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Abstract

Most works studying representation learning fo-
cus only on classification and neglect regres-
sion. Yet, the learning objectives and, therefore,
the representation topologies of the two tasks
are fundamentally different: classification targets
class separation, leading to disconnected repre-
sentations, whereas regression requires ordinal-
ity with respect to the target, leading to continu-
ous representations. We thus wonder how the ef-
fectiveness of a regression representation is influ-
enced by its topology, with evaluation based on
the Information Bottleneck (IB) principle. The
IB principle is an important framework that pro-
vides principles for learning effective represen-
tations. We establish two connections between
it and the topology of regression representations.
The first connection reveals that a lower intrinsic
dimension of the feature space implies a reduced
complexity of the representation Z. This com-
plexity can be quantified as the conditional en-
tropy of Z on the target Y, and serves as an up-
per bound on the generalization error. The sec-
ond connection suggests a feature space that is
topologically similar to the target space will bet-
ter align with the IB principle. Based on these
two connections, we introduce PH-Reg, a reg-
ularizer specific to regression that matches the
intrinsic dimension and topology of the feature
space with the target space. Experiments on
synthetic and real-world regression tasks demon-
strate the benefits of PH-Reg. Code: https:
//github.com/needylove/PH-Reg.

1. Introduction
Regression is a fundamental task in machine learning in
which input samples are mapped to a continuous target
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space. Representation learning empowers models to au-
tomatically extract, transform, and leverage relevant in-
formation from data, leading to improved performance.
The information bottleneck (IB) principle (Shwartz-Ziv
& Tishby, 2017) provides a theoretical framework and
guiding principle for learning effectiveness representations.
The IB principle suggests learning a representation Z with
sufficient information about the target Y but minimal infor-
mation about the input X. For representation Z, sufficiency
keeps all necessary information on Y, while the minimal-
ity reduces Z’s complexity and prevents overfitting. The
optimal representation, as specified by Achille & Soatto
(2018b;a), is the most useful (sufficient) and minimal. Yet,
they specified classification and neglect regression.

The IB principle is applicable to both classification and re-
gression in that both learn minimal and sufficient repre-
sentations. However, there are some fundamental differ-
ences. For example, classification shortens the distance be-
tween features belonging to the same class while elongat-
ing the distance between features of different classes; the
shortening and elongating of distances can be interpreted
as minimality and sufficiency, respectively (Boudiaf et al.,
2020). The two effects lead to disconnected representations
(Brown et al., 2022a). By contrast, in regression, the repre-
sentations are shown to be continuous, connected and form
an ordinal relationship with respect to the target (Zhang
et al., 2023). The disconnected and connected representa-
tions are topologically different, as they have different 0th

Betti numbers. The 0th Betti number represents the con-
nectivity in topology, influencing the ‘shape’ of the feature
space1. While there are a few works investigating the influ-
ence of the representation topology in classification (Hofer
et al., 2019; Chen et al., 2019), regression is overlooked.
We thus wonder what topology the feature space should
have for effective regression and how the topology of the
feature space is connected to the IB principle.

In this work, we establish two connections between the
topology of the feature space and the IB principle for re-
gression representation learning in deep learning. To estab-
lish the connections, we first demonstrate that minimizing
the conditional entropies H(Y|Z) and H(Z|Y) can better

1In this work, the feature space represents the set of projected
data points, i.e. the manifold, rather than the entire ambient space.
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align with the IB principle. The entropy of a random vari-
able reflects its uncertainty. Specifically, for regression, the
conditional entropy H(Z|Y) is linked to the minimality of
Z and serves as an upper-bound on the generalization error.

The first connection reveals that H(Z|Y) is bounded by
the intrinsic dimension (ID) of the feature space, which
suggests encouraging a lower ID feature space for better
generalization ability. However, the ID of the feature space
should not be less than the ID of the target space to guar-
antee sufficient representation capabilities. Thus, a feature
space with ID equals the target space is desirable. The in-
trinsic dimension (ID) is a fundamental property of data
topology. Intuitively, it can be regarded as the minimal
number of dimensions to describe the representation with-
out significant information loss (Ansuini et al., 2019).

The second connection reveals that having a representa-
tion Z homeomorphic to the target space Y is desirable
when both H(Y|Z) and H(Z|Y) are minimal. The homeo-
morphism between two spaces can be described intuitively
as the continuous deformation of one space to the other.
From a topological viewpoint, two spaces are considered
the same if they are homeomorphic (Hatcher, 2001). How-
ever, directly enforcing homeomorphism can be challeng-
ing to achieve since the representation Z typically lies in
a high-dimensional space that cannot be modeled with-
out sufficient data samples. As such, we opted to enforce
the topological similarity between the target and feature
spaces. Here, topological similarity refers to the similar-
ity in topological features, such as clusters and loops, and
their localization (Trofimov et al., 2023).

These connections naturally inspire us to learn a regres-
sion feature space that is topologically similar to and has
the same intrinsic dimension as the target space. To this
end, we introduce a regularizer called Persistent Homol-
ogy Regression Regularizer (PH-Reg). In classification,
interest has grown in regulating the intrinsic dimension.
For instance, Zhu et al. (2018) explicitly penalizes intrin-
sic dimension as regularization, while Ma et al. (2018) uses
intrinsic dimensions as weights for noise label correction.
However, a theoretical justification for using intrinsic di-
mension as a regularizer is lacking, and they overlook the
topology of the target space. Experiments on various re-
gression tasks demonstrate the effectiveness of PH-Reg.
Our main contributions are three-fold:

• We are the first to investigate effective feature space
topologies for regression. We establish novel connec-
tions between the topology of the feature space and
the IB principle, which also provides justification for
exploiting intrinsic dimension as a regularizer.

• Based on the IB principle, we demonstrate that
H(Z|Y) serves as an upper-bound on the generaliza-

tion error in regression, providing insights for enhanc-
ing generalization ability.

• We introduce a regularizer named PH-Reg based
on the established connections. Applying PH-Reg
achieves significant improvement in coordinate pre-
diction on synthetic datasets and real-world regres-
sion tasks such as super-resolution, age estimation,
and depth estimation.

2. Related Works
Intrinsic dimension. Raw data and learned data repre-
sentations often lie on lower intrinsic dimension mani-
folds but are embedded within a higher-dimensional am-
bient space (Bengio et al., 2013). The intrinsic dimension
of the feature space from the last hidden layer has shown
a strong connection with the network generalization ability
(Ansuini et al., 2019), and several widely used regularizers
like weight decay and dropout effectively reduce the intrin-
sic dimension (Brown et al., 2022b). Commonly, the gen-
eralization ability increases with the decrease of the intrin-
sic dimension. However, a theoretical justification for why
this happened is lacking, and our established connections
provide an explanation for this phenomenon in regression.

The intrinsic dimension can be estimated by methods such
as the TwoNN (Facco et al., 2017) and Birdal’s estimator
(Birdal et al., 2021). Among the relevant studies, (Birdal
et al., 2021) is the most closely related to ours. This work
demonstrates that the generalization error can be bounded
by the intrinsic dimension of training trajectories, which
possess fractal structures. However, their analysis is based
on the parameter space, while ours is on the feature space.
Furthermore, we take the target space into consideration,
ensuring sufficient representation capabilities.

Topological data analysis. Topological data analysis is a
recent field that provides a set of topological and geomet-
ric tools to infer robust features for complex data (Chazal
& Michel, 2021). It can be coupled with feature learn-
ing to ensure that learned representations are robust and
reflect the training data’s underlying topology and geo-
metric information (Rieck et al., 2020). It has benefit-
ted diverse tasks ranging from fMRI data analysis (Rieck
et al., 2020) to and AI-generated text detection (Tulchinskii
et al., 2023). It can also be used as a tool to compare data
representations (Barannikov et al., 2021a) and data mani-
folds (Barannikov et al., 2021b). To learn representations
that reflect the topology of the training data, a common
strategy is to preserve different dimensional topologically
relevant distances of the input space and the feature space
(Moor et al., 2020; Trofimov et al., 2023). We follow Moor
et al. (2020) to preserve topology information. However,
unlike classification, regression’s target space is naturally
a metric space rich in topology induced by the metric, and
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crucial for the intended task. Consequently, we leverage the
topology of the target space, marking the first exploration
of topology specific to effective representation learning for
regression.

3. Learning a Desirable Regression
Representation

From a topology point of view, what topological properties
should a representation for regression have? More simply
put, what ‘shape’ or structure should the feature space have
for effective regression? In this work, we suggest a de-
sirable regression representation should (1) have a feature
space topologically similar to the target space and (2) the
intrinsic dimension of the feature space should be the same
as the target space. We arrive at this conclusion by estab-
lishing two connections between the topology of the feature
space and the Information Bottleneck principle.

Below, we first introduce the notations in Sec. 3.1 and con-
nect the IB principle with two terms H(Z|Y) and H(Y|Z)
in Sec. 3.2. We then demonstrate that H(Z|Y) is the upper-
bound on the generalization error in regression in Sec. 3.3.
This later provides justification for why lower ID implies
higher generalization ability. Subsequently, we establish
the first connection in Sec. 3.5, revealing that H(Z|Y) is
bounded by the ID of the feature space. Finally, we es-
tablish the second connection, the topological similarity
between the feature and target spaces, in Sec. 3.6. Two
motivating examples are provided in Sec. 3.4 to enhance
understanding of the two connections intuitively.

