
Parametric Complexity Bounds for Approximating
PDEs with Neural Networks

Tanya Marwah, Zachary C. Lipton, Andrej Risteski
Machine Learning Department, Carnegie Mellon University
{tmarwah, zlipton, aristesk}@andrew.cmu.edu

Abstract

Recent experiments have shown that deep networks can approximate solutions to
high-dimensional PDEs, seemingly escaping the curse of dimensionality. However,
questions regarding the theoretical basis for such approximations, including the
required network size remain open. In this paper, we investigate the representational
power of neural networks for approximating solutions to linear elliptic PDEs with
Dirichlet boundary conditions. We prove that when a PDE’s coefficients are
representable by small neural networks, the parameters required to approximate
its solution scale polynomially with the input dimension d and proportionally
to the parameter counts of the coefficient networks. To this end, we develop a
proof technique that simulates gradient descent (in an appropriate Hilbert space)
by growing a neural network architecture whose iterates each participate as sub-
networks in their (slightly larger) successors, and converge to the solution of the
PDE. We bound the size of the solution showing a polynomial dependence on d
and no dependence on the volume of the domain.

1 Introduction

A partial differential equation (PDE) relates a multivariate function defined over some domain to
its partial derivatives. Typically, one’s goal is to solve for the (unknown) function, often subject
to additional constraints, such as the function’s value on the boundary of the domain. PDEs are
ubiquitous in both the natural and social sciences, where they model such diverse processes as heat
diffusion [7, 32], fluid dynamics [2, 39], and financial markets [6, 10]. Because most PDEs of interest
lack closed-form solutions, computational approximation methods remain a vital and an active field of
research [1]. For low-dimensional functions, dominant approaches include the finite differences and
finite element methods [26], which discretize the domain. After partitioning the domain into a mesh,
these methods solve for the function value at the vertices of the mesh. However, these techniques scale
exponentially with the input dimension, rendering them unsuitable for high-dimensional problems.

Following breakthroughs in deep learning for approximating high-dimensional functions in such
diverse domains as computer vision [21, 33] and natural language processing [3, 9, 40], a burgeoning
line of research leverages neural networks to approximate solutions to PDEs. This line of work has
produced promising empirical results for common PDEs such as the Hamilton-Jacobi-Bellman and
Black-Scholes equations [17, 16, 37]. Because they do not explicitly discretize the domain, and
given their empirical success on high-dimensional problems, these methods appear not to suffer the
curse of dimensionality. However, these methods are not well understood theoretically, leaving open
questions about when they are applicable, what their performance depends on, and just how many
parameters are required to approximate the solution to a given PDE.

Over the past three years, several theoretical works have investigated questions of representational
power under various assumptions. Exploring a variety of settings, [22], [16], and [19], proved that the
number of parameters required to approximate a solution to a PDE exhibits a less than exponential

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

dependence on the input dimension for some special parabolic PDEs that admit straightforward
analysis. [15] consider elliptic PDEs with Dirichlet boundary conditions. However, their rate depends
on the volume of the domain, and thus can have an implicit exponential dependence on dimension
(e.g., consider a hypercube with side length greater than one).

In this paper, we focus on linear elliptic PDEs with Dirichlet boundary conditions, which are prevalent
in science and engineering (e.g., the Laplace and Poisson equations). Notably, linear elliptic PDEs
define the steady state of processes like heat diffusion and fluid dynamics. Our work asks:
Question. How many parameters suffice to approximate solutions to a linear elliptic PDE up to a
specified level of precision using a neural network?

We show that when the coefficients of the PDE are expressible as small neural networks (note that
PDE coefficients are functions), the number of parameters required to approximate the PDE’s solution
is proportional to the number of parameters required to express the coefficients. Furthermore, we
show that the number of parameters depends polynomially on the dimension and does not depend
upon the volume of the domain.

2 Overview of Results

To begin, we formally define linear elliptic PDEs.
Definition 1 (Linear Elliptic PDE [11]). Linear elliptic PDEs with Dirichlet boundary condition can
be expressed in the following form:{

(Lu) (x) ≡ (−div (A∇u) + cu) (x) = f(x),∀x ∈ Ω,

u(x) = 0,∀x ∈ ∂Ω,

where Ω ⊂ Rd is a bounded open set with a boundary ∂Ω. Further, for all x ∈ Ω, A : Ω→ Rd×d is
a matrix-valued function, s.t. A(x) � 0, and c : Ω→ R, s.t. c(x) > 0. 1

We refer to A and c as the coefficients of the PDE. The divergence form in Definition 1 is one of two
canonical ways to define a linear elliptic PDE [11] and is convenient for several technical reasons
(see Section 4). The Dirichlet boundary condition states that the solution takes a constant value (here
0) on the boundary ∂Ω.

Our goal is to express the number of parameters required to approximate the solution of a PDE in
terms of those required to approximate its coefficients A and c. Our key result shows:
Theorem (Informal). If the coefficients A, c and the function f are approximable by neural networks
with at most N parameters, the solution u? to the PDE in Definition 1 is approximable by a neural
network with O

(
dlog(1

ε)N
)

parameters.

