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ABSTRACT

We consider molecule generation in 3D space using language models (LMs), which
requires discrete tokenization of 3D molecular geometries. Although tokenization
of molecular graphs exists, that for 3D geometries is largely unexplored. Here,
we attempt to bridge this gap by proposing the Geo2Seq, which converts molec-
ular geometries into SFE(3)-invariant 1D discrete sequences. Geo2Seq consists
of canonical labeling and invariant spherical representation steps, which together
maintain geometric and atomic fidelity in a format conducive to LMs. Our exper-
iments show that, when coupled with Geo2Seq, various LMs excel in molecular
geometry generation, especially in controlled generation tasks.

1 INTRODUCTION

The generation of novel molecules with desired properties is an important step in drug discovery.
Specifically, the design of three-dimensional (3D) molecular geometries is particularly important
because 3D information plays a critical role in determining many molecular properties. Different gen-
erative models have been used for 3D molecule generation. Early studies such as G-SchNet (Gebauer
et al.,2019) use autoregressive generative models to generate 3D molecules by sequentially placing
atoms in 3D space. It was observed that these models often yield results with low chemical validity.
Recently, diffusion models (Hoogeboom et al., 2022; Xu et al.,[2023a) achieve better performance in
3D molecule generation tasks. However, they typically need thousands of diffusion steps, resulting in
long generation time.

Language models (LMs) (Vaswani et al., 2017} Devlin et al., 2018} | Brown et al., 2020; |Gu et al.,
2021), with their streamlined data processing and powerful generation capabilities, have shown
success across various domains, particularly in natural language processing (NLP). Recently, large
language models (LLMs) (Zhao et al.l|2023b)) show extraordinary capabilities in learning complex
patterns (Zhang et al.| 2024) and generating meaningful outputs (Touvron et al., |2023; |Achiam
et al.,|[2023; (Chowdhery et al.| 2023). Despite their potential, the application of LLMs to the direct
generation of 3D molecules is largely under-explored. This is primarily due to the fact that geometric
graph structures of molecular data are fundamentally different from texts. However, 3D geometric
information is crucial in molecular tasks, since different conformations of the same molecule topology
have different properties, such as per-atom forces. This gap reveals a unique challenge of how to make
use of the powerful pattern recognition and generative capabilities of LLMs to handle complicated
molecular graph structures, especially geometries. On the other hand, solutions to this challenge
with model-level modifications cannot effectively leverage the rapidly developing power of LMs.
These solutions require specific module designs, which needs to be done separately for each LM
architecture and can be infeasible for modern LMs released via APIs.

In this work, we bridge this gap by applying LMs to the task of 3D molecule generation. We
employ a novel approach translating the intricate geometry of molecules into a format that can be
effectively processed by LMs. This is achieved by our proposed tokenization method Geo2Seq, which
converts 3D molecular structures into S E/(3)-invariant one-dimensional (1D) discrete sequences.
The transformation is based on canonical labeling, which allows dimension reduction with no
information loss outside graph isomorphism groups, and invariant spherical representations, which
guarantees SE/(3)-invariance under the equivariant global frame. By doing so, we harness the
advanced sequence-processing capabilities and efficiency of LMs while retaining essential geometric
and atomic information. Note that since Geo2Seq operates solely on input data, our method is
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agnostic to the subsequent LMs used. and can seamlessly adapt to any state-of-the-art sequence
model, maximizing LM capabilities while avoiding additional architecture design or redundant
computations. When combined with powerful modern LLMs, Geo2Seq can achieve highly accurate
modeling of 3D molecular structures. In addition, Geo2Seq can benefit conditional generation
by including real-world chemical properties in sequences because modern LLMs are capable of
capturing long-context correlations to comprehend global structure and information in sequences. Our
experimental results demonstrate these advantages. We show that using different LMs with Geo2Seq
can reliably produce valid and diverse 3D molecules and outperform the strong diffusion-based
baselines by a large margin in conditional generation. These results validate the feasibility of using
LMs for 3D molecule generation and highlight their potential to aid in the discovery and design of
new molecules, paving the way for applications such as drug development and material science.

2 PRELIMINARIES AND RELATED WORK

2.1 3D MOLECULE GENERATION

In this work, we study the problem of generating 3D molecules from scratch. Note that this problem is
different from the 3D molecular conformation generation problem studied in the literature (Mansimov
et al.,|2019; |Simm & Hernandez-Lobatol 2020; Gogineni et al., 2020; [ Xu et al., 2021a3b} |Shi et al.,
2021} |Ganea et al.| 2021}  Xu et al., 2022} Jing et al., 2022), where 3D molecular conformations are
generated from 2D molecular graphs. We represent a 3D molecule with n atoms in the form of a
3D point cloud (i.e., a set of points with different positions in 3D Euclidean space) as G = (z, R).
Here, z = [21, -+ , 2,] € Z™ is the atom type vector where z; is the atomic number (nuclear charge
number) of the i-th atom, and R = [ry,--- ,7,] € R3*" is the atom coordinate matrix, where 7;
is the 3D coordinate of the i-th atom. Note that 3D atom coordinates R are commonly called 3D
molecular conformations or geometries in chemistry. We aim to solve the following two generation
tasks in this work:

* Random generation. Given a 3D molecule dataset G = {G}/L,, we aim to learn an unconditional
generative model py(-) on G so that the model can generate valid and diverse 3D molecules.

* Controllable generation. Given a 3D molecule dataset G = {(G}, s;)}7.; where s; is a certain
property value of G;, we aim to learn a conditional generative model py(-|s) on G so that for a
given s, the model can generate 3D molecules whose quantum property values are s. The equivalent
task is also known as “conditional generation", while in this work we follow |Hoogeboom et al.
(2022) to use the term “controllable generation".

A major technical challenge of 3D molecule generation lies in maintaining invariant to SE(3)
transformations, including rotation and translation. In other words, ideal models should assign the
same probability to G = (2, R) and G’ = (z, R') if R" = QR + b1”, where 1 is an n-dimensional
vector whose elements are all one, b € R? is an arbitrary translation vector, and Q € R3*3 is
a rotation matrix satisfying QQT = I,|Q| = 1. To achieve SE(3)-invariance in 3D molecule
generation, existing studies have proposed various strategies. Early studies propose to generate 3D
atom positions by S E(3)-invariant features, such as interatomic distances, angles and torsion angles.
They construct 3D molecular structures through either atom-by-atom generation (Gebauer et al.,
2019; Luo & Ji,2022a) or generating full distance matrices (Hoffmann & Noé, |2019) in one shot.
Recently, more and more studies have applied generative models to generate 3D atom coordinate
directly. These studies include E-NFs (Satorras et al.,[2021a) and EDM (Hoogeboom et al., |2022),
which combine equivariant atom coordinate alignment process with equivariant EGNN (Satorras
et al.| 2021b) model for 3D molecule generation. Following EDM, many other studies have proposed
to improve diffusion-based 3D molecule generation frameworks by stochastic differential equation
(SDE) based diffusion models (Wu et al.| [2022; Bao et al., [2023)) or latent diffusion models (Xu et al.,
2023a). Besides, some recent studies (Qiang et al.,|2023)) have explored generating 3D molecules
through generating and connecting fragments first, then aligning atom coordinates with software like
RDKit. We refer readers to|Du et al.|(2022);|Zhang et al.|(2023b)) for a comprehensive review.

While generating 3D molecules in the form of 3D point clouds have been well studied, few studies
have tried applying powerful language models to this problem. In this work, different from mainstream
methods, we convert 3D point clouds to SE(3)-invariant 1D discrete sequences, and show that
generating sequences by LMs achieves promising performance in the 3D molecule generation task.
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2.2 CHEMICAL LANGUAGE MODEL

LMs have catalyzed significant advancements across a spectrum of fields. Recently, LLMs have
revolutionized the landscape of NLP (Touvron et al.,|2023; |Achiam et al., 2023} |(Chowdhery et al.,
2023) and beyond, extending to fields such as computer vision, speech and acoustics, scientific
discovery, and multi-modalities. Drawing inspiration from NLP methodologies, chemical language
models (CLMs) have emerged as a competent way for representing molecules (Bran & Schwaller,
2023} Janakarajan et al.l 2023} Bajorath, 2024} [Zhang et al., 2024). Due to the superiority LMs
show in generation tasks, most CLMs are designed as generative models. Variants of LMs have been
adapted for molecular science, producing a variety of works such as MolGPT (Bagal et al.,|2021),
MolReGPT (Li et al.l2023a), MolT5 (Edwards et al.| 2022), MoleculeGPT (Zhang et al., [2023al),
InstructMol (Cao et al.|[2023)), DrugGPT (Li et al., 2023b)), and many others.

CLMs learn the chemical vocabulary and syntax used to represent molecules, as well as the condi-
tional probabilities of character occurrence at given positions of sequences depending on preceding
characters. This vocabulary covers all characters from the adopted molecule representation. All inputs
including chemical structures and properties should be converted into sequence form and tokenized
for compatibility with language models. Commonly, SMILES (Weininger, [1988) is used for this
sequential representation, although other formats like SELFIES (Krenn et al., 2019), atom type strings,
and custom strings with positional or property values are also viable options. To learn representations,
CLMs are usually pre-trained on extensive molecular sequences through self-supervised learning.
Subsequently, models are fine-tuned on more focused datasets with desired properties, such as activity
against a target protein. Generative CLMs generally adopt an autoregressive training approach of
next token prediction, i.e., iteratively predicting each subsequent token in a sequence based on the
preceding tokens. Traditional autoregressive models use the Transformer architecture with causal
self-attention (Brown et al., 2020) due to its superior efficacy, while other sequence models like
recurrent neural networks (RNNs) and state space models (SSMs) (Gu et al., 2021; Ozcelik et al.,
20245 2023)) also show considerable functionality.

Given a dataset of sequences, U = {U;,Us,--- ,Uyn}, where U; is transformed from the rep-
resentation, property conditions and/or descriptions of a molecule G; with n; nodes, let U; =
{u1,uz2, -+ ,un, } and all tokens u; belong to vocabulary V. An autoregressive CLM has param-
eters 6 encoding a distribution with conditional probabilities of each token given its predecessors,
p(U; 0) = H?;l p(ujluo : uj—1;6). The optimization process involves maximizing the probabilities

of the entire dataset p(U; 0) = Hf\il p(U;; 6). Each conditional distribution p(u;|ug : uj—1;6) is
a categorical distribution over the vocabulary size |V|; thus the loss for each term aligns with the
standard cross-entropy loss. To generate new sequences, the model samples each token sequentially
from these conditional distributions. To introduce randomness and control into generation, the sam-
pling process is typically modulated with Top-K (k) and temperature (7) hyperparameters, enabling
a balance between adherence and diversity.

Most existing CLM works consider chemical structures as well as other modalities such as natural
language captions (Bagal et al.| [2021} |L1 et al., 2023a;b Edwards et al., [2022; |Xie et al., 2023} |Chen
et al., [2023b; [Tysinger et al.,[2023}; Xu et al., 2023b; |Chen et al.| 2023a; [Pei et al., 2023} |Liu et al.,
2023b; [Wang et al., [2023)), while some focus on pure text of chemical literature (Luo et al.||[2022a)
or molecule strings (Haroon et al., [2023; Mao et al., 2023bj |Blanchard et al., 2023; Mazuz et al.|
2023} |[Fang et al., |2023}; [Kyro et al., 2023} [[zdebski et al., [2023}; |Yoshikai et al.| 2023} Wu et al., 2023},
Mao et al.,|[2023a). Notably, all these works solely consider 2D molecules for representation learning
and downstream tasks, overlooking 3D geometric structures which is crucial in many molecular
predictive and generative tasks. For example, different conformations of the same 2D molecule
have different potentials and per-atom forces. In order to use pivotal 3D information, another line
of work incorporate geometric models such as GNNs in parallel with the CLM (Xia et al., [2023};
Zhang et al.| 2023a; Cao et al., 2023; Liang et al., 2023} |Liu et al.| 2023a; [Frey et al., [2023)), which
requires additional design and training techniques to mitigate alignment issues. Some works extend
the architecture of CLM to include 3D-geometric-model-like modules in the attention block (Fuchs
et al., 2020; [Shi et al.| 2022} [Liao & Smidt, [2022; Tholke & De Fabritiis, 2021} Luo et al., [2022b;
Masters et al.,2022: [Unlii et al., 2023: Zhao et al., 2023a), capturing 3D information as positional
encodings with considerable computations and framework design. In contrast, Flam-Shepherd &
Aspuru-Guzik| (2023)) make an initial attempt showing language models trained directly on contents
of XYZ format chemical files can generate molecules with three coordinates, implying pure LMs’
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Figure 1: Overview of Geo2Seq. We use the canonical labeling order to arrange nodes in a row, fill in
the place of each node with vector [z;, d;, 6;, ¢;], and concatenate all elements into a sequence. Each
node vector contains atom type and spherical coordinates. Notably, the spherical coordinates are
S E(3)-invariant.

potential to directly explore 3D chemical space. In this work, we propose an invariant 3D molecular
sequencing algorithm, Geo2Seq, to empower CLMs with structural completeness and geometric
invariance, showing LMs’ capabilities of understanding molecules precisely in 3D space. We extend
beyond the conventional Transformer architecture of CLMs and additionally employ SSMs as LM
backbones. Furthermore, Geo2Seq operates solely on the input data, which allows independence
from model architecture and training techniques and provides reuse flexibility.

Representation techniques. Our proposed Geo2Seq leverages spherical representation and canon-
ical labeling techniques. Spherical representation has been applied in various molecule-related
tasks (Van Kempen et al} 2024)), including molecular property prediction (Liu et al.| 2022} |Gao et al.,
[2022) and molecule generation [2022b). A crucial step in using spherical representation
is defining the coordinate frame, i.e., X, y, and z axes. One straightforward approach is to directly
use the frame as for the input coordinates, i.e., (1, 0, 0) as x-axis, but this case fails to ensure
SE(3)-invariance. Instead, SphereNet (Liu et al.l 2022)) defines local frames based on a central
edge and one reference node to ensure invariance (Liu et all 2022} [Gao et all] [2022). Similarly,
G-SphereNet defines local frames based on focal atoms to compute distance and angle for model gen-
eration (Luo & Ji,[2022b). These approaches demonstrate the importance of spherical representations
in molecule-related tasks. Canonical labeling (CL) has been adopted from the graph theory and used
in molecular representation, enabling the conversion of molecules into 1D sequences. This allows for
efficient processing and analysis of chemical structures. One of the most popular canonical sequence
is canonical SMILES (Weininger et al.,[1989), which represents molecules as a string of characters
based on the Morgan Algorithm (Morgan, and additional defined rules. SELFIES provides a
more robust sting representation to overcome the limitation that some strings do not correspond to
valid molecules. However, the application of CL to 3D molecules has yet been studied.

