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Abstract

Recent experiments have shown that deep networks can approximate solutions to
high-dimensional PDEs, seemingly escaping the curse of dimensionality. However,
questions regarding the theoretical basis for such approximations, including the
required network size remain open. In this paper, we investigate the representational
power of neural networks for approximating solutions to linear elliptic PDEs with
Dirichlet boundary conditions. We prove that when a PDE’s coefficients are
representable by small neural networks, the parameters required to approximate
its solution scale polynomially with the input dimension d and proportionally
to the parameter counts of the coefficient networks. To this end, we develop a
proof technique that simulates gradient descent (in an appropriate Hilbert space)
by growing a neural network architecture whose iterates each participate as sub-
networks in their (slightly larger) successors, and converge to the solution of the
PDE. We bound the size of the solution showing a polynomial dependence on d
and no dependence on the volume of the domain.

1 Introduction

A partial differential equation (PDE) relates a multivariate function defined over some domain to
its partial derivatives. Typically, one’s goal is to solve for the (unknown) function, often subject
to additional constraints, such as the function’s value on the boundary of the domain. PDEs are
ubiquitous in both the natural and social sciences, where they model such diverse processes as heat
diffusion [7, 32], fluid dynamics [2, 39], and financial markets [6, 10]. Because most PDEs of interest
lack closed-form solutions, computational approximation methods remain a vital and an active field of
research [1]. For low-dimensional functions, dominant approaches include the finite differences and
finite element methods [26], which discretize the domain. After partitioning the domain into a mesh,
these methods solve for the function value at the vertices of the mesh. However, these techniques scale
exponentially with the input dimension, rendering them unsuitable for high-dimensional problems.

Following breakthroughs in deep learning for approximating high-dimensional functions in such
diverse domains as computer vision [21, 33] and natural language processing [3, 9, 40], a burgeoning
line of research leverages neural networks to approximate solutions to PDEs. This line of work has
produced promising empirical results for common PDEs such as the Hamilton-Jacobi-Bellman and
Black-Scholes equations [17, 16, 37]. Because they do not explicitly discretize the domain, and
given their empirical success on high-dimensional problems, these methods appear not to suffer the
curse of dimensionality. However, these methods are not well understood theoretically, leaving open
questions about when they are applicable, what their performance depends on, and just how many
parameters are required to approximate the solution to a given PDE.

Over the past three years, several theoretical works have investigated questions of representational
power under various assumptions. Exploring a variety of settings, [22], [16], and [19], proved that the
number of parameters required to approximate a solution to a PDE exhibits a less than exponential
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dependence on the input dimension for some special parabolic PDEs that admit straightforward
analysis. [15] consider elliptic PDEs with Dirichlet boundary conditions. However, their rate depends
on the volume of the domain, and thus can have an implicit exponential dependence on dimension
(e.g., consider a hypercube with side length greater than one).

In this paper, we focus on linear elliptic PDEs with Dirichlet boundary conditions, which are prevalent
in science and engineering (e.g., the Laplace and Poisson equations). Notably, linear elliptic PDEs
define the steady state of processes like heat diffusion and fluid dynamics. Our work asks:

Question. How many parameters suffice to approximate solutions to a linear elliptic PDE up to a
specified level of precision using a neural network?

We show that when the coefficients of the PDE are expressible as small neural networks (note that
PDE coefficients are functions), the number of parameters required to approximate the PDE’s solution
is proportional to the number of parameters required to express the coefficients. Furthermore, we
show that the number of parameters depends polynomially on the dimension and does not depend
upon the volume of the domain.

2 Overview of Results

To begin, we formally define linear elliptic PDEs.

Definition 1 (Linear Elliptic PDE [11]). Linear elliptic PDEs with Dirichlet boundary condition can
be expressed in the following form:

{(Lu) (x) = (—div (AVu) + cu) (z) = f(x),Vz € Q,
u(z) = 0,Vz € 09,

where Q C R% is a bounded open set with a boundary OS). Further, for all x € , A : Q — R¥¥4 js
a matrix-valued function, s.t. A(x) = 0, and c : Q — R, s.t. ¢(z) > 0. !