3.1. Notations

Consider a dataset S = {xi, zi,yi}Ni=1 with N samples,
sampled from a distribution P with the corresponding la-
bel yi ∈ Y . To predict yi, a neural network first encodes
the input xi to a representation zi ∈ Rd before apply a
regressor f , i.e. ŷi = f(zi). The encoder and the re-
gressor f are trained by minimizing a task-specific regres-
sion loss Lm based on a distance between ŷi and yi, i.e.
Lm = g(||ŷi − yi||2). Typically, an L2 loss is used, i.e.
Lm = 1

N

∑
i ||ŷi−yi||2, though more robust variants exist

such as L1 or the scale-invariant error (Eigen et al., 2014).
Note that the dimensionality of y is task-specific and is not
limited to 1. We denote X,Y, and Z as random variables
representing x,y, and z, respectively.

3.2. IB purely between Y and Z

The IB tradeoff is a practical implementation of the IB
principle in machine learning. It suggests that a desir-
able Z should contain sufficient information about the tar-
get Y (i.e., maximize the mutual information I(Z;Y))
and minimal information about the input X (i.e., minimize

I(Z;X)). The trade-off between the two aims is typically
formulated as a minimization of the associated Lagrangian,
IB := −I(Z;Y) + βI(Z;X), where β > 0 is the La-
grange multiplier.

To establish the connections, we first formulate the IB
tradeoff into relationships purely between Y and Z. The
following theorem shows that minimizing the conditional
entropies H(Y|Z) and H(Z|Y) can be seen as a proxy for
optimizing the IB tradeoff when β ∈ (0, 1):

Theorem 1 Assume that the conditional entropy H(Z|X)
is a fixed constant for Z ∈ Z for some set Z of the ran-
dom variables, or that Z is deterministic given X. Then,
minZ IB = minZ {(1− β)H(Y|Z) + βH(Z|Y)}.

The detailed proof of Theorem 1 is provided in Appendix
A.1. Here, we provide a brief overview by decomposing
the terms. The conditional entropy H(Y|Z) encourages
the learned representation Z to be informative about the
target variable Y. When considering I(Z;Y) as a signal,
the term H(Z|Y) in Theorem 1 can be thought of as noise,
since I(Z;Y) = H(Z) − H(Z|Y) and H(Z) represents
the total information. Consequently, minimizing H(Z|Y)
can be seen as learning a minimal representation by reduc-
ing noise. The minimality can reduce the complexity of
Z and prevent neural networks from overfitting (Tishby &
Zaslavsky, 2015).

It is worth mentioning that the fixed constant assumption
given in Theorem 1 holds for most neural networks, as neu-
ral networks are commonly deterministic functions. For
stochastic representations, we commonly learn a distribu-
tion p(Z|X) approaching a fixed distribution, like the stan-
dard Gaussian distribution in VAE. In this case, H(Z|X)
will tend to be a fixed constant for Z. Discussions about
the choice of β, i.e. β ∈ (0, 1) or β > 1, and more illustra-
tions are given in Appendix B.

3.3. H(Z|Y) upper-bound on the generalization error

Next, we show H(Z|Y) upper-bound on the generalization
error.

Theorem 2 Consider dataset S = {xi, zi,yi}Ni=1 sam-
pled from distribution P , where xi is the input, zi is the
corresponding representation, and yi is the label. Let
dmax = maxy∈Y minyi∈S ||y−yi||2 be the maximum dis-
tance of y to its nearest yi. Assume (Z|Y = yi) follows
a distribution D and the dispersion of D is bounded by its
entropy:

Ez∼D[||z− z̄||2] ≤ Q(H(D)), (1)

where z̄ is the mean of the distribution D and Q(H(D))
is some function of H(D). Assume the regressor f is L1-
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Lipschitz continuous, then as dmax → 0, we have:

E{x,z,y}∼P [||f(z)− y||2] (2)
≤ E{x,z,y}∼S(||f(z)− y||2) + 2L1Q(H(Z|Y)) (3)

The detailed proof of Theorem 2 is provided in Appendix
A.2, and a comparison to a related bound is given in Ap-
pendix C. Theorem 2 states that the generalization error
|EP [||f(z)−y||2]−ES [||f(z)−y||2]|, defined as the differ-
ence between the population risk EP [||f(z)−y||2] and the
empirical risk ES [||f(z)−y||2], is bounded by the H(Z|Y)
in Theorem 1. Theorem 2 suggests minimizing H(Z|Y)
will improve generalization performance.

The tightness of the bound in Theorem 2 depends on
the function Q, which aims to bound the dispersion (i.e.,
Ez∼D[||z − z̄||2]) of a distribution by its entropy. For a
given distribution D, Q exists when its dispersion and en-
tropy are bounded, as we can find a Q to scale its entropy
larger than its dispersion in this case. Proposition 1 pro-
vides examples of the function Q for various distributions,
and the corresponding proof is provided in Appendix A.2.

Proposition 1 If D is a multivariate normal distribution
N (z̄,Σ = kI), where k > 0 is a scalar and z̄ is the mean
of the distribution D. Then, the function Q(H(D)) in Theo-

rem 2 can be selected as Q(H(D)) =

√
d(e2H(D))

1
d

2πe , where
d is the dimension of z. If D is a uniform distribution, then
the Q(H(D)) can be selected as Q(H(D)) = eH(D)

√
12

.

3.4. Motivating Examples

Encouraging the same intrinsic dimension. Figure 1(a)
plots pixel-wise representations of the last hidden layer’s
feature space, depicted as dots with different colors corre-
sponding to ground truth depth. These representations are
obtained from a batch of 32 images from the NYU-v2 test
set for depth estimation. A modified ResNet-50 produces
these representations, with the last hidden layer changed to
dimension 3 for visualization. This figure provides a vi-
sualization of the last hidden layer’s feature space, where
the representations lay on a manifold where the ID varies
locally from 1 (blue region) to 3 (green region). The black
arrow represents the linear regressor’s weight vector θ, and
the predicted depth Ŷ = f(Z) = θTz is obtained by map-
ping Z (represented as dots) to θ. The gray plane represents
the solution space of f(Z) = ŷi, and the entropy of its dis-
tribution in this plane, i.e. H(Z|Ŷ = ŷi), can be seen as an
approximate of H(Z|Y = yi).

The target space for depth estimation is one-dimensional;
enforcing an intrinsic dimension to match the 1D target
space will squeeze the feature space into a line. Under such
a scenario, the solution space of f(z) = ŷi is compressed

into a point, implying H(Z|Ŷ = ŷi) = 0 (discrete case)
and a lower H(Z|Y = yi). Lower H(Z|Y = yi) for all
i implies a lower H(Z|Y). Thus, by controlling the ID,
we obtain a lower H(Z|Y), implying a higher generaliza-
tion ability. Since the ID of the feature space is commonly
higher than the ID of the target space, the first connection
generally encourages learning a lower ID feature space.

In classification, we tighten clusters for a lower H(Z|Y),
while in regression, lowering the ID achieves a lower
H(Z|Y). Lowering the ID of feature space can be intu-
itively understood as tightening the clusters in classifica-
tion, where each solution space represents a cluster in clas-
sification.

Enforcing topological similarity. Figure 1(b) provides a
PCA visualization (from 100 dimension to 3 dimension,
t-sne visualization can be found in Figure 3) of the fea-
ture space with a ’Mammoth’ shape target space (see Sec.
5.1 for details). This feature space is topologically similar
to the target space, which indicates regression potentially
captures the topology of the target space. The second con-
nection suggests improving such similarity.

3.5. Encouraging the Same Intrinsic Dimension

Now, we can establish our first connection, which reveals
that H(Z|Y) is bounded by the ID of the feature space.
Note, intrinsic dimension is not a well-defined mathemati-
cal object, and different mathematical definitions exist (Ma
et al., 2018; Birdal et al., 2021). We first define Intrinsic
Dimension following Ghosh & Motani (2023):

Definition 1 (Intrinsic Dimension). We define the intrinsic
dimension of the manifold M of a random variable X as

DimIDM = lim
ϵ→0+

Eρ∼p(X)[dϵ(ρ)], (4)

where dϵ(ρ) = minn s.t. (V1,V2, · · · ,Vn) ↔ Xρ
ϵ can

be regarded as the intrinsic dimension locally at point ρ
in the manifold M. V1,V2, · · · ,Vn represent random
random variables, ↔ means there exist continuous func-
tions f1, f2 such that f1(V1,V2, · · · ,Vn) = Xρ

ϵ and
f2(X

ρ
ϵ ) = (V1,V2, · · · ,Vn). Xρ

ϵ is a new random vari-
able that follows distribution P ρ

ϵ given by:

P ρ
ϵ (X) =

{
P (X)

c , if ||X− ρ|| ≤ ϵ

0, otherwise
(5)

where c =
∫
||X−ρ||≤ϵ

P (X)dX.