3 TOKENIZATION OF 3D MOLECULES

A fundamental difference between LMs and other models is that LMs use discrete inputs, i.e., tokens.
In this section, we introduce our tokenization method to map input 3D molecules with atomic
coordinates to discrete token sequences appropriate for LM learning.

A main challenge in tokenization design is to develop bijective mappings between 3D molecules
and token sequences, i.e., obtaining the same token sequence for the same input 3D molecule, while
obtaining different sequences for different inputs. In this section, we present our solutions to tackle
this challenge. We first reorder the atoms in the input molecule to a canonical order (Section [3.1)),
such that any two isomorphic graphs result in the same canonical form, and any non-isomorphic
graphs yield different canonical forms. We then convert 3D Cartesian coordinates to S E/(3)-invariant
spherical representations, including distances and angles (Section[3.2). Combining them together,
we obtain our geometry informed tokenization method Geo2Seq (Section . We provide rigorous
proof of all theorems supporting the bijective mapping relation in Appendix

3.1 SERIALIZATION VIA CANONICAL ORDERING

As the first step in 3D molecule tokenization, we need to transform a graph to a 1D sequential
representation. We resort to canonical labeling as a solution for dimension reduction without
information loss.

Canonical labeling (CL), in the context of graph theory, is a process to assign a unique form to each
graph in a way that two graphs receive the same canonical form only if they are isomorphic (McKay|
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et al., [1981). The canonical form is a re-indexed version of a graph, which is unique for the
whole isomorphism class of a graph. The new indexes naturally establish the order of nodes in
the graph. The order, which we refer to as canonical labels, is not necessarily unique if the graph
has symmetries and thus has an automorphism group larger than 1. However, all canonical labels
are strictly equivalent when used for serialization. The canonical label essentially re-assigns an
index ¢; to each node originally indexed with ¢ in graph G. Since canonical labeling can precisely
distinguish non-isomorphic graphs, it fully contains the structure information of a graph G. Thus, by
arranging nodes with attributes in the labeling order /1, {5, - - -, we obtain a sequential representation
of attributed graphs with all structural information preserved.

The Nauty algorithm (McKay & Pipernol 2014), tailored for CL and computing graph automorphism
groups, presents a rigorous implementation of CL. In this paper, we adopt the Nauty algorithm
for CL calculation, while all analyses and derivations apply to other rigorous algorithms. The
bijective mapping relation between CL-obtained sequential representation and graphs can be be
proved based on graph isomorphism. We first formally define graph isomorphism as Def. Due to
the geometric needs in our case, we move a step forward and extend the isomorphism problem to
node/edge-attributed graphs. This leads us to the guarantee below.
Lemma 3.1. [Canonical Labeling for Colored Graph Isomorphism] Let G1 = (V1, E1, A1) and
Go = (Va, Eq, Ay) be two finite, undirected graphs where V; denotes the set of vertices, E; denotes
the set of edges, and A; denotes the node attributes of the graph G; fori =1,2. Let L : G — L be
a function that maps a graph G € G, the set of all finite, undirected graphs, to its canonical label
L(G) € L, the set of all possible canonical labels, as produced by the Nauty algorithm. Then the
following equivalence holds:

L(Gl) = L(Gz) < G =Gy
where G1 = G4 denotes that G, and G5 are isomorphic.

Lemma [3.T]indicates that the CL process is both complete (sufficient to distinguish non-isomorphic
graphs) and sound (not distinguishing actually isomorphic graphs). Note that if L(G) corresponds to
multiple automorphic labels, we can randomly select one since they are all equivalent and produce the
same sequence later through Geo2Seq, as detailed in Appendix [B} However, this is a very uncommon
case for real-world 3D attributed graphs like molecules.

3.2 INVARIANT SPHERICAL REPRESENTATIONS

In this section, we describe how to incorporate 3D
structure information into our sequences. One main
challenge here is to ensure the S E(3)-invariance
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property described in Section 2.1} Specifically,
given a 3D molecule, if it is rotated or translated
in the 3D space, its 3D representation should be
unchanged. Another challenge is to ensure no in-
formation loss (Liu et al.l 2022; |Wang et al., 2022).
Specifically, given the 3D representation, we can
recover the given 3D structure. If two 3D structures
cannot be matched via a SE(3) transformation, the
representations should be different. This property
is important to the discriminative ability of models.

We address these challenges by spherical repre-
sentations, i.e., using spherical coordinates to rep-
resent 3D structures. Compared to Cartesian coor-
dinates, spherical coordinate values are bounded in
a smaller region, namely, a range of [0, 7] or [0, 27].
This makes spherical coordinates advantageous in
discretized representations and thus easier to be
modeled by LMs. Given the same decimal place
constraints, spherical coordinates require a smaller

vocabulary size, and given the same vocabulary size, spherical coordinates present less information
loss. This is also supported by empirical results and analysis when using different methods to
represent 3D molecular structures, as detailed in Appendix
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We propose to maintain .S F(3)-invariance while ensuring no information loss. Given a 3D molecule
G with atom types z and atom coordinates R, we first build a global coordinate frame F' = (x, y, 2)
based on the input. Specifically, as shown in Figure [T} the frame is built based on the first three
non-collinear atoms in the canonical ordering L(G). Let ¢1, {2, and ¢ be the indices of these three
atoms. Then the global frame F' = (x, y, z) is calculated as

« = normalize(ry, — 74, ),
y = normalize ((r¢. — 7¢,) X x), (1
z=x X y.

Here normalize(-) is the function to normalize a vector to unit length. Note that the global frame
is equivariant to the rotation and translation of the input molecule, as shown in Figure 2] and
Appendix After obtaining the global frame, we use a function f(-) to convert the coordinates
of each atom to spherical coordinates d, 6, ¢ under this frame. Specifically, for each node ¢; with
coordinate 7,, the corresponding spherical coordinate is

dli = ||Tfi - r51||27
0p, = arccos ((ry, — r¢,) - 2/dy,) , 2)
(rbfi = atan2 ((T’fi - rél) 'Y, (r&, - T€1) . m) .

The spherical coordinates show the relative position of each atom in the global frame F'. As shown
in Figure [2] if the input coordinates are rotated by a matrix @ and translated by a vector b, the
transformed spherical coordinates remain the same, so the spherical coordinates are S E/(3)-invariant.

Next, we demonstrate that there is no information loss in our method. We show that given our
S E(3)-invariant spherical representations, we can recover the given 3D structures. For each node ¢;,
we convert the spherical coordinate [dy,, 0y, , ¢¢,] to coordinate 7. in 3D space as

[de, sin(By,) cos(pe, ), de, sin(by, ) sin(ey, ), dg, cos by,]. 3)

Note that our reconstructed coordinate réi may not be exactly the same as the original coordinate ry, .
However, there exists a S F(3)-transformation g, such that g(7 ) = 7y, for all 7. Note that the same

transformation g is applied to all nodes. Formally, by applying the function f(-) to the 3D coordinate
matrix R, we can demonstrate the following properties of spherical representations.

Lemma 3.2. Let G = (z, R) be a 3D graph with node type vector z and node coordinate matrix R.
Let F' be the equivariant global frame of graph G built based on the first three non-collinear nodes
in L(G). f(-) is our function that maps 3D coordinate matrix R of G to spherical representations S
under the equivariant global frame F'. Then for any 3D transformation g € SE(3), we have f(R) =
f(g(R)). Given spherical representations S = f(R), there exist a transformation g € SE(3), such
that f~1(S) = g(R).

Lemmaindicates that our spherical representation is SFE(3)-invariant, and we can reconstruct
(a transformation of) the original coordinates. Therefore, our method can convert 3D structures
into SFE(3)-invariant representations with no information loss. Detailed proofs are provided in

Appendix [B]
3.3 GEO2SEQ: GEOMETRY INFORMED TOKENIZATION

In this section, we describe the process and properties of our 3D tokenization method, Geo2Seq.
Equipped with canonical labeling that reduces graph structures to 1D sequences with no information
loss regarding graph isomorphism, and S E(3)-invariant spherical representations that ensure no
3D information loss, we develop Geo2Seq, a reversible transformation from 3D molecules to 1D
sequences. Figure|l|shows an overview of Geo2Seq. Specifically, given a graph G with n nodes,
Geo2Seq concatenates the node vector [z;, d;, 0;, ¢;] of every node in G to a 1D sequence by its
canonical order, /1, - - - , ¢,,. To formulate the properties of Geo2Seq, we extend the concept of graph
isomorphism in Definition [B.I|to 3D graphs.

Definition 3.3. [3D Graph Isomorphism] Let G; = (21, R;) and G5 = (23, R») be two 3D graphs,
where z; is the node type vector and R; is the node coordinate matrix of the molecule GG;. Let
V; denote the set of vertices, A; denote node attributes, and no edge exists. Two 3D graphs G
and G are 3D isomorphic, denoted as G; =3p G, if there exists a bijection b : V3 — V5 such
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that G; = G, given A; = [z;, R;], and there exists a 3D transformation g € SFE(3) such that

ro = g(rl?;f.)). If a small error € is allowed such that |r&* — g(rg’;f.)ﬂ < €, we call the two 3D

graphs e-constrained 3D isomorphic.

Considering Lemma[3.1] we specify G = (V, E, A) with A = [z, R] and define the CL function for
3D molecules as L,,, which extends the equivalence of Lemma[3.1|to L,, with 3D isomorphism.
We formulate Geo2Seq and our major theoretical derivations below.

Theorem 3.4. [Bijective Mapping between 3D Graph and Sequence] Following Definition[3.3] let
G1 = (21, R1) and Gy = (z2, Ry) be two 3D graphs. Let L,,(G) be the canonical label for 3D
graph G and f : R — S be the function that maps 3D coordinates to its spherical representations.
Given a graph G with n nodes and X = [x1, ,x,|T € R"™™, where m € Z, we define
L, (G) ® X = concat(xzy,, ..., xq,), where {; is the index of the node labeled i by L,,(G), and
concat(-) concatenates elements as a sequence. We define

Geo2Seq(G) = L, (G) ® (2, f(R)) = L, (G) @ X,

where x; = [z;,d;,0;, ;). Then Geo2Seq : G — U is a surjective function, and the following
equivalence holds:
G€02S€q(G1) = GGOQSG(](GQ) < Gy =sp GQ,

where G1 =3p Gso denotes G, and G2 are 3D isomorphic.

Theorem [3.4] establishes the following guarantees for Geo2Seq: (1) Given a 3D molecule, we can
uniquely construct a 1D sequence using Geo2Seq. (2) If two molecules are 3D isomorphic, their
sequence outputs from Geo2Seq are identical. (3) Given a sequence output of Geo2Seq, we can
uniquely reconstruct a 3D molecule. (4) If two constructed sequences from Geo2Seq are identical,
their corresponding molecules must be 3D isomorphic. This enable sequential tokenization of 3D
molecules, preserving structural completeness and geometric invariance.

Due to the necessity of discreteness in serialization and tokenization for LMs, in reality, numerical
values need to be discretized before concatenation. In practice, we round up numerical values to
certain decimal places. Thus Theorem@ can be extended with constraints, as below.

Corollary 3.5. [Constrained Bijective Mapping between 3D Graph and Sequence] Following the
notations and definitions of Theorem let spherical coordinate values be rounded up to b decimal
places. Then Geo2Seq : G — U is a surjective function, and the following equivalence holds:

Geo2Seq(G1) = Geo2Seq(Ga) < G1 Z3p_j10-|/2 G2,
where G1 23p_|19-v| /2 G2 denotes graphs Gy and G5 are (|10~°|/2)-constrained 3D isomorphic.

Corollary [3.5] extends Theorem [3.4]s guarantees for the practical use of Geo2Seq. If we allow a
round-up error below [107?|/2 for coordinates when distinguishing 3D isomorphism, all properties
still hold. This implies that the practical Geo2Seq implementation retains near-complete geometric
information and invariance, with numerical precision of € < [107?|/2.

With discreteness incorporated, we can collect a finite vocabulary covering all accessible molecule
samples to enable tokenization for LMs. Specifically, we use vocabularies of approximately 1K-16K
tokens consisting of atom type tokens ‘C', N, O - - -, and spherical coordinate tokens such as ‘—1.98’,
‘1.57°° or ‘—0.032°’. Specifically, the vocabulary size is approximately 1.8K for the QM9 dataset,
and 16K for the Geom-Drug dataset. Note that we consider chirality for atoms and use the special
token suffixes ‘@’ and ‘@@’ to distinguish clockwise and counterclockwise chiral centers, for
example, ‘C@’ and ‘C'@ @’. The numerical tokens range from the smallest to the largest distance
and angle values with restricted precision of 2 or 3 decimal places. Experimental results show the
benefits in using this level of tokenization, as detailed in Appendix [C|

4 3D MOLECULE GENERATION

Training and Sampling. Now that we have defined a canonical and robust sequence representation
for 3D molecules, we turn to the method of modeling such sequences, U. Here, we attempt to train a
model M with parameters 6 to capture the distribution of such sequences, pg(U), in our dataset. As
this is a well-studied problem within language modeling, we opt to use two language models, GPT
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Table 1: Random generation performance on QM9 and GEOM-DRUGS datasets. Here, larger num-
bers indicate better performance. bold and underline highlight the best and second best performance,
respectively. Note that for GEOM-DRUGS dataset, molecule stability and unique percentage are
close to 0% and 100% for all methods so they are not presented. Following Hoogeboom et al.[ (2022)
and [Xu et al.[(2023a), we report the mean and standard deviation over three runs on QM9 dataset.

