(xh) = 1 for any

µ ∈ Πmax and any t ∈ [T] (Lemma D.1(a)), as well as the fact that µ?,hh (ah|xh) = µunif
h (ah|xh) :=

1/A; (ii) used the balancing property of µ?,h1:h (Lemma D.4). Combining the bounds for all h ∈ [H],
we get that with probability at least 1− δ/10,

H∑
h=1

BIAS1
h ≤ λH3AT +

Xι

λ
.

Choosing

λ = min

{√
Xι

H3AT
,

1

H

}
≤ 1

H
,

we obtain the bound

H∑
h=1

BIAS1
h ≤ 2

√
H3XATι+HXι.

This is the desired result.

G.4 PROOF OF LEMMA G.3

The proof strategy is similar to Lemma G.2. We can rewrite BIAS2
h as

BIAS2
h = max

µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
·
T∑
t=1

µ?,h1:h(xh, ah)
[
L̃th(xh, ah)− Lth(xh, ah)

]
= max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
·

T∑
t=1

[(
H − h+ 1−

H∑
h′=h

r
t,(h)
h′

)
1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}
− µ?,h1:h(xh, ah)Lth(xh, ah)

]
︸ ︷︷ ︸

:=∆
xh,ah
t

,

(31)

where the last equality used the definition of the loss estimator L̃th(xh, ah) in (12).

Observe that the random variables ∆xh,ah
t satisfy the following:

• ∆xh,ah
t ≤ H almost surely.

• E[∆
(xh,ah)
t |Ft−1] = 0, where Ft−1 is the σ-algebra containing all information after itera-

tion t− 1. This follows as the episode was sampled using µt,(h) = µ?,h1:hµ
t
h+1:H , as well as

the definition of Lth(xh, ah) in (10).

• The conditional variance E[(∆
(xh,ah)
t)2|Ft−1] can be bounded as

E
[(

∆
(xh,ah)
t

)2∣∣∣Ft−1

]
≤ E

(H − h+ 1−
H∑

h′=h

r
t,(h)
h′

)2

1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

} ∣∣∣Ft−1


≤ H2Pµ

?,h
1:h ,ν

t
(

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

)
= H2µ?,h1:h(xh, ah) · pν

t

1:h(xh).

37

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Therefore, we can apply Freedman’s inequality (Lemma B.1) and union bound to get that, for any
fixed λ ∈ (0, 1/H], with probability at least 1 − δ/10, the following holds simultaneously for all
(h, xh, ah):

T∑
t=1

∆
(xh,ah)
t ≤ λH2µ?,h1:h(xh, ah) ·

T∑
t=1

pν
t

1:h(xh) +
ι

λ
,

where ι := log(10XA/δ) is a log factor. Plugging this bound into (31) yields that, for all h ∈ [H],

BIAS2
h = max

µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
·
T∑
t=1

∆xh,ah
t

≤ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
·

[
λH2µ?,h1:h(xh, ah) ·

T∑
t=1

pν
t

1:h(xh) +
ι

λ

]

≤ λH2 · max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

T∑
t=1

pν
t

1:h(xh) +
ι

λ
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)

(i)
= λH2T +

ι

λ
·XhA.

Above, (i) used the fact that
∑

(xh,ah)∈Xh×A µ1:h(xh, ah)pν
t

1:h(xh) = 1 for any µ ∈ Πmax and any

t ∈ [T] (Lemma D.1(a)), as well as the balancing property of µ?,h1:h (Lemma D.4). Combining the
bounds for all h ∈ [H], we get that with probability at least 1− δ/10,

H∑
h=1

BIAS2
h ≤ λH3T +

XAι

λ
.

Choosing

λ = min

{√
XAι

H3T
,

1

H

}
≤ 1

H
,

we obtain the bound

H∑
h=1

BIAS2
h ≤ 2

√
H3XATι+HXAι.

This is the desired result.

