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Abstract

In many high-stakes domains, the data used to drive machine
learning algorithms is noisy (due to e.g., the sensitive na-
ture of the data being collected, limited resources available
to validate the data, etc). This may cause a distribution shift
to occur, where the distribution of the training data does not
match the distribution of the testing data. In the presence of
distribution shifts, any trained model can perform poorly in
the testing phase. In this paper, motivated by the need for
interpretability and robustness, we propose a mixed-integer
optimization formulation and a tailored solution algorithm
for learning optimal classification trees that are robust to ad-
versarial perturbations in the data features. We evaluate the
performance of our approach on numerous publicly available
datasets, and compare the performance to a regularized, non-
robust optimal tree. We show an increase of up to 14.16% in
worst-case accuracy and increase of up to 4.72% in average-
case accuracy across several data sets and distribution shifts
from using our robust solution in comparison to the non-
robust solution.

1 Introduction
Machine learning techniques are increasingly being used in
high-stakes domains to assist humans in making important
decisions. Within these applications, black box models that
need explanation should be avoided as decisions made from
these models may have a profound impact (Rudin 2019).
That is, we need inherently interpretable models where de-
cisions made can be simply understood and verified. One of
the most interpretable models are classification trees, which
are easily visualized and do not require extensive knowl-
edge to use. Classification trees are a widely used model
that takes the form of a binary tree. At each branching node,
a test based off of the attributes of the given data sample
is made, which dictates the next node visited. Then at an
assignment node, a particular label is assigned to the data
sample (Breiman et al. 2017).

However, as with many other machine learning models,
classification trees are susceptible to distribution shifts. That
is, the distribution of the training data and the testing data
may be different, causing poor performance in deployment
(Quiñonero-Candela et al. 2009). In high-stakes domains
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where there is a need for interpretability, there must also be
robustness against distribution shifts to ensure high-quality
solutions under any realization of the training data.

1.1 Background and Related Work
Traditionally, classification trees are built using heuristic ap-
proaches since the problem of building optimal classifica-
tion trees is NP-hard (Breiman et al. 2017). But in settings
where the quality of solutions is important, heuristic ap-
proaches may yield suboptimal solutions that are unaccept-
able for use in applications. Thus, to ensure a high-quality
decision tree, mathematical optimization techniques, like
mixed-integer optimization (MIO), have been developed for
building optimal trees. Namely, Bertsimas and Dunn (2017)
were the first to use MIO to build optimal decision trees. To
combat the long run times for making optimal decision trees
on large data sets, Verwer and Zhang (2019) create a binary
linear programming formulation that has a run time indepen-
dent of the amount of training samples. Aghaei, Gómez, and
Vayanos (2021) build a strong, “flow-based” MIO formula-
tion that greatly improves on solving times in comparison to
other state-of-the-art optimal classification tree algorithms.
MIO approaches for constructing decision trees have also
allowed for several extensions. For example, Mišić (2020)
formulates the problem of creating tree ensembles as a MIO
problem, Aghaei, Azizi, and Vayanos (2019) create optimal
and fair decision trees using MIO, and Jo et al. (2021) use
MIO to build optimal prescriptive trees from observational
data.

To account for the problem of distribution shifts, there ex-
ists both non-MIO and MIO approaches. One type of non-
MIO method up-weights training samples that match the test
set distribution and down-weights the training samples that
differ from the test set (Shimodaira 2000; Bickel, Brückner,
and Scheffer 2007). These methods usually define distribu-
tion shift as a biased sampling of training data, where as-
signing weights to training samples diminishes the effects
of adversarial examples.

Another way to define a distribution shift is as an adver-
sarial perturbation of the trained data that makes it differ
from the test data. Motivated by this viewpoint, there have
been several optimization-based methods to deal with distri-
bution shifts. One of these methods is distributionally robust
optimization, which combats the effects of distribution shifts



by performing well under an adversarial distribution of sam-
ples. Both Kuhn et al. (2019) and Sinha et al. (2020) in par-
ticular provide distributionally robust approaches to building
machine learning models that perform well under an adver-
sarial distribution of the training data, where the adversarial
distribution is in some Wasserstein distance from the nomi-
nal distribution of the data.