Method QM9 GEOM-DRUGS
Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%) | Atom Sta (%) Valid (%)

Data \ 99.0 95.2 97.7 97.7 \ 86.5 99.9
E-NFs 85.0 49 40.2 39.4

G-SchNet 95.7 68.1 85.5 80.3 - -
GDM 97.0 63.2 - - 75.0 90.8
GDM-AUG 97.6 71.6 90.4 89.5 77.7 91.8
EDM 98.740.1 82.0£0.4  91.9+0.5 90.7+0.6 81.3 92.6
EDM-Bridge 98.8+0.1 84.6+0.3 92.0£0.1 90.7+0.1 82.4 92.8
GEOLDM 98.9+0.1 89.4+0.5 93.8+0.4 92.74+0.5 84.4 99.3
Geo2Seq with GPT 98.3+0.1 90.34+0.1 94.8+0.2 80.6+0.4 82.6 87.4
Geo2Seq with Mamba 98.9+0.2 93.24+0.2  97.1+0.2 81.7+0.4 82.5 96.1

(Radford et al.l[2018)) and Mamba (Gu & Daol [2023), which have shown effective sequence modeling
capabilities on a range of tasks. Both models are trained using a standard next-token prediction
cross-entropy loss ¢ for all elements in the sequence:

lul -1

Z K(MG(UD T 7ui)a ui+1)

i=1

min E
60 ueU

To sample from a trained model, we first select an initial atom token by sampling from the multinomial
distribution of first-tokens in the training data (we note that in almost all cases this is ‘H”). We then
perform a standard autoregressive sampling procedure by iteratively sampling from the conditional
distribution pg(w;41|u1, - -+ ,u;) until the stop token or max length is reached. We sample from this
distribution using top-k sampling (Fan et al., 2018) and a softmax temperature 7 (Ackley et al., {1985}
Ficler & Goldberg,[2017). Unless otherwise noted, 7 = 0.7 and k& = 80.

Controllable Generation. For controllable generation, we follow [Bagal et al.| (2021) and use a
conditioning token for the desired property. This token is created by projecting the desired properties
through a trainable linear layer to create a vector with the model’s initial token embedding space.
This property token is then used as the initial element in the molecular sequence. Training and
sampling are performed as before with this new sequence formulation. Sampling begins with the
desired property’s token as input.

5 EXPERIMENTAL STUDIES

In this section, we evaluate the method of generating 3D molecules in the form of our proposed
Geo2Seq representations by LLMs. We show that in the random generation task (see Section [2.1)),
the performance of Geo2Seq with GPT (Radford et al.,[2018) or Mamba (Gu & Dao} 2023) models is
better than or comparable with state-of-the-art 3D point cloud based methods, including EDM (Hooge+
boom et al.,|2022) and GEOLDM (Xu et al., 2023a). In addition, in the controllable generation task
(see Section 2.1)), we show that Geo2Seq with Mamba models outperform previous 3D point cloud
based methods by a large margin.

5.1

Data. We adopt two datasets, QM9 (Ramakrishnan et al.,2014) and GEOM-DRUGS (Axelrod &
Gomez-Bombarellil [2022), to evaluate performances in the random generation task. The QM9 dataset
collects over 130k 3D molecules with 3D structures calculated by density functional theory (DFT).
Each molecule in QM9 has less than 9 heavy atoms and its chemical elements all belong to H, C,
N, O, F. Following |Anderson et al.| (2019)), we split the dataset into train, validation and test sets
with 100k, 18k and 12k samples, separately. The GEOM-DRUGS dataset consists of over 450k large
molecules with 37 million DFT-calculated 3D structures. Molecules in GEOM-DRUGS has up to
181 atoms and 44.2 atoms on average. We follow Hoogeboom et al.| (2022) to select 30 3D structures
with the lowest energies per molecule for model training.

RANDOM GENERATION

Setup. On the QM9 dataset, we set the training batch size to 32, base learning rate to 0.0004, and
train a 12-layer GPT model and a 26-layer Mamba model by AdamW (Loshchilov & Hutter, 2019)
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Table 2: Controllable generation performance of property MAE on QM9 datasets. Smaller numbers
indicate better performance, and bold and underline highlight the best and second best performances.

Property (Units) ‘ a (Bohr®)  Ae (meV) epomo (meV)  eumo (meV) p (D) C, (%K)
Data | 0.10 64 39 36 0.043 0.040
Random 9.01 1470 645 1457 1.616 6.857
Natoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
GEOLDM 2.37 587 340 522 1.108 1.025
Geo2Seq with Mamba 0.46 98 57 71 0.164 0.275

Geo2Seq with GPT 0.53 102 48 53 0.097 0.325

optimizers. On the GEOM-DRUGS dataset, we set the training batch size to 32, base learning rate
to 0.0004, and train a 14-layer GPT model and a 28-layer Mamba model by AdamW optimizers.
See Appendix [D] for more information about hyperparameters and other settings. When model
training is completed, we randomly generate 10,000 molecules, and evaluate the performance on
these molecules. Specifically, we first transform 3D molecular structures to 2D molecular graphs
using the bond inference implementation of EDM. Then, we evaluate the performance by atom
stability, which is the percentage of atoms with correct bond valencies, and molecule stability,
which is the percentage of molecules whose all atoms have correct bond valencies. We also report the
percentage of valid molecules that can be successfully converted to SMILES strings by RDKit, and
the percentage of valid and unique molecules that can be converted to unique SMILES strings.

Baselines. We compare GPT and Mamba models with several strong baseline methods. Specifically,
we compare with an autoregressive generation method G-SchNet (Gebauer et al.| [2019) and an
equivariant flow model based method E-NFs (Satorras et al.,[2021a). We also compare with some
recently proposed diffusion based methods, including EDM (Hoogeboom et al., 2022), GDM (the
non-equivariant variant of EDM) and GDM-AUG (GDM trained with random rotation as data
augmentation). Besides, we compare with EDM-Bridge (Wu et al.,[2022)) and GEOLDM (Xu et al.,
2023a), which are two latest 3D molecule generation methods improving EDM by SDE based
diffusion models and latent diffusion models, respectively. To ensure that the comparison is fair, our
methods and baseline methods use the same data split and evaluation metrics.

Results. We present the random generation results of different methods on QM9 and GEOM-DRUGS
datasets in Tablem Note that for GEOM-DRUGS dataset, all methods achieve nearly 0% molecule
stability percentage and 100% uniqueness percentage. Thus, following previous studies, these two
metrics are omitted. According to the results in Table[I} on QM9 dataset, generating 3D molecules in
Geo2Seq representations with either GPT or Mamba models achieve better performance than all 3D
point cloud based baseline methods in molecule stability and valid percentage, and achieves atom
stability percentages close to the upper bound (99%). This demonstrates that our method can model
3D molecular structure distribution and capture the underlying chemical rules more accurately. It is
worth noticing that our method does not achieve very high uniqueness percentage, showing that it is
not easy for our method to generate a large number of diverse molecules. We believe this is due to that
the conversion from real numbers to discrete tokens limits the search space of 3D molecular structures,
especially on a small dataset like QM9, while it is easier to generate more diverse molecules for 3D
point cloud based methods as they directly generate real numbers. This is reflected by the fact that
our method achieves nearly 100% uniqueness percentage on the large GEOM-DRUGS dataset. On
GEOM-DRUGS dataset, both GPT and Mamba models achieve reasonably high atom stability and
valid percentage. The performance of our method is comparable with strong diffusion based baseline
methods, showing that LLMs have the potential to model very complicated drug molecular structures
well. We will explore further improvements on GEOM-DRUGS with larger LLMs in the future.

See Appendix [D.3|for additional experiments on more baselines (Huang et al.l 2023} [Vignac et al.
2023)), and metrics including percentage of novel/complete molecules. See Appendix [C|for ablation
studies about atom order, 3D representation and tokenization, Appendix [D|for generation complexity
analysis and results with pretraining, and Appendix [F]for token embedding and molecule visualization.

5.2 CONTROLLABLE GENERATION

Data. In the controllable generation task, we train our models on molecules and their property labels
in the QM9 (Ramakrishnan et al.}2014)) dataset. Specifically, we try taking a certain quantum property
value as the conditional input to LLMs, and train LLMs to generate molecules with the conditioned
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quantum property values. Following [Hoogeboom et al.|(2022)), we split the training dataset of QM9
to two subsets where each subset has 50k samples, and train our conditional generation models
and an EGNN (Satorras et al.l 2021b)) based quantum property prediction models on these two
subsets, respectively. We conduct the controllable generation experiments on six quantum properties
from QM9, including (1) polarizability («), tendency of a molecule to acquire an electric dipole
moment when subjected to anexternal electric field, (2) HOMO energy (epomo), highest occupied
molecular orbital energy, (3) LUMO energy (e ymo), lowest unoccupied molecular orbital energy, (4)
HOMO-LUMO gap (Ae), energy difference between HOMO and LUMO, (5) dipole moment () and
(6) heat capacity at 298.15K (C,,). All properties are dependent on the 3D molecular conformation.
For example, the dipole moment vector quantity depends on the orientation of the 3D conformer, and
heat capacity is related to the vibration of molecule in 3D space.

Setup. For the controllable generation experiment, we train 16-layer Mamba (Gu & Dao, 2023))
models with the same hyperparameters as the random generation experiments in Section[5.1] To
evaluate the performance, we sample 10000 quantum property values, generate molecules conditioned
on these property values by trained models, and compute the mean absolute difference (MAE)
between the given property values and the property values of the generated molecules. Note that
we use the trained EGNN based property prediction models to calculate the property values of the
generated molecules.

Baselines. We compare our models with two equivariant diffusion models, EDM (Hoogeboom et al.,
2022)) and GEOLDM (Xu et al., |2023a). In addition, we use several baselines that are based on
dataset molecules. One baseline (Data) is directly taking the molecules from the QM9 dataset and
use their property values as conditions. The MAE metric simply reflects the prediction error of the
trained property prediction model, which can be considered as a lower bound. The second baseline
(Random) is taking the molecules from the dataset but uses the randomly shuffled property values as
conditions, and its MAE can be considered as an upper bound. The third baseline (/NVaoms) uses the
molecules from the dataset but uses property values predicted from the number of atoms as conditions.
Achieving better performance than this baseline shows that models can use conditional information
beyond the number of atoms.

Results. Controllable generation results of different methods are summarized in Table[2] As shown
in the table, among all six properties, our method outperforms the strong diffusion based baseline
methods EDM and GEOLDM by a large margin. Our method moves a significant step in pushing
the performance of controllable generation task towards the lower bound, i.e., Data baseline. As
we use the same training set as EDM and GEOLDM to train the conditional generation model, the
good performance of our method shows that LLMs have more powerful capacity in incorporating
conditional information into the 3D molecular structure generation process. We believe that the
powerful long-context correlation capturing structures from LLMs, e.g., attention mechanism, play
significant roles in achieving the good control of 3D molecule generation by the conditioned property
values. The huge success of LLMs in controllable molecule generation will motivate broader
applications of LLMs in goal-directed or constrained drug design. In addition, our method has the
potential to generate new molecules with desired properties such as smaller HOMO-LUMO gaps,
thereby accelerating the discovery of new materials. See Appendix [F{for visualization of molecules
generated from given polarizability values.

6 CONCLUSION AND DISCUSSION

Geo2Seq showcases the potential of pure LMs in revolutionizing molecular design and drug discovery
when geometric information is properly transformed. Traditional diffusion-based models fall short
in terms of efficiency, scalability, and the ability to learn from extensive databases or transfer
knowledge across different tasks. In contrast, LMs exhibit inherent advantages in these areas. We
envision the development of efficient, large-scale models trained on vast chemical databases that can
function across multiple datasets and molecular tasks. By introducing LMs into the 3D molecule
generation field, we unlock substantial potential for broad scientific impact. The framework has
certain limitations, particularly in the generalization abilities across the continuous domain of real
numbers. Due to the discrete nature of vocabularies, LMs rely on large pre-training corpus, fine-
grained tokenization or emergent abilities for better generalization, as a trade-off to high precision
and versatility. Future works points towards directions such as advanced tokenization techniques and
more tasks. Despite these challenges, our work represents a significant step forward in this new field.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, for our theoretical results, all assumptions and proofs
are included in Appendix [B] For the experiments, we provide full details including all the training
setup, architecture, and hyper-parameter searching spaces in Appendix [D.1] Licenses are provided in
Appendix [D.2] The finalized code will be released upon acceptance.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147-169, 1985.

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neu-
ral networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
03573b32b2746e6e8ca98b912312249b- Paper.pdf.

Simon Axelrod and Rafael Gomez-Bombarelli. GEOM, energy-annotated molecular conformations
for property prediction and molecular generation. Scientific Data, 9(1):185, 2022.

Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. MolGPT: molecular generation
using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9):
2064-2076, 2021.

Jirgen Bajorath. Chemical language models for molecular design. Molecular Informatics, 43(1):
€202300288, 2024.

Michael Banck, Craig A. Morley, Tim Vandermeersch, and Geoffrey R. Hutchison. Open Babel: An
open chemical toolbox, 2011. URL https://doi.org/10.1186/1758-2946-3-33.

Fan Bao, Min Zhao, Zhongkai Hao, Peiyao Li, Chongxuan Li, and Jun Zhu. Equivariant energy-
guided SDE for inverse molecular design. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?1d=rOotLtOwY W.

Andrew E Blanchard, Debsindhu Bhowmik, Zachary Fox, John Gounley, Jens Glaser, Belinda S
Akpa, and Stephan Irle. Adaptive language model training for molecular design. Journal of
Cheminformatics, 15(1):1-12, 2023.

Andres M Bran and Philippe Schwaller. Transformers and large language models for chemistry and
drug discovery. arXiv preprint arXiv:2310.06083, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane. PoseBusters: Al-based docking
methods fail to generate physically valid poses or generalise to novel sequences, 2023.

He Cao, Zijing Liu, Xingyu Lu, Yuan Yao, and Yu Li. InstructMol: Multi-modal integration for build-
ing a versatile and reliable molecular assistant in drug discovery. arXiv preprint arXiv:2311.16208,
2023.

Yangyang Chen, Zixu Wang, Xiangxiang Zeng, Yayang Li, Pengyong Li, Xiucai Ye, and Tetsuya
Sakurai. Molecular language models: Rnns or transformer? Briefings in Functional Genomics, pp.
elad012, 2023a.

Yuhan Chen, Nuwa Xi, Yanrui Du, Haochun Wang, Chen Jianyu, Sendong Zhao, and Bing Qin.
From artificially real to real: Leveraging pseudo data from large language models for low-resource
molecule discovery. arXiv preprint arXiv:2309.05203, 2023b.