G.5 PROOF OF LEMMA G.4

Recall that for all (h, xh), we have implemented Line 8 of Algorithm 2 as the HEDGE algorithm
(Algorithm 3) with learning rate ηµ?,h1:h(xh, a) and loss vector

{
L̃th(xh, a)

}
a∈A

(cf. (11)). Therefore,

38

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

applying the standard regret bound for HEDGE (Lemma C.1), we get (below a ∈ A is arbitrary)

R̃imm,T
h (xh) = max

µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), L̃th(xh, ·)

〉
≤ logA

ηµ?,h1:h(xh, a)
+
η

2
·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) · µth(ah|xh)
(
L̃th(xh, ah)

)2

(i)
=

logA

ηµ?,h1:h(xh, a)

+
η

2
·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah)µth(ah|xh) ·

(
H − h+ 1−

∑H
h′=h r

t,(h)
h′

)2

1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}
(
µ?,h1:h(xh, ah)

)2

≤ logA

ηµ?,h1:h(xh, a)
+
ηH2

2
·
T∑
t=1

∑
ah∈A

µth(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}
µ?,h1:h(xh, ah)

.

(32)
Above, (i) used the form of L̃th in (12). Plugging this into the definition of REGRETh, we have

REGRETh = max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)R̃imm,T
h (xh)

≤ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) · logA

ηµ?,h1:h(xh, a)︸ ︷︷ ︸
Ih

+ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) · ηH
2

2
·
T∑
t=1

∑
ah∈A

µth(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}
µ?,h1:h(xh, ah)︸ ︷︷ ︸

IIh

.

(33)

We first calculate term Ih. We have

Ih
(i)
=

logA

η
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

1

Ah
·
µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, ah)

=
logA

η
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

(µ1:(h−1)µ
unif
h)(xh, ah)

µ?,h1:h(xh, ah)

(ii)
=

logA

η
·XhA =

XhA logA

η
,

where (i) follows by splitting the sum over ah and using the fact that µ?,h1:h(xh, a) does not depend
on a; (ii) follows from the balancing property of µ?,h1:h (Lemma D.4).

Next, we bound term IIh. We have

IIh =
ηH2

2
max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) ·
T∑
t=1

∑
ah∈A

µth(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}
µ?,h1:h(xh, ah)

=
ηH2

2
max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, a)
·
T∑
t=1

∑
ah∈A

µth(ah|xh) · 1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}
︸ ︷︷ ︸

:=∆
xh
t

.

(34)

39

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

The last equality above used the fact that µ?,h1:h(xh, ah) does not depend on ah (cf. (5)).

Observe that the random variables ∆
xh

t satisfy the following:

• ∆
xh

t ∈ [0, 1] almost surely;

• E[∆
xh

t |Ft−1] =
∑
ah∈A µ

?,h
1:h(xh, ah) · µth(ah|xh)pν

t

1:h(xh), where Ft−1 is the σ-algebra
containing all information after iteration t− 1;

• The conditional variance Var[∆
xh

t |Ft−1] can be bounded as

Var
[
∆
xh

t

∣∣∣Ft−1

]
≤ E

[(
∆
xh

t

)2∣∣∣Ft−1

]
= E

[∑
ah∈A

(
µth(ah|xh)

)2
1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

} ∣∣∣Ft−1

]
=
∑
ah∈A

(
µth(ah|xh)

)2 · Pµ?,h
1:h×ν

t
(

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

)
=
∑
ah∈A

µ?,h1:h(xh, ah) ·
(
µth(ah|xh)

)2 · pνt

1:h(xh).

Therefore, we can apply Freedman’s inequality (Lemma B.1) and a union bound to obtain that, for
any λ ∈ (0, 1], with probability at least 1− δ/10, the following holds simultaneously for all (h, xh):

T∑
t=1

∆
xh

t −
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) · µth(ah|xh)pν
t

1:h(xh)

≤ λ ·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) ·
(
µth(ah|xh)

)2 · pνt

1:h(xh) +
ι

λ
,

where ι := log(10X/δ) is a log factor. Plugging this bound into (34) yields that, for all h ∈ [H],

IIh ≤
ηH2

2
· max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, a)
·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) · µth(ah|xh)pν
t

1:h(xh)

+
ηH2

2
· max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, a)

·

[
λ

T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) ·
(
µth(ah|xh)