We refer to A and c as the coefficients of the PDE. The divergence form in Definition 1 is one of two
canonical ways to define a linear elliptic PDE [11] and is convenient for several technical reasons
(see Section 4). The Dirichlet boundary condition states that the solution takes a constant value (here
0) on the boundary 0f2.

Our goal is to express the number of parameters required to approximate the solution of a PDE in
terms of those required to approximate its coefficients A and c. Our key result shows:

Theorem (Informal). If the coefficients A, ¢ and the function f are approximable by neural networks
with at most N parameters, the solution u* to the PDE in Definition 1 is approximable by a neural

network with O (dlog(%)N ) parameters.

This result, formally expressed in Section 5, may help to explain the practical efficacy of neural
networks in approximating solutions to high-dimensional PDEs with boundary conditions [37, 27].
To establish this result, we develop a constructive proof technique that simulates gradient descent (in
an appropriate Hilbert space) through the very architecture of a neural network. Each iterate, given by
a neural network, is subsumed into the (slightly larger) network representing the subsequent iterate.
The key to our analysis is to bound both (i) the growth in network size across consecutive iterates;
and (ii) the total number of iterates required.

Organization of the paper We introduce the required notation along with some mathematical

preliminaries on PDEs in Section 4. The problem setting and formal statement of the main result are
provided in Section 5. Finally, we provide the proof of the main result in Section 6.

3 Prior Work

Among the first papers to leverage neural networks to approximate solutions to PDEs with boundary
conditions are [23], [24], and [29]. However, these methods discretize the input space and thus are not
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"Here, div denotes the divergence operator. Given a vector field F : R — R%, div(F) = V-F =



suitable for high-dimensional input spaces. More recently, mesh-free neural network approaches have
been proposed for high-dimensional PDEs [17, 34, 35], achieving impressive empirical results in
various applications. [37] design a loss function that penalizes failure to satisfy the PDE, training their
network on minibatches sampled uniformly from the input domain. They also provide a universal
approximation result, showing that for sufficiently regularized PDEs, there exists a multilayer network
that approximates its solution. However, they do not comment on the complexity of the neural network
or how it scales with the input dimension. [20] also prove universal approximation power, albeit
with networks of size exponential in the input dimension. Recently, [16, 19] provided a better-than-
exponential dependence on the input dimension for some special parabolic PDEs, for which the
simulating a PDE solver by a neural network is straightforward.

Several recent works [5, 22, 28, 27] show (experimentally) that a single neural network can solve
for an entire family of PDEs. They approximate the map from a PDE’s parameters to its solution,
potentially avoiding the trouble of retraining for every set of coefficients. Among these, only [22]
provides theoretical grounding. However, they assume the existence of a finite low-dimensional space
with basis functions that can approximate this parametric map—and it is unclear when this would
obtain. Our work proves the existence of such maps, under the assumption that the family of PDEs
has coefficients described by neural networks with a fixed architecture (Section 7).

In the work most closely related to ours, [15] provides approximation rates polynomial in the input
dimension d for the Poisson equation (a special kind of linear elliptic PDE) with Dirichlet boundary
conditions. They introduce a walk-on-the-sphere algorithm, which simulates a stochastic differential
equation that can be used to solve a Poisson equation with Dirichlet boundary conditions (see, e.g.
[31]’s Theorem 9.13). The rates provided in [15] depend on the volume of the domain, and thus
depend, implicitly, exponentially on the input dimension d. Our result considers the boundary
condition for the PDE and is independent of the volume of the domain. Further, we note that our
results are defined for a more general linear elliptic PDE, of which the Poisson equation is a special
case.