11


https://proceedings.neurips.cc/paper_files/paper/2019/file/03573b32b2746e6e8ca98b9123f2249b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/03573b32b2746e6e8ca98b9123f2249b-Paper.pdf
https://doi.org/10.1186/1758-2946-3-33
https://openreview.net/forum?id=r0otLtOwYW

Under review as a conference paper at ICLR 2025

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1-113,
2023.

Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings of the 1969 24th national conference, pp. 157-172, 1969.

Ameya Daigavane, Song Kim, Mario Geiger, and Tess Smidt. Symphony: Symmetry-equivariant
point-centered spherical harmonics for molecule generation. arXiv preprint arXiv:2311.16199,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: His
Life, Work, and Legacy, pp. 287-290. 2022.

Yuanqi Du, Tianfan Fu, Jimeng Sun, and Shengchao Liu. Molgensurvey: A systematic survey in
machine learning models for molecule design. arXiv preprint arXiv:2203.14500, 2022.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
between molecules and natural language. arXiv preprint arXiv:2204.11817, 2022.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

Yin Fang, Ningyu Zhang, Zhuo Chen, Xiaohui Fan, and Huajun Chen. Molecular language model as
multi-task generator. arXiv preprint arXiv:2301.11259, 2023.

Jessica Ficler and Yoav Goldberg. Controlling linguistic style aspects in neural language generation.
arXiv preprint arXiv:1707.02633, 2017.

Daniel Flam-Shepherd and Aldn Aspuru-Guzik. Language models can generate molecules, materials,
and protein binding sites directly in three dimensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708, 2023.

Nathan C Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Con-
nor W Coley, and Vijay Gadepally. Neural scaling of deep chemical models. Nature Machine
Intelligence, 5(11):1297-1305, 2023.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-
translation equivariant attention networks. Advances in neural information processing systems, 33:
1970-1981, 2020.

Octavian-Eugen Ganea, Lagnajit Pattanaik, Connor W. Coley, Regina Barzilay, Klavs Jensen, William
Green, and Tommi S. Jaakkola. GeoMol: Torsional geometric generation of molecular 3D
conformer ensembles. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
af_hng9tuNj.

Zhangyang Gao, Cheng Tan, Pablo Chacén, and Stan Z Li. Pifold: Toward effective and efficient
protein inverse folding. arXiv preprint arXiv:2209.12643, 2022.

Niklas Gebauer, Michael Gastegger, and Kristof Schiitt. Symmetry-adapted generation of 3D point
sets for the targeted discovery of molecules. Advances in neural information processing systems,
32,2019.

Tarun Gogineni, Ziping Xu, Exequiel Punzalan, Runxuan Jiang, Joshua Kammeraad, Ambuj Tewari,
and Paul Zimmerman. TorsionNet: a reinforcement learning approach to sequential conformer
search. In H. Larochelle, M. Ranzato, R. Hadsell, M. E. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 20142-20153. Curran Associates, Inc.,
2020.

12


https://openreview.net/forum?id=af_hng9tuNj
https://openreview.net/forum?id=af_hng9tuNj

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Suhail Haroon, CA Hafsath, and AS Jereesh. Generative pre-trained transformer (GPT) based model
with relative attention for de novo drug design. Computational Biology and Chemistry, 106:107911,
2023.

David Hilbert and David Hilbert. Uber die stetige abbildung einer linie auf ein flichenstiick. Dritter
Band: Analysis- Grundlagen der Mathematik- Physik Verschiedenes: Nebst Einer Lebensgeschichte,
pp. 1-2, 1935.

Moritz Hoffmann and Frank Noé. Generating valid Euclidean distance matrices. arXiv preprint
arXiv:1910.03131, 2019.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3D. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 8867-8887. PMLR,
2022. URL https://proceedings.mlr.press/v162/hoogeboom22a.html.

Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Learning joint 2d & 3d diffusion models for
complete molecule generation. arXiv preprint arXiv:2305.12347, 2023.

Adam Izdebski, Ewelina Weglarz-Tomczak, Ewa Szczurek, and Jakub M Tomczak. De novo drug
design with joint transformers. arXiv preprint arXiv:2310.02066, 2023.

Nikita Janakarajan, Tim Erdmann, Sarath Swaminathan, Teodoro Laino, and Jannis Born. Language
models in molecular discovery. arXiv preprint arXiv:2309.16235, 2023.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi S. Jaakkola. Torsional
diffusion for molecular conformer generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=w6fj2r62r_H.

Yeonjoon Kim and Woo Youn Kim. Universal Structure Conversion Method for Organic Molecules:
From Atomic Connectivity to Three-Dimensional Geometry. Bulletin of the Korean Chem-
ical Society, 36(7):1769-1777, 2015. doi: https://doi.org/10.1002/bkcs.10334. URL https:
/lonlinelibrary.wiley.com/doi/abs/10.1002/bkcs.10334.

Mario Krenn, Florian Hése, A Nigam, Pascal Friederich, and Aldan Aspuru-Guzik. Selfies: a robust
representation of semantically constrained graphs with an example application in chemistry. arXiv
preprint arXiv:1905.13741, 1(3), 2019.

Gregory W Kyro, Anton Morgunov, Rafael I Brent, and Victor S Batista. Chemspaceal: An efficient
active learning methodology applied to protein-specific molecular generation. ArXiv, 2023.

Chin Yang Lee. An algorithm for path connections and its applications. IRE transactions on electronic
computers, (3):346-365, 1961.

Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei, Hui Liu, Jiliang Tang, and Qing Li. Empowering
molecule discovery for molecule-caption translation with large language models: A chatgpt
perspective. arXiv preprint arXiv:2306.06615, 2023a.

Yuesen Li, Chengyi Gao, Xin Song, Xiangyu Wang, Yungang Xu, and Suxia Han. DrugGPT: A GPT-
based strategy for designing potential ligands targeting specific proteins. bioRxiv, pp. 2023-06,
2023b.

Youwei Liang, Ruiyi Zhang, Li Zhang, and Pengtao Xie. DrugChat: towards enabling ChatGPT-like
capabilities on drug molecule graphs. arXiv preprint arXiv:2309.03907, 2023.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. arXiv preprint arXiv:2206.11990, 2022.

13


https://proceedings.mlr.press/v162/hoogeboom22a.html
https://openreview.net/forum?id=w6fj2r62r_H
https://onlinelibrary.wiley.com/doi/abs/10.1002/bkcs.10334
https://onlinelibrary.wiley.com/doi/abs/10.1002/bkcs.10334

Under review as a conference paper at ICLR 2025

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei
Xiao, and Animashree Anandkumar. Multi-modal molecule structure—text model for text-based
retrieval and editing. Nature Machine Intelligence, 5(12):1447-1457, 2023a.

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical
message passing for 3d molecular graphs. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=givsR XsOt9r.

Zequn Liu, Wei Zhang, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Ming Zhang, and Tie-
Yan Liu. Molxpt: Wrapping molecules with text for generative pre-training. arXiv preprint
arXiv:2305.10688, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=Bkgb6RiCqY7/.

Renqgian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu.
BioGPT: generative pre-trained transformer for biomedical text generation and mining. Briefings
in Bioinformatics, 23(6):bbac409, 2022a.

Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. One
transformer can understand both 2d & 3d molecular data. arXiv preprint arXiv:2210.01765, 2022b.

Youzhi Luo and Shuiwang Ji. An autoregressive flow model for 3D molecular geometry generation
from scratch. In International Conference on Learning Representations, 2022a.

Youzhi Luo and Shuiwang Ji. An autoregressive flow model for 3d molecular geometry generation
from scratch. In International conference on learning representations (ICLR), 2022b.

Elman Mansimov, Omar Mahmood, Seokho Kang, and Kyunghyun Cho. Molecular geometry
prediction using a deep generative graph neural network. Scientific reports, 9(1):1-13, 2019.

Jiashun Mao, Jianmin Wang, Amir Zeb, Kwang-Hwi Cho, Haiyan Jin, Jongwan Kim, Onju Lee,
Yunyun Wang, and Kyoung Tai No. Deep molecular generative model based on variant transformer
for antiviral drug design. Available at SSRN 4345811, 2023a.

Jiashun Mao, Jianmin Wang, Amir Zeb, Kwang-Hwi Cho, Haiyan Jin, Jongwan Kim, Onju Lee,
Yunyun Wang, and Kyoung Tai No. Transformer-based molecular generative model for antiviral
drug design. Journal of Chemical Information and Modeling, 2023b.

Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander, Adam Sanders,
Hatem Helal, Deniz Beker, Ladislav Rampasek, and Dominique Beaini. Gps++: An optimised
hybrid mpnn/transformer for molecular property prediction. arXiv preprint arXiv:2212.02229,
2022.

Eyal Mazuz, Guy Shtar, Bracha Shapira, and Lior Rokach. Molecule generation using transformers
and policy gradient reinforcement learning. Scientific Reports, 13(1):8799, 2023.

Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal of symbolic
computation, 60:94—-112, 2014.

Brendan D McKay et al. Practical graph isomorphism. 1981.

Harry L Morgan. The generation of a unique machine description for chemical structures-a technique
developed at chemical abstracts service. Journal of chemical documentation, 5(2):107-113, 1965.

Riza Ozgelik, Sarah de Ruiter, and Francesca Grisoni. Structured state-space sequence models for de
novo drug design. 2023.

Riza Ozgelik, Sarah de Ruiter, Emanuele Criscuolo, and Francesca Grisoni. Chemical language
modeling with structured state spaces. 2024.

Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui Yan.
Biot5: Enriching cross-modal integration in biology with chemical knowledge and natural language
associations. arXiv preprint arXiv:2310.07276, 2023.

14


https://openreview.net/forum?id=givsRXsOt9r
https://openreview.net/forum?id=Bkg6RiCqY7

Under review as a conference paper at ICLR 2025

Bo Qiang, Yuxuan Song, Minkai Xu, Jingjing Gong, Bowen Gao, Hao Zhou, Wei-Ying Ma, and
Yanyan Lan. Coarse-to-fine: a hierarchical diffusion model for molecule generation in 3D. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 28277-28299. PMLR, 23-29 Jul
2023. URL https://proceedings.mlr.press/v202/qiang23a.html.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1-7, 2014.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Bernd Fuchs, Ingmar Posner, and Max Welling.
E(n) equivariant normalizing flows. In Advances in Neural Information Processing Systems, 2021a.
URL https://openreview.net/forum?1d=N5hQI_RowVA|

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 9323-9332.
PMLR, 18-24 Jul 2021b. URL https://proceedings.mlr.press/v139/satorras2 1a.html.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. Learning gradient fields for molecular
conformation generation. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 9558-9568. PMLR, 18-24 Jul 2021.

Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu,
Di He, and Tie-Yan Liu. Benchmarking graphormer on large-scale molecular modeling datasets.
arXiv preprint arXiv:2203.04810, 2022.

Gregor Simm and Jose Miguel Hernandez-Lobato. A generative model for molecular distance
geometry. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
8949-8958. PMLR, 13-18 Jul 2020.

Philipp Tholke and Gianni De Fabritiis. Equivariant transformers for neural network based molecular
potentials. In International Conference on Learning Representations, 2021.

H Thomas et al. Introduction to algorithms, 2009.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Emma P Tysinger, Brajesh K Rai, and Anton V Sinitskiy. Can we quickly learn to “translate”
bioactive molecules with transformer models? Journal of Chemical Information and Modeling, 63
(6):1734-1744, 2023.

Martin Uhrin. Through the eyes of a descriptor: Constructing complete, invertible descriptions of
atomic environments. Phys. Rev. B, 104:144110, Oct 2021. doi: 10.1103/PhysRevB.104.144110.
URL https://link.aps.org/doi/10.1103/PhysRevB.104.144110.

Atabey Unlii, Elif Cevrim, Ahmet Sarigiin, Hayriye Celikbilek, Heval Atas Giivenilir, Altay Koyas,
Deniz Cansen Kahraman, Ahmet Rifaioglu, and Abdurrahman Olga¢. Target specific de novo
design of drug candidate molecules with graph transformer-based generative adversarial networks.
arXiv preprint arXiv:2302.07868, 2023.

Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
Cameron LM Gilchrist, Johannes Soding, and Martin Steinegger. Fast and accurate protein
structure search with foldseek. Nature biotechnology, 42(2):243-246, 2024.

15


https://proceedings.mlr.press/v202/qiang23a.html
https://openreview.net/forum?id=N5hQI_RowVA
https://proceedings.mlr.press/v139/satorras21a.html
https://link.aps.org/doi/10.1103/PhysRevB.104.144110

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 560-576. Springer, 2023.

Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. ComENet: Towards complete and
efficient message passing for 3d molecular graphs. In Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=mCzMqeW SFJ.

Zifeng Wang, Zichen Wang, Balasubramaniam Srinivasan, Vassilis N Ioannidis, Huzefa Rangwala,
and Rishita Anubhai. Biobridge: Bridging biomedical foundation models via knowledge graph.
arXiv preprint arXiv:2310.03320, 2023.

David Weininger. SMILES, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31-36,
1988.

David Weininger, Arthur Weininger, and Joseph L Weininger. Smiles. 2. algorithm for generation of
unique smiles notation. Journal of chemical information and computer sciences, 29(2):97-101,

1989.

Juan-Ni Wu, Tong Wang, Yue Chen, Li-Juan Tang, Hai-Long Wu, and Ru-Qin Yu. Fragment-based
t-smiles for de novo molecular generation. arXiv preprint arXiv:2301.01829, 2023.

Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and qgiang liu. Diffusion-based molecule
generation with informative prior bridges. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?1d=TJUNtiZiTKE,

Jun Xia, Yangiao Zhu, Yuanqi Du, Y Liu, and SZ Li. A systematic survey of chemical pre-trained
models. IJCAI, 2023.

Tong Xie, Yuwei Wan, Wei Huang, Zhenyu Yin, Yixuan Liu, Shaozhou Wang, Qingyuan Linghu,
Chunyu Kit, Clara Grazian, Wenjie Zhang, et al. DARWIN series: Domain specific large language
models for natural science. arXiv preprint arXiv:2308.13565, 2023.

Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, and Jian Tang. Learning neural generative
dynamics for molecular conformation generation. In International Conference on Learning
Representations, 2021a. URL https://openreview.net/forum?id=pAbm1qtheGk.

Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli,
and Jian Tang. An end-to-end framework for molecular conformation generation via bilevel
programming. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
11537-11547. PMLR, 18-24 Jul 2021b.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. GeoDiff: A geometric
diffusion model for molecular conformation generation. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=PzcvxEMzvQC.