)2 · pνt

1:h(xh) +
ι

λ

]
(i)

≤ ηH2

2
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1) ·
T∑
t=1

µth(ah|xh)pν
t

1:h(xh)

+
ηH2

2
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1) · λ
T∑
t=1

(
µth(ah|xh)

)2 · pνt

1:h(xh)

+
ηH2

2
· ι
λ
· max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, a)

(ii)

≤ ηH2

2
(1 + λ) · max

µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1) ·
T∑
t=1

µth(ah|xh)pν
t

1:h(xh)

+
ηH2

2
· ι
λ
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

(µ1:(h−1)µ
unif
h)(xh, ah)

µ?,h1:h(xh, ah)

(iii)
=

ηH2

2
(1 + λ)T +

ηH2

2
· ι
λ
·XhA.

40

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Above, (i) used again the fact that µ?,h1:h(xh, a) = µ?,h1:h(xh, ah) for any a, ah ∈ A; (ii) used the
fact that µth(ah|xh) ≤ 1; (iii) used the fact that

∑
(xh,ah)∈Xh×A(µ1:(h−1)µ

t
h)(xh, ah)νt(xh) = 1

for any µ ∈ Πmax and any t ∈ [T] (Lemma D.1(a)), as well as the balancing property of µ?,h1:h
(Lemma D.4).

Combining the bounds for Ih and IIh, we obtain that
H∑
h=1

REGRETh ≤
H∑
h=1

(Ih + IIh)

≤
H∑
h=1

[
XhA logA

η
+
ηH2

2
(1 + λ)T +

ηH2XhAι

2λ

]
≤ XAι

η
+
ηH3

2
T +

ηH2

2

[
λ ·HT +

XAι

λ

]
,

where we have redefined the log factor ι := log(10XA/δ). Choosing λ = 1, the above can be upper
bounded by

XAι

η
+ ηH3T +

ηH2XAι

2
.

Further choosing η =
√
XAι/(H3T), we obtain the bound

H∑
h=1

REGRETh ≤ 2
√
H3XATι+

√
HX3A3ι3/(4T).

This is the desired result.

H BALANCED CFR WITH REGRET MATCHING

Many real-world applications of CFR-type algorithms use Regret Matching (Hart & Mas-Colell,
2000) instead of Hedge as the regret minimizer, due to its practical advantages such as learning-rate
free and pruning effects (Tammelin, 2014; Burch et al., 2019). In this section, we show that Bal-
anced CFR instantiated with Regret Matching enjoys Õ(

√
H3XA2T) “regret” and Õ((H4(XA2 +

Y B2)/ε2) sample complexity for learning ε-NE (Theorem H.1 & Corollary H.2). The sample com-
plexity is also sharp in X,Y , though is A (or B) times worse than the Hedge version, which is
expected due to the difference between the regret minimizers.

We consider instantiating Line 8 of Algorithm 2 using the following Regret Matching algorithm:

µt+1
h (a|xh) =

[
Rtxh

(a)
]
+∑

a′∈A
[
Rtxh

(a′)
]
+

,

where Rtxh
(a) :=

t∑
τ=1

〈
µτh(·|xh), L̃τh(xh, ·)

〉
− L̃τh(xh, a) for all a ∈ A.

(35)

We now present the main theoretical guarantees for Balanced CFR with regret matching. The proof
of Theorem H.1 can be found in Section H.1.

Theorem H.1 (“Regret” bound for Balanced CFR with Regret Matching). Suppose the max player
plays Algorithm 2 where each Rxh

is instantiated as the Regret Matching algorithm (35). Then the
policies µt achieve the following regret bound with probability at least 1− δ:

R̃T := max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉
≤ O(

√
H3XA2Tι),

where ι = log(10XA/δ) is a log factor. Further, each round plays H episodes against νt (so that
the total number of episodes played is HT).

We then have the following corollary directly by the regret-to-Nash conversion (Proposition 1).

