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Abstract

Text-to-Image (T2I) systems are generative models designed to generate images based on
textual descriptions. Despite their remarkable performance, it has been shown that they are
susceptible to misuse. One form of misuse involves manipulating the input prompt, leading
to images that do not match with the given description. To address this, we introduce an
adversarial training (AT) procedure for Stable Diffusion. Our aim is to train the model
across various concepts (e.g., “bicycle”), ensuring that the output aligns with the original
concept even under adversarial modifications (e.g., “bicycle MJZM4”). To our knowledge,
this is the first method to develop an adversarial training approach against this type of
misuse. Finally, through several experiments, we demonstrate that the proposed method
enhances the model’s robustness against classes of prompting attacks where the embeddings
of the clean and adversarial prompts are close in a certain continuous text embedding space.
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(a) The adversarial prompt “a photo of a bicycle MJZM4”,
designed with the attack in Zhuang et al. (2023), is given
as input to two variants of the SD model, the original
(pretrained) model (top fig.) and the robustified model
(bottom fig.).
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(b) The outputs of the original (“OR”) and the robustified
model (“RO”) on both clean and adversarial prompts. The
notation QF5, RND-AP2 refers to the Query-Free (Zhuang
et al., 2023) and Random Append attacks, respectively.

Figure 1: An illustration of the proposed method’s utility [fig. (a)], and some example outputs. [fig. (b)].

1 Introduction

In recent years, generative models (Cao et al., 2022) have attracted a lot of attention due to their ability
to produce realistic samples of different modalities such as images and sounds. A notable subset of these
models are Text-to-Image (T2I) systems, such as Stable Diffusion (SD) (Rombach et al., 2022) and DALL·E
(OpenAI, 2021), which are trained to create images using text prompts as inputs. Despite of their increasing
popularity, concerns about misuse, either accidental or deliberate, have emerged. For example, a simple typo
in a prompt might produce an image that deviates from the intended result (Gao et al., 2023). Even more
concerning is the intentional manipulation aiming to produce offensive outputs (Zhuang et al., 2023; Du et al.,
2023; Yang et al., 2024; Zhang et al., 2024). Therefore, it is important to develop methods to counteract the
effects of possible misuse.
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In the existing literature, there are several studies on prompting attacks, i.e., input prompt manipulations
leading to an inconsistent output (Maus et al., 2023; Zhuang et al., 2023; Yang et al., 2024; Zhang et al.,
2024). Additionally, a number of works have been dedicated to developing defenses against specific forms
of misuse (Salman et al., 2023; Huang et al., 2023; Kumari et al., 2023; Wu et al., 2024). However, to our
knowledge, none of these works has presented methods aimed at robustifying systems against
prompting attacks. This work aims to fill this gap by developing such method. Specifically, we develop an
adversarial training (AT) method for the SD T2I system against certain classes of prompting attacks
where the embeddings of the clean and adversarial prompts are close. In this approach, we adversarially train
the model across multiple concepts (e.g., “bicycle”). Our aim is to guarantee that the generated image aligns
with the concept even under adversarial manipulations, such as “a photo of a bicycle MJZM4” (QF attack
(Zhuang et al., 2023)). See Fig. 1 for an illustration of the system’s utility.

The proposed defense adopts the concept of AT from supervised learning and transfers it to T2I systems. It
is important to emphasize that the proposed method is not a straightforward extension of AT, which was
mainly developed for image classification (Madry et al., 2017; Shafahi et al., 2019; Wong et al., 2020). The
setting of T2I systems differs significantly from that of classification problems, and consequently, applying
AT involves unique challenges and design considerations. We outline some of these below.

(1) How to Robustify? To begin with, it is by no means clear how to formulate an AT problem that
robustifies T2I systems. Unlike classical AT which focuses on image classification, where a simple classification
loss suffices to capture the effectiveness of an adversarial perturbation, T2I systems are intrinsically multimodal.
Therefore, the design of loss functions needs to take into consideration both text and image qualities. Second,
it is not clear what is the mechanism that one should choose to robustify the T2I system. Again, unlike the
traditional AT which directly adds perturbation to the image domain, which lies in a continuous space, in
T2I system the input is in the text space. Directly applying existing AT methods will result in a discrete
optimization problem which can be intractable to solve. Therefore, it is imperative to explore other options,
such as constructing an embedding space or using one that is already available.
(2) What to Robustify? SD consists of several unique components with trainable parameters, e.g., a text
encoder, a UNet. This is significantly different as compared to the majority of existing AT methods, which
typically operate on CNN-based neural networks. To determine which subset of trainable parameters to
optimize, one needs to investigate and understand the tradeoff between various performance metrics, such as
robustness and computational efficiency.
(3) How to Implement Efficiently? T2I models are computationally more demanding as compared to the
traditional CNN-based neural networks, with even a forward pass incurring significant runtime and memory
costs, not to mention the even more computationally expensive backpropagation steps needed during the
model training process. Therefore, special care must be taken to design practical and computationally efficient
AT methods for T2I systems.

1.1 Related Works

Text-to-Image Diffusion Models. Diffusion models (Cao et al., 2022) are a class of generative models,
known for their abilities in tasks involving image (Ho et al., 2020; Rombach et al., 2022) and video (Ho
et al., 2022) generation. The core principle behind their operation involves the addition of noise to their
input (e.g., an image), gradually transforming it into a sample from a Gaussian distribution. Then, a neural
network is trained to reverse this process, acquiring this way the ability to generate new samples of the
input distribution. Notable examples include the Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al., 2020) and Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020). Finally, in T2I models the
generation process is guided by additional inputs, such as text prompts. Examples include SD (Rombach
et al., 2022), DALL·E (OpenAI, 2021), DALL·E 2 (OpenAI, 2022), and Imagen (Saharia et al., 2022).