Distributionally robust optimization requires an assump-
tion on the distribution of the data available, which may
not be a reasonable assumption to make. In the case where
such an assumption cannot be reasonably made, robust op-
timization provides a framework to generate solutions that
perform well in the worst-case perturbation, where the per-
turbation comes from a set of values without a probability
distribution assumption imposed (Ben-Tal, El Ghaoui, and
Nemirovski 2009). Many common machine learning mod-
els have been formulated as robust optimization problems to
deal with uncertainty in data. For example, robust optimiza-
tion has been used for creating robust support vector ma-
chines (Shivaswamy, Bhattacharyya, and Smola 2006; Bert-
simas et al. 2019). Robust optimization has also been used
to create artificial neural networks that are robust against ad-
versarial perturbations of the data (Shaham, Yamada, and
Negahban 2018).

In a similar spirit to these previous works, we propose us-
ing robust optimization to create a classification tree robust
to distribution shifts. In an adversarial setting, we must de-
cide the tree structure before observing the perturbation of
the data. The perturbation of a sample, once unveiled, re-
veals whether the given tree structure correctly classifies the
realization of the sample. That is, the classification of sam-
ples in a decision tree is dependent on both the tree struc-
ture and the realization of the uncertain parameter. Decision
variables that indicate the correct classification of samples
are called second-stage decisions, which can be modeled
through two-stage robust optimization (Ben-Tal et al. 2004).

There have been several recent methods for robust clas-
sification trees. Namely, Vos and Verwer (2021) have a lo-
cal search algorithm for decision trees robust against adver-
sarial examples derived from a user-defined threat model.
Bertsimas et al. (2019) have a robust optimization formula-
tion for robust trees where the uncertainty set is modeled by
restricting the norm of the perturbation parameter. Unlike
our proposed method, Bertsimas et al. (2019) do not cap-
ture the dependent relationship between the perturbation of
the covariates and the classification of training samples, as
decisions made on the classification of training samples are
made before the realization of the uncertain parameter. Thus,
they cannot identify correctly classified data points in the re-
alization of the worst-case perturbation. So, differing from
previous work, we argue that the decision variables related
to the classification of training samples should be modeled
as second-stage decisions. And by modeling these variables
as second-stage decisions, we obtain less conservative solu-
tions than a single-stage approach to the same problem.

With these motivating factors in mind, we propose a two-
stage, MIO method for learning optimal classification trees
robust to distribution shifts in the data. Namely, we present
a flow-based optimization problem, where we model un-

certainty through a cost-and-budget framework. We then
present a tailored Benders decomposition algorithm that
solves this two-stage formulation to optimality. We evalu-
ate the performance of our formulation on publicly available
data sets for several problem instances to measure the effec-
tiveness of our method in mitigating the adverse effects of
distribution shifts.

2 Robust Tree Formulation
In this section, we present our formulation for a robust clas-
sification tree. We describe the structure of the classification
tree, present the proposed two-stage formulation, and dis-
cuss our model of uncertainty.

2.1 Setup and Notation
Let {xi, yi}i∈I be the training set, where I is the index
set for our training samples. The covariates are xi ∈ Z|F|,
where F is the set of features of our data, and yi is some la-
bel in a finite set K. With a slight abuse of notation, we will
let x denote the the vector concatenation of the rows of the
|I|×|F| matrix of all training covariates, and y the |I|-sized
vector of all training labels. The training set {xi, yi}i∈I is
used to determine the tree structure, which includes deciding
what binary tests to perform and labels to predict. Thus, in
the first stage of our problem, we decide the tree structure to
maximize the number of correct classifications for the given
training data.

Let ξi ∈ Z|F| represent a perturbation of the covariate
xi. We can only observe ξi ∈ Z|F| after making our first
stage decisions on the tree structure. So xi + ξi represent
the realization of the training sample i after determining the
tree structure. We let the covariate and perturbation value
at sample i and feature f be xi

f and ξif respectively. Also,
denote ξ as the vector concatenation of the rows of the |I|×
|F| matrix of perturbations, and let Ξ be our perturbation set
that defines all possible ξ.