The manifold is assumed to locally resemble a n-
dimensional Euclidean space. Intuitively, we can consider
the ID as the expectation of n over the distribution of this
manifold.
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Figure 1. (a) Visualization of the feature space from depth estimation task. Enforcing an ID equal to the target space (1 dimensional)
will squeeze the feature space into a line, reducing the unnecessary H(Z|Y = yi) corresponding to the solution space of f(z) = ŷi

(the gray quadrilateral) for all i and implying a lower H(Z|Y). (b) Visualization of the feature space (right) and the ‘Mammoth’ shape
target space (left), see Sec. 5.1 for details. The feature space is topologically similar to the target space .

Theorem 3 Assume that z lies in a manifold M and the
Mi ⊂ M is a manifold corresponding to the distribution
(z|y = yi). Let C(ϵ) be some function of ϵ:

C(ϵ) =

∫
||z−z′||≤ϵ

P ′(z)dz, (6)

where P ′(z) is the probability of z when (z|y = yi) is
uniformly distributed across Mi, and z′ is any point on
Mi. Then, as ϵ → 0+, we have:

H(Z|Y) = Eyi∼YH(Z|Y = yi) (7)

≤ Eyi∼Y [− log(ϵ)DimIDMi + log
K

C(ϵ)
], (8)

for some fixed scalar K. DimIDMi is the intrinsic dimen-
sion of the manifold Mi.

Theorem 3 is derived from [(Ghosh & Motani, 2023),
Proposition 1]. The detailed proof is provided in Ap-
pendix A.3. Theorem 3 states that the conditional entropy
H(Z|Y) is bounded by the IDs of manifolds corresponding
to the distribution (z|y = yi), and the bound is tight when
(z|y = yi) are uniformly distributed across the manifolds.

Since Mi ⊂ M, Theorem 3 suggests that reducing the
intrinsic dimension of the feature space M will lead to a
lower H(Z|Y), which in turn implies a better generaliza-
tion performance based on Theorem 2. On the other hand,
the ID of M should not be less than the intrinsic dimension
of the target space to guarantee sufficient representation ca-
pabilities. Thus, a M with an intrinsic dimension equal to
the dimensionality of the target space is desirable.

3.6. Enforcing Topological Similarity

Below, we establish the second connection: topological
similarity between the feature and target spaces. We

first define the optimal representation following Achille &
Soatto (2018b).

Definition 2 (Optimal Representation). The representa-
tion Z is optimal if (1) H(Y|Z) = H(Y|X) and (2) Z
is fully determined given Y, i.e. H(Z|Y) is minimal.

In Definition 2, H(Y|Z) = H(Y|X) means Z is sufficient
for the target Y, while H(Z|Y) is minimal means Z dis-
cards all information that is not relevant to Y, and Z is
fully determined given Y. For continuous entropy, a min-
imal H(Z|Y) implies that H(Z|Y) = −∞, as Z is dis-
tributed as a delta function once given Y. In the discrete
case, H(Z|Y) = 0.

Proposition 2 Let the target Y = Y′ + N′ where Y′ is
fully determined by X and N′ is the aleatoric uncertainty
that is independent of X. Assume the underlying mapping
f ′ from Z to Y′ and g′ from Y′ to Z are continuous, where
the continuous mapping is based on the topology induced
by the Euclidean distance. Then the representation Z is
optimal if and only if Z is homeomorphic to Y′.

The detailed proof of Proposition 2 is provided in Ap-
pendix A.4. Proposition 2 demonstrates that the optimal
Z is homeomorphic to Y′, implying the need to learn a Z
that is homeomorphic to Y′. However, directly enforcing
homeomorphism can be challenging to achieve since Y′ is
generally unknown, and the representation Z typically lies
in a high-dimensional space that cannot be modeled with-
out sufficient data samples. As such, we opted to enforce
the topological similarity between the target and feature
spaces, preserving topological features similar to homo-
morphism. Here, topological similarity refers to the sim-
ilarity in topological features, such as clusters and loops,
and their localization (Trofimov et al., 2023). The two es-
tablished connections imply that the desired Z should be
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topologically similar to the target space and share the same
ID as the target space. More illustrations are given in Ap-
pendix D and E.

4. PH-Reg for Regression
Our analysis in Sec. 3 inspires us to learn a feature space
that is (1) topologically similar to the target space and (2)
with an intrinsic dimension (ID) equal to that of the target
space. To this end, we propose a regularizer named Persis-
tent Homology Regression Regularizer (PH-Reg). PH-Reg
features two terms: an intrinsic dimension term Ld and a
topology term Lt. Ld follows Birdal’s regularizer (Birdal
et al., 2021) to control the ID of feature space. Addition-
ally, it considers the target space to ensure sufficient repre-
sentation capabilities. Ld exploit the topology autoencoder
(Moor et al., 2020) to encourage the topological similar-
ity. Note the two regularizer terms are mainly introduced
to verify our connections, and other ID and topology reg-
ularizers can also be considered. However, empirical ob-
servations suggest that our Ld and Lt effectively align with
our established connections, perform well, and do not con-
flict with each other.

We first introduce some notations. Let Zn represent the set
of n samples from Z, and Yn be the labels corresponding
to Zn. We denote PH0(VR(Zn)) the 0-dimensional persis-
tent homology. Intuitively, PH0(VR(Zn)) can be regarded
as a set of edge lengths, where the edges are derived from
the minimum spanning tree obtained from the distance ma-
trix AZn of Zn. We denote πZn , πYn the set of the index
of edges in the minimum spanning trees of Zn and Yn,
respectively, and A∗[π∗] the corresponding length of the
edges. Let E(Zn) =

∑
γ∈PH0(VR(Zn))

|I(γ)| be the sum of
edge lengths of the minimum spanning trees corresponding
to Zn. We define E(Yn) similarly. Some topology prelim-
inaries are given in Appendix F.

Birdal et al. (2021) suggests to estimate the intrinsic di-
mension as the slope between logE(Zn) and log n. Note,
the definition of intrinsic dimension used in Birdal et al.
(2021) is based on the 0-dimensional persistent homology
PH0(VR(Zn)), which is different from ours (Definition 1,
coming from Ghosh & Motani (2023)). However, both def-
initions define the same object, i.e. the intrinsic dimension,
and it is thus reasonable to exploit Birdal et al. (2021)’s
method to constrain the intrinsic dimension.

Let e′ = [logE(Zn1
), logE(Zn2

), · · · , logE(Znm
)] ,

where Zni
is the subset sampled from a batch, with size

ni = |Zni |. Let ni < nj for i < j, and n =
[log n1, log n2, · · · , log nm]. Birdal et al. (2021) encour-
age a lower intrinsic dimension feature space by minimiz-
ing the slope between e′ and n, which can be estimated via

the least square method:

L′
d = (m

m∑
i=1

nie
′
i−

m∑
i=1

ni

m∑
i=1

e′i)/(m

m∑
i=1

n2
i−(

m∑
i=1

ni)
2).

(9)
Intuitively, the growth rate of E(Zn) is proportional to the
volume of the corresponding manifold; this volume is pro-
portional to the intrinsic dimension. In fact, there is a clas-
sical result on the growth rate of (Steele, 1988), showing
that the growth rate (i.e. the slop) can constrain the intrin-
sic dimension.

L′
d purely encourage the feature space to have a lower

intrinsic dimension; sometimes it may even result in an
intrinsic dimension lower than that of the target space
(see Figure 3, Swiss Roll, where the target space is
two-dimensional and the feature space is almost one-
dimensional.). In contrast, we wish to lower the ID of the
feature space while preventing it from being lower than that
of the target space. We propose to minimize slope between
e = [e1, e2, · · · , em] and n:

Ld = |(m
m∑
i=1

niei−
m∑
i=1

ni

m∑
i=1

ei)/(m

m∑
i=1

n2
i−(

m∑
i=1

ni)
2)|,

(10)
where ei = logE(Zni)/ logE(Yni). Compared with L′

d,
Ld further exploits the topological information of the target
space through logE(Yni

). When the feature and target
spaces have the same ID, E(Zni

) = E(Yni
) for all i and

Ld = 0 is in its minimal. As shown in Figure 2(c) and
Figure 3, Ld well controls the ID of the feature space while
better preserving the topology of the target space.

The topology autoencoder (Moor et al., 2020) enforces the
topological similarity between the feature and the target
spaces by preserving 0-dimensional topologically relevant
distances from the two spaces. We exploit it as the topology
part Lt:

Lt =||AZnm [πZnm ]−AYnm [πZnm ]||22 (11)

+ ||AZnm [πYnm ]−AYnm [πYnm ]||22 (12)

As shown in Figure 2(d) and Figure 3, Lt well preserves
the topology of the target space. We define the persistent
homology regression regularizer, PH-Reg, as LR = Ld +
Lt. As shown in Figure 2(e) and Figure 3, PH-Reg can
both encourage a lower intrinsic dimension and preserve
the topology of target space. The final loss function LR is
defined as:

LR = Lm + λtLt + λdLd, (13)

where Lm is the task-specific regression loss and λd, λt are
trade-off parameters, and their values are determined by the
value of the task task-specific loss Lm, e.g. for a high Lm,
λd and λt should also be set to high values.
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(a) Regression (b) Regression +L′
d (c) Regression +Ld (d) Regression +Lt (e) Regression +LR

Figure 2. Visualization of the last hidden layer’s feature space from the depth estimation task. The representations are obtained through
a modified ResNet-50, with the last hidden layer changed to dimension 3 for visualization. The target space is a 1-dimensional line, and
colors represent the ground truth depth. (b) L′

d encourages a lower intrinsic dimension yet fails to preserve the topology of the target
space. (c) Ld takes the target space into consideration and can further preserve its topology. (d) Lt can enforce the topological similarity
between the feature and target spaces. (e) Adding the Lt to Ld better preserves the topology of the target space.