Minkai Xu, Alexander Powers, Ron Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3D molecule generation. In Proceedings of the 39th International Conference
on Machine Learning, Proceedings of Machine Learning Research. PMLR, 2023a.

Zhao Xu, Youzhi Luo, Xuan Zhang, Xinyi Xu, Yaochen Xie, Meng Liu, Kaleb Dickerson, Cheng
Deng, Maho Nakata, and Shuiwang Ji. Molecule3d: A benchmark for predicting 3d geometries
from molecular graphs. arXiv preprint arXiv:2110.01717,2021c.

Zhongyin Xu, Xiujuan Lei, Mei Ma, and Yi Pan. Molecular generation and optimization of molecular
properties using a transformer model. Big Data Mining and Analytics, 7(1):142—155, 2023b.

16


https://openreview.net/forum?id=mCzMqeWSFJ
https://openreview.net/forum?id=TJUNtiZiTKE
https://openreview.net/forum?id=pAbm1qfheGk
https://openreview.net/forum?id=PzcvxEMzvQC

Under review as a conference paper at ICLR 2025

Yasuhiro Yoshikai, Tadahaya Mizuno, Shumpei Nemoto, and Hiroyuki Kusuhara. Difficulty in
learning chirality for transformer fed with smiles. arXiv preprint arXiv:2303.11593, 2023.

Qiang Zhang, Keyang Ding, Tianwen Lyv, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao
Wang, Xiaotong Li, Zhuoyi Xiang, et al. Scientific large language models: A survey on biological
& chemical domains. arXiv preprint arXiv:2401.14656, 2024.

Weitong Zhang, Xiaoyun Wang, Weili Nie, Joe Eaton, Brad Rees, and Quanquan Gu. MoleculeGPT:
Instruction following large language models for molecular property prediction. In NeurIPS 2023
Workshop on New Frontiers of Al for Drug Discovery and Development, 2023a.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqgiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. arXiv preprint arXiv:2307.08423, 2023b.

Haiteng Zhao, Shengchao Liu, Chang Ma, Hannan Xu, Jie Fu, Zhi-Hong Deng, Lingpeng Kong, and
Qi Liu. Gimlet: A unified graph-text model for instruction-based molecule zero-shot learning.
bioRxiv, pp. 2023-05, 2023a.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023b.

17



Under review as a conference paper at ICLR 2025

A BROADER IMPACTS AND LIMITATIONS

Our work demonstrates the significant potential of pure language models (LMs) in revolutionizing
molecular design and drug discovery by effectively transforming geometric information. The chal-
lenge of molecule design is particularly daunting when scientific experiments are cost-prohibitive or
impractical. In many real-world scenarios, data collection is confined to specific chemical domains,
yet the ability to generate molecules for broader tasks where experimental validation is difficult
remains crucial. Traditional diffusion-based models fall short in terms of efficiency, scalability, and
the ability to learn from extensive databases or transfer knowledge across different tasks. In contrast,
LMs exhibit inherent advantages in these areas. We envision the development of efficient, large-scale
models trained on vast chemical databases that can function across multiple datasets and molecular
tasks. By introducing LMs into the 3D molecule generation field, we unlock substantial potential for
broad scientific impact.

Our research adheres strictly to ethical guidelines, with no involvement of human subjects or potential
privacy and fairness issues. This work aims to advance the field of Machine Learning and Al for
drug discovery, with no immediate societal consequences requiring specific attention. We foresee
no potential for malicious or unintended usage beyond known chemical applications. However, we
recognize that all technological advancements carry inherent risks, and we advocate for ongoing
evaluation of the broader implications of our methodology in various contexts.

We admit certain limitations, including that rounding up numerical values to certain decimal places
bring information loss and discretized numbers impair generalization abilities across the continuous
domain of real numbers. However, this is a trade-off betweeen advantages brought by our model-
agnostic framework. Due to the discrete nature of vocabularies, LMs depend on extensive pre-training
corpora, fine-grained tokenization, or emergent abilities for better generalization, balancing high
precision and versatility. Geo2Seq operates solely on the input data, which allows independence from
model architecture and training techniques and provides reuse flexibility. This also means that we
can effortlessly apply Geo2Seq on the latest generative language models, making seamless use of
their capabilities. Future work points towards expanding on conditional tasks and exploring advanced
tokenization techniques to enhance the model’s performance and applicability.

B PROOFS

B.1 PROOF OF LEMMA[3.1]

First, we define the isomorphism problem for attributed graphs as follows.

Definition B.1. [Graph Isomorphism] Let Gy = (V1, E1, A1) and Go = (Va, Es, As) be two graphs,
where V; denotes the set of vertices, E; denotes the set of edges, and A; denotes the node attributes
of G; fori = 1, 2. Let attr(v) denote the node attributes of vertex v. The graphs G; and G are said
to be isomorphic, denoted as G; =2 (G4, if there exists a bijection b : Vi — V5 such that for every
vertex v € V1, attr(v) € Ay = attr(b(v)) € As, and for every pair of vertices u,v € Vi,

(u,v) € By & (b(u),b(v)) € Es.

Next we prove Lemma[3.1]

Lemma (Colored Canonical Labeling for Graph Isomorphism). Let G; = (Vi, Eq, A1) and Gy =
(Va, Es, As) be two finite, undirected graphs where V; denotes the set of vertices, E; denotes the
set of edges, and A; denotes the node attributes of the graph G; fori = 1,2. Let L : G — L be a
Sfunction that maps a graph G € G, the set of all finite, undirected graphs, to its canonical labeling
L(G) € L, the set of all possible canonical labelings, as produced by the Nauty algorithm. Then the
following equivalence holds:

L(G1) = L(Gs) <= G1 2 Gs
where G1 = G5 denotes that the graphs G and G5 are isomorphic.

The Nauty algorithm, tailored for CL and computing graph automorphism groups, presents rigorous
mathematical underpinnings to guarantee the CL properties. Here we leave out the proof of Nauty
algorithm’s rigor for canonical labeling, which is detailed in the work of McKay & Piperno|(2014).
The key is the refinement process ensuring that the partitioning of the graph’s vertices is done in such
a way that any two isomorphic graphs will end with the same partition structure.
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B.2 PROOF OF LEMMA[3.2]

Lemma. Let G = (z, R) be a 3D graph with node type vector z and node coordinate matrix R.
Let F be the equivariant global frame of graph G built based on the first three non-collinear nodes
in L(G). f() is our function that maps 3D coordinate matrix R to spherical representations S
under the equivariant global frame F. Then for any SE(3) transformation g, we have f(R) =
f(g(R)). Given spherical representations S = f(R), there exist a SE(3) transformation g, such

that f~1(S) = g(R).

Proof. Let {1, {5, and ¢ be the indices of the first three non-collinear atoms in G. Then the global
frame F = (z,y, z) is
« = normalize(ry, — 7y,)
y = normalize ((r¢, — 7¢,) X ®1)
z=x Xy
For a SE(3) transformation g, let R' = g(R) = QR + b. Then the global frame F’ = (z’,y’, 2’)
is
x' = normalize(ry, — 7y, ) = normalize(g(rs,) — g(re,)) = Qx
y' = normalize ((ry, — 7¢,) X x2) = normalize ((g(r¢,) — g(re,)) X T2) = Qy
Z'=a'xy =(Qx) x (Qy) = Qz

Thus F’ = QF'. Here normalize(-) is the function to normalize a vector to the corresponding unit
vector. Then Vi, the spherical representations f(R)y, is

de, = lIre, — o []2
¢, = arccos ((r¢, — 19,) - 2/dy,)
¢¢, = atan2 ((Tfi - rél) 'Y, (Tzi - rfl) : iL’)

Similarly, the spherical representations f(R/)y, is
b= lre, =i ll2 = 1lg (re,) — g (re,) |2 = de;
921 = arccos ((ng - T21) ' z//dé,) = arccos ((g (r&) - g (T€1)) : z//déi) = 0&
(b/& = atan2 (('I"g; - Tf’l) : y/’ (’I"g; - Irza) ’ CL‘/) = atan2 ((g (rfi) -9 (Tfl)) : y/7 (g (Tfi) ) (I’nel)) : :B/) = ¢Zz‘

Therefore, we show that f(R) = f(g(R)). Next, we consider the function f~1(-). For all i, the
three terms in f~1(S),, are

dzq‘, Sin(efi ) COS(QS&’ )

dgi Sin(egj) Sin(d)gi) (4)
dgv COs 9@
Then we have vy, = f~ (S )TF + 74,. Therefore, we show that there exist a SE(3) transformation
g, such that g(f~1(S)) = O

B.3 PROOF OF THEOREM[3.4]

First we establish a lemma and provide its proof.

Lemma B.2. Ler G = (21, Ry1) and Gy = (22, R2) be two 3D graphs, where z; is the node type
vector and R; is the node coordinate matrix of the molecule G; for i = 1,2. Let L(G) be the
canonical label of graph G. We have G1 = Ga. Let {; and (), denote the mdexes of the node labeled i
correspondingly in L(G1) and L(G3), respectively. Let F be the equivariant global frame of graph
G built based on the first three non-collinear atoms in L(G). Let f : G — S be a surjective function
that maps a 3D graph G € G to its spherical representations S = f(G) € S under the equivariant
global frame F'. Then the following equivalence holds:

Vi € Vi, f(G1)e, = [(G2)y, <= G1=3p G2

where G1 Z3p G4 denotes that the graphs G and G5 are 3D isomorphic.
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Proof. Let L(G) be the canonical labeling of graph G. Let ¢; and ¢} denote the index of the node
labeled ¢ correspondingly in L(G;) and L(G3), respectively. We have

G1 = Gy, and

G =3p G2 { there exists a 3D transformation g € SFE(3) such that 7'22 = g(rgl).

Specifically, g(ry,) = Qry, + b. Here Q is a rotation matrix, and b is a translation vector.

Let ¢4, {5, and ¢ be the indices of the first three non-collinear atoms in (G;. Then the equivariant
global frame F = (x1,y1,21) is

@1 = normalize(ry, — ¢, )

y; = normalize ((r¢, — r¢,) X @1)

Z1=x1 X Y1

Here normalize(-) is the function to normalize a vector to the corresponding unit vector. Then V4, the
spherical representations f(G1), is

de, = [|re; — 7o l]2
Op, = arccos ((ry, — 10,) - 21/dy;)

i

oo, = atan2 ((rg, — ro,) - Y1, (re, — 70, ) - X1)

Similarly, for G, let ¢/, ¢4, and ¢7, be the indices of the first three non-collinear atoms. Then the
equivariant global frame Fy = (2, Yo, 22) is

x5 = normalize(ry, — ) = normalize(g(re,) — g(re,)) = Qxy
Y2 = normalize ((T‘g% — 'rg/l) X :1:2) = normalize ((g(7¢,) — g(re,)) X T2) = Qyr
zo =22 X Yo = (Qx1) X (Qu1) = Q=21

Then Vi, the spherical representations f(G2)e; is

dy = |lre —relle = llg (re,) — g (re,) |2 = do,

915; = arccos ((7’2 - 7’21) : zz/dé;) = arccos ((!J (re,) —g(rey)) - Zz/de;.) = 0y,

¢ = atan2 ((ro, —re;) - Y2, (re; —rgy) - @2) = atan2 ((g (re,) — g (re,)) - Y2, (9 (re,) — g (re,)) - ®2) = ¢y,
Therefore, we show that G1 =3p Gy <= Vi, € Vi, f(G1)e, = f(G2)e holds. O

Then we prove Theorem [3.4]

Theorem (Bijective mapping between 3D graph isomorphism and sequence). Let G1 = (21, Ry)
and Gy = (22, Ry) be two 3D graphs, where z; is the node type vector and R is the node
coordinate matrix of the molecule G; for j = 1,2. Let L,,,(G) be the canonical label for 3D graph
and f : G — § be the function that maps a 3D graph G to its spherical representations. Given
graph G with n nodes and X = [x1, ..., x,]T € R"*™ where m € Z, we define L,,(G) ® X =
concat(xy,, ..., &y, ), where £; is the node index of the node labeled i in L,,(G), and concat(-)
concatenates elements as a sequence. Define

GeoZSeq(GZ-) = Lm(G) ® (Z7 f(G)) = Lm(G) ® X,

where x; = [z;,d;,0;,¢;]. Then Geo2Seq : G — U is a surjective function, and the following
equivalence holds:
Geo2Seq(G1) = Geo2Seq(Gy) — G1 =3p Gs

where G1 =3p G denotes that the graphs G1 and G5 are 3D isomorphic.

Proof. First, we prove that Geo2Seq : G — U is a surjective function. Given the definition
Geo2Seq(Gi) = L (G) @ (2, f(G)) = L (G) © X,

where x; = [z, d;, 0;, ¢;], we need to prove that all operations are deterministic. ® and z are defined
to be deterministic, and f : G — S is a function. L,,,(G;) outputs the automorphism group of
G;’s canonical label. By definition, the automorphism group contain different labels of the strictly
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identical graph. Let ¢; and ¢} describe two different sets of labels of the same automorphism group
with n nodes; since the graphs are identical,

[Zfiadfiveeivasfi] = [ngvdfgvgfb(b@ﬂfori = 17"'7”'

Thus concat(xy, , ..., T, ) = concat(xy, , ..., T ), i.e., different labels of one automorphism group
produce identical sequences with Geo2Seq. Therefore, Geo2Seq : G — U is a well-defined function;
given a 3D molecule, we can uniquely construct a 1D sequence from Geo2Seq.

Next we prove Geo2Seq’s surjectivity. Given any output sequence q € U of Geo2Seq, the sequence
is in the format

q= CO’I’LCCLt([Zl, dlv 917 ¢1}7 ceey [va dn7 ana ¢n])
For the nodes in ¢, we denote with S = [[d1, 01, ¢1], ..., [dn, On, dn]]. Given the surjectivity of the
spherical representation function f : G — S and the defined f —1.8 — G, there must be a unique
G(z,R) € G where S = f(QG). Therefore, V output sequence g € U there exists

G(z,R) € G st q=Geo2Seq(G),

i.e., Geo2Seq is surjective; given a sequence output of Geo2Seq, we can uniquely reconstruct a 3D
molecule.