4 Notation and Definitions

We now introduce several key concepts from PDEs and some notation. For any open set  C R, we
denote its boundary by 9 and denote its closure by 2 := Q U 9Q. By C°(Q2), we denote the space
of real-valued continuous functions defined over the domain §2. Furthermore, for k£ € N, a function g
belongs to C*(€) if all partial derivatives 9“g exist and are continuous for any multi-index «, such
that || < k. Finally, a function g € C>(Q) if g € C*(Q) for all k € N. Next, we define several
relevant function spaces:

Definition 2. For any k € NU {cc}, CE(Q) := {g: g € C*(Q), supp(g) C N}.

Definition 3. For a domain Q, the function space L*()) consists of all functions g : Q — R, s.t.

1
lgllr2(0) < 0o where ||gl L2y = (Jq, l9(x)[>dz)?. This function space is equipped with the inner
product

(9,h)12(0) Z/Qg(x)h(x)dx.

Definition 4. For a domain Q) and a function g : Q@ — R, the function space L*° () is defined
analogously, where ||g|| o) = inf{c > 0 : |g(z)| < c for almost all x € 2}

Definition 5. For a domain Q2 and m € N, we define the Hilbert space H™(S2) as
H™(Q):={g:Q = R:0% c L*(Q), Ya s.t. |a] <m}

Furthermore, H™ () is equipped with the inner product, (g, h) irm(0) = 3_jaj<m Jo(0%9)(0“h)dx
and the corresponding norm

||9||Hm(n)= Z Haaguizm)

la|<m

Definition 6. The closure of C§°(S2) in H™ () is denoted by H[" ().



Informally, H"(2) is the set of functions belonging to H™ () that can be approximated by a
sequence of functions ¢,, € C§°(2). This also implies that if a function g € HJ*(Q2), then g(z) =0
for all x € 09). This space (particularly with m = 1) is often useful when analyzing elliptic PDEs
with Dirichlet boundary conditions.

Definition 7 (Weak Solution). Given the PDE in Definition 1, if f € L?(S2), then a function
u : Q — R solves the PDE in a weak sense if u € H}(Q) and for all v € H}(2), we have

/ (AVu - Vv + cuwv) dz = / fudz (1)
Q Q

The left hand side of (1) is also equal to (Lu, v) 2 () for all u,v € H}(Q) (see Lemma 6), whereas,
following the definition of the L?(£2) norm, the right side is simply (f,v) 12(q). Having introduced
these preliminaries, we now introduce some important facts about linear PDEs that feature prominently
in our analysis.

Proposition 1. For the PDE in Definition 1, if f € L?(Q) the following hold:
1. The solution to Equation (1) exists and is unique.

2. The weak solution is also the unique solution of the following minimization problem:

1
u* = argmin J(v) := argmin {(LU,U>L2(Q) —(f, U>L2(Q)} . )
veHL(Q) verl(Q) (2

This proposition is standard (we include a proof in the Appendix, Section A.1 for completeness) and
states that there exists a unique solution to the PDE (referred to as «*), which is also the solution we
get from the variational formulation in (2). In this work, we introduce a sequence of functions that
minimizes the loss in the variational formulation.

Definition 8 (Eigenvalues and Eigenfunctions, [11]). Given an operator L, the tuples (X, )52,
where \; € R and p; € H}(Q) are (eigenvalue, eigenfunction) pairs that satisfy Lo = A, for all
x € S Since ¢ € HE (), we know that vjo = 0. The eigenvalue can be written as

L
A= inf (L@
ueX; ||U’HL2(Q)

; 3)

where X; = span{¢1,...,¢i}" = {u € Hg(Q) : (u,¢;)12¢0) = 0 Vj € {1,---,i}} and
0 < A1 < Ao < ---. Furthermore, we define by ®y, the span of the first k eigenfunctions of L, i.e.,
Oy, :=span{p1, -+ , Yk}

We note that since the operator L is self-adjoint and elliptic (in particular, L~! is compact), the

eigenvalues are real and countable. Moreover, the eigenfunctions form an orthonormal basis of
H}(Q) (see [11], Section 6.5).