This result, formally expressed in Section 5, may help to explain the practical efficacy of neural
networks in approximating solutions to high-dimensional PDEs with boundary conditions [37, 27].
To establish this result, we develop a constructive proof technique that simulates gradient descent (in
an appropriate Hilbert space) through the very architecture of a neural network. Each iterate, given by
a neural network, is subsumed into the (slightly larger) network representing the subsequent iterate.
The key to our analysis is to bound both (i) the growth in network size across consecutive iterates;
and (ii) the total number of iterates required.

Organization of the paper We introduce the required notation along with some mathematical
preliminaries on PDEs in Section 4. The problem setting and formal statement of the main result are
provided in Section 5. Finally, we provide the proof of the main result in Section 6.

3 Prior Work

Among the first papers to leverage neural networks to approximate solutions to PDEs with boundary
conditions are [23], [24], and [29]. However, these methods discretize the input space and thus are not

1Here, div denotes the divergence operator. Given a vector field F : Rd → Rd, div(F) = ∇·F =
∑d

i=1
∂Fi
∂xi

2

suitable for high-dimensional input spaces. More recently, mesh-free neural network approaches have
been proposed for high-dimensional PDEs [17, 34, 35], achieving impressive empirical results in
various applications. [37] design a loss function that penalizes failure to satisfy the PDE, training their
network on minibatches sampled uniformly from the input domain. They also provide a universal
approximation result, showing that for sufficiently regularized PDEs, there exists a multilayer network
that approximates its solution. However, they do not comment on the complexity of the neural network
or how it scales with the input dimension. [20] also prove universal approximation power, albeit
with networks of size exponential in the input dimension. Recently, [16, 19] provided a better-than-
exponential dependence on the input dimension for some special parabolic PDEs, for which the
simulating a PDE solver by a neural network is straightforward.

Several recent works [5, 22, 28, 27] show (experimentally) that a single neural network can solve
for an entire family of PDEs. They approximate the map from a PDE’s parameters to its solution,
potentially avoiding the trouble of retraining for every set of coefficients. Among these, only [22]
provides theoretical grounding. However, they assume the existence of a finite low-dimensional space
with basis functions that can approximate this parametric map—and it is unclear when this would
obtain. Our work proves the existence of such maps, under the assumption that the family of PDEs
has coefficients described by neural networks with a fixed architecture (Section 7).

In the work most closely related to ours, [15] provides approximation rates polynomial in the input
dimension d for the Poisson equation (a special kind of linear elliptic PDE) with Dirichlet boundary
conditions. They introduce a walk-on-the-sphere algorithm, which simulates a stochastic differential
equation that can be used to solve a Poisson equation with Dirichlet boundary conditions (see, e.g.
[31]’s Theorem 9.13). The rates provided in [15] depend on the volume of the domain, and thus
depend, implicitly, exponentially on the input dimension d. Our result considers the boundary
condition for the PDE and is independent of the volume of the domain. Further, we note that our
results are defined for a more general linear elliptic PDE, of which the Poisson equation is a special
case.

4 Notation and Definitions

We now introduce several key concepts from PDEs and some notation. For any open set Ω ⊂ Rd, we
denote its boundary by ∂Ω and denote its closure by Ω̄ := Ω ∪ ∂Ω. By C0(Ω), we denote the space
of real-valued continuous functions defined over the domain Ω. Furthermore, for k ∈ N, a function g
belongs to Ck(Ω) if all partial derivatives ∂αg exist and are continuous for any multi-index α, such
that |α| ≤ k. Finally, a function g ∈ C∞(Ω) if g ∈ Ck(Ω) for all k ∈ N. Next, we define several
relevant function spaces:

Definition 2. For any k ∈ N ∪ {∞}, Ck0 (Ω) := {g : g ∈ Ck(Ω), supp(g) ⊂ Ω}.
Definition 3. For a domain Ω, the function space L2(Ω) consists of all functions g : Ω → R, s.t.

‖g‖L2(Ω) <∞ where ‖g‖L2(Ω) =
(∫

Ω
|g(x)|2dx

) 1
2 . This function space is equipped with the inner

product

〈g, h〉L2(Ω) =

∫
Ω

g(x)h(x)dx.

Definition 4. For a domain Ω and a function g : Ω → R, the function space L∞(Ω) is defined
analogously, where ‖g‖L∞(Ω) = inf{c ≥ 0 : |g(x)| ≤ c for almost all x ∈ Ω}.
Definition 5. For a domain Ω and m ∈ N, we define the Hilbert space Hm(Ω) as

Hm(Ω) := {g : Ω→ R : ∂αg ∈ L2(Ω), ∀α s.t. |α| ≤ m}

Furthermore, Hm(Ω) is equipped with the inner product, 〈g, h〉Hm(Ω) =
∑
|α|≤m

∫
Ω

(∂αg)(∂αh)dx

and the corresponding norm

‖g‖Hm(Ω) =

 ∑
|α|≤m

‖∂αg‖2L2(Ω)

 1
2

.