As mentioned before, the second stage decisions are the
classification of training samples, which occurs after decid-
ing the tree structure and observing the worst-case perturba-
tion. To classify sample i after perturbation, we must per-
form the series of binary tests for covariate xi + ξi from
the tree decided on in the first stage. The binary test uses a
threshold θ such that if xi

f + ξif ≤ θ, then sample i travels
to the left child. Likewise, if xi

f + ξif ≥ θ+1, then sample i
travels to the right child. Letting cf and df be the lower and
upper bound of realized values for feature f respectively, we
define

Θ(f) := {θ ∈ Z | cf ≤ θ < df}
as the set of possible binary test threshold values for fea-
ture f .

2.2 The Two-Stage Problem
We will set up our robust formulation based on the non-
robust classification tree outlined by (Aghaei, Gómez, and
Vayanos 2021), where a binary classification tree is repre-
sented by a directed graph. The model starts with a depth d
binary tree, where the internal nodes are in the set N and



Figure 1: The left graph shows a classification tree with
depth 2. Nodes s and t are the source and sink nodes re-
spectively, N = {1, 2, 3} and L = {4, 5, 6, 7}. The right
graph shows an example of induced graph of a particular
sample, where the green, bold edges are the subset of edges
included in the induced graph. For this particular induced
graph, nodes 1 and 3 are branching nodes, where the sample
would be routed left and right, respectively. Nodes 2 and 6
assign the correct label, and node 7 does not assign the cor-
rect label. The maximum flow from s to t is 1 in this induced
graph, indicating a correct classification.

the leaf nodes are in the set L. A node in N can either be a
branching node where a binary test is performed, or an as-
signment node where a classification of a sample is made.
Nodes in L can only be assignment nodes. There are 2d − 1
nodes in N and 2d nodes in L, and we number each node
from 1 to 2d+1 − 1 in a breadth-first search pattern. We then
augment this tree by adding a single source node s connected
to the root node of the tree, and a sink node t connected to
each node in N ∪ L. By adding a source and sink node, we
say that any data sample i travels from the source s through
the tree based on xi and reaches the sink if and only if the
datapoint is correctly classified. Lastly, we denote the left
and right child of node n ∈ N as l(n) and r(n) respec-
tively, and also denote the ancestor of any node n ∈ N ∪ L
as a(n).

To determine whether a data sample i is correctly classi-
fied by a given tree, we consider an induced graph of the
original directed graph for data sample i. In this induced
graph, we keep every node in N ∪ L, the source s, and the
sink t. For every branching node, we remove the edge lead-
ing to the sink node t and the edge that fails the binary test
based on the value of xi + ξi. And for every assignment
node, we include the edge leading to t only if the assigned
class of that node is yi, and exclude all other edges leaving
the assignment node. Lastly, we include the edge from the
source s to the root node 1. Therefore, a maximum flow of 1
from s to t of this induced graph means that data sample i
would be correctly classified. Figure 1 illustrates an induced
graph.

With the flow graph setup, we propose a two-stage for-
mulation for creating robust classification trees. In the first
stage, we decide the structure of the tree. Let bnfθ, defined
over all n ∈ N , f ∈ F , and θ ∈ Θ(f) be a binary vari-
able that denotes the branching decisions. If bnfθ = 1, then
node n is a branching node, where the binary test is on fea-
ture f with threshold θ. We also let wnk, defined over all

n ∈ N ∪ L and all k ∈ K, be a binary variable that denotes
the assignment decisions. If wnk = 1, then node n is an as-
signment node with assignment label k. We will denote b
and w as the collection of bnfθ and wnk variables respec-
tively.