41

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Corollary H.2 (Learning Nash using Balanced CFR with Regret Matching). Letting both play-
ers play Algorithm 2 in a self-play fashion against each other for T rounds, where each Rxh

is
instantiated as the Regret Matching algorithm (35). Then, for any ε > 0, the average policy
(µ, ν) = (1

T

∑T
t=1 µ

t, 1
T

∑T
t=1 ν

t) achieves NEGap(µ, ν) ≤ ε with probability at least 1 − δ,
as long as

T ≥ O(H3(XA2 + Y B2)ι/ε2),

where ι := log(10(XA+ Y B)/δ) is a log factor. The total amount of episodes played is at most

2H · T = O(H4(XA2 + Y B2)ι/ε2).

H.1 PROOF OF THEOREM H.1
The proof is similar as Theorem 6, except for plugging in the regret bound for Regret Matching
instead of Hedge.

First, by Lemma G.1, we have R̃T ≤
∑H
h=1 R

T
h , where for any h ∈ [H] we have

RT
h ≤ max

µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)R̃imm,T
h (xh)︸ ︷︷ ︸

:=REGRETh

+ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1)

T∑
t=1

µth(ah|xh)
[
Lth(xh, ah)− L̃th(xh, ah)

]
︸ ︷︷ ︸

:=BIAS1
h

+ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

T∑
t=1

[
L̃th(xh, ah)− Lth(xh, ah)

]
︸ ︷︷ ︸

:=BIAS2
h

= REGRETh + BIAS1
h + BIAS2

h,
(36)

where the definition of R̃imm,T
h (xh), Lth(xh, ah) are at the beginning of Section G.1 and the defini-

tion of L̃th(xh, ah) are given by Algorithm 2.

To upper bound BIAS1
h and BIAS2

h, we use the same strategy as the proof of Lemma G.2 and
G.3 (whose proofs are independent of the regret minimizer), so that we have the same bound as in
Lemma G.2 and G.3: with probability at least 1− δ/5, we have

H∑
h=1

BIAS1
h ≤ 2

√
H3XATι+HXι,

H∑
h=1

BIAS2
h ≤ 2

√
H3XATι+HXAι, (37)

where ι = log(10XA/δ).

To upper bound REGRETh, we use the same strategy as the proof of Lemma G.4 as in Section G.5.
First, applying the regret bound for Regret Matching (Lemma C.2 & Remark C.3), we get (below
a ∈ A is arbitrary, and η > 0 is also arbitrary)

R̃imm,T
h (xh) = max

µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), L̃th(xh, ·)

〉
≤ 1

ηµ?,h1:h(xh, a)
+
η

2
·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) ·Aµ̄th(ah|xh)
(
L̃th(xh, ah)

)2

≤ 1

ηµ?,h1:h(xh, a)
+
ηH2

2
·
T∑
t=1

∑
ah∈A

A · µ̄th(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}
µ?,h1:h(xh, ah)

,

(38)

42

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

where µ̄th(ah|xh) = (µth(ah|xh) + (1/A))/2 is a probability distribution over [A]. Comparing the
right hand side of Eq. (38) with the right hand side of Eq. (32), we can see that there is only one
difference which is A · µ̄th versus µth. Plugging this into the definition of REGRETh, we have

REGRETh = max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)R̃imm,T
h (xh)

≤ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) · 1

ηµ?,h1:h(xh, a)︸ ︷︷ ︸
Ih

+ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) · ηH
2

2
·
T∑
t=1

∑
ah∈A

A · µ̄th(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h) = (xh, ah)

}
µ?,h1:h(xh, ah)︸ ︷︷ ︸

IIh

.

(39)
Comparing Eq. (39) with Eq. (33), we can see that Ih in Eq. (39) is the same as Ih in Eq. (33), and
IIh in Eq. (39) and (33) only have one difference which is also A · µ̄th versus µth. Using the same
argument as in the former proof, we have

Ih =
XhA

η
.

Furthermore, using the same argument as in the former proof, we can show that the upper bound of
IIh in Eq. (39) is at most A times the upper bound of IIh in Eq. (33). This gives for any λ ∈ (0, 1),
with probability at least 1− δ/10, we have

IIh ≤
ηH2A

2
(1 + λ)T +

ηH2

2
· ι
λ
·XhA

2.