Prompting Attacks on Text-to-Image Systems. A number of attacks have been proposed, which mainly
differ on the way prompts are generated, the models they attack, and whether the intended output is arbitrary
(untargeted) or selected (targeted). For instance, in Zhuang et al. (2023) an attack for SD is proposed which
appends a five-character string to a given prompt and does not require access to the model. In Maus et al.
(2023), both untargeted and targeted attacks are developed, under the assumption of black-box access to the
models. In Liu et al. (2023), a genetic algorithm is used to craft prompts, aiming to elicit outputs close to a
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target image. Recently, the multi-modal prior (MMP) (Yang et al., 2024) targeted attack leverages both
image and text features for the design of adversarial prompts. Finally, a gradient-based targeted attack for
SD is proposed in Zhang et al. (2024).

Defenses for Text-to-Image Systems. A number of studies has focused on defending T2I models from
certain forms of misuse. First, we have methods that prevent the modification of images according to a
provided prompt (Salman et al., 2023; Thanh Van Le & Tran, 2023). For instance, in Salman et al. (2023)
perturbations are inserted into an image which prevent its successful editing by T2I models. Moreover, in
concept erasing methods (Huang et al., 2023; Kumari et al., 2023; Gandikota et al., 2023; Zhang et al.,
2023; Gandikota et al., 2024) the goal is to prevent the generation of images that correspond to certain
target concepts, which might include artistic styles (e.g., “Van Gogh”) or harmful concepts (e.g., “nudity”).
Additionally, there are methods designed to prevent the generation of harmful content by detecting or
modifying toxic prompts (Wu et al., 2024; Liu et al., 2024). For example, Wu et al. (2024) proposes a
framework, which with the use of a fine-tuned language model, modifies toxic prompts to ensure the output
is no longer harmful while adhering to the remaining (non-harmful) part of the prompt.

Similar to our work, the above studies develop defense techniques against particular forms of misuse.
However, none of these methods have the same goal as our approach. Rather than erasing concepts or
detecting/modifying prompts for the prevention of harmful outputs, our goal is to guarantee that the
generated output aligns with the input prompt even under adversarial manipulations, irrespective if those
manipulations result to harmful or simply incorrect output.

1.2 Contributions

In this work we develop a novel AT approach for SD, referred to as the Multimodal AT for SD (MAT-SD)
method, which leverages text and image features to robustify the SD model across several concepts and
against classes of prompting attacks where the embeddings of the clean and adversarial prompts are close in
a certain continuous text embedding space. Some key characteristics of MAT-SD are the following:
(1) To bypass the need for optimizing over the text space and avoid constructing a continuous embedding one,
we leverage an embedding space available within SD. In this space we explore what a reasonable definition of
an adversarial perturbation is.
(2) To account for the multimodal nature of T2I systems we propose to include a measure of text-image
similarity (clip score) between the clean prompt and the adversarially generated image in our loss function,
in addition to a classification loss.
(3) In an effort to balance efficiency with effective robustification, we only robustify a subset of variables of
the SD system, so that computationally heavy components such as UNet are not touched.
(4) To address the high computational demands we apply a number of techniques, such as truncating the
number of backpropagation steps during training.
(5) MAT-SD is an implementation-friendly version of the HiBSA Lu et al. (2020) algorithm, which under
certain conditions is shown to converge to stationary solutions of the underlying min-max AT problem.

Moreover, we conduct extensive experiments to evaluate the performance of MAT-SD. Overall, the robustified
model outperforms the original one in the presence of adversarial prompts across four different attacks, while
it maintains its performance on the clean prompts. To our knowledge, this is the first AT method against
prompting attacks on T2I systems.

2 Preliminaries

2.1 Description of the SD Model

We provide a brief description of SD (Rombach et al., 2022), and provided a graphical illustration at the
center of Fig. 3. Note that we abstract away elements not pertinent to our method. SD consists of three
components: the text encoder f(·; θ), the UNet network h(·) and the VAE encoder g(·; ϕ), where θ, ϕ represent
the model parameters. The parameters of the UNet play no role in our method1, and thus, we do not name

1In Appendix B we assess the utility of training the UNet, however, such practice does not become part of our main approach.
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Figure 2: An illustration of the “man in the middle” (MITM) attack scenario, where the MITM is an abstract
designation that can describe a hacker, a compromised application, etc. The T2I system includes a prompt filter that
blocks inappropriate/unauthorized (top prompt) or irregular (middle prompt) prompts, forcing the MITM to resort to
stealthy prompting attacks (bottom prompt).
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Figure 3: An illustration of the proposed AT system. It consists of the SD model and two mechanisms developed
to evaluate the effectiveness of the adversarial prompts. The first mechanism computes the text-image similarity
(clip score) and the second one the classification loss. The “snowflake” symbol indicates that the parameters of the
corresponding component are kept fixed during AT. For more details see subsec. 2.1 and 3.

them. During a forward pass, the input is a prompt, such as “a photo of a bicycle”, which is embedded
into a continuous space by the text encoder. Then, the UNet generates a latent representation of an image
corresponding to the input prompt. This is achieved by iteratively denoising a randomly generated image
representation (not depicted), conditioned on the text embedding. Finally, the resulting representation is
passed through a variational autoencoder, transforming it into an actual image.

2.2 Objective and Application Scenarios

The objective of the AT method is to train the model to enhance its resilience against prompting attacks
on certain important concepts. Specifically, for a given concept like “bicycle”, the aim is to ensure that the
generated image aligns with the concept even under manipulation by an adversary (e.g., “a photo of a bicycle
MJZM4”). Additionally, the system must maintain its ability to generate the correct image when provided
with the clean prompt (i.e., “a photo of a bicycle”). To this end, we develop an AT method for the SD model.
The proposed system is illustrated in Fig. 3 and further details are provided in Section 3.