Definition 6. The closure of C∞0 (Ω) in Hm(Ω) is denoted by Hm
0 (Ω).

3

Informally, Hm
0 (Ω) is the set of functions belonging to Hm(Ω) that can be approximated by a

sequence of functions φn ∈ C∞0 (Ω). This also implies that if a function g ∈ Hm
0 (Ω), then g(x) = 0

for all x ∈ ∂Ω. This space (particularly with m = 1) is often useful when analyzing elliptic PDEs
with Dirichlet boundary conditions.
Definition 7 (Weak Solution). Given the PDE in Definition 1, if f ∈ L2(Ω), then a function
u : Ω→ R solves the PDE in a weak sense if u ∈ H1

0 (Ω) and for all v ∈ H1
0 (Ω), we have∫

Ω

(A∇u · ∇v + cuv) dx =

∫
Ω

fvdx (1)

The left hand side of (1) is also equal to 〈Lu, v〉L2(Ω) for all u, v ∈ H1
0 (Ω) (see Lemma 6), whereas,

following the definition of the L2(Ω) norm, the right side is simply 〈f, v〉L2(Ω). Having introduced
these preliminaries, we now introduce some important facts about linear PDEs that feature prominently
in our analysis.
Proposition 1. For the PDE in Definition 1, if f ∈ L2(Ω) the following hold:

1. The solution to Equation (1) exists and is unique.

2. The weak solution is also the unique solution of the following minimization problem:

u? = argmin
v∈H1

0 (Ω)

J(v) := argmin
v∈H1

0 (Ω)

{
1

2
〈Lv, v〉L2(Ω) − 〈f, v〉L2(Ω)

}
. (2)

This proposition is standard (we include a proof in the Appendix, Section A.1 for completeness) and
states that there exists a unique solution to the PDE (referred to as u?), which is also the solution we
get from the variational formulation in (2). In this work, we introduce a sequence of functions that
minimizes the loss in the variational formulation.
Definition 8 (Eigenvalues and Eigenfunctions, [11]). Given an operator L, the tuples (λ, ϕ)∞i=1,
where λi ∈ R and ϕi ∈ H1

0 (Ω) are (eigenvalue, eigenfunction) pairs that satisfy Lϕ = λϕ, for all
x ∈ Ω. Since ϕ ∈ H1

0 (Ω), we know that ϕ|∂Ω = 0. The eigenvalue can be written as

λi = inf
u∈Xi

〈Lu, u〉L2(Ω)

‖u‖2L2(Ω)

, (3)

where Xi := span{ϕ1, . . . , ϕi}⊥ = {u ∈ H1
0 (Ω) : 〈u, ϕj〉L2(Ω) = 0 ∀j ∈ {1, · · · , i}} and

0 < λ1 ≤ λ2 ≤ · · · . Furthermore, we define by Φk the span of the first k eigenfunctions of L, i.e.,
Φk := span{ϕ1, · · · , ϕk}.

We note that since the operator L is self-adjoint and elliptic (in particular, L−1 is compact), the
eigenvalues are real and countable. Moreover, the eigenfunctions form an orthonormal basis of
H1

0 (Ω) (see [11], Section 6.5).

5 Main Result

Before stating our results, we provide the formal assumptions on the PDEs of interest:

Assumptions:

(i) Smoothness: We assume that the coefficient A ∈ Ω → Rd×d is a symmetric ma-
trix valued function, i.e., A = (aij(x)) and aij(x) ∈ L∞(Ω) is three times differ-
entiable for all i, j ∈ [d]. Furthermore, the function c ∈ L∞(Ω) is twice differen-
tiable and c(x) ≥ ζ > 0 for all x ∈ Ω . We define a constant C := (2d2 +
1) max

{
maxα:|α|≤3 maxi,j ‖∂αaij‖L∞(Ω),maxα:|α|≤2 ‖∂αc‖L∞(Ω)

}
. Further, the func-

tion f ∈ L2(Ω) is infinitely differentiable and we assume there exists a function fspan ∈ Φk,
such that for any multi-index α, ‖∂αf − ∂αfspan‖L2(Ω) ≤ εspan.

(ii) Ellipticity: There exist constants M ≥ m > 0 such that, for all x ∈ Ω and ξ ∈ Rd,

m‖ξ‖2 ≤
d∑

i,j=1

aij(x)ξiξj ≤M‖ξ‖2.