Combining the bounds for Ih and IIh, we obtain that
H∑
h=1

REGRETh ≤
H∑
h=1

(Ih + IIh) ≤ XA

η
+
ηH3A

2
T +

ηH2A

2

[
λ ·HT +

XAι

λ

]
,

Choosing λ = 1 and choosing η =
√
Xι/(H3T), with probability at least 1− δ/10, we obtain the

bound
H∑
h=1

REGRETh ≤ 2
√
H3XA2Tι+

√
HX3A4ι3/(4T). (40)

This bound is
√
A times larger than the bound of

∑H
h=1 REGRETh as in Lemma G.4.

Combining Eq. (36), (37) and (40), we obtain the following: with probability at least 1 − 3δ/10 ≥
1− δ, we have

R̃T ≤
H∑
h=1

RT
h ≤

H∑
h=1

REGRETh +

H∑
h=1

BIAS1
h +

H∑
h=1

BIAS2
h

≤ 6
√
H3XA2Tι+ 2HXAι+

√
HX3A4ι3/(4T).

Additionally, recall the naive bound R̃T ≤ HT on the regret (which follows as 〈µt, `t〉 ∈ [0, H] for
any µ ∈ Πmax, t ∈ [T]), we get

R̃T ≤ min
{

6
√
H3XA2Tι+ 2HXAι+

√
HX3A4ι3/4T ,HT

}
≤ HT ·min

{
6
√
HXA2ι/T + 2XAι/T +

√
X3A4ι3/(4HT 3), 1

}
.

For T > HXA2ι, the min above is upper bounded by 9
√
HXA2ι/T . For T ≤ HXA2ι, the min

above is upper bounded by 1 ≤ 9
√
HXA2ι/T . Therefore, we always have

R̃T ≤ HT · 9
√
HXA2ι/T = 9

√
H3XA2Tι.

This is the desired result.

43

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

I EXTENSION TO MULTI-PLAYER GAMES

In this section, we show that our Balanced OMD and Balanced CFR generalize directly to learning
Coarse Correlated Equilibria in multi-player general-sum games.

I.1 DEFINITION OF MULTI-PLAYER GENERAL-SUM IIEFGS

We consider an m-player general-sum IIEFG with Xi infosets and Ai actions for the i-th player.
Our definition is parallel to the POMG formulation for two-player zero-sum IIEFGs in Section 2.

Partially observable Markov games We consider finite-horizon, tabular, m-player general-
sum Markov Games with partial observability. Formally, it can be described as a
POMG(H,S, {Xi}mi=1, {Ai}mi=1,P, {ri}mi=1), where

• H is the horizon length;

• S =
⋃
h∈[H] Sh is the (underlying) state space;

• Xi =
⋃
h∈[H] Xi,h is the space of infosets for the i-th player with |Xi,h| = Xi,h and Xi :=∑H

h=1Xi,h. At any state sh ∈ Sh, the i-th player only observes the infoset xi,h = xi(sh) ∈ Xi,h,
where xi : S → Xi is the emission function for the i-th player;

• Ai is the action spaces for the i-th player with |Ai| = Ai. For any h, we define the joint action of
m players by ah := (a1,h, · · · , am,h) and the set of joint actions by A := A1 × · · · × Am.

• P = {p1(·) ∈ ∆(S1)} ∪ {ph(·|sh,ah) ∈ ∆(Sh+1)}(sh,ah)∈Sh×A, h∈[H−1] are the transition
probabilities, where p1(s1) is the probability of the initial state being s1, and ph(sh+1|sh,ah) is the
probability of transitting to sh+1 given state-action (sh, ah, bh) at step h;

• ri = {ri,h(sh,ah) ∈ [0, 1]}(sh,ah)∈Sh×A are the (random) reward functions with mean
ri,h(sh,ah).

Policies, value functions A policy for the i-th player is denoted by πi =
{πi,h(·|xi,h) ∈ ∆(Ai)}h∈[H],xi,h∈Xi,h

, where πi,h(ai,h|xi,h) is the probability of taking ac-
tion ai,h ∈ Ai at infoset xi,h ∈ Xi,h. A trajectory for the i-th player takes the form
(xi,1, ai,1, ri,1, xi,2, . . . , xi,H , ai,H , ri,H), where ai,h ∼ πi,h(·|xi,h), which depends on both
the other (unseen) players’ policy and underlying state transition.