5. Experiments
We compare our method with four methods. 1) Informa-
tion Dropout (InfDrop) (Achille & Soatto, 2018b). InfDrop
serves as an IB baseline. It functions as a regularizer de-
signed based on IB, aiming to learn representations that are
minimal, sufficient, and disentangled. 2) Ordinal Entropy
(OE) (Zhang et al., 2023). OE acts as a regression base-
line. It takes advantage of classification by learning higher
entropy feature space for regression tasks. 3) Birdal’s reg-
ularizer (i.e., L′

d) (Birdal et al., 2021) serves as an intrin-
sic dimension baseline. 4) Topology Autoencoder (i.e., Lt)
(Moor et al., 2020) serves as a topology baseline. Note that
the proposed PH-Reg is mainly introduced to verify the es-
tablished connections, and we do not aim for state-of-the-
art results.

5.1. Coordinate Prediction on the Synthetic Dataset

To verify the topological relationship between the feature
space and target space, we synthesize a dataset that con-
tains points sampled from topologically different objects,
including Swiss roll, torus, circle and the more complex
object “mammoth” (Coenen & Pearce, 2019). We ran-
domly sample 3000 points with coordinate y ∈ R3 from
each object. These 3000 points are then divided into sets
of 100 for training, 100 for validation, and 2800 for test-
ing. Each point yi is encoded into a 100 dimensional vec-
tor xi = [f1(yi), f2(yi), f3(yi), f4(yi), noise], where the
dimensions 1-4 are signal and the rest 96 dimensions are
noise. The coordinate prediction task aims to learn the
mapping G(x) = ŷ from x to y, and the mean-squared
error Lmse = 1

N

∑
i ||ŷi − yi||22 is adopted as the evalu-

ation metric. We use a two-layer fully connected neural
network with 100 hidden units as the baseline architecture.
More details are given in Appendix G.

Table 1 shows that encouraging a lower intrinsic dimension
while considering the target space (+Ld) enhances perfor-
mance, particularly for Swiss Roll and Torus. In contrast,

Table 1. Results (Lmse) on the synthetic dataset. We report results
as mean ± standard variance over 10 runs. Bold numbers indicate
the best performance.

Method Swiss Roll Mammoth Torus Circle
Baseline 2.99 ± 0.43 211 ± 55 3.01 ± 0.11 0.154 ± 0.006
+ InfDrop 4.15 ± 0.37 367 ± 50 2.05 ± 0.04 0.093 ± 0.003
+ OE 2.95 ± 0.69 187 ± 88 2.83 ± 0.07 0.114 ± 0.007
+L′

d 2.74 ± 0.85 141 ± 104 1.13 ± 0.06 0.171 ± 0.04
+Ld 0.66 ± 0.08 89 ± 66 0.62 ± 0.12 0.090 ± 0.019
+Lt 1.83 ± 0.70 80 ± 61 0.95 ± 0.05 0.036 ± 0.004

+Ld + Lt 0.61 ± 0.17 49 ± 27 0.61 ± 0.05 0.013 ± 0.008

naively lowering the intrinsic dimension (+L′
d) performs

poorly. Enforcing the topology similarity between the fea-
ture space and target space (+L′

t) decreases the Lmse by
more than 60%, except for the Swiss roll. The best gains,
however, are achieved by incorporating both Lt and Ld,
which decrease the Lmse even more than 90% for the circle
coordinate prediction task. Figure 3 shows feature space
visualization results using t-SNE (100 dimensions → 3 di-
mensions). The feature space of the regression baseline
shows a similar structure to the target space, especially for
Swiss roll and mammoth, which indicates regression po-
tentially captures the topology of the target space. Regres-
sion +Lt significantly preserves the topology of the target
space. Regression +Ld potentially preserves the topology
of the target space, e.g. circle, while it primarily reduces the
complexity of the feature space by maintaining the same
intrinsic dimension as the target space. Combining both
Ld and Lt in regression preserves the topology information
while also reducing the complexity of the feature space, i.e.
lower its intrinsic dimension.

5.2. Real-World Regression Tasks

We conduct experiments on three real-world regres-
sion tasks, including depth estimation (Table 2), super-
resolution (Table 3) and age estimation (Table 4). The tar-
get spaces of the three tasks are topologically different, i.e.
a 1- dimensional line for depth estimation, 3-dimensional

7
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Target Space Regression Regression + Lt Regression + Ld Regression + Lt +LdRegression + L'd 

Figure 3. t-sne visualization of the feature spaces (100 dimensions → 3 dimensions) with topological different target spaces.

space for super-resolution and discrete points for age esti-
mation. Detailed settings, related introductions and more
discussions are given in Appendix H.

Results on the three tasks demonstrate that both Lt and
Ld can enhance performance, and combining both fur-
ther boosts the performance. Specifically, combining both
achieves 0.48 overall improvements (i.e. ALL) on age esti-
mation, a PSNR improvement of 0.096 on super-resolution
for Urban100, and a reduction of 6.7% δ1 error on depth
estimation.

5.3. Ablation Studies

Hyperparameter λt and λd: We maintain λd and λt at
their default value 10 for Swiss roll coordinate prediction,
and we vary one of them to examine their impact. Figure
4(a) shows when λt ≤ 10, the MSE decreases consistently
as λt increases. However, it tends to overtake the original
learning objective when set too high, i.e. 1000. Regarding
the λd, as shown in Figure 4(b), MSE remains relatively
stable over a large range of λd, with a slight increase in

Table 2. Quantitative comparison (MAE) on AgeDB. We report
results as mean ± standard variance over 3 runs. Bold numbers
indicate the best performance.

Method ALL Many Med. Few
Baseline 7.80 ± 0.12 6.80 ± 0.06 9.11 ± 0.31 13.63 ± 0.43
+ InfDrop 8.04 ± 0.14 7.14 ± 0.20 9.10 ± 0.71 13.61 ± 0.32
+ OE 7.65 ± 0.13 6.72 ± 0.09 8.77 ± 0.49 13.28 ± 0.73
+L′

d 7.75 ± 0.05 6.80 ± 0.11 8.87 ± 0.05 13.61 ± 0.50
+Ld 7.64 ± 0.07 6.82 ± 0.07 8.62 ± 0.20 12.79 ± 0.65
+Lt 7.50 ± 0.04 6.59 ± 0.03 8.75 ± 0.03 12.67 ± 0.24

+Ld + Lt 7.32 ± 0.09 6.50 ± 0.15 8.38 ± 0.11 12.18 ± 0.38

variance when λd = 1000.

Sample Size (nm): In practice, we model the feature space
using a limited number of samples within a batch. For
dense prediction tasks, the available No. of samples is very
large (No. pixels per image × batch size), while it is con-
strained to the batch size for image-wise prediction tasks.
We investigate the influence of nm from Eq. 10 and 11
on Swiss roll coordinate prediction. Figure 4(c) shows our
PH-Reg performs better with a larger nm, while maintain-
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(a) MSE with λt (b) MSE with λd (c) MSE with sample size (d) ID of different methods

Figure 4. Ablation study based on (a-c) the Swiss roll coordinate prediction task and (d) the depth estimation task.

Table 3. Quantitative comparison (PSNR(dB)) of super-resolution
results with public benchmark and DIV2K validation set. Bold
numbers indicate the best performance.

Method Set5 Set14 B100 Urban100 DIV2K
Baseline 32.241 28.614 27.598 26.083 28.997
+ InfDrop 32.219 28.626 27.594 26.059 28.980
+ OE 32.280 28.659 27.614 26.117 29.005
+L′

d 32.252 28.625 27.599 26.078 28.989
+Ld 32.293 28.644 27.619 26.151 29.022
+Lt 32.322 28.673 27.624 26.169 29.031

+Ld + Lt 32.288 28.686 27.627 26.179 29.038

Table 4. Depth estimation results with NYU-Depth-v2. Bold and
underline numbers indicate the best and second best performance,
respectively.

Method δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ RMS ↓ log10 ↓
Baseline 0.792 0.955 0.990 0.153 0.512 0.064
+ InfDrop 0.791 0.960 0.992 0.153 0.507 0.064
+ OE 0.811 - - 0.143 0.478 0.060
+L′

d 0.804 0.954 0.988 0.151 0.502 0.063
+Ld 0.795 0.959 0.992 0.150 0.497 0.063
+Lt 0.798 0.958 0.990 0.149 0.502 0.063
+Ld + Lt 0.807 0.959 0.992 0.144 0.481 0.061

ing stability even with a small nm.