Given a value of b and w, we find the perturbation in
Ξ that results in the minimum number of correctly classi-
fied points, which we will call the worst-case perturbation.
In the second stage, after observing the worst-case perturba-
tion of our covariates ξ from the set Ξ given a certain tree
structure, we classify each of our points based on our tree.
Let zin,m indicate whether data point i flows down the edge
between n and m and is correctly classified by the tree for
n ∈ N ∪ L ∪ {s} and m ∈ N ∪ L ∪ {t} under the worst-
case perturbation. We will let z be the vector concatenation
of the rows of the |I| × (2d+2 − 2) matrix of zin,m values
with rows corresponding to data sample i and columns rep-
resenting edge (n,m) for n = a(m). Note that zin,m are the
decision variables of a maximum flow problem, where in the
induced graph from data sample i, zin,m is 1 if and only if
the maximum flow is 1 and the flow goes from node n to
node m. Therefore, if there exists an n ∈ N ∪ L such that
zin,t = 1, then sample i is correctly classified by our tree
after observing the worst-case perturbation.

Our two-stage approach to defining the variables b, w,
ξ, and z leads us to the following formulation for a robust
classification tree:

max
b,w

min
ξ∈Ξ

max
z∈Z(b,w,ξ)

∑
i∈I

∑
n∈N∪L

zin,t (1a)

s.t.
∑
f∈F

∑
θ∈Θ(f)

bnfθ +
∑
k∈K

wnk = 1 ∀n ∈ N (1b)

∑
k∈K

wnk = 1 ∀n ∈ L (1c)

bnfθ ∈ {0, 1} ∀n ∈ N , f ∈ F , θ ∈ Θ(f) (1d)
wnk ∈ {0, 1} ∀n ∈ N ∪ L, k ∈ K, (1e)

where the set Z is defined as

Z(b,w, ξ) := {z ∈ {0, 1}|I|×(2d+2−2) :

zin,l(n) ≤
∑
f∈F

∑
θ∈Θ(f):

xi
f+ξif≤θ

bnfθ ∀i ∈ I, n ∈ N , (2a)

zin,r(n) ≤
∑
f∈F

∑
θ∈Θ(f):

xi
f+ξif≥θ+1

bnfθ ∀i ∈ I, n ∈ N , (2b)

zia(n),n = zin,l(n) + zin,r(n) + zin,t ∀i ∈ I, n ∈ N , (2c)

zia(n),n = zin,t ∀i ∈ I, n ∈ L, (2d)

zin,t ≤ wn,yi ∀i ∈ I, n ∈ N ∪ L (2e)

}.

The objective function in (1) maximizes the number of cor-
rectly classified training samples in the worst-case perturba-
tion. The constraint (1b) states that each internal node must
either classify a point or must be a binary test with some



threshold θ. The constraint (1c) states that each leaf node
must classify a point.

The set (2) describes the maximum flow constraints for
each sample’s induced graph. Constraints (2a) and (2b) are
capacity constraints that control the flow of samples in
the induced graph based on x + ξ and the tree structure.
Constraints (2c) and (2d) are flow conservation constraints.
Lastly, constraint (2e) blocks any flow to the sink if the node
is either not an assignment node or the assignment is incor-
rect.

2.3 The Uncertainty Set

We consider uncertainty sets defined as follows. Let γi
f ∈ R

be the cost of perturbing xi
f by one. Thus, γi

f |ξif | is the total
cost of perturbing xi

f to xi
f +ξif . Letting ϵ be the total allow-

able budget of uncertainty across data samples, we define the
following uncertainty set:

Ξ :=

ξ ∈ Z|I|×|F| :
∑
i∈I

∑
f∈F

γi
f |ξif | ≤ ϵ

 . (3)

As we will show later, a tailored solution method of Formu-
lation (1) can be made if uncertainty is defined by set (3), and
there exists a connection between (3) and hypothesis testing.

3 Solution Method

We now present a method of solving problem (1) through
a reformulation that can leverage existing, off-the-shelf
mixed-integer linear programming solvers.

3.1 Reformulating the Two-Stage Problem

We solve our two-stage optimization problem by first tak-
ing the dual of the inner maximization problem. Recall that
the inner maximization problem is a maximum flow prob-
lem; therefore, the dual of the inner maximization problem
will yield an inner minimum cut problem (Vazirani 2001).
Note that strong duality holds, and therefore taking the dual
of the inner problem of (1) will yield a reformulation with
equal optimal objective values, and thus optimal tree struc-
ture variables b and w for both problems.