We use π to denote the joint policy. Notice although the marginals are πi, π is not necessarily a
product policy. When π is indeed a product policy, we have π = π1× · · · × πm. We also use π−i to
denote the joint product policy excluding the i-th player. The overall game value of the i-th player
for any joint policy π is denoted by V πi := Eπ

[∑H
h=1 ri,h(sh,ah)

]
.

Tree structure and perfect recall As before, we assume

• Tree structure: for any h and sh ∈ Sh, there exists a unique history (s1,a1, . . . , sh−1,ah−1) of
past states and (joint) actions that leads to h.

• Perfect recall: For any h and any infoset xi,h ∈ Xi,h for the i-th player, there exists a unique
history (xi,1, ai,1, . . . , xi,h−1, ai,h−1) of past infosets and i-th player’s actions that leads to xi,h.

Given above conditions, under any product policy π, the probability of reaching state-action (sh,ah)
at step h takes the form

Pπ(sh,ah) = p1:h(sh)

m∏
i=1

πi,1:h (xi,h, ai,h), (41)

where {sh′ ,ah′}h′≤h−1 are the histories uniquely determined from sh and xi,h′ = xi(sh′). We
have also defined the sequence-form transition probability as

p1:h(sh) := p1(s1)
∏

h′≤h−1

ph′(sh′+1|sh′,ah′),

44

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

and the sequence-form policies as

πi,1:h (xi,h, ai,h) :=

h∏
h′=1

πi,h′ (ai,h′ |xi,h′).

Regret and CCE Similar as how regret minimization in two-player zero-sum games leads to an
approximate Nash equilibrium (Proposition 1), in multi-player general-sum games, regret minimiza-
tion is known to lead to an approximate NFCCE. Let {πt}Tt=1 denote a sequence of joint policies
(for all players) over T rounds. The regret of the i-th player is defined by

RT
i := max

π†i∈Πi

T∑
t=1

(
V
π†i ,π

t
−i

i − V π
t

i

)
.

where Πi denotes the set of all possible policies for the i-th player.

Definition I.1 (NFCCE). A joint policy π (for all players) is an ε-approximate Normal-Form Coarse
Correlated Equilibrium (NFCCE) if

CCEGap(π) := max
i∈[m]

(
max
π†i∈Πi

V
π†i ,π−i

i − V πi
)
≤ ε,

i.e., no player can gain more than ε in her own reward by deviating from π and playing some other
policy on her own.

Using online-to-batch conversion, it is a standard result that sub-linear regret for all the players
ensures that the average policy π is an approximate NFCCE (Celli et al., 2019).

Proposition I.2 (Regret-to-CCE conversion for multi-player general-sum games). Let the average
policy π be defined as playing a policy within {πt}Tt=1 uniformly at random, then we have

CCEGap(π) =
maxi∈[m] R

T
i

T
.

We include a short justification for this standard result here for completeness.

Proof. By definition of π, we have for any i ∈ [m] and π†i ∈ Πi that

V
π†i ,π−i

i − V πi =
1

T

T∑
t=1

(
V
π†i ,π

t
−i

i − V π
t

i

)
.

Taking the max over π†i ∈ Πi and i ∈ [m] on both sides yields the desired result.

We remark that the NFCCE differs from other types of Coarse Correlated Equilibria in the literature
such as the EFCCE5 (Farina et al., 2020a).

I.2 LEARNING NFCCE IN MULTI-PLAYER IIEFGS

Using the known connection between no-regret and NFCCE (Celli et al., 2019), we can learn an
ε-NFCCE in an multi-player IIEFG sample-efficiently by letting all players run either Balanced
CFR or Balanced OMD in a self-play fashion. In the following, we let {πti}

T
t=1 denote the policies

maintained by player i, and πt :=
∏m
i=1 π

t
i denote their joint policy in the t-th round.