ID of different methods: Figure 4(d) displays the intrinsic
dimension of the last hidden layer, estimated using TwoNN
(Facco et al., 2017), for the testing set of NYU-Depth-
v2 from different methods throughout training. While our
method is based on Birdal’s estimator (Birdal et al., 2021),
another estimator, TwoNN, captures a decrease in ID when
applied Ld. We observe that without Ld, the intrinsic di-
mension tends to increase after epoch 3, potentially overfit-
ting details, whereas Ld prevents such a trend.

Efficiency: Efficiency-wise, the computing complexity
equals finding the minimum spanning tree from the dis-
tance matrix of the samples, which have a complexity
of O(n2

m log nm) using the simple Kruskal’s Algorithm,
and it can speed up with some advanced methods (Bauer,
2021). The synthetic experiments (Table 5) use a simple
2-layer MLP, so the regularizer adds significant computing

Table 5. Quantitative comparison of the time consumption and
memory usage on the synthetic dataset and NYU-Depth-v2, and
the corresponding training times are 10000 and 1 epoch, respec-
tively.

nm Regularizer
Coordinate Prediction Depth Estimation

(2 Layer MLP) (ResNet-50)
Training(s) Memory (MB) Training(s) Memory (MB)

0 - 8.88 959 1929 11821
100 Lt 175.06 959 1942 11833
100 Ld 439.68 973 1950 12211
100 Lt + Ld 617.41 973 1980 12211
300 Lt + Ld - - 2370 12211

time. However, the real-world experiments on depth esti-
mation (Table 5) use a ResNet-50 backbone, and the added
time and memory are negligible (18.6% and 0.3%, respec-
tively), even with nm = 300. These increases are only
during training and do not add demands for inference.

6. Conclusion
In this paper, we establish novel connections between
topology and the IB principle for regression representation
learning. The established connections imply that the de-
sired Z should exhibit topological similarity to the target
space and share the same intrinsic dimension as the target
space. Inspired by the connections, we proposed a regular-
izer to learn the desired Z. Experiments on synthetic and
real-world regression tasks demonstrate its benefits.
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A. Proofs
A.1. Proof of the Theorem 1

Theorem 1 Assume that the conditional entropy H(Z|X) is a fixed constant for Z ∈ Z for some set Z of the random
variables, or Z is determined given X. Then, minZ IB = minZ {(1− β)H(Y|Z) + βH(Z|Y)}.

Proof From the definition of the mutual information, we have

I(Z;X) = H(Z)−H(Z|X) = I(Z;Y) +H(Z|Y)−H(Z|X).

By substituting the right-hand side of this equation into I(Z;X),

IB = −I(Z;Y) + βI(Z;X) = (β − 1)I(Z;Y) + βH(Z|Y)− βH(Z|X) (14)

Since I(Z;Y) = H(Y)−H(Y|Z),

IB = (β − 1)(H(Y)−H(Y|Z)) + βH(Z|Y)− βH(Z|X) (15)
= (1− β)H(Y|Z) + βH(Z|Y) + (β − 1)H(Y)− βH(Z|X). (16)

1) If H(Z|X) is a constant for Z ∈ Z . Since H(Y) is a fixed constant for any Z, this implies that

IB = (1− β)H(Y|Z) + βH(Z|Y) + C,

where C is a fixed constant for Z ∈ Z . Thus:

min
Z

IB = min
Z

{(1− β)H(Y|Z) + βH(Z|Y)}.

2) If Z is determined given X, then H(Z|X) is not a term can be optimized. Since H(Y) is a fixed constant for any Z:

min
Z

IB = min
Z

{(1− β)H(Y|Z) + βH(Z|Y)}.

□

A.2. Proof of the Theorem 2 and Proposition 1

Theorem 2 Consider dataset S = {xi, zi,yi}Ni=1 sampled from distribution P , where xi is the input, zi is the corre-
sponding representation, and yi is the label. Let dmax = maxy∈Y minyi∈S ||y − yi||2 be the maximum distance of y to
its nearest yi. Assume (Z|Y = yi) follows a distribution D and the dispersion of D is bounded by its entropy:

Ez∼D[||z− z̄||2] ≤ Q(H(D)), (17)

where z̄ is the mean of the distribution D and Q(H(D)) is some function of H(D). Assume the regressor f is L1-Lipschitz
continuous, then as dmax → 0, we have:

E{x,z,y}∼P [||f(z)− y||2] ≤ E{x,z,y}∼S(||f(z)− y||2) + 2L1Q(H(Z|Y)) (18)

Proof For any sample {xi, zi,yi}, we define its local neighborhood set Ni as

Ni = {{x, z,y} : ||y − yi||2 < ||y − yj ||2, j ̸= i, p(y) > 0}. (19)

For each set Ni, we have

E{x,z,y}∼Ni
[||f(z)− y||2] = E{x,z,y}∼Ni

[||f(z)− f(zi) + f(zi)− yi + yi − y||2] (20)
≤E{x,z,y}∼Ni

[||f(z)− f(zi)||2] + E{x,z,y}∼Ni
[||f(zi)− yi||2] + E{x,z,y}∼Ni

[||yi − y||2] (21)
≤L1E{x,z,y}∼Ni

[||z− zi||2] + E{x,z,y}∼Ni
[||f(zi)− yi||2] + dmax (22)

=L1E{x,z,y}∼Ni
[||z− z̄i + z̄i − zi||2] + E{x,z,y}∼Ni

[||f(zi)− yi||2] + dmax (23)
≤L1E{x,z,y}∼Ni

[||z− z̄i||2 + ||z̄i − zi||2] + E{x,z,y}∼Ni
[||f(zi)− yi||2] + dmax (24)

=L1E{x,z,y}∼Ni
[||z− z̄i||2] + L1||z̄i − zi||2 + E{x,z,y}∼Ni

[||f(zi)− yi||2] + dmax (25)
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We denote the probability distribution over {Ni} as P ′, where P (Ni) = P ({x, z,y} ∈ Ni}). Then, we have

E{x,z,y}∼P [||f(z)− y||2] = ENi∼P ′E{x,z,y}∼Ni
[||f(z)− y||2] (26)

≤ENi∼P ′ [L1E{x,z,y}∼Ni
[||z− z̄i||2] + L1||z̄i − zi||2 + E{x,z,y}∼Ni

[||f(zi)− yi||2] + dmax] (27)
=L1ENi∼P ′E{x,z,y}∼Ni

[||z− z̄i||2] + L1ENi∼P ′ ||z̄i − zi||2 + E{x,z,y}∼S(||f(zi)− yi||2) + dmax (28)

As dmax → 0, we can approximate ENi∼P ′E{x,z,y}∼Ni
[||z − z̄i||2] as Eyi∼YE{(x,z,y)|y=yi}[||z − z̄i||2]. Since (Z|Y =

yi) ∼ D, we have H(Z|Y) = Ey∼YH(Z|Y = y) = H(Z|Y = yi) = H(Z|Y = yj) = H(D) for all 1 ≤ i, j ≤ N , and
ENi∼P ′ ||zi − z̄i||2 can thus be approximate as E{(x,z,y)|y=yi}||z− z̄i||2. We have:

E{x,z,y}∼P [||f(z)− y||2] (29)
≤ L1ENi∼P ′E{x,z,y}∼Ni

[||z− z̄i||2] + L1ENi∼P ′ ||z̄i − zi||2 + E{x,z,y}∼S(||f(zi)− yi||2) + dmax (30)
= L1Eyi∼YE{(x,z,y)|y=yi}[||z− z̄i||2] + L1E{(x,z,y)|y=yi}||zi − z̄i||2 + E{x,z,y}∼S(||f(zi)− yi||2) (31)
≤ L1Eyi∼Y [Q(H(Z|Y = yi))] + L1Q(H(Z|Y = yi)) + E{x,z,y}∼S(||f(zi)− yi||2) (32)
= 2L1Q(H(Z|Y)) + E{x,z,y}∼S(||f(zi)− yi||2) (33)

□

Proposition 1 If D is a multivariate normal distribution N (z̄,Σ = kI), where k > 0 is a scalar and z̄ is the mean of the

distribution D. Then, the function Q(H(D)) in Theorem 2 can be selected as Q(H(D)) =

√
d(e2H(D))

1
d

2πe , where d is the

dimension of z. If D is a uniform distribution, then the Q(H(D)) can be selected as Q(H(D)) = eH(D)
√
12

.