Let qin,m be the binary dual variable that equals 1 if and
only if in the induced graph for data sample i after per-
turbation, the edge that connects nodes n ∈ N ∪ {s} and
m ∈ N ∪ L ∪ {t} is in the minimum cut. We write q as the
vector concatenation of the rows of the |I|× (2d+2−2) ma-
trix of qin,m values with rows corresponding to data sample i
and columns representing edge (n,m). We also define pin to
be a binary variable that equals 1 if and only if in the induced
graph of data sample i ∈ I, the node n ∈ N ∪ L∪ {s} is in
the source set. Letting Q be the set of all possible values of

q, we then have

Q:= {q ∈ {0, 1}|I|×(2d+2−2) :

∃pin ∈ {0, 1} ∀i ∈ I, n ∈ N ∪ L ∪ {s}, (4a)

qin,l(n) − pin + pil(n) ≥ 0 ∀i ∈ I, n ∈ N , (4b)

qin,r(n) − pin + pir(n) ≥ 0 ∀i ∈ I, n ∈ N , (4c)

qis,1 + pi1 ≥ 1 ∀i ∈ I, (4d)

− pin + qin,t ≥ 0 ∀i ∈ I, n ∈ N ∪ L, (4e)

}.

Constraints (4b) ensures that if the node n ∈ N is in the
source set, then either its left child is also in the source set or
the edge between n and its left child are in the cut. Constraint
(4c) is analogous to (4b), but with the right child of node
n ∈ N . Constraint (4d) states that either the root node is in
the source set or the edge from the source to the root node
is in the cut. Lastly, constraint (4e) ensures that for any n ∈
N ∪ L, if n is in the source set, then the edge from n to the
sink must be in the cut.

Then, taking the dual of the inner maximization problem
in (1) gives the following single-stage formulation:

max
b,w

min
q∈Q,ξ∈Ξ

∑
i∈I

∑
n∈N

∑
f∈F

∑
θ∈Θ(f):

xi
f+ξif≤θ

qin,l(n)bnfθ

+
∑
i∈I

∑
n∈N

∑
f∈F

∑
θ∈Θ(f):

xi
f+ξif≥θ+1

qin,r(n)bnfθ

+
∑
i∈I

∑
n∈N∪L

qin,twn,yi +
∑
i∈I

qis,1 (5a)

s.t.
∑
f∈F

∑
θ∈Θ(f)

bnfθ +
∑
k∈K

wnk = 1 ∀n ∈ N (5b)

∑
k∈K

wnk = 1 ∀n ∈ L (5c)

bnfθ ∈ {0, 1} ∀n ∈ N , f ∈ F , θ ∈ Θ(f) (5d)
wnk ∈ {0, 1} ∀n ∈ N ∪ L, k ∈ K (5e)

where Q is defined by (4) and constraints (5b) and (5c) are
the same as constraints (1b) and (1c) respectively. As men-
tioned before, strong duality holds between Formulations (1)
and (5) since strong duality holds between the maximum
flow and minimum cut problems.

3.2 Solving the Single-Stage Reformulation

We can obtain a mixed-integer linear program equivalent to
(5) by doing a hypograph reformulation. However, a hypo-
graph reformulation would introduce an extremely large of
constraints. A common approach to solving the reformula-
tion is to use a tailored Benders decomposition algorithm,
which we describe here.

The master problem decides the tree structure given its
current constraints. We thus have the following initial master



problem:

max
b,w,t

∑
i∈I

ti (6a)

s.t.
∑
f∈F

∑
θ∈Θ(f)

bnfθ +
∑
k∈K

wnk = 1 ∀n ∈ N (6b)

∑
k∈K

wnk = 1 ∀n ∈ L (6c)

ti ≤ 1 ∀i ∈ I (6d)
bnfθ ∈ {0, 1} ∀n ∈ N , f ∈ F , θ ∈ Θ(f) (6e)
wnk ∈ {0, 1} ∀n ∈ N ∪ L, k ∈ K (6f)

where ti comes from the hypograph of the inner sum of ob-
jective function (5a) for a particular i ∈ I. We add the con-
straint (6d) to ensure that the initial problem is bounded.