Theorem I.3 (Learning NFCCE sample-efficiently using Balanced OMD / Balanced CFR). We have

(a) (Balanced OMD) Let all players play Algorithm 1 for T rounds with learning rate η =√
XiAi logAi/(H3T) and IX parameter γ =

√
XiAiι/(HT) for the i-th player. Then for any

ε > 0, the average policy π uniformly sampled from {πt}Tt=1 satisfies CCEGap(π) ≤ ε with
probability at least 1− δ, as long as the number of episodes

T ≥ O
(
H3ι

(
max
i∈[m]

XiAi

)
/ε2
)
,

where ι := log(3H
∑m
i=1XiAi/δ) is a log factor.

5Such distinctions only exist for (Coarse) Correlated Equilibria and not for the NE studied in the previous
sections.

45

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

(b) (Balanced CFR) Let all players play Algorithm 2 in the same self-play fashion as Corollary 7
for T rounds, with Rxh

instantiated as Hedge (11) with learning rate η =
√
XiAiι/(H3T) for the

i-th player. Then for any ε > 0, the average policy π uniformly sampled from {πt}Tt=1 satisfies
CCEGap(π) ≤ ε with probability at least 1 − δ, as long as T ≥ O

(
H3ι(maxi∈[m]XiAi)/ε

2
)
.

The total number of episodes played is at most

mH · T = O
(
H4mι ·

(
max
i∈[m]

XiAi

)
/ε2
)
.

where ι := log(10
∑m
i=1XiAi/δ) is a log factor.

For both algorithms, the number of episodes for learning an ε-NFCCE scales linearly with
maxi∈[m]XiAi (with Balanced CFR having an additional Hm factor than Balanced OMD), com-
pared to the best existing maxi∈[m]X

2
i Ai dependence (e.g. by self-playing IXOMD (Kozuno et al.,

2021)).

Proof. It is straightforward to see that the regret guarantees for Balanced OMD (Theorem 4) and
Balanced CFR (Theorem 6) also hold in multi-player general-sum games (e.g. by modeling all other
players as a single opponent). Therefore, the regret-to-CCE conversion in Proposition I.2 directly
implies that, letting π denote the joint policy of playing a uniformly sampled policy within {πt}Tt=1,
we have for Balanced OMD that

CCEGap(π) ≤ O

(
maxi∈[m]

√
H3XiAiιT

T

)
= O

(√
H3

(
max
i∈[m]

XiAi

)
ι/T

)
,

with probability at least 1 − δ, where ι := log(3H
∑m
i=1XiAi/δ) is a log factor. Choosing T ≥

Õ
(
H3
(
maxi∈[m]XiAi

)
ι/ε2

)
ensures that the right-hand side is at most ε. This shows part (a). A

similar argument can be done for the Balanced CFR algorithm to show part (b).

46

	Introduction
	Preliminaries
	Conversion to online linear regret minimization
	Balanced exploration policy

	Online Mirror Descent
	Balanced dilated KL
	Algorithm and theoretical guarantee

	Counterfactual Regret Minimization
	Algorithm description
	Theoretical guarantee

	Extension to Multi-player general-sum games
	Conclusion
	Related work
	Technical tools
	Bounds for regret minimizers
	Hedge
	Regret Matching

	Properties of the game
	Basic properties
	Balanced exploration policy
	Interpretation as a transition probability

	Balanced dilated KL
	Interpretation of balanced dilated KL

	Proofs for Section 3
	Efficient implementation for Update (9)
	Proof of Theorem 4
	A concentration result
	Proof of Lemma E.2
	Proof of Lemma E.3
	Proof of Lemma E.4
	Bounding 1t
	Proof of main lemma

	Lower bound for learning IIEFGs
	Proofs for Section 4
	Counterfactual regret decomposition
	Proof of Theorem 6
	Proof of Lemma G.2
	Proof of Lemma G.3
	Proof of Lemma G.4

	Balanced CFR with regret matching
	Proof of Theorem H.1

	Extension to multi-player games
	Definition of multi-player general-sum IIEFGs
	Learning NFCCE in multi-player IIEFGs