The proposed AT method is applicable in various scenarios, regardless of the harmfulness (harmful in the
sense of depicting typical harmful concepts, such as violence, nudity, or suicide) of the output. For example,
the adversary is the user with the ability to submit prompts to the model. As an another example, the
adversary is a “man in the middle”, who positions between a user and the model, and can intercept and
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modify the user’s prompt (see Fig. 2); in practice, this adversary might correspond to an actual person,
a compromised server or an application. In either case, the adversary’s goal is to use the T2I model for
generating unauthorized (whether harmful or not) or inconsistent (i.e., does not correspond to the original
prompt) images, e.g., “photos of Dracula”. This will result in the adversary gaining access to unauthorized
content (scenario 1), a degraded user experience (scenario 2), and damage to the reputation of the model’s
owner. Moreover, in terms of implementation, the adversary would be unable to submit arbitrary prompts or
directly request unauthorized content. This is because T2I systems are usually equipped with filters that
block irregular or inappropriate prompts. Instead the adversary will leverage known targeted attacks (e.g.,
Zhang et al. (2024)) to craft a prompt which is subtle (i.e., it involves real words) and stealthy (e.g., there
is no “Dracula” in the prompt). These targeted attacks can be especially damaging, as they can result in
content that includes, for instance, the depiction of a political figure in an unwanted background or the
modification of a company’s logo or of a national symbol. In any case, employing the AT method on the
T2I system prior to its deployment can enhance the model’s resilience against the attacks outlined above
safeguarding that way the model’s and the model owner’s reputation.

3 Proposed Approach

To set the stage, let us describe a generic AT problem setup and mathematical formulation, which can be
used to robustify both classification models and the generative models. We will then specialize this generic
formulation to the T2I system of interest to this work. During the process, a few specific design considerations
will be discussed and explored.

First, the attack generation process develops an “artificial attack” mimicking the behavior of a real-world
attack. This is typically realized with the introduction of a perturbation vector δ that perturbs the input
to the system (e.g., images) and creates an adversarial one. In classical AT the input is typically a clean
image and the perturbation δ is a “small” noise vector added to the image. Second, the model is (re)trained
so that it is robustified against the adversarial example generated in the first step. Specifically, the model
parameters w are updated in a way such that the model’s output is consistent with the original input examples
{xi}N

i=1, even though the adversarial ones are given as inputs. In classical AT, the model is usually a single
CNN-based image classifier which is retrained in a way that ensures that the correct class is predicted when
a perturbed image xi + δ is provided as input. Third, a loss function L

(
w, δ; {xi}N

i=1
)

is used to quantify
the effectiveness of the adversarial examples {xi + δ}N

i=1 (the input) on the model with parameters w. In
classical AT the loss function is typically the classification loss between the predicted label (of the adversarial
example xi + δ) and the true one (the label of the original example xi).

The AT that robustifies a model involves updating the parameters w against the most powerful (as quantified
by the loss function L) adversarial examples xi + δ. This process is typically formulated as the following
min-max problem where we maximize the loss with respect to the perturbation δ to get a strong adversarial
example, and subsequently minimize it with respect to the model parameter w to robustify the model against
that example (Madry et al., 2017) (where ∆ is some bounded region):

min
w

max
δ∈∆

L
(
w, δ; {xi}N

i=1
)

. (1)

Next, we specialize the above process, in particular the three bolded elements, to the T2I setting.

3.1 Attack Generation

In T2I systems, the input examples {xi}N
i=1 are prompts. However, it is no longer clear how the attack can

be generated. The attack generation process involves identifying the appropriate perturbation mechanism
that can best represent the attack under consideration (i.e., how to define δ), as well as the space on which
such perturbation should be applied (i.e., where to add δ). Both of these two tasks require careful design for
the T2I system, as will be seen shortly.

First, to identify suitable perturbation mechanisms, it is important to note that, unlike conventional image-
based classification systems, the inputs to T2I models are text prompts. Perturbations in the text space
involve directly modifying the prompt itself—such as appending the perturbation “MJZM4” to the original
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Figure 4: The embeddings of clean and adversarial prompts (QF5 and MMP2 attacks) in two different text embedding
spaces available within SD. For more details about the depicted attacks refer to Section 4.1.

prompt “a bicycle”. However, since the text space is discrete, optimizing perturbations in this domain makes
the resulting optimization problem 1 combinatorial, and therefore extremely challenging.

What other choices do we have? One option is to mimic the attack in the input space by perturbing certain
text embedding space, which is used to encode text into a vector space. The benefit of this approach is that
the embedding space is continuous, therefore the resulting min-max optimization problem can be solved
relatively easily. However, there are a number of key challenges.

First of all, we no longer know that if perturbation in the embedding space will correspond to real attacks
in the text space. Second, if we build an independent embedder to encode the prompt, then an additional
text decoder will also be needed to transform the embedded vector back to meaningful text input to the
T2I system. This process introduces two additional components (i.e., the embedder and the decoder), which
further complicates the system.
In view of the above challenges, our design is to generate perturbation within an existing embedding layer of
the T2I system, without introducing additional encoding/decoding layers. Observe that a SD system typically
has two embedding spaces immediately after the text input, namely the token embedding space (i.e., the
continuous embedding of the input text’s tokens), and the text encoder’s embedding space (i.e., the output of
the encoder); see Fig. 3. To understand the impact that an adversarial attack has on these spaces, we plot
the embedding vectors corresponding to a number of clean and adversarial prompts. Somewhat surprisingly,
our results, shown in Fig. 4 reveal that in the text encoder space the vectors representing adversarial prompts
cluster nicely around those of clean ones, while no such pattern emerges in the token embedding space. More
of such experiments can be found in Appendix A. The key takeaway here is that, in the text encoder space,
small perturbation around clean vectors indeed can be used to simulate adversarial attacks in the prompt
space. This implies that the perturbation space ∆ can be defined as a ball (e.g. ℓ2 ball) with a small radius.
Then, with an appropriate choice of loss function, the inner problem in the AT formulation 1 can model the
generation of adversarial prompts of certain adversarial attacks.