4

(iii) Neural network approximability: There exist neural networks Ã and c̃ with NA, Nc ∈ N
parameters, respectively, that approximate the functions A and c, i.e., ‖A− Ã‖L∞(Ω) ≤ εA
and ‖c − c̃‖L∞(Ω) ≤ εc, for small εA, εc ≥ 0. We assume that for all u ∈ H1

0 (Ω) the
operator L̃ defined as,

L̃u = −div(Ã∇u) + c̃u. (4)

is elliptic with (λ̃i, ϕ̃i)
∞
i=1 (eigenvalue, eigenfunction) pairs. We also assume that there

exists a neural network fnn ∈ C∞ with Nf ∈ N parameters such that for any multi-index
α, ‖∂αf − ∂αfnn‖L2(Ω) ≤ εnn. By Σ, we denote the set of all (infinitely differentiable)
activation functions used by networks Ã, c̃, and fnn. By Σ′, we denote the set that contains
all the n-th order derivatives of the activation functions in Σ, ∀n ∈ N0

Intuitively, ellipticity of L in a linear PDE Lu = f is analogous to positive definiteness of a matrix
Q ∈ Rd in a linear equation Qx = k, where x, k ∈ Rd.

In (iii), we assume that the coefficients A and c, and the function f can be approximated by neural
networks. While this is true for any smooth functions given sufficiently large NA, Nc, Nf , our results
are most interesting when these quantities are small (e.g. subexponential in the input dimension
d). For many PDEs used in practice, approximating the coefficients using small neural networks is
straightforward. For example, in heat diffusion (whose equilibrium is defined by a linear elliptic
PDE) A(x) defines the conductivity of the material at point x. If the conductivity is constant, then
the coefficients can be written as neural networks with O(1) parameters.

Intuitively, our assumption (iii) that there exists an fspan in H1
0 (Ω) that lies in the span of the low-

lying k eigenfunctions of the operator L can be thought of as a smoothness condition on f . For
instance, if L = −∆ (the Laplacian operator), the Dirichlet form satisfies

〈Lu,u〉L2(Ω)

‖u‖2
L2(Ω)

=
‖∇u‖L2(Ω)

‖u‖L2(Ω)
,

so eigenfunctions corresponding to higher eigenvalues tend to exhibit a higher degree of spikiness.
The reader can also think of the eigenfunctions corresponding to larger k as Fourier basis functions
corresponding to higher frequencies.

Finally, in (i) and (iii), while the requirement that the function pairs (f , fnn) and (f , fspan) are
close not only in their values, but their derivatives as well is a matter of analytical convenience, our
key results do not necessarily depend on this precise assumption. Alternatively, we could replace
this assumption with similar (but incomparable) conditions: e.g., we can also assume closeness
of the values and a rapid decay of the L2 norms of the derivatives. We require control over the
derivatives because our method’s gradient descent iterations involve repeatedly applying the operator
L to f—which results in progressively higher derivatives.

We can now formally state our main result:
Theorem 1 (Main Theorem). Consider a linear elliptic PDE satisfying Assumptions (i)-(iii), and
let u? ∈ H1

0 (Ω) denote its unique solution. If there exists a neural network u0 ∈ H1
0 (Ω) with N0

parameters, such that ‖u? − u0‖L2(Ω) ≤ R, for some R <∞, then for every ε > 0, there exists a
neural network uε with size

O
(
d2T (N0 +NA) + T (Nf +Nc)

)
such that ‖u? − uε‖L2(Ω) ≤ ε+ ε̃ where,

ε̃ :=
εspan

λ1
+
δ

λ1

23/2‖f‖L2(Ω)

γ − δ
+δ‖u?‖L2(Ω)+(max{1, T 2Cη})T

(
εspan + εnn +

23/2δ‖f‖L2(Ω)

γ − δ

)

and κ = λ̃k+λ̃1

λ̃k−λ̃1
, η = 2

λ̃1+λ̃k
, T = O

(
log(R/ε)

log κ

)
, and δ = 1

min{m/εA,ζ/εc} and α is a multi-index.

Furthermore, the activation functions used in uε belong to the set Σ ∪ Σ′ ∪ {ρ} where ρ(y) = y2 for
all y ∈ R is the square activation function.

This theorem shows that given an initial neural network u0 ∈ H1
0 (Ω) containing N0 parameters, we

can recover a neural network that is ε close to the unique solution u?. The number of parameters in uε
depend on how close the initial estimate u0 is to the solution u?, and N0. This results in a trade-off,
where better approximations may require more parameters, compared to a poorer approximation with
fewer parameters.

5

Note that ε can be taken arbitrarily close to 0, while ε̃ is a “bias” error term that does not go to 0. The
first three terms in the expression for ε̃ result from bounding the difference between the solutions to
the equations Lu = f and L̃u = fspan, whereas the third term is due to difference between f and
fnn and the fact that our proof involves simulating the gradient descent updates with neural networks.

The term T = O
(

log(R/ε)
log(κ)

)
comes from the fact that we are simulating T steps of a gradient

descent-like procedure on a strongly convex loss with condition number κ to reach an ε-approximate
optimum. The parameters λk and λ1 can be thought of as the effective Lipschitz and strong-convexity
constants of the loss. Finally, to give a sense of what R looks like, we show in Corollary 2 (see
Section B in the Appendix) that if u0 is initialized to be identically zero then R =

‖f‖L2(Ω)

λ1
.