5 Main Result

Before stating our results, we provide the formal assumptions on the PDEs of interest:

Assumptions:

(i) Smoothness: We assume that the coefficient A € Q — R%*? is a symmetric ma-
trix valued function, i.e., A = (a;;(x)) and a;;(x) € L™(Q) is three times differ-
entiable for all ¢,j € [d]. Furthermore, the function ¢ € L*(Q) is twice differen-
tiable and c(x) > ¢ > 0 for all z € Q. We define a constant C' := (2d°* +
1) max {maxa:‘a|§3 max; ; [|0%ai;|| Lo (), MaXq:|a|<2 ||8ac||Loo(Q)}. Further, the func-
tion f € L?(f) is infinitely differentiable and we assume there exists a function fspan € P,
such that for any multi-index a, ||0% f — 0% fspanl|z2(Q) < €span-

(ii) Ellipticity: There exist constants M > m > 0 such that, for all z € Q and ¢ € R?,
d

mlg)? < ) ai(@)6& < ME|%.

ij=1



(iii) Neural network approximability: There exist neural networks Aand ¢ with Ny, N € N
parameters, respectively, that approximate the functions A and ¢, i.e., |[A — Al[ () < €a
and [|c — €| () < €, for small €4,¢, > 0. We assume that for all u € Hj(€2) the

operator L defined as, } )
Lu = —div(AVu) + ¢u. 4)

is elliptic with (\;, $;)$2, (eigenvalue, eigenfunction) pairs. We also assume that there
exists a neural network f,, € C° with Ny € N parameters such that for any multi-index
a, |0%f — 0% funllz2(0) < €un- By X, we denote the set of all (infinitely differentiable)

activation functions used by networks fl, ¢, and fyun. By X/, we denote the set that contains
all the n-th order derivatives of the activation functions in X, Vn € Ny

Intuitively, ellipticity of L in a linear PDE Lu = f is analogous to positive definiteness of a matrix
Q € R in a linear equation Qx = k, where 2, k € R%.

In (iii), we assume that the coefficients A and ¢, and the function f can be approximated by neural
networks. While this is true for any smooth functions given sufficiently large N4, N, N, our results
are most interesting when these quantities are small (e.g. subexponential in the input dimension
d). For many PDEs used in practice, approximating the coefficients using small neural networks is
straightforward. For example, in heat diffusion (whose equilibrium is defined by a linear elliptic
PDE) A(z) defines the conductivity of the material at point x. If the conductivity is constant, then
the coefficients can be written as neural networks with O(1) parameters.

Intuitively, our assumption (iii) that there exists an fspan in H, 6 () that lies in the span of the low-
lying k eigenfunctions of the operator L can be thought of as a smoothness condition on f. For
(Lu,u)p2q)  IVullp2(q
”uHiQ(Q) B ”“||L2(Q) ’
so eigenfunctions corresponding to higher eigenvalues tend to exhibit a higher degree of spikiness.
The reader can also think of the eigenfunctions corresponding to larger k as Fourier basis functions

corresponding to higher frequencies.

instance, if L = —A (the Laplacian operator), the Dirichlet form satisfies

Finally, in (i) and (iii), while the requirement that the function pairs (f, fun) and (f, fspan) are
close not only in their values, but their derivatives as well is a matter of analytical convenience, our
key results do not necessarily depend on this precise assumption. Alternatively, we could replace
this assumption with similar (but incomparable) conditions: e.g., we can also assume closeness
of the values and a rapid decay of the Lo norms of the derivatives. We require control over the
derivatives because our method’s gradient descent iterations involve repeatedly applying the operator
L to f—which results in progressively higher derivatives.