3.2 Trainable Model Parameters

Once the attack structure is determined, we will decide the subset of parameters (or SD sub-modules) to be
optimized to robustify against these attacks. Intuitively, sub-modules that are related to both text and image
should be optimized, but we would like to keep the size of tunable parameters as small as possible, to balance
robustness and computational efficiency.

We propose to update both the text encoder and the VAE decoder because they are both directly related
to the quality of the input and the output. It is unclear if the UNet parameter should be frozen or not,
since updating it requires significant memory consumption2. To decide the role of the UNet, we performed a
number of ablation studies that optimize the UNet parameters; see Appendix B. Our results indicate that
there are no significant performance improvement when including the UNets, therefore we choose only to
optimize the text encoder and VAE decoder then w = (θ, ϕ).

2To give an idea of the relative sizes of the individual components, we note that in “runwayml/stable-diffusion-v1-5” the
parameter sizes of the text encoder, VAE decoder, and UNet, are 492MB, 335MB, and 3.44GB, respectively.

6



Under review as submission to TMLR

3.3 The Choice of the Loss Function

Next, let us discuss the choice of the loss function L
(
w, δ; {xi}N

i=1
)
. Recall that the loss function is mainly

used to evaluate the performance before and after the attack. Therefore, it has to be able to evaluate not
only the generated image quality, but also the deviation of the perturbed image from the clean input prompts
and from the clean image. Towards this end, we introduce the following loss functions.

Classification Loss. To evaluate the quality of the perturbed output image, we propose to use the a
classification loss term. We use ResNet18 (He et al., 2016) as our classifier and define this loss as the logarithm
of the probability that the generated image belongs to the ground truth class; the ground truth is the label of
the image generated by the clean prompt. Mathematically:

ℓcls(u, v) = log(uT v), (2)

where the vector u denotes the softmax output of the classifier and v is a vector of all zeros except at the
index corresponding to the ground truth class. An effective attack will make ℓcls(·) small, as the probability
that the images generated by it and the clean prompt belong to the same class is small.

Text-Image Similarity. To evaluate the deviation between the perturbed image and the clean text, we use
the text-image similarity (clip score). This measure is defined as the correlation between the embeddings of a
text and an image, and these embeddings are obtained by projecting text and image to their respective encoders
in the CLIP model (Radford et al., 2021), which we denote as f̂(·) and e(·), respectively. Mathematically, we
can write

ℓsim(u, v) = uT v/∥u∥∥v∥ (3)

where u, v are the text and image embedding vectors, respectively. Again, when the attack is effective, ℓsim

is small.

Output Sensitivity. Similarly as above, we can evaluate the deviation of the perturbed image with the
clean image. Mathematically, we can define:

ℓimg(u, v) = ∥u − v∥2, (4)

where u, v are the images generated by a perturbed and the clear prompt, respectively. When the attack is
effective, ℓimg is large. Note that ℓsim and ℓimg share some similarities as both can be viewed as evaluating
the sensitivity of the underlying models.

We conducted experiments to evaluate the effectiveness of these losses; See Appendix C for details. The
general observation is that, the image loss ℓimg does not contribute significantly to the final performance, but
adding such a loss incurs additional costs, making the AT process slower and harder to tune. Therefore, in
our main experiments, we do not include such a loss.

3.4 The AT for SD, and the Proposed MAT-SD Algorithm

We are now ready to specialize the generic AT formulation 1 to the SD system. Let xi represent the ith word
from a selected set of words to be protected, and define yi(θ, δ) as the embedding vector of the perturbed
prompt, where yi(θ, δ) := f(xi; θ) + δ and f(·; θ) is the text encoder. Let zi(θ, ϕ, δ) := g(h(yi(θ, δ)); ϕ) as
the image obtained after the VAE decoder. The outputs of the image encoder and classifier are respectively
denoted as (also see Fig. 3):

wi(θ, ϕ, δ) := e(zi(θ, ϕ, δ)), ui(θ, ϕ, δ) := c(zi(θ, ϕ, δ)).

Then the AT loss for the ith word can be written as:
Li ((θ, ϕ), δ; xi) = λ1 · ℓsim

(
f̂(xi), wi(θ, ϕ, δ)

)
+ λ2 · ℓcls (x̄i, ui(θ, ϕ, δ)) , (5)

where λ1 and λ2 are the weights assigned to the text-image similarity ℓsim and the classification loss ℓcls
terms, and x̄i is the ground truth class label corresponding to word xi. The overall loss, across all N words is
the following:
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Algorithm 1 Hybrid Block Successive Approximation (HiBSA) Algorithm (Lu et al., 2020) for solving
problem equation 7.

1: Input: regularization parameters βr, γr; initialization (θ0, ϕ0), δ0

2: for r = 1, 2, 3, . . . do
3: Perform the following update for the min blocks:

θr+1 = arg min
θ

L̃((θ, ϕr), δr) + βr

2 ∥θ − θr∥2

ϕr+1 = arg min
ϕ

L̃((θr+1, ϕ), δr) + βr

2 ∥ϕ − ϕr∥2

4: Perform the following update for the max block:

δr+1 = arg max
δ∈∆

L̃((θr+1, ϕr+1), δ) − γr

2 ∥δ∥2

5: end for

L
(
(θ, ϕ), δ; {xi}N

i=1
)

= −
N∑

i=1
Li ((θ, ϕ), δ; xi) .

We note that the overall loss function L takes a minus sign over the previously defined loss terms in order
for the AT problem to formulated in the familiar min-max form, rather the max-min one. This min-max
problem 1 is a non-convex non-concave one, where the outer minimization problem consists of two blocks of
variables (θ, ϕ), and the inner maximization problem has one variable δ. This is a very challenging problem
class for which developing an algorithm and providing a convergence analysis, in the general case, is generally
considered infeasible. Nonetheless, we identify that our problem has some special structure which allows us to
draw a connection with more feasible problem classes and the setting of known algorithms, namely of HiBSA
(Lu et al., 2020), whose description is provided in Algorithm 1.