We make few remarks about the theorem statement:
Remark 1. While we state our convergence results in L2(Ω) norm, our proof works for the H1

0 (Ω)
norm as well. This is because in the space defined by the top-k eigenfunctions of the operator L,
L2(Ω) and H1

0 (Ω) norm are equivalent (shown in Proposition 2). Further, note that even though we
have assumed that u? ∈ H1

0 (Ω) is the unique solution of (1) from the boundary regularity condition,
we have that u? ∈ H2(Ω) (see [11], Theorem 4 in Chapter 6). This ensures that the solution u? is
twice differentiable as well.
Remark 2. To get a sense of the scale of λ1 and λk, when L = −∆ (the Laplacian operator), the

eigenvalue λ1 = infu∈H1
0 (Ω)

‖∇u‖L2(Ω)

‖u‖L2(Ω)
= 1

Cp
, where Cp is the Poincaré constant (see Theorem 2 in

Appendix). For geometrically well-behaved sets Ω (e.g. convex sets with a strongly convex boundary,
like a sphere), Cp is even dimension-independent. Further from the Weyl’s law operator ([11], Section
6.5) we have

lim
k→∞

λ
d/2
k

k
=

(2π)d

vol(Ω)α(d)

where α(d) is the volume of a unit ball in d dimensions. So, if vol(Ω) ≥ 1/α(d), λk grows as
O(k2/d), which is a constant so long as log k � d.
Remark 3. The choice of activation functions (in particular, the requirement that Σ only contains
differentiable functions) is for mathematical convenience. Namely, by standard results from approx-
imation theory [41, 4] one can approximate a neural network with one choice of nonlinearity via
a (comparably sized) neural network with another choice of nonlinearity (under mild assumptions)
by incurring a dimension-independent increase in size. Thus, if the coefficients are approximable
by a neural network with a non-differentiable activation function, they can also be approximated by
a slightly larger network with a differentiable activation over any compact domain. Similarly, the
activations on the network resulting from Theorem 1 can be replaced by a different activation at the
expense of a slight blowup in size. Details are included in Appendix C.4.

6 Proof of Main Result

First, we provide some intuition behind the proof, via an analogy between a uniformly elliptic
operator and a positive definite matrix in linear algebra. We can think of finding the solution to
the equation Lu = f for an elliptic L as analogous to finding the solution to the linear system of
equations Qx = k, where Q is a d×d positive definite matrix, and x and k are d-dimensional vectors.
One way to solve such a linear system is by minimizing the strongly convex function ‖Qx − b‖2
using gradient descent. Since the objective is strongly convex, after O(log(1/ε)) gradient steps, we
reach an ε-optimal point in an l2 sense.

Our proof uses a similar strategy. First, we show that for the operator L, we can define a sequence
of functions that converge to an ε-optimal function approximation (in this case in the L2(Ω) norm)
after O(log(1/ε) steps—similar to the rate of convergence for strongly convex functions. Next,
we inductively show that each iterate in the sequence can be approximated by a small neural
network. More precisely, we show that given a bound on the size of the t-th iterate ut, we can,
in turn, upper bound the size of the (t + 1)-th iterate ut+1 because the update transforming ut to
ut+1 can be simulated by a small neural network (Lemma 4). These iterations look roughly like
ut+1 ← ut − η(Lut − f), and we use a “backpropagation” lemma (Lemma 7) which bounds the
size of the derivative of a neural network.

6

6.1 Defining a Convergent Sequence

The rough idea is to perform gradient descent in L2(Ω) [30, 12, 13], and define a convergent
sequence whose iterates converge to u? in L2(Ω) norm (and following Remark 1, in H1

0 (Ω) as well).
However, there are two obstacles to defining the iterates as simply ut+1 ← ut − η(Lut − f), (1) L is
unbounded—so the standard way of choosing a step size for gradient descent (roughly the ratio of
the minimum and maximum eigenvalues of L) would imply choosing a step size η = 0, and (2) L
does not necessarily preserve the boundary conditions, so if we start with ut ∈ H1

0 (Ω), it may be that
Lut − f does not even lie in H1

0 (Ω).

We resolve both issues by restricting the updates to the span of the first k eigenfunctions of L. More
concretely, as shown in Lemma 1, if a function u in Φk, then the function Lu will also lie in Φk. We
also show that within the span of the first k eigenfunctions, L is bounded (with maximum eigenvalue
λk), and can therefore be viewed as an operator from Φk to Φk. Further, we use fspan instead of f
in our updates, which now have the form ut+1 ← ut − η(Lut − fspan). Since fspan belongs to Φk,
for a ut in Φk the next iterate ut+1 will now remain in Φk. Continuing the matrix analogy, we can
choose the usual step size of η = 2

λ1+λk
. Precisely, we show:

Lemma 1. Let L be an elliptic operator. Then, for all v ∈ Φk it holds:

1. Lv ∈ Φk.

2. λ1‖v‖L2(Ω) ≤ 〈Lv, v〉L2(Ω) ≤ λk‖v‖L2(Ω)

3.
∥∥∥(I − 2

λk+λk
L
)
u
∥∥∥
L2(Ω)

≤ λk−λ1

λk+λ1
‖u‖L2(Ω)

The proof of this lemma is provided in Section C.1.