Now we prove the equivalence Geo2Seq(G;) = Geo2Seq(G;) <= G 3p G, starting from
right to left. Considering Lemma [3.1] for molecule G = (2, R), we specify G = (V, E, A) with
A = [z, R] and define the CL function for 3D molecule graphs as L,,, which extends the equivalence
in Lemma[3.1to L,, on molecules with 3D isomorphism. If G1 =3p Go, i.e., graphs G and G5
are 3D isomorphic, then from Lemmawe know the canonical forms L,,(G1) = L,,,(G2). Let
graphs G; and G2 have numbers of node n. Let ¢; and ¢; be the denotations of a corresponding
pair of canonical labelings from L,,(G1) and L,,(Gz2), respectively. Since graphs G; and G5 are
3D isomorphic, from Def we know Vi € V(G1), 2, = zy;; and from Lemma we know

Vi € V(G1), f(G1)e, = f(G2)e. Thus, we have
Geo2Seq(G1) = Ly, (G1) ® (21, f(G1))

= Concath Ezl,d_] 79j7¢j Ef(Gl)J:l,n([Zfl ) dfl ) 9Z1 9 d)ll}) (5)

= concat, ez, d;.0,.6;€(Ga),i=1,..n([2e,, der 01, Do)
= L,,(G2) ® (22, f(G2)) = Geo2Seq(Ga2).

Note that if L,,(G1) and L,,(G2) contain automorphism groups larger than 1, we can include all
possible labelings, which will all produce the same sequence later through Geo2Seq, as we have
shown in detail above. However, this is a very rare case for real-world 3D graphs like molecules.
Therefore, we have shown that if two molecules are 3D isomorphic considering atoms, bonds, and
coordinates, their sequences resulting from Geo2Seq must be identical.

Finally, we prove the equivalence from left to right. We provide proof by contradiction. Given
that Geo2Seq(G1) = Geo2Seq(G2), we assume that the graphs G and G are not 3D isomorphic.
We denote with G1 = (21, R;) and G2 = (22, R2). If G; and G4 are not even isomorphic for
A; = z;, then from Def there does not exist a node-to-node mapping from G to G5, where each
node is identically attributed and connected. And from Lemma[3.1] we know the canonical forms
L,,(Gy) # L,,(G3). Thus for

Geo2Seq(G1) = concatzjezhdj79],,%ef(gl),i=17.,.n([2gi,dgi,Hgi, o)),
and
Geo2Seq(Gz2) = concat, ez, d,.0;,6,€ £(Ga) i=1,..n([Ze;, der, Our s Ppr]),
there must be at least one pair of z¢,, 2, where zy, # z;. Therefore, Geo2Seq(G1) # Geo2Seq(Ga),

which is a contradiction to the initial condition that Geo2Seq(G1) = Geo2Seq(G2) and ends the
proof.

If Gy and G5 are isomorphic for A; = z;, we continue with the following analyses. Let ¢; and
?; be the denotations of a corresponding pair of canonical labelings from L,,(G1) and L,,(G2),
respectively. Let f : G — & be the surjective function mapping a 3D graph to its spherical
representations. Since G and G are not 3D isomorphic, from Lemma[B.2] we know there exists at

least one
i € Vi,s.t.f(Gr)e, # f(G2)es
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otherwise, we would have
Vi € V1, f(G1)e, = f(G2)e, = G1 =3p G,
contradicting the above condition. Thus for

Geo2Seq(G'1) = concat, ez, d,.0;,6,€£(G1).i=1,..n([26:> de;, Oe s Pr,])s

and
Geozseq(G2) = Concat2_7’€z2,dj ,0; ,d)ij(GQ),i:l,...n([zfé ; df; ) 943 (b@;])a
(1 and G4 are isomorphic, so
Vi = 1, Ny Ze, = Z%;
at least one pair of spherical coordinates does not correspond, so there must be at least one pair of
(d& ’ 9&' ’ ¢Z7) and (dfg ) 952 ) QSZIL) where

(dfi ’ 9&' ’ ¢fz) 7£ (d@;, 02;; ¢é;)

Thus, Geo2Seq(G1) # Geo2Seq(G2), which contradicts the initial condition that Geo2Seq(G1) =
Geo2Seq(G3). Therefore, we have shown that if two constructed sequences from Geo2Seq are
identical, their corresponding molecules must be 3D isomorphic considering atoms, bonds, and
coordinates. This ends the proof.

O

B.4 PROOF OF COROLLARY [3.3]

Corollary (Constrained bijective Mapping between 3D graph and sequence). Let G = (z1, Ry) and
G2 = (22, R2) be two 3D graphs, where z; is the node type vector and R; is the node coordinate
matrix of the molecule G; for j = 1,2. Let L,,(G) be the canonical labeling for 3D graph and f :
G — S be the function that maps a 3D graph G to its spherical representations. Given graph G withn
nodes and X = [x1, ..., x,| € R"™™, where m € Z, we define L,,,(G)® X = concat(xy,, ..., xs,),
where {; is the node index of the node labeled i in L,,(G), and concat(-) concatenates elements as a
sequence. Define

Geo2Seq(G;) = L, (G) ® (z, f(G)) = L, (G) @ X,
where x; = [z;,d;, 0;, ;). Let the truncation of spherical coordinate values be after b decimal digits.
Then Geo2Seq : G — U is a surjective function, and the following equivalence holds:

Geo2Seq(G;) = Geo2Seq(G;) — G, = 5 ot Go

[10~"]

where G1 & 10-v; Ga denotes that the graphs G and G5 are 10
l10-%)

. -constrained 3D isomorphic.

Proof. First, we prove that Geo2Seq : G — U is a surjective function, which resembles the proof for
Theorem 3.4l Given the definition

Geo2Seq(Gi) = Lin(G) @ (2, f(G)) = L (G) © X,

where x; = [z;,d;, 0;, ¢;], we need to prove that all operations are deterministic. ® and z are defined
to be deterministic, and f : G — S with truncation after certain decimal places is still a well-defined
function. L,,(G;) outputs the automorphism group of G;’s canonical label. By definition, the
automorphism group contain different labels of the strictly identical graph. Let ¢; and ¢; describe two
different sets of labels of the same automorphism group with n nodes; since the graphs are identical,

(20,5 de;, 00,5 O] = (20, der, Opr, b ]fori = 1, ...,

Thus concat(xy, , ..., ®r, ) = concat(zy, ..., T ), i.e., different labels of one automorphism group
produce identical sequences with Geo2Seq. Therefore, Geo2Seq : G — U is still a well-defined
function; given a 3D molecule, we can uniquely construct a 1D sequence from Geo2Seq.

Next we prove Geo2Seq’s surjectivity. Given any output sequence g € U of Geo2Seq, the sequence
is in the format

q = concat([z1,d1, 01, $1], ...y [2ny Ay Oy D).
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For the nodes in g, we define Sy = [[d1, 01, $1], ..., [dn, On, @n]]. Given the surjectivity of the
spherical representation function f : G — S and the defined f~! : S — G, there must be a unique
G(z, R) € G where Sy, = f(G). Therefore, V output sequence g € U there exists

G(z,R) e G st q=Geo2Seq(G),

i.e., Geo2Seq is surjective; given a sequence output of Geo2Seq, we can uniquely reconstruct a 3D
molecule.

Now we prove the equivalence Geo2Seq(G;) = Geo2Seq(G;) < G1 3p G, starting from
right to left. When a number is truncated after b decimal places, according to the rounding principle,

—b
the maximum error caused is € < ‘1027|. Considering Lemma for molecule G = (z, R),

we specify G = (V, E, A) with A = [z, R] and define the CL function for 3D molecule graphs

as L,,, which extends the equivalence in Lemma [3.1]to L,,, on molecules with 3D isomorphism.

—b
If Gy ESD o-v Ga, i.e., graphs G and Gy are |102 |_constrained 3D isomorphic, then from
L=ty

Lemma we know G and G5, are still isomorphic for A; = z;, and the canonical forms L,,,(G1) =
L,,(G2). Let graphs G; and G have numbers of node n. Let £; and ¢, be the denotations of a
corresponding pair of canonical labelings from L,,(G1) and L,,,(G>), respectively. Since graphs

107°
Gy and G5 are | 5 |

and from Lemma@we know Vi € V(G1), f(G1)e; = f(G2)e, with HO—;‘ error range allowed for
each numerical value. Thus, we still have
Geo2Seq(G1) = Ly, (G1) ® (21, f(G1))
= CONCal, ez, .d;.0,.6,€f(C1),i=1,...n([20:, de; 5 O, s Du,])
= concal, ez, d;.0,,6;€(Ga) i=1,..n([20,, der Ot er])
= L, (G2) @ (22, f(G2)) = Geo2Seq(Ga).

Note that if L,,(G;) and L,,(G2) contain automorphism groups larger than 1, we can include all
possible labelings, which will all produce the same sequence later through Geo2Seq, as we have
shown in detail above. However, this is a very rare case for real-world 3D graphs like molecules.

Therefore, we have shown that if two molecules are 3D isomorphic considering atoms, bonds, and
[10~°]
2

-constrained 3D isomorphic, from Def}3.3(we know Vi € V(G1), z¢, = 2173

(6)

coordinates within the round-up error range
identical.

, their sequences resulting from Geo2Seq must be

Finally, we prove the equivalence from left to right. We provide proof by contradiction. Given that

Geo2Seq(G1) = Geo2Seq(G2), we assume that the graphs G and G5 are not %—constrained

3D isomorphic. We denote with G; = (z1, R;) and Gy = (22, Ry). If G; and G are not even
isomorphic for A; = z;, then from Def[B.T] there does not exist a node-to-node mapping from G to
G2, where each node is identically attributed and connected. And from Lemma 3.1} we know the
canonical forms L,,(G1) # L,,(Gz). Thus for

Geo2Seq(G'1) = concat, ez, d,.0,,6,€£(Gr)si=1,..n([20:, de;, 00, Pr,]),
and
Geo2Seq(G2) = concat, ez, d,,6,,6;€ f(Ga),i=1,..n([2e,, der, Oer, der]),
there must be at least one pair of z¢,, 2, where zy, # 2. Therefore, Geo2Seq(G1) # Geo2Seq(G2),

which is a contradiction to the initial condition that Geo2Seq(G1) = Geo2Seq(G2) and ends the
proof.

If G; and G5 are isomorphic for A; = z;, we continue with the following analyses. Let ¢; and
¢} be the denotations of a corresponding pair of canonical labelings from L,,(G1) and L,,(G2),

respectively. Let f : G — S be the surjective function mapping a 3D graph to its spherical
2

representations. Since (G; and G4 are not
know there exists at least one

-constrained 3D isomorphic, from Lemma|B.2} we

i€ Vi,s.t.f(G1)e, # f(G2)e,

[10™°]

5 allowed; otherwise, we would have

even with error range
Vie Vi, f(G1)y, = f(G2)e = G1 =3p Go,
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contradicting the above condition. Thus for

Geo2Seq(G1) = COHCEltZJEzhdj,gj,¢jef(G1),i:17mn([Zgj7d[i,95“ ®0,])s
and
Geo2Seq(Gz2) = concat, ez, d;.0;,6,€ f(Ga) i=1,..n([2e;, der, Our s Prr]),
G and G4 are isomorphic, so
Vi=1,..n,z¢ = ze;

at least one pair of spherical coordinates does not correspond, so there must be at least one pair of
(d&, ) 951 ’ ¢[7) and (df: ’ 9[1 y ¢/'l) where

107"
— |de;, 00, b7 1) > | 5 3
Thus Geo2Seq(G1) # Geo2Seq(G2), which contradicts the initial condition that Geo2Seq(G1) =
Geo2Seq(G3). Therefore, we have shown that if two constructed sequences from Geo2Seq are
identical, their corresponding molecules must be 3D isomorphic considering atoms, bonds, and

—b
coordinates within the round-up error range ‘102 |. This ends the proof.

min(|dy,, Op,, dr,

O
C ABLATION STUDIES
Table 3: Random generation performance with different atom generation orders.
Order \ Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)
Canonical-locality 97.39 86.77 92.97 84.71
Canonical-nonlocality 96.45 81.36 90.89 83.37
Canonical-SMILES 97.35 85.86 92.97 84.05
DFS (Thomas et al.|[2009) 95.95 81.54 90.45 82.48
BFS (Leel|1961) 96.85 80.92 90.49 76.13
Dijkstra (Dijkstral[2022) 95.29 77.25 88.97 73.52
Cuthill-McKee (Cuthill & McKee||1969) 93.56 71.57 85.36 76.23
Hilbert-curve (Hilbert & Hilbert||1935) 90.11 64.99 80.40 67.83
Random 64.87 20.14 43.16 38.44

Table 4: Random generation performance with different 3D representations.

3D representation \ Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)
Original coordinates 91.1 58.1 75.6 55.1
Normalized coordinates 92.7 63.2 83.1 72.5
Invariant Cartesian coordinates 96.0 78.5 89.7 74.1
Inv-spherical coordinates 97.3 83.4 91.0 82.7
Inv-spherical coordinates-local distances 97.1 82.8 91.7 79.6

Table 5: Random generation performance with different tokenization.

Tokenization \ Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)
Char-tokenization 90.5 437 71.5 71.0
BPE 85.3 55.3 74.4 57.6
Sub-tokenization 96.4 80.3 89.9 74.4
Comp-tokenization 97.0 82.2 91.0 75.5

To study the effects of atom order, 3D representations and tokenization of Geo2Seq on the generation
performance of LLMs, we conduct a series of ablation experiments. Among all ablation experiments,
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we train 8-layer GPT models on QM9 dataset for 250 epochs with the same hyperparameters as
Section[5.1]and use the random generation metrics in Section[5.1]to compare the performance under
different settings.