We can now formally state our main result:

Theorem 1 (Main Theorem). Consider a linear elliptic PDE satisfying Assumptions (i)-(iii), and
let u* € HE(Q) denote its unique solution. If there exists a neural network ug € HE(Q) with Ny
parameters, such that ||u* — UOHLQ(Q) < R, for some R < oo, then for every € > 0, there exists a
neural network u, with size

O (d*" (No + Na) + T(Ny + N.))

such that ||u* — uc||r2(q) < € + € where,

Span 5 23/2
g €sp +2 Hf||L2(Q) -|-5Hu*||L2(Q)+(max{1,T2Cv7})T €span + €nn +
MM =6

2528 fll 20
y—=9

_ At _ 2 _ log(R/e) — 1
and £ = Ae—A1’ = M+’ r=0 ( log )’ and § = min{m/ea,(/ec}

Furthermore, the activation functions used in u. belong to the set ¥ U X' U {p} where p(y) = y? for
all y € R is the square activation function.

and o is a multi-index.

This theorem shows that given an initial neural network ug € H2 () containing Ny parameters, we
can recover a neural network that is e close to the unique solution u*. The number of parameters in u,
depend on how close the initial estimate w is to the solution u*, and Ny. This results in a trade-off,
where better approximations may require more parameters, compared to a poorer approximation with
fewer parameters.



Note that € can be taken arbitrarily close to 0, while € is a “bias” error term that does not go to 0. The
first three terms in the expression for € result from bounding the difference between the solutions to
the equations Lu = f and Lu = fspan, Whereas the third term is due to difference between f and
fun and the fact that our proof involves simulating the gradient descent updates with neural networks.

log(x)
descent-like procedure on a strongly convex loss with condition number & to reach an e-approximate
optimum. The parameters A and A1 can be thought of as the effective Lipschitz and strong-convexity
constants of the loss. Finally, to give a sense of what R looks like, we show in Corollary 2 (see
Il L2 ()
)\1 :

The term T = O (log(R/ 6)) comes from the fact that we are simulating 7" steps of a gradient

Section B in the Appendix) that if g is initialized to be identically zero then R =

We make few remarks about the theorem statement:

Remark 1. While we state our convergence results in L?(Q2) norm, our proof works for the H}(Q)
norm as well. This is because in the space defined by the top-k eigenfunctions of the operator L,
L?(Q) and H}(Q)) norm are equivalent (shown in Proposition 2). Further, note that even though we
have assumed that u* € H} () is the unique solution of (1) from the boundary regularity condition,
we have that u* € H? (Q) (see [11], Theorem 4 in Chapter 6). This ensures that the solution u* is
twice differentiable as well.

Remark 2. To get a sense of the scale of A1 and A\, when L = —A (the Laplacian operator), the
”quL2(Q) _ 1

Hu”L2(Q) ooy
Appendix). For geometrically well-behaved sets ) (e.g. convex sets with a strongly convex boundary,
like a sphere), C,, is even dimension-independent. Further from the Weyl’s law operator ([11], Section
6.5) we have

eigenvalue Ay = inf ¢ g1 () where C,, is the Poincaré constant (see Theorem 2 in

lim AZ/Q = (2m)7

k—oo k vol(2)a(d)
where a(d) is the volume of a unit ball in d dimensions. So, if vol(Q2) > 1/a(d), A\, grows as
O(k?/%), which is a constant so long as log k < d.

Remark 3. The choice of activation functions (in particular, the requirement that ¥ only contains
differentiable functions) is for mathematical convenience. Namely, by standard results from approx-
imation theory [41, 4] one can approximate a neural network with one choice of nonlinearity via
a (comparably sized) neural network with another choice of nonlinearity (under mild assumptions)
by incurring a dimension-independent increase in size. Thus, if the coefficients are approximable
by a neural network with a non-differentiable activation function, they can also be approximated by
a slightly larger network with a differentiable activation over any compact domain. Similarly, the
activations on the network resulting from Theorem I can be replaced by a different activation at the
expense of a slight blowup in size. Details are included in Appendix C.4.