More precisely, in our problem the magnitude of the perturbation δ is small by construction, as is the domain
of the inner problem. This allows us to obtain a good approximation of the objective L̃ with respect to δ by
linearization, i.e., by using a first order Taylor approximation L̃(w, δ) = L (w, 0) + ∇T

δ L (w, 0) δ. Then, the
problem becomes non-convex concave and (under certain conditions) the analysis of the HiBSA algorithm
can be applied. We note that similar Taylor expansion approximations have been employed previously, e.g.,
see Ostrovskii et al. (2021). Moreover, it is possible to quantify the error between the function L and its
linearization L̃. From Ostrovskii et al. (2021, Lemma 3.1.) we get |L(w, δ) − L̃(w, δ)| ≤ ρD2/2, where ρ is
the Lipschitz gradient constant of L and D is the diameter of the constraint set ∆. We note that when the
diameter D is small the error of the linearization is also small. Therefore, in settings where the constraint set
is small, as is the case in our problem, linearization provides a very tight approximation. Below, we provide
the formal convergence result of HiBSA for the approximated version of problem 1.
Theorem 3.1. Suppose that the functions f, h, g, e, c, ℓsim, ℓcls are twice continuously differentiable, have
Lipschitz continuous and bounded gradients, and Lipschitz continuous and bounded Hessians/Jacobians; also
suppose that L has a lower bound. We linearize the loss L with respect to δ (around δ = 0), i.e.,

L̃((θ, ϕ), δ) = L ((θ, ϕ), 0) + ∇δL ((θ, ϕ), 0) δ,

and apply the HiBSA algorithm (Lu et al., 2020) to solve the following min-max problem 1:

min
θ,ϕ

max
δ∈∆

L̃ ((θ, ϕ), δ) . (6)

Then the iterates of HiBSA converge to a stationary solution of the above min-max problem.

Proof. See Appendix D for the proof.
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Algorithm 2 Multimodal Adversarial Training for SD (MAT-SD)
Input: K, L, ∆, {xi}N

i=1, and learning rates µatt, µdef ,
for each word in word_set do

for j = 1 to L do
# Perturbation generation
for k = 1 to K do

δatt ← proj∆ (δatt + µatt∇δLi ((θ, ϕ), δatt; xi))
end for
# Model training against δatt

θ ← θ − µdef∇θLi ((θ, ϕ), δatt; xi)
ϕ← ϕ− µdef∇ϕLi ((θ, ϕ), δatt; xi)

end for
end for

We note that, while HiBSA enjoys certain theoretical guarantees, its exact implementation is unnecessarily
complex for our purposes. To this end, we propose the Multimodal Adversarial Training for SD (MAT-SD)
algorithm which is a simpler, implementation friendly version, of the HiBSA algorithm. Similar to HiBSA,
MAT-SD is a block-wise gradient descent-ascent-type algorithm, which consists of two stages. The algorithm
first performs a few ascent steps to find a small perturbation δatt. Then, it successively trains the text encoder
(θ) and VAE decoder (ϕ) block variables, using a single gradient descent step for each block; see Alg. 2 for
the description.

However, there are two key differences between MAT-SD and HiBSA. First, in HiBSA the gradient step over
the inner variable δ is performed on a regularized version of the original objective. Specifically, the gradient
step in the inner problem is performed over the problem L̃(wr+1, δ) − γr∥δ∥2, where γr is a regularization
parameter, rather than directly on L̃(wr+1, δ). In our implementation, we omit the regularization term
−γr∥δ∥2 because its inclusion adds complexity by introducing a new hyperparameter (that need to be tuned
appropriately). We note that in our case the magnitude of δ is small by construction, and in HiBSA’s analysis
the parameter γr is diminishing, which causes the term γr∥δ∥2 to take very small values. Therefore, the
contribution of −γr∥δ∥2 is insignificant. Second, the step size for the gradient update in the outer problem is
adaptive, while it remains fixed in MAT-SD. This is because, in the theoretical analysis of HiBSA, the step
size is chosen as a function of γr which is no longer available in MAT-SD.

3.5 Implementation considerations

It is important to note that SD exhibits significant computational demands, both in terms of runtime and
memory usage. This observation applies to both the training and the inference (forward) phase. To address
these challenges, we implement the following measures:

(Forward Pass Truncation). The generation process of SD involves multiple iterative forward passes
(inference) over the UNet. As the number of forward steps increases, the computational graph stored in
memory (to be used later for gradient computations) also expands rapidly. Indeed, the graph becomes too
large to fit into a 40G GPU memory in less than 10 steps, while we need more than that to achieve images of
acceptable quality. To resolve this issue, during AT, we store the computational graph for only the last 6 − 8
steps, a number smaller than the number of inference steps. This effectively truncates the number of steps
over which backpropagation is carried out.

(Early Stopping). Whenever possible, we keep the number of iterations (of any kind) as small as possible.
We notice that a small (no more than 5) number of steps for both the inner (perturbation generation) and
outer (model training) problems is sufficient.

9
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Table 1: The performance of the original and the robustified model against clean and adversarial prompts from the
CIFAR100 dataset. For our evaluation we use the classification accuracy (“CLASS”) and the text-image similarity
(“TEXT-IMAGE”) score of the outputs; higher scores indicate better performance. The adversarially trained models
were robustified and evaluated against the same set of attacks (setting S1); we train/evaluate one model over the
QF3/QF5 and another over the RND-AP1/RND-AP2 attacks.

model original robust

attack/evaluation class text-image class text-image

clean 1 0.256 1 0.253

qf3 0.170 0.151 0.720 0.209
qf5 0.200 0.147 0.720 0.226

rnd-ap1 0.240 0.179 0.320 0.193
rnd-ap2 0.270 0.175 0.340 0.191
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Attacks Original Robust
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sdtar2 0.643 0.688
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Figure 5: (a) A t-SNE plot of the embeddings of a number of clean and adversarial prompts. (b) The average
correlation between the original and the adversarial prompts before and after robustifying the model.