Further, note that we will use a slight variant of the updates and instead set ut+1 ← ut−η(L̃u−f̃span)

as the iterates of the convergent sequence. Here, the operator L̃ (defined in (4)) has the neural network
approximations of A and c as its coefficients, and f̃span is a function that lies in span of the first k
eigenfunctions of L̃ (denoted by Φ̃k), such that ‖fspan− f̃span‖L2(Ω) is small (for an exact statement,
see Lemma 11 in the Appendix). In Section 6.2, we will see that updates defined thusly will be more
convenient to simulate via a neural network.

The sequence defined so far satisfies two important properties. First, the convergence point of the
sequence and u∗, the solution to the original PDE, are not too far from each other. Concretely:

Lemma 2. Assume that ũ?span is the solution to the PDE L̃u = f̃span, where f̃span : H1
0 (Ω) → R

and f̃span ∈ Φ̃k. Given Assumptions (i)-(iii), we have ‖u? − ũ?span‖L2(Ω) ≤ ε, such that ε =

εspan

λ1
+ δ

λ1

23/2‖f‖L2(Ω)

γ−δ + δ‖ũ?span‖L2(Ω), where γ = 1
λk
− 1

λk+1
and δ = 1

min{m/εA,ζ/εc} .

The proof for Lemma 2 is provided in the Appendix (Section D.1). Each of the three terms in the
final error captures different sources of perturbation: the first term comes from approximating f by
fspan; the second term comes from applying Davis-Kahan [8] to bound the “misalignment” between
the eigenspaces Φk and Φ̃k (hence, the appearance of the eigengap between the k and (k + 1)-st
eigenvalue of L−1); the third term is a type of “relative” error bounding the difference between the
solutions to the PDEs Lu = f̃span and L̃u = f̃span.

The second property of the sequence of functions is that they converge exponentially fast. The rate is
characterized in the following lemma:

Lemma 3 (Convergence of gradient descent in L2). Let ũ?span denote the unique solution to the PDE
L̃u = f̃span, where f̃span ∈ Φ̃k, and the operator L̃ satisfies the conditions in Lemma 1. Then for
any u0 ∈ H1

0 (Ω) such that u0 ∈ Φ̃k, we define the sequence

ut+1 ← ut −
2

λ̃1 + λ̃k
(L̃ut − f̃span) (t ∈ N) (5)

7

where for all t ∈ N, ut ∈ H1
0 (Ω). Then for any ε ≥ 0 we have ‖uT − ũ?span‖L2(Ω) ≤ ε after T

iterations where,

T ≥
log
(‖u0−ũ?span‖L2(Ω)

ε

)
log
(
λ̃k+λ̃1

λ̃k−λ̃1

)
The proof for Lemma 3 is similar to the analysis of the convergence time of gradient descent for
strongly convex losses and can be found in Section C.2 of the Appendix. Finally, combining the
results from Lemma 2 and Lemma 3 via triangle inequality, we have:

‖u? − uT ‖L2(Ω) ≤ ‖u? − ũ?span‖L2(Ω) + ‖ũ?span − uT ‖L2(Ω)

and the first term on the RHS subsumes the first three summands of ε̃ defined in Theorem 1.

6.2 Approximating iterates by neural networks

In Lemma 3, we show that there exists a sequence of functions (5) which converge fast to a function
close to u?. The next step in the proof is to approximate the iterates by neural networks.

The main idea is as follows. Suppose first the iterates ut+1 = ut − η(L̃ut − f̃span) are such that
f̃span is exactly representable as a neural network. Then, the iterate ut+1 can be written in terms of
three operations performed on ut, a and f : taking derivatives, multiplication and addition. Moreover,
if g is representable as a neural network with N parameters, the coordinates of the vector∇g can be
represented by a neural network withO(N) parameters. This is a classic result (Lemma 7), essentially
following from the backpropagation algorithm. Finally, addition or multiplication of two functions
representable as neural networks with sizes N1, N2 can be represented as neural networks with size
O(N1 +N2) (see Lemma 8).

Using these facts, we can write down a recurrence upper bounding the size of neural network
approximation ut+1, denoted by ût+1, in terms of the number of parameters in ût (which is the neural
network approximation to ut). Formally, we have:
Lemma 4 (Recursion Lemma). Given the Assumptions (i)-(iii), consider the update equation

ût+1 ← ût −
2

λ̃1 + λ̃k

(
L̃ût − fnn

)
(6)

If at step t, ût : Rd → R is a neural network with Nt parameters, then the function ût+1 is a neural
network with O(d2(NA +Nt) +Nt +Nf̃ +Nc) parameters.