6 Proof of Main Result

First, we provide some intuition behind the proof, via an analogy between a uniformly elliptic
operator and a positive definite matrix in linear algebra. We can think of finding the solution to
the equation Lu = f for an elliptic L as analogous to finding the solution to the linear system of
equations Qx = k, where @) is a d X d positive definite matrix, and = and k are d-dimensional vectors.
One way to solve such a linear system is by minimizing the strongly convex function ||Qx — b]|?
using gradient descent. Since the objective is strongly convex, after O(log(1/¢)) gradient steps, we
reach an e-optimal point in an /5 sense.

Our proof uses a similar strategy. First, we show that for the operator L, we can define a sequence
of functions that converge to an e-optimal function approximation (in this case in the L?(£2) norm)
after O(log(1/¢€) steps—similar to the rate of convergence for strongly convex functions. Next,
we inductively show that each iterate in the sequence can be approximated by a small neural
network. More precisely, we show that given a bound on the size of the ¢-th iterate u;, we can,
in turn, upper bound the size of the (¢ + 1)-th iterate u;41 because the update transforming wu; to
u;41 can be simulated by a small neural network (Lemma 4). These iterations look roughly like
ugr1 < up — n(Lug — f), and we use a “backpropagation” lemma (Lemma 7) which bounds the
size of the derivative of a neural network.



6.1 Defining a Convergent Sequence

The rough idea is to perform gradient descent in L?(£2) [30, 12, 13], and define a convergent
sequence whose iterates converge to u* in L?({2) norm (and following Remark 1, in HZ (£2) as well).
However, there are two obstacles to defining the iterates as simply us11 < u; — n(Lug — f), (1) Lis
unbounded—so the standard way of choosing a step size for gradient descent (roughly the ratio of
the minimum and maximum eigenvalues of L) would imply choosing a step size n = 0, and (2) L
does not necessarily preserve the boundary conditions, so if we start with u; € Hg (), it may be that
Lu; — f does not even lie in Hg ().

We resolve both issues by restricting the updates to the span of the first k£ eigenfunctions of L. More
concretely, as shown in Lemma 1, if a function u in @y, then the function Lu will also lie in ®;. We
also show that within the span of the first & eigenfunctions, L is bounded (with maximum eigenvalue
Ak), and can therefore be viewed as an operator from ®, to ®;,. Further, we use fspan instead of f
in our updates, which now have the form w;+1 < u; — 7(Luy — fspan). Since fspan belongs to @y,
for a u; in @y, the next iterate u;4; will now remain in ;. Continuing the matrix analogy, we can
choose the usual step size of n = Al'ii)\k Precisely, we show:

Lemma 1. Let L be an elliptic operator. Then, for all v € ®y, it holds:

1. Lv € &

2. /\1HU”L2(Q) < <L’U,U>L2(Q) < /\kHU”Lz(Q)

3 G0k

The proof of this lemma is provided in Section C.1.

Ap—
L2(Q) ~ >\k+)\1

Hu||L2(Q)

Further, note that we will use a slight variant of the updates and instead set w41 < uy —n(iu — fspan)
as the iterates of the convergent sequence. Here, the operator L (defined in (4)) has the neural network
approximations of A and c as its coefficients, and fspan is a function that lies in span of the first k&
eigenfunctions of L (denoted by tfk), such that || fspan — fspan I £2(q) is small (for an exact statement,

see Lemma 11 in the Appendix). In Section 6.2, we will see that updates defined thusly will be more
convenient to simulate via a neural network.