Proof We first consider the case when D ∼ N (z̄,Σ = kI). Assume Z ∼ N (z̄,Σ), then H(Z) = 1
2 log(2πe)

n|Σ|:

H(Z) = −
∫
z

p(z) log(p(z))dz (34)

= −
∫
z

p(z) log
1

(
√
2π)d|Σ| 12

e
−1
2 (z−z̄)TΣ−1(z−z̄)dz (35)

= −
∫
z

p(z) log
1

(
√
2π)d|Σ| 12

dz−
∫
z

p(z) log e
1
2 (z−z̄)TΣ−1(z−z̄)dz (36)

=
1

2
log(2π)d|Σ|+ log e

2
E[
∑
i,j

(zi − z̄i)(Σ
−1)ij(zj − z̄j)] (37)

=
1

2
log(2π)d|Σ|+ log e

2
E[
∑
i,j

(zi − z̄i)(zj − z̄j)(Σ
−1)ij ] (38)

=
1

2
log(2π)d|Σ|+ log e

2

∑
i,j

E[(zi − z̄i)(zj − z̄j)](Σ
−1)ij (39)

=
1

2
log(2π)d|Σ|+ log e

2

∑
j

∑
i

Σji(Σ
−1)ij (40)

=
1

2
log(2π)d|Σ|+ log e

2

∑
j

(ΣΣ−1)j (41)

=
1

2
log(2π)d|Σ|+ log e

2

∑
j

Ijj (42)

=
1

2
log(2π)d|Σ|+ log e

2
(43)

=
1

2
log(2πe)d|Σ| (44)

13



Deep Regression Representation Learning with Topology

We have the following:

E[||z− z̄||22] = tr(Σ) = dk. (45)

The following also holds:

|Σ| = kd. (46)

Thus, we have:

(E[||z− z̄||2])2 ≤ E[||z− z̄||22] = d|Σ| 1d = d(
e2H(Z)

(2πe)d
)

1
d =

d(e2H(Z))
1
d

2πe
(47)

Finally,

E[||z− z̄||2] ≤

√
d(e2H(Z))

1
d

2πe
(48)

Thus, Q(H(D)) in Theorem 2 can be selected as Q(H(D)) =

√
d(e2H(D))

1
d

2πe , when D ∼ N (z̄,Σ = kI).

Similarly, if D is a uniform distribution U(a, b), then its variance is given by:

E[||z− z̄||22] =
(b− a)2

12
, (49)

and its entropy is given by:
H(D) = log(b− a). (50)

We have:

(E[||z− z̄||2])2 ≤ E[||z− z̄||22] =
(b− a)2

12
=

e2H(D)

12
(51)

Finally,

E[||z− z̄||2] ≤
eH(D)

√
12

(52)

Thus, Q(H(D)) in Theorem 2 can be selected as Q(H(D)) = eH(D)
√
12

, when D is a uniform distribution

□

A.3. Proof of the Theorem 3

We first show a straightforward result of [(Ghosh & Motani, 2023), Proposition 1]:

Lemma 1 Assume that z lies in a manifold M and the Mi ⊂ M is a manifold corresponding to the distribution (z|y =
yi). Assume for all features zi ∈ Mi, the following holds:∫

||z−zi||≤ϵ

P (z)dz = C(ϵ), (53)

where C(ϵ) is some function of ϵ. The above imposes a constraint where the distribution (z|y = yi) is uniformly distributed
across Mi. Then, as ϵ → 0+, we have:

H(Z|Y) = Eyi∼YH(Z|Y = yi) = Eyi∼Y [− log(ϵ)DimIDMi + log
K

C(ϵ)
], (54)

for some fixed scalar K. DimIDMi is the intrinsic dimension of the manifold Mi.

14



Deep Regression Representation Learning with Topology

Proof By using the same proof technique as [(Ghosh & Motani, 2023), Proposition 1], we can show

H(Z|Y = yi) = − log(ϵ)DimIDMi + log
K

C(ϵ)
, (55)

Since H(Z|Y) = Eyi∼YH(Z|Y = yi), the result follows. □

Theorem 3 Assume that z lies in a manifold M and the Mi ⊂ M is a manifold corresponding to the distribution
(z|y = yi). Let C(ϵ) be some function of ϵ:

C(ϵ) =

∫
||z−z′||≤ϵ

P ′(z)dz, (56)

where P ′(z) is the probability of z when (z|y = yi) is uniformly distributed across Mi, and z′ is any point on Mi. Then,
as ϵ → 0+, we have:

H(Z|Y) = Eyi∼YH(Z|Y = yi) ≤ Eyi∼Y [− log(ϵ)DimIDMi + log
K

C(ϵ)
], (57)

for some fixed scalar K. DimIDMi is the intrinsic dimension of the manifold Mi.

Proof Since the uniform distribution has the largest entropy over all distributions over the support Mi, based on Lemma
1, we thus have:

H(Z|Y) = Eyi∼YH(Z|Y = yi) ≤ Eyi∼Y [− log(ϵ)DimIDMi + log
K

C(ϵ)
], (58)

□

A.4. Proof of the Proposition 2

Proposition 2 Let the target Y = Y′ + N′ where Y′ is fully determined by X and N′ is the aleatoric uncertainty that
is independent of X. Assume the underlying mapping f ′ from Z to Y′ and g′ from Y′ to Z are continuous, where the
continuous mapping is based on the topology induced by the Euclidean distance. Then the representation Z is optimal if
and only if Z is homeomorphic to Y′.

Proof If Z is optimal (optimal Z⇒ Z is homeomorphic to Y′):

H(Y|Z) = H(Y′ +N′|Z) = H(Y′|Z) +H(N′|Z,Y′) = H(Y′|Z) +H(N′|Y′), (59)

H(Y|X) = H(Y′ +N′|X) = H(Y′|X) +H(N′|X,Y′) = H(Y′|X) +H(N′|Y′). (60)

Since Z is optimal, we have H(Y|Z) = H(Y|X). Based on the two equations above, we have:

H(Y′|Z) = H(Y′|X). (61)

Since Y′ is fully determined by X and H(Y′|Z) = H(Y′|X), Y is also fully determined by Z. Thus, for each zi ∈ Z,
there exists and only exists one y′

i ∈ Y′ corresponding to the zi, and thus the mapping function f ′ exists.

Z is optimal also means Z is fully determined given Y, Since N′ is independent of Z:

H(Z|Y) = H(Z|Y′ +N′) = H(Z|Y′), (62)

thus, for each y′
i, there exist and only exist one zi corresponding to the y′

i. Thus, the mapping function f ′ is a bijection,
and its inverse f ′−1 is g′. Since f ′ and f ′−1 are continuous, Z is homeomorphic to Y.

If Z is homeomorphic to Y′: ( Z is homeomorphic to Y′ ⇒ optimal Z ):

Z is homeomorphic to Y′ means a continuous bijection exist between Z and Y′, thus H(Z|Y) = H(Z|Y′) = H(Y′|Z)
and H(Z|Y) is minimal. We have:

H(Y|Z) = H(Y′|Z) +H(N′|Y′) = H(N′|Y′) = H(Y′|X) +H(N′|Y′) = H(Y|X), (63)

thus, Z is optimal. □

15



Deep Regression Representation Learning with Topology

B. Discussions about Theorem 1
Choice of β in Theorem 1: β in (0, 1) means we need to maximize I(Z;Y) for sufficiency, while we want to minimize
I(Z;X) for minimality. When β > 1, then we value the minimality more than the sufficiency, resulting in the need to
maximize H(Y|Z). But, in the typical setting, we always value I(Z;Y) more than I(Z,X) for a good task-specific
performance, and β > 0 will lead Z compressed to be a single point, as H(Z|Y) is minimal and H(Y|Z) is maximized in
this case. The qualitative behavior should change based on 0 < β < 1 or β > 1, as it controls which we value the more:
sufficiency or minimality.

Difference between the target Y and the predicted Y′: The target Y is different from the predicted Y′. H(Y′|Z) always
equals to 0 if we exploit neural networks as deterministic functions. In an extreme case, we can treat the predicted Y′ as
the representation Z, which shows minimizing H(Y′|Y) = 0 is the learning target. From the invariance representation
learning point of view, lowering H(Z|Y) is learning invariance representations with respect to Y.

More discussions about the assumptions: For discrete entropy, Z is determined given Y implies H(Z|Y) is a constant
for Z, as H(Z|Y) = 0 here. However, this does not hold for differential entropy. For differential entropy, Z is determined
given Y means H(Z|Y) = −∞, since given Y, Z is distributed as a delta function in this case.

C. Connections with the bound in Kawaguchi et al. (2023)
Kawaguchi et al. (2023) provide several bounds that are all applicable for both classification and regression for various
cases. In the case where the encoder model ϕ (whose output is z) and the training dataset of the downstream task Ŝ =
{xi, yi}Ni=1 are dependent (e.g., this is when z = ϕ(x) for x /∈ S is dependent of all N training data points (xi, yi)

N
i=1

through the training of ϕ by using Ŝ), they show that any valid and general generalization bound of the information
bottleneck must include two terms, I(X;Z|Y) and I(ϕ; Ŝ), where the second term measures the effect of overfitting the
encoder ϕ. This is because the encoder ϕ can compress all information to minimize I(X;Z|Y) arbitrarily well while
overfitting to the training data: e.g., we can simply set ϕ(xi) = yi for all (xi, yi) ∈ Ŝ and ϕ(x) = c ̸= y for all (x, y) /∈ Ŝ
for some constant c to achieve the best training loss while minimizing I(X;Z|Y) and performing arbitrarily poorly for
test loss. Given this observation, they prove the first rigorous generalization bounds for two separate cases based on the
dependence of ϕ and Ŝ. Their generalization bounds scales with I(X;Z|Y) without the second term I(ϕ; Ŝ) in case of ϕ
and Ŝ being independent, and with I(X;Z|Y) and I(ϕ; Ŝ) in case of ϕ and Ŝ being dependent.