4 Experiments

4.1 Attacks and Experiments Methodology

Experiments Methodology. Let us begin by selecting a set of words that we would like to protect against
adversarial manipulations and the set of prompting attacks that perform these manipulations. We develop
two different experimental settings: (S1) robustify and evaluate the model on the same attacks set; (S2)
robustify the model against a subset of the attacks set (we call those “base attacks”), while evaluating the
performance on the full set. The second case simulates a more realistic scenario where the attacks have not
been seen during training.

Adversarial Prompting Attacks. Considering the range of possible attack methods (from random prompt
manipulations to targeted attacks) and the inherent difficulty in developing defenses, it becomes clear that
creating a universal defense in T2I systems is a challenging task. Therefore, it is necessary to focus on certain
classes of attacks. Specifically, we focus on the subset of attacks that can be simulated by the “artificial
attack” method of the MAT-SD procedure. This effectively means that our method is designed to protect
against attacks with prompts that lie close to the original word in the text encoder’s embedding space. This
is the case in the following attacks: 1) Query-Free (QF) attack (with 3- and 5-letter suffixes, QF3 and QF5,
resp.) (Liu et al., 2023); 2) Multi-Modal Prior (MMP) attack (Yang et al., 2024) (with 1- and 2-token suffixes,
MMP1 and MMP2, resp.); 3) Targeted attack for SD (Zhang et al., 2024) (with 1- and 2-token suffixes,
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Table 2: The performance of the original and the robustified model against clean and adversarial prompts from the
CIFAR100 dataset. For our evaluation we use the classification accuracy (“CLASS”) and the text-image similarity
(“TEXT-IMAGE”) score of the outputs; higher scores indicate better performance. The adversarially trained model
was robustified against the QF5 attack and its performance is evaluated across the full set of attacks (setting S2). The
results are averaged over 5 different random instances (seeds) of the Stable Diffusion model; the average value and the
full range of values attained over those different instances are reported.

model original robust

attack/evaluation class text-image class text-image

clean 1± 0 0.252± 0.001 1± 0 0.249± 0.004

qf5 0.190± 0.005 0.146± 0.005 0.690± 0.060 0.210± 0.006

qf3 0.163± 0.087 0.143± 0.003 0.660± 0.073 0.210± 0.008
rnd-ap1 0.323± 0.010 0.175± 0.002 0.300± 0.050 0.185± 0.006
rnd-ap2 0.316± 0.083 0.170± 0.004 0.363± 0.037 0.188± 0.004

mmp1 0.600± 0.037 0.208± 0.005 0.700± 0.067 0.224± 0.004
mmp2 0.263± 0.063 0.169± 0.004 0.463± 0.030 0.198± 0.002

sdtar1 0.750± 0.050 0.227± 0.003 0.850± 0.033 0.234± 0.003
sdtar2 0.667± 0.067 0.215± 0.003 0.733± 0.033 0.230± 0.003

SDTAR1 and SDTAR2, resp.), which we will refer to as “SDTAR”. In addition, we consider the Random
Append (RND-AP) attack (with 1- and 2-letter prefixes and suffixes, RND-AP1 and RND-AP2, respectively),
where we append a randomly generated 1- or 2-letter string either in the beginning or the end of the clean
prompt. We will show below that not all of the prompts of RND-AP lie close to their corresponding clean
ones. However, we opt to keep the RND-AP attack as it will allow us to showcase the limitations of our
method.

To understand the effect of these attacks on the text encoder space, in Fig. 5a we provide the t-SNE plot of a
number of clean prompts and their corresponding adversarial counterparts across the four attacks described
above. We note that the prompts of the QF, MMP, and SDTAR attacks roughly concentrate around the
clean ones. On the other hand, a noticeable subset of RND-AP prompts are far away from the clean ones.
This indicates that the RND-AP attack may not be covered by our AT method, a conjecture that will be
confirmed by our subsequent results. Moreover, it is worth mentioning that the effect of the AT process in
the text embedding space is to “bring closer” the clean with their corresponding adversarial prompts, i.e., to
increase their correlation. In Table 5b we compute the correlation between clean and adversarial prompts,
averaged over multiple words, before and after AT. Indeed, we notice an increase in the correlation after
robustifying the model.

We note that among the four attacks, the QF is the most useful for our purposes. First, the QF attack can
be used to directly generate a large number of adversarial prompts, by appending an adversarial suffix to the
clean prompt. On the contrary, the MMP and SDTAR attacks are targeted and, in addition to the clean
prompt, they also require the use of reference images of the target. Moreover, in the QF attack we have
control over the length of the appended adversarial suffix, while in MMP and SDTAR we can only select the
number of appended tokens. This customizability and ease of use of the QF attack is the reason we consider
it as our base attack. We also treat RND-AP as a base attack, but only to a limited extend as it is not a
principled approach but rather a random modification of the prompt. In our experiments we use the base
attacks to robustify our models, while the rest are solely used for evaluation purposes, simulating the scenario
where we encounter an unknown attack.

Finally, we generate a number of strong adversarial prompts for the base attacks, i.e., prompts that when
given as input to the original (not robustified) model, successfully result in an incorrect output. This is
necessary, as we noticed that a substantial part of the generated by attacks adversarial prompts do not
actually elicit an inconsistent image, and thus cannot be used effectively to robustify and evaluate the T2I
model. To this end, we initially generate a large number of prompts for each word and base attack; 20
prompts for QF attacks and 30 for the AP attacks. Then, we identify a subset of 4 adversarial prompts
within each attack and word that result to a misclassified output and small text-image similarity in the
original model. We discard any words which do not contain a sufficient number of strong prompts. For the
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Table 3: The performance of the original and the robustified model against clean and adversarial prompts
from the ImageNet-1K dataset. For our evaluation we use the classification accuracy (“CLASS”) and the
text-image similarity (“TEXT-IMAGE”) score of the outputs; higher scores indicate better performance. The
adversarially trained models were robustified and evaluated against the same set of attacks (setting S1); we
train/evaluate one model over the QF3/QF5 and another over the RND-AP1/RND-AP2 attacks.

model original robust

attack/evaluation class text-image class text-image

clean 1 0.257 1 0.253

qf3 0.150 0.139 0.520 0.180
qf5 0.180 0.141 0.390 0.179

rnd-ap1 0.140 0.164 0.270 0.180
rnd-ap2 0.130 0.162 0.270 0.179

remaining attacks (MMP and SDTAR) we generate 4 adversarial prompts (not necessarily strong) per word,
corresponding to different target categories, using the targets provided in the respective works.