Ablation on atom order. First, we show that our proposed canonical order of atoms in Geo2Seq
sequence representation is significant for LLMs to achieve good 3D molecular structure modeling.
Specifically, we conduct an extended study of ordering algorithms, comparing our Geo2Seq with
alternative canonicalization strategies as well as established traversing baselines. As we specified in
Sec[3.1] theoretically, analyses and derivations apply to all rigorous CL algorithms. In the paper, we
select Nauty Algorithm because its implementation has the best time efficiency among all existing
CL algorithms. We implemented Nauty Algorithm for 3D molecules, where multiple strategies can
be applied for the partitioning of graph vertices (a step in Nauty). We compare canonicalization
strategies with/without locality considered. Canonicalization with locality considered can lead to
better results, due to the importance of neighboring atom interactions in molecular evaluations. Given
the similar nature, canonical SMILES produces a very similar ordering with “Nauty with locality",
thus close in performances. The traversing baselines includes Breadth-First Search (BFS) (Lee} [1961)),
Depth-First Search (DFS) (Thomas et al.,2009), Dijkstra’s algorithm (Dijkstral [2022)), Cuthill-McKee
algorithm (Cuthill & McKeel [1969), and Hilbert curve (Hilbert & Hilbert, [1935). We also compare
with a Random sequence representation where atoms are randomly ordered. All the other settings
of sequence representations remain the same. As Table [3] shows, canonicalization with locality
considered can lead to better results, due to the importance of neighboring atom interactions in
molecular evaluations. In addition, we can clearly observe that well-designed canonical ordering as
in Geo2Seq significantly outperforms basic traverse strategies and the random order, which validates
the significance of canonical order.

Advantage of Nauty Algorithm. Note that in the paper, we implement Nauty Algorithm for
3D molecules because: (1) its implementation has the best time efficiency among all existing CL
algorithms; (2) it is naturally rigorous. The widely used canonical SMILES is based on the Morgan
CL Algorithm, which is proven to be incomplete for isomorphism corner cases (such as two triangles
versus one hexagon). While canonical SMILES solve corner cases by manual restrictions, Nauty
Algorithm is elegantly rigorous. Still, we emphasize that all rigorous CL algorithms are usable for our
method, while our contribution lies in achieving structural completeness and geometric invariance for
LM learning of 3D molecules.

Ablation on 3D representation. Besides, we explore using different methods to represent 3D
molecular structures. We compare the spherical coordinates in Geo2Seq with directly using the
3D Cartesian coordinates of atoms from QM9 xyz data files in sequences. We also study whether
normalizing the xXyz coordinates is effective by subtracting the xyz coordinates with the mass-center
coordinates of each molecule. Additionally, we compare with using the S E(3)-invariant Cartesian
coordinates that are projected to the equivariant frame proposed in Section [3.2] We also explore
adopting to manage distances in a more local scheme, which reduces the scale of the distances.
We compare with “local distances", where our “distances to the global frame" are replaced with
“relative distances to the previous atom" (except for the first atom) while the angles remain the same.
Results in Table f] demonstrate that LLMs achieve the best performance on spherical coordinates. We
believe this is due to that the numerical values of distances and angles of spherical coordinates lie in
a smaller region than coordinates, which reduces outliers and makes it easier for LLMs to capture
their correlation. Furthermore, both our spherical coordinates and that replaced with local distances
achieve comparable results, while outperforming Cartesian coordinates. From these empirical results,
we can analyze that the representation of azimuth and polar angles has brought sufficient advantage
for LM learning over Cartesian coordinates, thus spherical representations with both distance schemes
are showing promising performances. In addition, the similar performances could be attributed to
that molecular systems often exhibit localized spatial structures (e.g., compact subunits or functional
groups), which naturally constrain distances for most small molecules.

Advantage of invariant spherical representations. The above experiments show the superiority
of invariant spherical coordinates over invariant Cartesian coordinates. While invariant Cartesian
coordinates when our proposed equivariant frame is applied can also SF(3)-invariance, spherical
coordinates are advantageous in discretized representations. Compared to Cartesian coordinates,
spherical coordinate values are bounded in a smaller region, namely, a range of [0, 7] or [0, 27].
Given the same decimal place constraints, spherical coordinates require a smaller vocabulary size,
and given the same vocabulary size, spherical coordinates present less information loss. This makes
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spherical coordinates advantageous in discretized representations and thus easier to be modeled by
LMs. Lemma [3.2]and its proof aim to guarantee the validity that our proposed invariant spherical
representations possess S F(3)-invariance. We consider it as a part of our theoretical contribution
towards the derivation of Theorem 3.4

Ablation on tokenization. Finally, we explore other ways to tokenize real numbers in spherical
coordinates. Instead of simply taking the complete real number as a token (Comp-tokenization), we
try splitting it by the decimal point and treat every part as an individual token (Sub-tokenization).
We also explore the common NLP tokenization method, including treating each character as a token
(Char-tokenization) and Byte-Pair Encoding (BPE). We compare these tokenization methods in
Table[5] Results show that our used Comp-tokenization leads to better performance. This shows that
treating the complete real number as an individual token enables LLMs to capture 3D molecular
structures more effectively.

Overall, through a series of ablation experiments, we show that canonical atom order, spherical
coordinate representation and Comp-tokenization in Geo2Seq are all very useful in parsing 3D
molecules to good sequence representations.

D EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

D.1 HYPERPARAMETERS AND EXPERIMENTAL DETAILS

In the random generation experiment (Section[5.1)), we apply two LMs, GPT (Radford et al.| 2018)
and Mamba (Gu & Dao, 2023)), to our proposed Geo2Seq representations. For GPT models, we adopt
the architecture of GPT-1, set the hidden dimension to 768, the number of attention head to 8, and
the number of layers to 12 and 14 for QM9 and GEOM-DRUGS datasets, respectively. For Mamba
models, we set the hidden dimension to 768 and the number of layers to 26 and 28 for QM9 and
GEOM-DRUGS datasets, respectively. On QM9 dataset, we set the batch size to 32, base learning rate
to 0.0004, the number of training epochs to 600 and 210 for GPT and Mamba models, respectively.
On GEOM-DRUGS dataset, we set the batch size to 32, base learning rate to 0.0004, the number
of training epochs to 20 and 25 for GPT and Mamba models, respectively. During model training,
we use AdamW (Loshchilov & Hutter, 2019) optimizer and follow the commonly used linear warm
up and cosine decay scheduler to adjust learning rates. Specifically, the learning rate first linearly
increases from zero to the base learning rate 0.0004 when handling the first 10% of total training
tokens, then gradually decreases to 0.00004 by the cosine decay scheduler. Besides, the tokenization
of real numbers uses the precision of two and three decimal places for QM9 and GEOM-DRUGS
datasets, respectively. In the controllable generation experiment (Section [5.2)), we train 16-layer
Mamba models for 200 epochs, and all the other hyperparameters and settings are the same as the
random generation experiment. Based on data statistics, we set the context length to 512 for QM9
dataset and 744 for GEOM-DRUGS dataset throughout the experiments. All experiments on the QM9
dataset are conducted using a single NVIDIA A6000 GPU. Experiments on the GEOM-DRUGS
dataset are deployed on 4 NVIDIA A100 GPUs.

D.2 LICENSES

We strictly follow all licenses when using the public assets in this work. The QM9 dataset is under
license CC-BY 4.0. The GEOM-DRUGS dataset is under license CCO 1.0. The code of EDM,
GEOLDM, JODO, and MiDi is under MIT License.

D.3 EXPERIMENTS ON ADDITIONAL BASELINES AND METRICS

We extend our experiments with two more baselines, JODO (Huang et al., [2023)) and MiDi (Vignac
et al.}2023)), which are diffusion models jointly generating 2D and 3D molecular information. We
exclude them in experiments of the main paper, since the setting is not the same as ours. Our method
follows works on 3D molecule generation without 2D information, such as bonds.

We extend the metrics of our evaluation for more comprehensive comparisons on random generation
of QMO dataset. We report the percentage of valid, unique and novel molecules, i.e., that are not
present in the training set. We also report the percentage of complete molecules in which all atoms
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are connected. Following JODO (Huang et al.| [2023)), we also include 2D metrics. Frechet ChemNet
Distance (FCD) measures the distance between the test set and the generated set with the activation
of the penultimate layer of ChemNet. Lower FCD values indicate more similarity between the two
distributions. Similarity to the nearest neighbor (SNN) calculates an average Tanimoto similarity
between the fingerprints of a generated molecule and its closest molecule in the test set. Fragment
similarity (Frag) compares the distributions of BRICS fragments in the generated and test sets,
and Scaffold similarity (Scaf) compares the frequencies of Bemis-Murcko scaffolds between them.
Additionally, we include alignment metrics. For RDKit generated bonds, we compute the Maximum
Mean Discrepancy (MMD) distances of the bond length (Bond), bond angle (Angle), and dihedral
angle (Dihedral) distributions, and report their mean MMD distances. To ensure fair comparison,
we evaluate the metrics of all methods on the generated 3D structures, and use RDKit to convert
3D structures to 2D graphs if needed. We use the same model and settings as the main paper for
Geo2Seq, and follow the released codes for the baselines’ respective hyperparameter and settings.
Table [6]reports the random generation results on QM9 dataset. According to the results, though our
model is not designed to directly learn 2D information, the performance of our method is better than
or comparable with baseline methods on all metrics including the 2D metrics, which demonstrates
the effectiveness of our design.

Table 6: Additional random generation results on QM9 dataset.

Metric \ EDM GEOLDM JODO MiDi Geo2Seq with Mamba
Atom Sta (%) 98.7 98.9 98.9 98.2 98.9
Mol Sta (%) 82.0 89.4 89.0 83.5 93.2
Valid (%) 91.9 93.8 94.9 95.2 97.1
Valid & Unique (%) 90.7 91.8 92.8 92.8 81.7
Valid & Unique & Novel (%) | 83.0 83.1 85.2 85.5 71.2
Complete (%) 90.9 93.3 94.4 94.4 97.3
Bond Length MMD 0.18 0.12 0.27 1.09 0.08
Bond Angle MMD 0.04 0.04 0.05 0.05 0.04
Dihedral Angle MMD 0.003 0.003 0.0022 0.0033 0.0011
FCD 1.16 0.94 1.55 1.28 2.04
SNN 0.47 0.49 0.47 0.47 0.49
Frag 0.94 0.94 0.94 0.94 0.83
Scaf 0.29 0.33 0.25 0.26 0.38

Reporting the percentage of novel molecules is important in showing that language models can
generate new molecules instead of merely memorizing the training dataset. Given our improvements
on controllable generation is significant, we explore whether the generated molecules are different
from the molecules in the training set. Thus we also extend the metric on controllable generation
experiments. We use the same model and setting as the main paper. Table[7]presents the novelty results
of controllable generation compared with EDM and JODO. Results show that our method achieves
reasonably high novelty scores, which demonstrates that our method is not simply memorizing
training data.

Table 7: Additional controllable generation results for the percentage of valid, unique, and novel
molecules on QM9 dataset.

Method ‘ o Ae €EHOMO €LUMO v C,
EDM 87.0% 84.1% 798% 84.7% 73.0% 68.0%
JODO 86.5% 873% 86.7% 862% 86.8% 85.6%

Geo2Seq with Mamba | 82.8% 82.8% 83.6% 83.0% 833% 83.6%

In addition, following [Hoogeboom et al.|(2022)), we compare negative log-likelihood (NLL) perfor-
mance on the random generation of QM9 dataset for Geo2Seq and baseline models that reports this
metric. For this experiment, we use the same model and setting as the main paper. From Table 8]
we can see the performance of our method is better than or comparable with all baseline methods,
evidencing the validity of our model.
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Table 8: Additional Negative Log Likelihood (NLL) comparisons of random generation on QM9
dataset.

Method | NLL
E-NF -59.7
GDM -94.7
EDM -110.7
GEOLDM -335.0

Geo2Seq with Mamba | -242.0

For more comprehensive comparisons, we also extend to include the metrics of Symphony (Daigavane
et al.| [2023) in our evaluation. As shown in Table QITOITT] we compare the performances of baseline
methods and Geo2Seq with Mamba on Symphony metrics. Multiple algorithms exist for bond order
assignment: xyz2mol (Kim & Kim|2015), OpenBabel (Banck et al.,|2011) and a simple lookup
table based on empirical pairwise distances in organic compounds (Hoogeboom et al.| 2022). We
perform the comparison between these algorithms for evaluating machine-learning generated 3D
structures. In Table [0] we use each of these algorithms to infer the bonds and create a molecule
from generated 3D molecular structure. A molecule is valid if the algorithm could successfully
assign bond order with no net resulting charge. We also measure the uniqueness to see how many
repetitions were present in the set of SMILES strings of valid generated molecules. Buttenschoen
et al.[(2023) showed that the predicted 3D structures from machine-learned protein-ligand docking
models tend to be highly unphysical. Table[T0]utilizes the PoseBusters framework to perform the
following sanity checks to count how many of the predicted 3D structures are reasonable. The
valid molecules from all models tend to be quite reasonable. Next, we evaluate models on how
well they capture bonding patterns and the geometry of local environments found in the training set
molecules as Table @ We utilize the bispectrum (Uhrin, |[2021)) as a rotationally invariant descriptor
of the geometry of local environments. Given a local environment with a central atom u, all of the
neighbors of u are projected according to the inferred bonds onto the unit sphere S2. Then, the
signal f is computed as a sum of Dirac delta distributions along the direction of each neighbor. The
bispectrum B(f) of f is then defined as B(f) = EXTRACTSCALARS(f ® f ® f). Thus, f captures
the distribution of atoms around w, and the bispectrum B( f) captures the geometry of this distribution.
The bispectrum varies smoothly when f is varied and is guaranteed to be rotationally invariant. We
follow Symphony and compute the bispectrum of local environments with atleast 2 neighboring
atoms, and exclude the pseudoscalars in the bispectra. For comparing discrete distributions, we
use the symmetric Jensen-Shannon divergence (JSD) as Hoogeboom et al.|(2022). Given the true
distribution ) and the predicted distribution P, the Jensen-Shannon divergence between them is
defined as: D;s(Q || P) = 1Dk (Q || M) + 5Dk (P || M) where D, is the Kullback—Leibler

divergence and M = % is the mean distribution. For continuous distributions, estimating the
Jensen-Shannon divergence from samples is tricky without further assumptions on the distributions.
We follow Symphony and use the MMD scores to compare samples from continuous distributions.
Overall, the performance of our method is better than or comparable with baseline methods across

the metrics, showing the effectiveness of our 3D molecule generation.

Table 9: Additional validity and uniqueness percentages of molecules following Symphony.

Metric 1 Symphony EDM  G-SchNet G-SphereNet Geo2Seq
Validity via xyz2mol 83.50 86.74 74.97 26.92 95.42
Validity via OpenBabel 74.69 77.75 61.83 9.86 83.84
Validity via Lookup Table 68.11 90.77 80.13 16.36 97.55
Uniqueness via xyz2mol 97.98 99.16 96.73 21.69 98.88
Uniqueness via OpenBabel 99.61 99.95 98.71 7.51 99.91
Uniqueness via Lookup Table 97.68 98.64 93.20 23.29 98.95
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Table 10: Percentage of valid molecules passing each PoseBusters test following Symphony.