In Theorem 2, we consider the case where ϕ and Ŝ are independent, since z in (x, z, y) ∼ P is drawn without dependence
on the entire N data points {xi, yi}Ni=1 in equation (18). Thus, our results are consistent and do not contradict previous
findings. Unlike the previous bounds, our bound is determined by the function Q, which characterizes the dispersion or the
standard deviation of a distribution by its entropy. The function Q exists for general cases, as the dispersion or the standard
deviation and the entropy commonly can be estimated for a specific distribution. We thus can find a function Q to upper
bound the relationship on the entropy and its dispersion or the standard deviation.

It is worth mentioning that we are not targeting a tight or an advanced bound here. Our bound is introduced to support the
analysis that follows after Theorem 2, which is challenging with the previous bounds.

D. From Proposition 2, whether the optimal representation Z is the one that equals the
ground-truth label?

Such Z can be one of the optimal/best representations under the negligible aleatoric uncertainty setting. However, Z is not
unique and Proposition 2 is broader than this statement as it says that the optimal representation Z should be homeomorphic
to the ground truth - i.e. they only need to be topologically equivalent. In this regard, the feature space may resemble a
square, while the target space is a circle.

A practical benefit of Proposition 2 is its guidance on the desirable topological properties of Z. For example, if the target
space is a single connected component ( i.e. β0 = 1), then the feature space should also be similar; this does not hold
in general (the task-specific loss alone cannot guarantee a single connected feature space and the topology of the feature
space is also influenced by the input space. In addition, we observe empirically on depth estimation that the feature space
sometimes consists of multiple disconnected components).
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Table 6. Depth estimation on NYU-Depth-V2. Here, Random represents the encoder is fixed in a random state, while PH-Reg means we
first train the encoder purely with PH-Reg for 1 epoch, then fix it and train the regressor.

Encoder Regressor δ1 ↑ REL ↓ RMS ↓ log10 ↓
Random Linear 0.398 0.390 1.144 0.153
PH-Reg Linear 0.428 0.391 1.043 0.153
Random NonLinear 0.412 0.381 1.121 0.149
PH-Rege NonLinear 0.440 0.374 1.052 0.141

E. Discussions about the regressor
1. Do the appropriate properties (i.e., lower ID and homeomorphism) depend on the regressor?

Although the appropriate feature space may vary from regressor to regressor, the appropriate properties, as supported by
our theorems, do not depend on the regressor. Specifically, our Theorem 1 shows that the IB tradeoff is fully determined
by the values of H(Z|Y) and H(Y|Z). These values of the entropy terms do not depend on the regressor that maps Z to
the predicted Ŷ. In addition, for depth estimation, representations learned purely by PH-Reg without any other loss terms
are also highly competitive (see Table 6).

2. Topology regularization with “simple” vs highly expressive regressors

For both regressors, our regularizer leads to representations with a higher signal-to-noise ratio (since H(Z|Y) and H(Z|Y)
are minimized). This should make it easier for the regressor to estimate the true underlying signal. However, more
expressive regressors have a higher capacity to estimate the underlying signal directly, so the room for improvement
from the regularization is reduced. In the extreme case of too much expressiveness, our regularizer may again lead to
improvements as it may limit overfitting, by minimizing noise in the learned representation.

The topology properties supported by our theorems align with invariant representation learning (i.e. invariance to noise),
where invariance serves as a general prior for desirable representation properties (Bengio et al., 2013).

F. Preliminaries on Topology
The simplicial complex is a central object in topological data analysis, and it can be exploited as a tool to model the ‘shape’
of data. Given a set of finite samples S = {si}, the simplicial complex K can be seen as a collection of simplices σ =
{s0, · · · , sk} of varying dimensions: vertices (|σ| = 1), edges(|σ| = 2), and the higher-dimensional counterparts(|σ| >
2). The faces of a simplex σ = {s0, · · · , sk} is the simplex spanned by the subset of {s0, · · · , sk}. The dimension of the
simplicial complex K is the largest dimension of its simplices. A simplicial complex can be regarded as a high-dimensional
generalization of a graph, and a graph can be seen as a 1-dimensional simplicial complex. For each S, there exist many
ways to build simplicial complexes and the Vietoris-Rips Complexes are widely used:

Definition 3 (Vietoris-Rips Complexes). Given a set of finite samples S sampled from the feature space or target space
and a threshold α ≥ 0, the Vietoris-Rips Complexes VRα is defined as:

VRα(S) = {{s0, · · · , sk}, s ∈ S|d(si, sj) ≤ α}, (64)

where d(si, sj) is the Euclidean distance between samples si and sj .

VRα(S) is the set of all simplicial complexes {s0, · · · , sk} where the pairwise distance d(si, sj) is within the threshold
α. Let Ck(VRα(S)) denote the vector space generated by its k-dimensional simplices over Z2

2. The boundary operator
∂k : Ck(VRα(S)) → Ck−1(VRα(S)) maps each simplex to its boundary , which consists of the sum of all its faces,
is a homomorphism from Ck(VRα(S)) to Ck−1(VRα(S)). It can be shown that ∂k ◦ ∂k−1 = 0, which leads to the
chain complex: · · · → , and the kth homology group Hk(VRα(S)) is defined as the quotient group Hk(VRα(S)) :=
ker∂k/im∂k+1. ker represents kernel, which is the set of all elements that are mapped to the zero element. im represents
image, which is the set of all the outputs. Rank Hk(VRα(S)) is known as the kth Betti number βk, which counts the
number of k-dimensional holes and can be used to represent the topological features of the manifold that the set of points
S sampled from.

2It is not specific to Z2, but Z2 is a typical choice.

17



Deep Regression Representation Learning with Topology

𝑥
Input data

Encoder 𝑧 Regressor #𝑦 𝑦

PH-Reg

task-specific loss
(a) Illustration of the framework

𝛼!

𝛼" 𝛼#

𝛼!

𝛼"

0 Birth

Death

𝑠!

𝑠"

𝑠#

[0, 𝛼!]
[0, 𝛼"]

‘birth’ and ‘death’ threshold𝑉𝑅$ at different scales

[‘birth’, ‘death’] 𝛽%
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Figure 5. Illustration of the (a) the use of PH-Reg for regression, and (b) calculating of PH0(VR(S)). Here S = {s1, s2, s3}. We say
three connected components, i.e. β0, ({{s1}, {s2}, {s3}}) ‘birth’ when α = 0, one ‘death’ (two left ({{s1, s3}, s2})) when α = α1,
and another one ‘death’ (one left ({{s1, s3, s2})) when α = α2. Thus PH0(VR(S)) = {[0, α1], [0, α2]}.

However, the Hk(VRα(S)) is obtained based on a single α, which is easily affected by small changes in S. Thus, it is
not robust and is of limited use for real-world datasets. The persistent homology considers all the possible α instead of a
single one, which results in a sequence of βk. This is achieved through a nested sequence of simplicial complexes, called
filtration: VR0(S) ⊆ VRα1(S) ⊆ · · · ⊆ VRαm(S) for 0 ≤ α1 ≤ αm. Let γi = [αi, αj ] be the interval corresponding to
a k-dimensional hole ‘birth’ at the threshold αi and ‘death’ at the threshold αj , we denote PHk(VR(S)) = {γi} the set of
‘birth’ and ‘death’ intervals of the k-dimensional holes. We only exploit PH0(VR(S)) in our PH-Reg, since we exploit the
topological autoencoder as the topology part and higher topological features merely increase its runtime. An illustration of
the calculation PH0(VR(S)) is given in Figure 5(b). We define E(S) =

∑
γ∈PH0(VR(S)) |I(γ)|, where |I(γ)| is the length

of the interval γ.

G. More details about the Coordinate Prediction task
Details about the synthetic dataset: We encode coordinates y ∈ R3 into 100 dimensional vectors xi =
[f1(yi), f2(yi), f3(yi), f4(yi), noise], where the dimensions 1 − 4 are signal and the rest 96 dimensions are noise. The
encoder functions fi are defined as:

• f1(yi) = yi1 + yi2 + yi3

• f2(yi) = yi1 + yi2 − yi3

• f3(yi) = yi1 − yi2 + yi3

• f4(yi) = −yi1 + yi2 + yi3

As shown above, the accurate coordinates yi can be obtained correctly when f1(yi), f2(yi), f3(yi), f4(yi) are given.
We introduce noise to the remaining 96 dimensions by using f1, f2, f3, f4 on other randomly selected samples yj . The
proximity of yj to yi can be intuitively seen as an indicator of the noise’s relationship to the signal.