Evaluation Measures. We report two measures: 1) the average text-image similarity across all adversarial
prompts (“text-image”), and 2) the proportion of adversarial prompts, across all words, for which there is at
least one generated image that is classified correctly (“class”). Also, to assess the ability of the robustified
model to output good images on the clean prompts, we report the FID score in the Appendix E.

4.1.1 Results

Main Experiments. In Tables 1 and 2 we present the results for settings S1 and S2, respectively; see the
Appendix E for more information about the implementation and for an illustration of some characteristic
image outputs of the original and the robustified model under different attacks (11). The set of words over
which we robustify the model is the set of labels of the CIFAR100 dataset (Krizhevsky, 2009); we use 25
and 15 labels, for S1 and S2, respectively. In both experiments we assess the performance of the original
and the robustified model against the clean and the adversarial prompts. The underlying model used is
“runwayml/stable-diffusion-v1-5”.

Overall, the robust model outperforms the original one in the presence of adversarial prompts across all
attacks. It also retains its ability to generate the correct image when provided with a clean prompt. We
note that the performance improvement of the robust model on the QF attack is clearly superior to the
improvement on the RND-AP attack, even though the latter is not designed to be adversarial. This is
consistent with the conclusion we derived from the t-SNE plot in Fig. 5a. Moreover, we would like to clarify
that while the performance improvement in SDTAR attack is small, this does not imply that SDTAR is of the
same difficulty as RND-AP or that the attack fails. This is an artifact of the way we generated and sampled
adversarial prompts. In the QF and RND-AP attacks, from the full set of generated prompts, we sampled a
subset with hard instances that we used both for training and evaluation purposes. On the contrary, in the
MMP and SDTAR attacks, we used the generated prompts as is without any distinction between hard and
easy. This can be corroborated by the performance of the original model on the SDTAR attack which is
already high.

Experiments on a Different Dataset. We conduct additional experiments in which we use words
corresponding to class labels from the ImageNet-1K dataset. The results for settings (S1) and (S2) are
included in tables 3 and 4, respectively. Also, an illustration of some characteristic image outputs of the
original and the robustified model under different attacks is provided in Table 10 (Appendix E). We note
that the results are consistent with the observations made in the main experiments above (on the CIFAR100
dataset).
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Table 4: The performance of the original and the robustified model against clean and adversarial prompts
from the ImageNet-1K dataset. For our evaluation we use the classification accuracy (“CLASS”) and the
text-image similarity (“TEXT-IMAGE”) score of the outputs; higher scores indicate better performance.
The adversarially trained model was robustified against the QF5 and RND-AP2 attacks and its performance
is evaluated across the full set of attacks (setting S2). The results are averaged over 5 different random
instances (seeds) of the Stable Diffusion model; the average value and the full range of values attained over
those different instances are reported.

model original robust

attack/evaluation class text-image class text-image

clean 1± 0 0.260± 0.004 0.973± 0.040 0.248± 0.004

qf5 0.200± 0.067 0.140± 0.004 0.883± 0.017 0.241± 0.007
rnd-ap2 0.297± 0.070 0.165± 0.002 0.336± 0.037 0.177± 0.005

qf3 0.283± 0.067 0.150± 0.004 0.877± 0.060 0.241± 0.004
rnd-ap1 0.290± 0.040 0.170± 0.005 0.273± 0.057 0.171± 0.006

mmp1 0.613± 0.070 0.208± 0.003 0.700± 0.050 0.213± 0.005
mmp2 0.333± 0.017 0.170± 0.004 0.570± 0.070 0.197± 0.004

sdtar1 0.560± 0.123 0.202± 0.007 0.763± 0.047 0.220± 0.007
sdtar2 0.447± 0.063 0.184± 0.004 0.610± 0.077 0.198± 0.006

Table 5: The performance of the original and the robustified model against clean and adversarial prompts from
the CIFAR100 dataset. In this experiment we use the “runwayml/stable-diffusion-v1-4” version of the Stable
Diffusion model. For our evaluation we use the classification accuracy (“CLASS”) and the text-image similarity
(“TEXT-IMAGE”) score of the outputs; higher scores indicate better performance. The adversarially trained
model was robustified against the QF3 and RND-AP1 attack and its performance is evaluated across the full
set of attacks (setting S2). The results are averaged over 5 different random instances (seeds) of the Stable
Diffusion model; the average value and the bounds are reported.

model original robust

attack/evaluation class text-image class text-image

clean 1± 0 0.252± 0.001 1± 0 0.247± 0.002

qf3 0.163± 0.087 0.143± 0.003 0.610± 0.090 0.194± 0.008
rnd-ap1 0.323± 0.010 0.175± 0.002 0.467± 0.033 0.192± 0.001

qf5 0.190± 0.060 0.146± 0.005 0.513± 0.087 0.184± 0.002
rnd-ap2 0.317± 0.083 0.170± 0.004 0.470± 0.030 0.186± 0.002

mmp1 0.597± 0.037 0.208± 0.005 0.697± 0.047 0.218± 0.004
mmp2 0.263± 0.063 0.169± 0.004 0.427± 0.027 0.185± 0.002

sdtar1 0.750± 0.050 0.227± 0.003 0.777± 0.027 0.229± 0.003
sdtar2 0.667± 0.067 0.215± 0.003 0.683± 0.007 0.218± 0.002

Experiments on a Different Version of the Stable Diffusion Model. We conduct additional
experiments in which we robustify an alternative version of the Stable Diffusion model on a set of labels
from the CIFAR100 dataset. More precisely, we use the“runwayml/stable-diffusion-v1-4” (hug). The results
for setting (S2) are presented in table 5. We notice that the robustified model offers improved performance
over all attacks, similar to our previous experiments. It is therefore clear that the utility of the adversarial
training method is not limited to a specific version of the underlying model.