The goal for the subproblem is, given certain values of b,
w, and t that describe a specific tree structure, find a pertur-
bation in Ξ that reduces the number of correctly classified
samples the most. After finding the minimum cut of the in-
duced graph for each data sample after deciding the pertur-
bation, we add a constraint of the form∑

i∈I
ti ≤

∑
i∈I

∑
n∈N

∑
f∈F

∑
θ∈Θ(f):

xi
f+ξif≤θ

qin,l(n)bnfθ

+
∑
i∈I

∑
n∈N

∑
f∈F

∑
θ∈Θ(f):

xi
f+ξif≥θ+1

qin,r(n)bnfθ

+
∑
i∈I

∑
n∈N∪L

qin,twn,yi +
∑
i∈I

qis,1

(7)

where we substitute the variables ξ and q with the perturba-
tion and minimum cuts.

3.3 The Subproblem
We will now describe the procedure for the subproblem to
find the perturbation and minimum cuts that will yield a vio-
lated constraint of the form (7) if a violated constraint exists.

For each data sample that is correctly classified by the tree
given by the master problem (6), we first find the lowest-
cost perturbation ξi for the single sample that would cause
it to be misclassified. To do this, we set up a shortest path
problem. The weighted graph of the shortest path problem
is created from the flow-based tree returned by the master
problem, and is constructed with the following procedure:
1. The edge from s to 1 (the root of the decision tree) has

path cost 0.
2. For each n ∈ N ∪ L, if there exists a k ∈ K such that

wnk = 1, and k ̸= yi, then we have a 0 path cost from n
to t. All other edges coming into t have infinite path cost.

3. For each n ∈ N , if there exists an f ∈ F such that
bnf = 1, then...

(a) if xi
f = 0, add an edge from n to l(n) with 0 weight,

and add an edge from n to r(n) with γf weight.
(b) if xi

f = 1, add an edge from n to r(n) with 0 weight,
and add an edge from n to l(n) with γf weight.

By finding the shortest path from s to t for the weighted
graph derived from data sample i, we find the path with the
smallest total cost of perturbation that would misclassify the
point i. That is, we use the shortest path to see what pertur-
bation ξi would misclassify xi with the smallest cost.

Once we find the lowest-cost perturbation that would mis-
classify every sample, we choose the largest subset of these
training samples whose total cost of perturbation to misclas-
sify each sample is less than the allowed budget of uncer-
tainty. Through this procedure, we find the value of ξ that
misclassifies the most number of points given the current
tree.

Note that the right hand side of the constraint (7) gives the
count of the the number of correctly classified points for a
certain b, w, ξ, and q. Therefore, for dataset x + ξ, if the
number of correctly classified points is less than the optimal
value of

∑
i∈I ti from the master problem, then we know

that there exists a constraint of the form (7) that is violated.
Otherwise, there are no violated constraints of the form (7),
which indicates the optimality of the current solution.

In the case of finding a violated constraint, we now would
like to obtain the values of q, the variables associated with
the minimum cut problem. To do this, we need to find for
each sample i ∈ I the set of edges in a minimum cut given
the path of the data point xi + ξi, where the value of the
cut is 1 if xi + ξi is correctly classified and 0 otherwise.
The simplest way to construct this minimum cut is for each
i ∈ I, we follow the path of xi + ξi. At each node visited
in this path, we first include to the minimum cut any edges
outgoing from that node that are not traversed. And at the
assignment node, we also include the edge going from the
assignment node to the sink t. By doing this procedure for
all training samples, we obtain the value of q describing all
minimum cuts.

By finding the value of ξ and an associated q, we can
use these values in (7) to obtain the most restrictive violated
constraint for a given tree, which we add back to the master
problem. We summarize our approach in Algorithm 1.