More training details: We train the models for 10000 epochs using AdamW as the optimizer with a learning rate of
0.001. We report results as mean ± standard variance over 10 runs. For the regression baseline Oridnal Entropy and the
IB baseline Information Dropout, we tried various weights {0.01, 0.1, 1, 10} and reported the best results. The trade-off
parameters λd and λt are default set to 10 and 100, respectively, while λt is set to 10000 and λd is set to 1 for Mammoth,
and λd is set to 1 for torus and circle.
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Table 7. Results on AgeDB. We report results as mean ± standard variance over 3 runs. Bold numbers indicate the best performance.
Method MAE ↓ GM ↓

ALL Many Med. Few ALL Many Med. Few
Baseline (Yang et al., 2021) 7.80 ± 0.12 6.80 ± 0.06 9.11 ± 0.31 13.63 ± 0.43 4.98 ± 0.05 4.32 ± 0.06 6.19 ± 0.07 10.29 ± 0.57

+ Information dropout (Achille & Soatto, 2018b) 8.04 ± 0.14 7.14 ± 0.20 9.10 ± 0.71 13.61 ± 0.32 5.11 ± 0.06 4.49 ± 0.17 6.14 ± 0.49 10.54 ± 0.65
+ Oridnal Entropy (Zhang et al., 2023) 7.65 ± 0.13 6.72 ± 0.09 8.77 ± 0.49 13.28 ± 0.73 4.91 ± 0.14 4.29 ± 0.06 6.04 ± 0.51 10.09 ± 0.62

+L′
d 7.75 ± 0.05 6.80 ± 0.11 8.87 ± 0.05 13.61 ± 0.50 4.96 ± 0.04 4.33 ± 0.09 6.05 ± 0.36 10.43 ± 0.40

+Ld 7.64 ± 0.07 6.82 ± 0.07 8.62 ± 0.20 12.79 ± 0.65 4.85 ± 0.05 4.27 ± 0.06 5.91 ± 0.13 9.75 ± 0.53
+Lt 7.50 ± 0.04 6.59 ± 0.03 8.75 ± 0.03 12.67 ± 0.24 4.77 ± 0.07 4.27 ± 0.06 6.09 ± 0.03 9.34 ± 0.70

+Ld + Lt 7.32 ± 0.09 6.50 ± 0.15 8.38 ± 0.11 12.18 ± 0.38 4.69 ± 0.07 4.15 ± 0.08 5.64 ± 0.09 8.99 ± 0.38

Table 8. Quantitative comparison of super-resolution results with public benchmark and DIV2K validation set. We report results as
PSNR(dB)/SSIM. Bold numbers indicate the best performance.

Method Set5 Set14 B100 Urban100 DIV2K
Baseline (Lim et al., 2017) 32.241/ 0.8656 28.614/ 0.7445 27.598/ 0.7120 26.083/ 0.7645 28.997/ 0.8189

+ Information dropout (Achille & Soatto, 2018b) 32.219/ 0.8649 28.626/ 0.7441 27.594/ 0.7113 26.059/ 0.7624 28.980/ 0.8182
+ Oridnal Entropy (Zhang et al., 2023) 32.280/ 0.8653 28.659/ 0.7445 27.614/ 0.7119 26.117/ 0.7641 29.005/ 0.8188

+L′
d 32.252/ 0.8653 28.625/ 0.7443 27.599/ 0.7118 26.078/ 0.7638 28.989/ 0.8186

+Ld 32.293/ 0.8660 28.644/ 0.7453 27.619/ 0.7127 26.151/ 0.7662 29.022/0.8197
+Lt 32.322/ 0.8663 28.673/ 0.7455 27.624/ 0.7127 26.169/ 0.7665 29.031/ 0.8196

+Ld + Lt 32.288/ 0.8663 28.686/ 0.7462 27.627/ 0.7132 26.179/ 0.7670 29.038/ 0.8201

H. Details about the real-world tasks
H.1. Evaluation metrics

Depth Estimation. We denote the predicted depth at position p as yp and the corresponding ground truth depth as y′p, the

total number of pixels is n. The metrics are: 1) threshold accuracy δ1 ≜ % of yp, s.t. max(
yp

y′
p
,
y′
p

yp
) < t1, where t1 = 1.25;

2) average relative error (REL): 1
n

∑
p

|yp−y′
p|

yp
; 3) root mean squared error (RMS):

√
1
n

∑
p(yp − y′p)

2; 4) average (log10
error): 1

n

∑
p | log10(yp)− log10(y

′
p)|.

Age Estimation. Given N images for testing, yi and y′i are the i-th prediction and ground-truth, respectively. The evalua-
tion metrics include 1)MAE: 1

N

∑N
i=1 |yi − y′i|, and 2)Geometric Mean (GM): (

∏N
i=1 |yi − y′i|)

1
N .

H.2. Age estimation on AgeDB-DIR dataset

We exploit the AgeDB-DIR (Yang et al., 2021) for age estimation task. We follow the setting of Yang et al. (2021) and
exploit their regression baseline model, which uses ResNet-50 (He et al., 2016) as the backbone. The evaluation metrics
are MAE and geometric mean(GM), and the results are reported on the whole set and the three disjoint subsets, i.e. Many,
Med. and Few. The trade-off parameters λd and λt are set to 0.1 and 1, respectively. Table 7 shows that both Lt and Ld can
improve the performance, and combining both achieves 0.48 overall improvements (i.e. ALL) on MAE and 0.25 overall
improvements on GM.

H.3. Super-resolution on DIV2K dataset

We use the DIV2K dataset (Timofte et al., 2017) for 4x super-resolution training (without the 2x pretrained model) and we
evaluate on the validation set of DIV2K and the standard benchmarks: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al.,
2012), BSD100 (Martin et al., 2001), Urban100 (Huang et al., 2015). We follow the setting of Lim et al. (2017) and exploit
their small-size EDSR model as our baseline architecture. We adopt the standard metrics PNSR and SSIM. The trade-off
parameters λd and λt are set to 0.1 and 1, respectively. Table 3 shows that both Ld and Lt contribute to improving the
baseline and adding both terms has the largest impact.

H.4. Depth estimation on NYU-Depth-v2 dataset

We exploit the NYU-Depth-v2 (Silberman et al., 2012) for the depth estimation task. We follow the setting of Lee et al.
(2019) and use ResNet50 as our baseline architecture. We exploit the standard metrics of threshold accuracy δ1, δ2, δ3,
average relative error (REL), root mean squared error (RMS) and average log10 error. The trade-off parameters λd and λt
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Table 9. Quantitative comparison (MAE) on AgeDB. We report results as mean ± standard variance over 3 runs.
Method ALL Many Med. Few
Baseline 7.80 ± 0.12 6.80 ± 0.06 9.11 ± 0.31 13.63 ± 0.43

+ LDS (Yang et al., 2021) 7.67 6.98 8.86 10.89
+ FDS (Yang et al., 2021) 7.55 6.50 8.97 13.01

+ LDS + FDS (Yang et al., 2021) 7.55 7.01 8.24 10.79
+ PH-Reg (ours) 7.32 ± 0.09 6.50 ± 0.15 8.38 ± 0.11 12.18 ± 0.38

+ LDS + FDS vs. Baseline + 0.25 -0.19 +0.97 +2.94
+ ous vs. Baseline + 0.48 +0.30 +0.73 +1.45

Table 10. Quantitative comparison (PSNR(dB)) of super-resolution results with public benchmark and DIV2K validation set. Bold
numbers indicate the best performance.

Method Set5 Set14 B100 Urban100 DIV2K
Baseline (small-size EDSR (Lim et al., 2017)) 32.24 28.61 27.60 26.08 29.00

EDSR (Lim et al., 2017) 32.46 28.80 27.71 26.64 29.25
RDN (Zhang et al., 2018) 32.47 28.81 27.72 26.61 -
Baseline + PH-Reg (ours) 32.29 28.69 27.63 26.18 29.04

RDN vs. EDSR +0.01 +0.01 +0.01 -0.03 -
Ours vs. Baseline +0.05 +0.08 +0.03 +0.01 +0.04

are both set to 0.1. Table 4 shows that exploiting Lt and Ld results in reduction of 6.7% and 8.9% in the δ1 and δ2 errors,
respectively.

H.5. Different improvement gap between synthetic and real-world datasets

Our synthetic dataset is relatively simple and clean; the corresponding task (coordinate prediction) is directly related to the
topology of the target space, hence the larger improvement on the synthetic data. The improvements on real-world datasets
are significant (verified by Welch’s t-test), and are also comparable to or better than competing works in the literature
(Zhang et al., 2023; Yang et al., 2021; Lim et al., 2017; Zhang et al., 2018). Under the same settings, our improvements are
competitive with recently published works. For age estimation on Age-DB, we improve the MAE (all) by almost 2-fold
(0.48 vs. 0.25, see Table 9). For super-resolution on DIV2K, we improve the PSNR (Set5, see Table 10) by 0.05, while
typical state-of-the-art papers in super-resolution show increments of 0.01 on PSNR (Set5) (Lim et al., 2017; Zhang et al.,
2018). For depth estimation, our improvements are on par with the competing method (Zhang et al., 2023) (REL: 0.144 vs
0.143, see Table 4).

However, on NYU-Depth-V2, the representation of the head part (with many samples in the target space) is relatively
well-learned, leading to a smaller impact on our regularizers. This might be a reason for the lower improvement. From the
regression baseline (Figure 2(a)), the representation in the blue region (head part) already shows a lower intrinsic dimension
and collapses like a line so there is little opportunity for our regularizers to have a strong impact (and hence the smaller
improvement on the MAE (Many)). In contrast, the impact on the synthetic dataset and the green region (corresponding to
the tail part, with limited samples in the target space) is more significant, resulting in a higher improvement.

Similar effects are observed on the other two real-world datasets, while the feature space on Age-DB tends to be a line
(although the target space is discrete, it is too dense) and the feature space on DIV2K tends to be an object with a high
density in the middle region (the target space is 3d).

20