The sequence defined so far satisfies two important properties. First, the convergence point of the
sequence and u*, the solution to the original PDE, are not too far from each other. Concretely:

Lemma 2. Assume that i is the solution to the PDE Lu = fspar]; where fspan cHY Q) - R

span

and fspan € ®y. Given Assumptions (i)-(iii), we have |u* — Whanllz2() < € such that e =
227201 f 1l 2
6span L () ~ %k _ 1 1
+ )\1 7A/75 + 0| @ panl 2 (), where v = 5 Ak+1 and § = T TR S

The proof for Lemma 2 is provided in the Appendix (Section D.1). Each of the three terms in the
final error captures different sources of perturbation: the first term comes from approximating f by
fspan; the second term comes from applying Davis-Kahan [8] to bound the “misalignment” between
the eigenspaces @y, and @, (hence, the appearance of the eigengap between the k and (k + 1)-st
eigenvalue of L~1); the third term is a type of “relative” error bounding the difference between the
solutions to the PDEs Lu = fspan and Lu = fspan

The second property of the sequence of functions is that they converge exponentially fast. The rate is
characterized in the following lemma:

Lemma 3 (Convergence of gradient descent in L?). Let @, denote the unique solution to the PDE

span
Lu= fspan: where f span € ®y, and the operator L satisfies the conditions in Lemma 1. Then for

any ug € H}(Q) such that ug € Oy, we define the sequence

9 -
Ut41 U — 7(Lut fspan) (t S N) (5)
AL+ A



where for all t € N, u; € H}(Q). Then for any € > 0 we have |Jup — @y, 12(0) < € after T
iterations where,
log ( HMO*T}:pan”m(sz) )
T > ——
A+
log ( o 5\1)
The proof for Lemma 3 is similar to the analysis of the convergence time of gradient descent for

strongly convex losses and can be found in Section C.2 of the Appendix. Finally, combining the
results from Lemma 2 and Lemma 3 via triangle inequality, we have:

[u* = urllr2(0) < U — @hanllz2@) + [[5an — urllzze)
and the first term on the RHS subsumes the first three summands of ¢ defined in Theorem 1.

6.2 Approximating iterates by neural networks

In Lemma 3, we show that there exists a sequence of functions (5) which converge fast to a function
close to u*. The next step in the proof is to approximate the iterates by neural networks.

The main idea is as follows. Suppose first the iterates u;41 = u; — n(ffut — fspan) are such that

fspan 18 exactly representable as a neural network. Then, the iterate u;,; can be written in terms of
three operations performed on u;, a and f: taking derivatives, multiplication and addition. Moreover,
if g is representable as a neural network with N parameters, the coordinates of the vector Vg can be
represented by a neural network with O(N') parameters. This is a classic result (Lemma 7), essentially
following from the backpropagation algorithm. Finally, addition or multiplication of two functions
representable as neural networks with sizes N1, N» can be represented as neural networks with size
O(N; + N») (see Lemma 8).

Using these facts, we can write down a recurrence upper bounding the size of neural network
approximation w1, denoted by @41, in terms of the number of parameters in @, (which is the neural
network approximation to u;). Formally, we have:

Lemma 4 (Recursion Lemma). Given the Assumptions (i)-(iii), consider the update equation
2 .
g G — = (Lﬁt - fnn) ©6)
AL+ Ak

Ifat step t, iy : R — R is a neural network with Ny parameters, then the function ;41 is a neural
network with O(d*(Na + N;) + Ny + Ny + N.) parameters.

Proof. Expand the update @¢41 < Ut — 7 (f/ﬂt - fnn) as follows:

d d d
g1 <= U — N Z (350501 + Z <Z aidij> il + ¢y — fon
i,j=1 j=1 \i=1
Using Lemma 7, 0;1, ;4 and 0;a;; can be represented by a neural network with O(N,), O(Ny)
and O(N 4) parameters, respectively. Further, 0;d;;0;u and @;;0;;4 can be represented by a neural
network with O(N 4 + N;) parameters, and ¢i; can be represented by a network with O(N; + N,)
parameters, from Lemma 8. Hence ;1 can be represented in O(d*(N4 + N¢) + Ny + N, + Ny)
parameters. Note that, throughout the entire proofs O hides independent constants. O

Combining the results of Lemma 3 and Lemma 4, we can get a recurrence for the number of
parameters required to represent the neural network ;:

Niv1 < d?°Ny+d?Na + Ny + Nj+ N

U . . oT d?(d”-1)
nfolding this recurrence, we get Ny < d** No + —z—7—Na + T(Ny) 4 N.).