4 Statistical Connections
Here, we explore how the uncertainty set described in (3)
connects to hypothesis testing. Let qζf ∈ (0, 1] be the proba-
bility that the realization of the data at feature f as decided
by our uncertainty set perturbs the nominal data at feature f
by ζ ∈ Z. We will impose the assumption that the perturba-
tions follow a geometric distribution. More specifically,

qζf = (0.5)I[ζ ̸=0]qf (1− qf )
|ζ| (8)

for some qf ∈ (0, 1] (where the (0.5)I[ζ ̸=0] multiplier im-
poses a symmetry between positive and negative values of
the perturbation).

We will set up a likelihood ratio test with threshold λ|I|

for λ ∈ [0, 1], where we add the exponential of |I| for ease
of comparison across different data sets with different num-
ber of training samples. Our null hypothesis will be that a
given perturbation of our data comes from the distribution
of perturbations given by the chosen qζf ∈ (0, 1]. Then, we



Algorithm 1: Solution Method to formulation (5)
Input: training set indexed by I with features F and labels
K, range of test thresholds Θ(f), tree depth d, uncertainty
set parameters γ and ϵ
Output: The optimal robust tree represented by T ∗ =
(b∗,w∗)

1: while no tree T returned do
2: Solve the master problem (6) with any added con-

straints, obtain tree T = (b∗,w∗), and t∗

3: Find the lowest cost ξ that causes the most number of
samples to be misclassified in T to obtain ξ∗

4: if
∑

i∈I ti ≤ number of correctly classified samples
of x+ ξ∗ given T then

5: return T
6: else
7: Find q∗ by finding a minimum cut for each i ∈ I

based on x+ ξ∗ and T
8: Use values of ξ∗ and q∗ to create constraint (7) to

add to the master problem.
9: end if

10: end while

set up a likelihood ratio test where we fail to reject the null
hypothesis if∏

i∈I
∏

f∈F
∏∞

ζ=−∞

(
qζf

)I[ξif==ζ]

∏
i∈I

[∏
f∈F q0f

] ≥ λ|I|, (9)

where the numerator of the left hand side is the maximum
likelihood of a given perturbation ξ, and the denominator of
the left hand side is the likelihood under the null hypothesis.
Using the assumption that qζf follows (8), we can reduce the
hypothesis test in (9) into∑

i∈I

∑
f∈F

|ξif | log
(

1

1− qf

)
≤ −|I| log λ. (10)

We say that if a particular ξ lies within the region where
we fail to reject the null hypothesis, then it is part of our
perturbation set. That is, using the notation from the per-
turbation set defined in (3), letting γi

f = log
(

1
1−qf

)
and

ϵ = −|I| log λ yields an uncertainty set with a direct rela-
tionship to the probabilities of certainty for each feature.

5 Experiments
We evaluate our approach on 12 datasets from the UCI Ma-
chine Learning Repository (Dua and Graff 2017). We used
datasets that can be encoded into either binary or integer-
valued features. The number of samples ranged from 124 to
3196 and the number of features from 4 to 36. For each data
set, we construct a robust classification tree from our method
using a synthetic uncertainty set where for different problem
instances, we choose different levels of uncertainty in the
features and budgets of uncertainty. We utilize the hypothe-
sis testing framework as described by (10), where we define
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Figure 2: This graph shows the number of instances solved
across times and optimality gaps when the time limit of 7200
seconds is reached for several values of λ. The case of λ =
1.0 is the regularized tree with an empty uncertainty set.

qf by sampling the probability of certainty from a normal
distribution with a particular mean we set and a standard
deviation of 0.2. The means of this normal distribution in-
cluded 0.6, 0.7, 0.8, and 0.9. We also chose different values
of our budget by setting λ to be 0.5, 0.75, 0.85, 0.9, 0.95,
0.97, and 0.99. For every data set and uncertainty set, we
tested with tree depths of 2, 3, 4 and 5.