Proof. Expand the update ût+1 ← ût − η
(
L̃ût − fnn

)
as follows:

ût+1 ← ût − η

 d∑
i,j=1

ãij∂ij ût +

d∑
j=1

(
d∑
i=1

∂iãij

)
∂j ût + c̃ût − fnn

 .

Using Lemma 7, ∂ij ût, ∂j ût and ∂iãij can be represented by a neural network with O(Nt), O(Nt)
and O(NA) parameters, respectively. Further, ∂iãij∂ju and ãij∂ij û can be represented by a neural
network with O(NA +Nt) parameters, and c̃ût can be represented by a network with O(Nt +Nc)
parameters, from Lemma 8. Hence ût+1 can be represented in O(d2(NA +Nt) +Nf +Nc +Nt)
parameters. Note that, throughout the entire proofs O hides independent constants.

Combining the results of Lemma 3 and Lemma 4, we can get a recurrence for the number of
parameters required to represent the neural network ût:

Nt+1 ≤ d2Nt + d2NA +Nt +Nf̃ +Nc

Unfolding this recurrence, we get NT ≤ d2TN0 + d2(dT−1)
d2−1 NA + T (Nf) +Nc).

Hence, the total number of parameters required for a neural network to approximate a solution to a
PDE of the form in Definition 1

O

(
d2

log

 ‖u0−ũ
?
span‖L2(Ω)
ε

log κ (N0 +NA) +

log
(‖u0−ũ?span‖L2(Ω)

ε

)
log κ

(Nf +Nc)

)

8

Finally, we have to deal with the fact that f̃span is not exactly a neural network, but only approximately
so. The error due to this discrepancy can be characterized through the following lemma:

Lemma 5 (Error using fnn). Consider the update equation in (6), where fnn is a neural network
with Nf . Then the neural network ût approximates the function ut such that ‖ut − ût‖L2(Ω) ≤ ε

(t)
nn

where ε(t)nn is

O

(
(max{1, t2ηeC})t

(
εspan + εnn +

23/2δ‖f‖L2(Ω)

γ − δ

))
where δ = 1

min{m/εA,ζ/εc} , γ = 1
λk
− 1

λk+1
, and α is a multi-index.

The main strategy to prove this lemma involves tracking the “residual” non-neural-network part of the
iterates. Precisely, we can write the update ut+1 = ut−η(L̃ut− (fnn +r)), for a “residual” function
r = f̃span − fnn. If ut was exactly a neural network, the first part of the update, ut − η(L̃ut − fnn)
can be written as a neural network as in Lemma 4, and ηr can be treated as an error. Thus, in
order to bound the error for using fnn instead of f̃span, we maintain a decomposition of ut into a
neural network part, and a residual part, and inductively bound the total residual part. Given the
recurrent structure of our updates, at each iteration t, there will be an accumulation of the earlier t− 1
applications of the operator L̃, that results in an increasing number of higher order derivatives of r to
be bounded at each step. This is why we require that fnn is close to f not only in the L2 sense but
also in terms of their higher order derivatives.

7 Applications to Learning Operators

A number of recent works attempt to simultaneously approximate the solutions for an entire family of
PDEs by learning a parametric map that takes as inputs (some representation of) the coefficients of a
PDE and returns its solution [5, 28, 27]. For example, given a set of observations that {aj , uj}Nj=1,
where each aj denotes a coefficient of a PDE with corresponding solution uj , they learn a neural
network G such that for all j, uj = G(aj). Our parametric results provide useful insights for why
simultaneously solving an entire family of PDEs with a single neural network G is possible in the
case of linear elliptic PDEs.

Consider the case where the coefficients aj in the family of PDEs are given by neural networks
with a fixed architecture, but where each instance of a PDE is characterized by a different setting
of the weights in the models representing the coefficients. Lemma 4 shows that each iteration of
our sequence (5) constructs a new network containing both the current solution and the coefficient
networks as subnetworks. We can view our approximation as not merely approximating the solution
to a single PDE but to every PDE in the family, by treating the coefficient networks as placeholder
architectures whose weights are provided as inputs. Thus, our construction provides a parametric
map between the coefficients of an elliptic PDE in this family and its solution.

8 Conclusion and Future Work

We derive parametric complexity bounds for neural network approximations for solving linear elliptic
PDEs with Dirichlet boundary conditions, whenever the coefficients can be approximated by are
neural networks with finite parameter counts. By simulating gradient descent in function spaces using
neural networks, we construct a neural network that approximates the solution of a PDE. We show
that the number of parameters in the neural network depends on the parameters required to represent
the coeffcients and has a poly(d) dependence on the dimension of the input space, therefore avoiding
the curse of dimensionality.

An immediate open question is related to the tightening our results: our current error bound is
sensitive to the neural network approximation lying close to Φk which could be alleviated by relaxing
(by adding some kind of “regularity” assumptions) the dependence of our analysis on the first k
eigenfunctions. Further, the dependencies in the exponent of d on R and κ in parametric bound may
also be improvable. Finally, the idea of simulating an iterative algorithm by a neural network to
derive a representation-theoretic result is broadly applicable, and may be a fertile ground for further
work, both theoretically and empirically, as it suggest a particular kind of weight tying.