Hence, the total number of parameters required for a neural network to approximate a solution to a
PDE of the form in Definition 1

ox w> log (Huo—ﬁ;)anHLQ(Q))
€
ol d? (No+ Na) +

(Nf + NC)>

log k



Finally, we have to deal with the fact that fspan is not exactly a neural network, but only approximately
so. The error due to this discrepancy can be characterized through the following lemma:

Lemma 5 (Error using fi,,,). Consider the update equation in (6), where fy,, is a neural network

with Ny. Then the neural network i, approximates the function u; such that ||us — || 12(q) < eth)

(t)
23/25 2
) ((max{l, t?neC'})? <€span + ey + ”f”L(Q)>>

where eny 1S
y—=9

D S 1 _ _1 i i
where § = mim{meac/ear V= e pYr and o is a multi-index.

The main strategy to prove this lemma involves tracking the “residual” non-neural-network part of the
iterates. Precisely, we can write the update u;y1 = u; — n(Lug — (fun + 7)), for a “residual” function
7 = fspan — Jun- If u, was exactly a neural network, the first part of the update, u, — n(Lu; — fun)
can be written as a neural network as in Lemma 4, and nr can be treated as an error. Thus, in
order to bound the error for using f,y, instead of fspan, We maintain a decomposition of u; into a
neural network part, and a residual part, and inductively bound the total residual part. Given the
recurrent structure of our updates, at each iteration ¢, there will be an accumulation of the earlier t — 1
applications of the operator L, that results in an increasing number of higher order derivatives of r to
be bounded at each step. This is why we require that f,,, is close to f not only in the Lo sense but
also in terms of their higher order derivatives.

7 Applications to Learning Operators

A number of recent works attempt to simultaneously approximate the solutions for an entire family of
PDEs by learning a parametric map that takes as inputs (some representation of) the coefficients of a
PDE and returns its solution [5, 28, 27]. For example, given a set of observations that {aj, Uj };V:l,
where each a; denotes a coefficient of a PDE with corresponding solution u;, they learn a neural
network G such that for all j, u; = G(a;). Our parametric results provide useful insights for why
simultaneously solving an entire family of PDEs with a single neural network G is possible in the

case of linear elliptic PDEs.

Consider the case where the coefficients a; in the family of PDEs are given by neural networks
with a fixed architecture, but where each instance of a PDE is characterized by a different setting
of the weights in the models representing the coefficients. Lemma 4 shows that each iteration of
our sequence (5) constructs a new network containing both the current solution and the coefficient
networks as subnetworks. We can view our approximation as not merely approximating the solution
to a single PDE but to every PDE in the family, by treating the coefficient networks as placeholder
architectures whose weights are provided as inputs. Thus, our construction provides a parametric
map between the coefficients of an elliptic PDE in this family and its solution.

8 Conclusion and Future Work

We derive parametric complexity bounds for neural network approximations for solving linear elliptic
PDEs with Dirichlet boundary conditions, whenever the coefficients can be approximated by are
neural networks with finite parameter counts. By simulating gradient descent in function spaces using
neural networks, we construct a neural network that approximates the solution of a PDE. We show
that the number of parameters in the neural network depends on the parameters required to represent
the coeffcients and has a poly(d) dependence on the dimension of the input space, therefore avoiding
the curse of dimensionality.

An immediate open question is related to the tightening our results: our current error bound is
sensitive to the neural network approximation lying close to ®;, which could be alleviated by relaxing
(by adding some kind of “regularity” assumptions) the dependence of our analysis on the first k
eigenfunctions. Further, the dependencies in the exponent of d on R and x in parametric bound may
also be improvable. Finally, the idea of simulating an iterative algorithm by a neural network to
derive a representation-theoretic result is broadly applicable, and may be a fertile ground for further
work, both theoretically and empirically, as it suggest a particular kind of weight tying.
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