For each instance, we randomly split the data set into 80%
training data, 20% testing data. We then ran our algorithm to
obtain a robust classification tree with a time limit of 7200
seconds. For comparison, we used our model to create a non-
robust tree as well by setting the budget of uncertainty to 0
(i.e. λ = 1), and tuned a regularization parameter for the
non-robust tree. The regularization term penalized the ob-
jective for every branching node to yield the following ob-
jective in the master problem of our algorithm:

max
b,w,t

(1−R)
∑
i∈I

ti −R
∑
i∈I

∑
n∈N

∑
Θ(f)

bnfθ

where R ∈ [0, 1] is the tuned regularization parameter. Note
that we do not add a regularization parameter to our robust
model, as robust optimization has an equivalence with reg-
ularization and so adding a regularization term is redundant
(Bertsimas and Copenhaver 2018). We summarize the com-
putation time across all instances in Figure 2. As we ex-
pected, the larger the uncertainty set, the longer it takes for
the formulation to solve to optimality.

To test our model’s robustness against distribution shifts,
we perturbed the test data in 5000 different ways, where for
each perturbation we found the test accuracy from our ro-
bust tree. We first perturbed the data based on the expected
distribution of perturbations. That is, for the collection of qf
values for every f ∈ F used to construct an uncertainty set
based off of (10), we perturb the data based on the distribu-
tion described in (8).



0.5 0.75 0.85 0.9 0.95 0.97 0.99
0.05

0.00

0.05

0.10

0.15

0.20
R

ob
us

t W
or

st
-C

as
e A

cc
ur

ac
y 

- N
on

-R
ob

us
t W

or
st

-C
as

e A
cc

ur
ac

y Expected Perturbation
Unexpected Perturbation

Figure 3: These boxplots show the distribution across prob-
lem instances of the gain in worst-case accuracy from using
a robust tree versus a non-robust, regularized tree across dif-
ferent values of λ. We also show the distribution of the gain
in worst-case accuracy in the case where perturbations of
our data are not as we expect.

In order to measure the robustness of our model based
on unexpected perturbations of the data, we also repeat the
same process but for values of qf different than what we
gave our model. First, we shifted each qf value down 0.2,
then perturb our test data in 5000 different ways based on
these new values of qf . We do the same procedure but with
qf shifted down by 0.1 and up by 0.1. In a similar fashion,
we also uniformly sampled a new qf value for each feature
in a neighborhood of radius 0.05 of the original expected qf
value, and perturbed the test data in 5000 different ways with
the new qf values. We do the same procedure for the radii of
the neighborhoods 0.1, 0.15, and 0.2,

For each set of perturbations of the test data, we mea-
sure the worst-case accuracy by finding the lowest accuracy
from all perturbations we made for a single set of qf values,
and measure the average accuracy by averaging over the ac-
curacy over all perturbations for a single set of qf values.
We compile the gain in worst-case and average-case perfor-
mance from using our robust tree versus using a regularized,
non-robust tree for every problem instance and perturbation
of our data, giving us a distribution of worst-case and aver-
age case gains in performance that are summarized in Fig-
ures 3 and 4, respectively.

From the figures, we see that our robust tree model in gen-
eral has both higher worst-case and average-case accuracy
than a non-robust model when there exists distribution shifts
in the data. We also see that there is a range of values of λ
that seem to perform well over other values (namely 0.85).
This shows us that if the budget of uncertainty is too small,
then we do not allow enough room to hedge against distri-
bution shifts in our uncertainty set. But if the budget of un-
certainty is too large, then we become over-conservative and
perform poorly for any perturbation of our test data. We also
see that there is little difference between the gains in accu-
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Figure 4: These boxplots show the distribution across prob-
lem instances of the gain in average test accuracy from using
a robust tree versus a non-robust, regularized tree across dif-
ferent values of λ. We also show this gain in average accu-
racy in the case where perturbations of our data are not what
we expect.

racy in instances where the perturbation of our data is as we
expected versus when the perturbation is not as we expect.
This indicates that even if we misspecify our model, we still
obtain a classification tree robust to any kind of distribution
shift within a reasonable range of our expected distribution
shift. Overall, we see that an important factor in determining
the performance of our model is the budget of uncertainty,
which can be easily tuned to create an effective robust tree.
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