Test T Symphony EDM  G-SchNet G-SphereNet Geo2Seq
All Atoms Connected 99.92 99.88 99.87 100.00 100.00
Reasonable Bond Angles 99.56 99.98 99.88 97.59 99.90
Reasonable Bond Lengths 98.72 100.00 99.93 72.99 100.00
Aromatic Ring Flatness 100.00 100.00 99.95 99.85 99.98
Double Bond Flatness 99.07 98.58 97.96 95.99 99.45
Reasonable Internal Energy 95.65 94.88 95.04 36.07 96.10
No Internal Steric Clash 98.16 99.79 99.57 98.07 99.33

Table 11: Additional comparison statistics of generated molecules to the training set for QM9 dataset
following Symphony.

MMD of Bond Lengths | Symphony EDM  G-SchNet G-SphereNet Geo2Seq
C-H: 1.0 0.0739 0.0653 0.3817 0.1334 0.0488
C-C: 1.0 0.3254 0.0956 0.2530 1.0503 0.0705
C-0:1.0 0.2571 0.0757 0.5315 0.6082 0.0712
C-N: 1.0 0.3086 0.1755 0.2999 0.4279 0.1056
N-H: 1.0 0.1032 0.1137 0.5968 0.1660 0.0965
C-0:2.0 0.3033 0.0668 0.2628 2.0812 0.0667
O-N: 1.5 0.3707 0.1736 0.5828 0.4949 0.1570
O-H: 1.0 0.2872 0.1545 0.7899 0.1307 0.0990
C-C: 15 0.4142 0.1749 0.2051 0.8574 0.0832
C-N:2.0 0.5938 0.3237 0.4194 2.1197 0.2676
MMD of Bispectra | Symphony EDM  G-SchNet G-SphereNet Geo2Seq
C: C2,H2 0.2165 0.1003 0.4333 0.6210 0.0955
C:C1,H3 0.2668 0.0025 0.0640 1.2004 0.0011
C: C3,H1 0.1111 0.2254  0.2045 1.1209 0.0867
C: C2,H1,01 0.1500 0.2059 0.1732 0.8361 0.1058
C: C1,H2,01 0.3300 0.1082 0.0954 1.6772 0.0802
0O: C1,H1 0.0282 0.0056 0.0487 0.0030 0.0022
C: C2,H1,N1 0.1481 0.1521 0.1967 1.3461 0.1111
C:C2,H1 0.2525 0.0468  0.1788 0.2403 0.0851
C: C1,H2,N1 0.3631 0.2728 0.1610 0.9171 0.1285
N: C2,H1 0.0953 0.2339 0.2105 0.6141 0.1081
Jensen-Shannon Divergence | Symphony EDM  G-SchNet G-SphereNet Geo2Seq
Atom Type Counts 0.0003 0.0002  0.0011 0.0026 0.0002
Local Environment Counts 0.0039 0.0057 0.0150 0.1016 0.0035
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D.4 GENERATION EFFICIENCY ANALYSIS

We compare the generation efficiency of our method and the diffusion-based methods using a single
NVIDIA A100 GPU and a batch size of 32. The results in Table 6 show that our method is much
faster than diffusion-based methods, indicating the great efficiency of our method. Though we have
take more memory compared to diffusion-based methods, our time efficiency is much better than
diffusion-based methods. Throughput, or samples per second, is one of the most important metrics to
measure generation efficiency. In particular, Geo2Seq with Mamba is more than 100 times faster than
diffusion-based methods, indicating the high throughput of our method, a significant advantage in
practical applications where speed is crucial.

Table 12: Generation efficiency comparison between diffusion-based methods and our LM-based
method.

Method QM9 DRUG

Parameters Memory Sample/second | Parameters Memory Sample/second
EDM 5.3M 1.5GB 1.4 2.4M 7.4GB 0.1
GeoLDM 11.4M 1.5GB 1.4 5.5M 8.4GB 0.1
Geo2Seq with GPT 87.7TM 2.4GB 83 105.4M 3.1GB 0.2
Geo2Seq with Mamba 91.8M 2.2GB 100.0 108.4M 2.6GB 16.7

D.5 RESULTS WITH PRETRAINING

To show the advantage of pretraining, we compare the random generation performance on QM9
for models with and without pretraining on Molecule3D (Xu et al.| [2021c) dataset, which includes
around 4M molecules. Specifically, we conduct experiments on an 8-layer GPT model and a 20-layer
Mamba model. The models are pretrained for 20 epochs and then finetuned for 200 epochs. The
results in Table[I3]demonstrate the advantage of pretraining. Future studies could explore pretraining
on larger datasets.

Table 13: Random generation performance on QM9 for models with and without pretraining on
Molecule3D dataset.

Method \ Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)
Geo2Seq with GPT 97.0 82.2 91.0 75.5
Geo2Seq with GPT + pretraining 98.5 89.7 94.8 76.6
Geo2Seq with Mamba 97.4 86.8 93.0 78.8
Geo2Seq with Mamba + pretraining 98.3 89.4 94.9 83.5

E EXTENDED STUDIES

E.1 SCALING LAWS

Scaling law refers to the relations between functional properties of interest, performance metrics
in our case, and properties of the architecture or optimization process. In this section we explore
the scaling laws of our models, specifically regarding parameter size, since they provide typical
insights for LMs. Scaling laws in 3D molecule generation appears similar to that in NLP. We provide
experiments on both GPT and Mamba in Table [I4] and[T5] respectively. As can be observed, LMs’
performances on molecules grow significantly with parameter size increase, similar to the emergence
abilities widely-recognized in NLP tasks. As known from NLP studies (Schaeffer et al., 2024),
model capabilities grow consistently with model size, while emergence abilities are largely caused by
nonlinear metrics. This matches our observations, since the chemical metrics are hardly linear.

Note that we evaluate all models after 250 epochs for fairness concerns, while this fixed hyperparam-
eter setting is not optimal for performances at all parameter sizes. Other settings are the same as the
ablation studies.
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Table 14: Scaling laws on Geo2Seq with GPT model.

Parameter size - GPT | 2556532 31309824 61650944 88012800 116342688

Atom sta(%) 76.2 89.6 96.5 98.3 98.5
Mol sta(%) 5.1 42.4 81.3 89.1 90.6
Valid(%) 45.5 73.1 90.9 94.3 95.1
Valid & Unique(%) 434 66.7 83.6 74.9 78.6

Table 15: Scaling laws on Geo2Seq with Mamba model.

Parameter size - Mamba \ 2180352 31458048 61631232 93088512 121977600

Atom sta(%) 81.6 95.7 97.4 97.8 97.9
Mol sta(%) 13.6 79.2 86.8 88.3 89.0
Valid(%) 51.2 89.4 93 93.7 94.4
Valid & Unique(%) 49.6 78.7 78.8 82.6 83.5

E.2 ERROR CASE ANALYSIS

In the natural language domain, trained language models can produce error cases showing repetition
or hallucinations. This is also a problem that often arises with LLMs. In this section, we provide the
analysis of some error cases to introduce more insights into the field.

Similarly to NLP cases, our trained language models are showing repetition or hallucinations,
especially when not trained to best convergence. This happens to both GPT and Mamba models.
Below we show some error cases from a 16-layer Mamba model trained 150 epochs on the QM9
dataset. The error case below shows a typical repetition problem. The model generates repeated
tokens for several periods, resulting in an invalid sample.

* H 0.00 0.00° 0.00° C 1.09 1.57° 0.00° N 2.02 2.15° 0.00° C 3.39 1.99° -0.02° H 3.98 2.10°
0.23°C4.342.11°-0.35° H4.43 2.38° -0.46° H 5.41 2.09° -0.29° H 4.29 1.96° -0.59° C
4.05 1.63° 0.04° H 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09
4.09 4.09 4.09 4.09 4.09 4.09 4.09 1.01° H 4.96 4.96 4.96 H 1.23° 1.23° 1.23° C 3.27 1.74°
-0.03° H4.02 1.83°-0.23° H3.79 1.91° 0.17° H 3.79 1.53° -0.03°

For hallucination, our tokenization design actually prevents token-level hallucination by defining
elements and whole-numerical-values as tokens, instead of using single characters. This prevents
token-level hallucination, i.e., non-existent elements or numbers such as ‘Hr’ or ‘-0..15°. However,
there can still be sequence-level hallucinations, such as the error case below. The model generates
distance values in the place the should be angle values (and vice versa).

* H0.00 0.00° 0.00° N 1.01 1.57° 0.00° H 1.70 2.14° 0.00° C 2.06 1.13° -0.48° O 3.13 1.34°
-0.42° N 2.49 0.62° -0.87° C 2.94 0.10° -1.64° H 3.20 0.39° 3.91 H 2.81 0.33° -3.14° C 4.43
0.10° -1.77° H 5.15 0.22° 0.22° H 2.78 0.21° -0.95° C 1.86° 1.86° 4.84 H 0.19° 1.89° -2.06°
H 8.28 1.94° -1.69° H 6.24 1.71° 5.70 C 3.97 0.67° -0.90° H 5.02 0.68° -0.77° H 4.15 0.91°
-1.11° C 2.93 0.50° 6.97 H 3.54 0.42° 0.42° H 2.74 0.88° 0.88°

These error cases will be rarer if the model well converges. When trained for 150 epochs, the model

would generate ~ 15% of invalid samples, including the above discussed syntax problems. When
trained for 250 epochs, the model would generate < 2% of invalid samples.

F VISUALIZATION RESULTS

F.1 VISUALIZATION OF GENERATED MOLECULES

In this section, we provide visualizations of molecules generated from Geo2Seq with Mamba
conditionally on the property of Polarizability « in Figure[3| The Polarizability of a molecule is the
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tendency to acquire an electric dipole moment when the molecule is subject to an external electric
field. Large « values usually correspond to less isometrically molecular geometries. This is consistent
with our generated examples.

In addition, we provide visualizations of molecules generated from Geo2Seq with Mamba trained
on QM9 and DRUG in Figure 4| and Figure |5] respectively. These examples are randomly gener-
ated without any cherry pick. From the figures, we can see that the model can generate realistic
molecular geometries for both small and large size molecules. However, similar to previous meth-
ods (Hoogeboom et al., 2022} [Xu et al., 2023al), there are disconnected components, especially for
larger molecules. A possible future direction is to apply fragment-based methods to reduce the
sequence length, thus benefiting the training of language models.

Figure 4: Visualization of molecules generated from Geo2Seq with Mamba trained on QM9.
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Figure 5: Visualization of molecules generated from Geo2Seq with Mamba trained on GEOM-
DRUGS.
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F.2 VISUALIZATION OF LEARNED TOKEN EMBEDDINGS

In this section, we provide UMAP visualizations of different (atom type, distance, and angle) token
embeddings learned by Mamba models trained on QM9 and GEOM-DRUGS datasets. Patterns of the
embeddings indicate that the model has successfully learned structure information from the sequence
data, showcasing LMs’ capabilities to understanding molecules precisely in 3D space. For example,
Figure [§] shows that similar angle tokens (e.g., ‘1.41°” and ‘1.42°") are placed next to each other
and the overall structure of all angles is a loop. Further, m-out-of-phase angles are placed near each
other, such as ‘3.14°’, -3.14°°, and ‘0°’. For atom type tokens, the model appears to capture the
structure of the periodic table, although the rows and columns are not perfect in Figure[6] One reason
is the limited atom types in the datasets (5 in QM9 and 16 in GEOM-DRUG), limiting the model’s
capabilities to learn chemical patterns from the entire periodic table. We provide analyses of the
visualization results in the caption of each figure as Figure[6]- Figure [I0]
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Figure 6: UMAP visualization of element token embeddings learned by a Mamba model trained on
GEOM-DRUGS. Red groups indicate columns in the periodic table and blue groups indicate rows,
which are both numbered. Points are colored by atomic weight. Overall, the model appears to capture
the structure of the periodic table. The column generally increases from top to bottom, and the row
generally increases from left to right.
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Figure 7: UMAP visualization of element token embeddings learned by a Mamba model trained on
QMO. Points are colored by atomic weight. Overall, the model appears to distinguish well between
different elements. All different elements are distributed distantly from each other in the embedding
space.
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Figure 8: 2D and 3D UMAP visualization of angle token embeddings learned by a Mamba model
trained on GEOM-DRUGS. It can be observed that similar tokens (e.g., ‘1.41°” and ‘1.42°’) are
placed next to each other and the overall structure is a loop. Further, m-out-of-phase angles are placed
near each other, such as ‘3.14°°, *-3.14°’, and ‘0°’.
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Figure 9: 2D and 3D UMAP visualization of distance token embeddings learned by a Mamba model
trained on QM9. Representations of distances lower than 6 form relatively distinct patterns. This is
likely because these values are much more frequently seen in the training data. Values over 20 cluster
into a clump, suggesting that they are also recognized by the model.
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30

Figure 10: 2D and 3D UMAP visualization of distance token embeddings learned by a Mamba model
trained on GEOM-DRUGS. It is notable that the best and most distinct representations seem to arise
from between 5 and 20. This is likely because these values are much more frequently seen in the
training data. Values over 20 form an indistinct clump. Interestingly, values > 20 are near values < 3,
which is initially unintuitive; however, they are likely placed in a similar location in the embedding
space since both small and large distances are rarely seen in the data.

38



	Introduction
	Preliminaries and Related Work
	3D Molecule Generation
	Chemical Language Model

	Tokenization of 3D Molecules
	Serialization via Canonical Ordering 
	Invariant Spherical Representations 
	Geo2Seq: Geometry Informed Tokenization

	3D Molecule Generation
	Experimental Studies
	Random Generation
	Controllable Generation

	Conclusion and Discussion
	Broader Impacts and Limitations
	Proofs
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Theorem 3.4
	Proof of Corollary 3.5

	Ablation Studies
	Experimental Details and Additional Results
	Hyperparameters and Experimental Details
	Licenses
	Experiments on additional baselines and metrics
	Generation Efficiency Analysis
	Results with Pretraining

	Extended Studies
	Scaling Laws
	Error Case Analysis

	Visualization Results
	Visualization of Generated Molecules
	Visualization of Learned Token Embeddings