9

9 Acknowledgement

This paper is based upon work funded and supported by the Department of Defense under contract
FA8702-15-D-0002

References
[1] W. F. Ames. Numerical methods for partial differential equations. Academic press, 2014.

[2] J. D. Anderson and J. Wendt. Computational fluid dynamics, volume 206. Springer, 1995.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

[5] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model reduction and neural
networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

[6] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of political
economy, 81(3):637–654, 1973.

[7] J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of partial dif-
ferential equations of the heat-conduction type. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 43, pages 50–67. Cambridge University Press, 1947.

[8] C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM Journal
on Numerical Analysis, 7(1):1–46, 1970.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[10] M. Ehrhardt and R. E. Mickens. A fast, stable and accurate numerical method for the black–
scholes equation of american options. International Journal of Theoretical and Applied Finance,
11(05):471–501, 2008.

[11] L. C. Evans. Partial Differential Equations. graduate studies in mathematics. american
mathematical society, 1998. ISBN 9780821807729.

[12] I. Faragó and J. Karátson. The gradient-finite element method for elliptic problems. Computers
& Mathematics with Applications, 42(8-9):1043–1053, 2001.

[13] I. Faragó and J. Karátson. Numerical solution of nonlinear elliptic problems via preconditioning
operators: Theory and applications, volume 11. Nova Publishers, 2002.

[14] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. 2001.

[15] P. Grohs and L. Herrmann. Deep neural network approximation for high-dimensional elliptic
pdes with boundary conditions. arXiv preprint arXiv:2007.05384, 2020.

[16] P. Grohs, F. Hornung, A. Jentzen, and P. Von Wurstemberger. A proof that artificial neural
networks overcome the curse of dimensionality in the numerical approximation of black-scholes
partial differential equations. arXiv preprint arXiv:1809.02362, 2018.

[17] J. Han, A. Jentzen, and E. Weinan. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

[18] K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks. Neural networks, 3(5):551–560,
1990.

10

[19] A. Jentzen, D. Salimova, and T. Welti. A proof that deep artificial neural networks overcome the
curse of dimensionality in the numerical approximation of kolmogorov partial differential equa-
tions with constant diffusion and nonlinear drift coefficients. arXiv preprint arXiv:1809.07321,
2018.

[20] Y. Khoo, J. Lu, and L. Ying. Solving parametric pde problems with artificial neural networks.
arXiv preprint arXiv:1707.03351, 2017.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[22] G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider. A theoretical analysis of deep neural
networks and parametric pdes. arXiv preprint arXiv:1904.00377, 2019.

[23] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998.

[24] I. E. Lagaris, A. C. Likas, and D. G. Papageorgiou. Neural-network methods for boundary value
problems with irregular boundaries. IEEE Transactions on Neural Networks, 11(5):1041–1049,
2000.

[25] P. D. Lax and A. N. Milgram. Parabolic equations, volume 33 of annals of mathematics studies,
1954.

[26] R. J. LeVeque. Finite difference methods for ordinary and partial differential equations:
steady-state and time-dependent problems. SIAM, 2007.

[27] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020.

[28] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandku-
mar. Neural operator: Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485, 2020.

[29] A. Malek and R. S. Beidokhti. Numerical solution for high order differential equations using a
hybrid neural network—optimization method. Applied Mathematics and Computation, 183(1):
260–271, 2006.

[30] J. Neuberger. Sobolev gradients and differential equations. Springer Science & Business Media,
2009.

[31] B. Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

[32] M. N. Özişik, H. R. Orlande, M. J. Colaço, and R. M. Cotta. Finite difference methods in heat
transfer. CRC press, 2017.

[33] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[34] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part i): Data-
driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561,
2017.

[35] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[36] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

11

[37] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential
equations. Journal of computational physics, 375:1339–1364, 2018.

[38] M. Telgarsky. Neural networks and rational functions. arXiv preprint arXiv:1706.03301, 2017.

[39] R. Temam. Navier-Stokes equations: theory and numerical analysis, volume 343. American
Mathematical Soc., 2001.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[41] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

	Introduction
	Overview of Results
	Prior Work
	Notation and Definitions
	Main Result
	Proof of Main Result
	Defining a Convergent Sequence
	Approximating iterates by neural networks

	Applications to Learning Operators
	Conclusion and Future Work
	Acknowledgement
	Brief Overview of Partial Differential Equations
	Proof of Proposition 1

	Missing Proofs for Section 5
	Missing Proofs for Section 6
	Proof for Lemma 1
	Proof of Lemma 3
	Important Lemmas for Section 6.2
	Remarks About Activation Functions

	Perturbation Analysis
	Proof of Lemma 2
	Proof of Lemma 5

	Technical Lemmas: Perturbation Bounds
	Technical Lemmas: Manipulating Operators