5 Conclusion
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In this study, we introduce an AT approach for SD. The AT method trains the system on a set of words,
ensuring correct output even when the input undergoes certain adversarial modifications (e.g., “bicycle
MJZM4”). However, our method has some limitations. First, it can robustify the model only against classes
of attacks, specifically those attacks where the embeddings of the clean and adversarial prompts are close
in a certain continuous text embedding space. Second, the applicability of the AT is limited to SD models.
Therefore, in the future we plan to extend the applicability of the AT method to various text-to-image (T2I)
systems beyond SD and to cover additional categories of adversarial attacks.
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A Embeddings Of Clean And Adversarial Prompts On The Token and the Text
Encoder Spaces

In Fig. 6, 7 we provide t-SNE plots of the embeddings of clean and adversarial prompts on the token
embedding and text encoder embedding spaces. We observe that in the text encoder space the embeddings
of the adversarial prompts cluster around the corresponding clean ones. On the other hand, there is no
discernible pattern in the token embedding space. Overall, these figures reinforce the conclusions of the
main text, which identified the text encoder embedding space as the suitable target on which the adversarial
perturbations are generated.

30 20 10 0 10 20 30 40

40

30

20

10

0

10

20

qf3
mmp1
sdtar1
clean

(a) Token embedding space

40 30 20 10 0 10 20 30

20

10

0

10

20

30 qf3
mmp1
sdtar1
clean

(b) Text encoder embedding space

Figure 6: The embeddings of clean and adversarial prompts (QF3, MMP1, SDTAR1 attacks) in two different text
embedding spaces available within SD.
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Figure 7: The embeddings of clean and adversarial prompts (QF5, MMP2, SDTAR2 attacks) in two different text
embedding spaces available within SD.

B Evaluation of the UNet

In tables 6, 7 we present the results of running the MAT-SD algorithm with and without updating the UNet
parameters (along with the parameters of the text encoder and the VAE decoder); the latter case corresponds
to the proposed methodology we presented in the main text. We consider two different experiments depending
on the base attacks we use to robustify the models (qf3/rnd-ap1 in table 6 and qf5/rnd-ap2 in table 7).

We note that while activating UNet parameters might result to improved performance in certain attacks,
there is no consistent pattern. In fact, in several attacks it does not perform better than our current AT
method and the attacks in which improvements are obtained are not known in advance. Given that training
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Table 6: The performance of the robustified models, with and without updating the UNet parameters, against
clean and adversarial prompts from the CIFAR100 dataset. For our evaluation we use the classification
accuracy (“CLASS”) and the text-image similarity (“TEXT-IMAGE”) score of the outputs; higher scores
indicate better performance. The adversarially trained model was robustified against the QF3 and RND-AP1
attacks and its performance is evaluated across the full set of attacks (setting S2). The results are averaged
over 5 different random instances (seeds) of the Stable Diffusion model (v14); the average value and the full
range of values attained over those different instances are reported.

model robust robust (unet)

attack/evaluation class text-image class text-image

clean 0.960± 0.040 0.237± 0.002 0.987± 0.053 0.245± 0.001

qf3 0.853± 0.063 0.224± 0.002 0.647± 0.047 0.201± 0.004
rnd-ap1 0.333± 0.083 0.175± 0.002 0.357± 0.060 0.180± 0.003

qf5 0.830± 0.030 0.221± 0.001 0.537± 0.070 0.189± 0.002
rnd-ap2 0.483± 0.033 0.185± 0.004 0.310± 0.073 0.174± 0.007

mmp1 0.750± 0.067 0.220± 0.003 0.650± 0.083 0.209± 0.002
mmp2 0.703± 0.097 0.207± 0.002 0.497± 0.080 0.191± 0.002

sdtar1 0.727± 0.077 0.216± 0.003 0.863± 0.063 0.231± 0.004
sdtar2 0.657± 0.093 0.209± 0.004 0.683± 0.083 0.216± 0.005

Table 7: The performance of the robustified models, with and without updating the UNet parameters, against
clean and adversarial prompts from the CIFAR100 dataset. For our evaluation we use the classification
accuracy (“CLASS”) and the text-image similarity (“TEXT-IMAGE”) score of the outputs; higher scores
indicate better performance. The adversarially trained model was robustified against the QF5 and RND-AP1
attacks and its performance is evaluated across the full set of attacks (setting S2). The results are averaged
over 5 different random instances (seeds) of the Stable Diffusion model (v14); the average value and the full
range of values attained over those different instances are reported.

model robust robust (unet)

attack/evaluation class text-image class text-image

clean 0.960± 0.093 0.257± 0.001 0.987± 0.053 0.244± 0.004

qf5 0.613± 0.087 0.218± 0.004 0.600± 0.100 0.199± 0.010
rnd-ap2 0.367± 0.067 0.195± 0.009 0.327± 0.060 0.178± 0.004

qf3 0.670± 0.063 0.226± 0.007 0.613± 0.047 0.202± 0.008
rnd-ap1 0.300± 0.033 0.194± 0.004 0.343± 0.107 0.187± 0.003

mmp1 0.707± 0.093 0.236± 0.002 0.660± 0.073 0.217± 0.004
mmp2 0.567± 0.033 0.218± 0.003 0.567± 0.100 0.201± 0.004

sdtar1 0.810± 0.077 0.244± 0.001 0.747± 0.064 0.229± 0.005
sdtar2 0.770± 0.037 0.239± 0.001 0.767± 0.050 0.226± 0.004

the UNet incurs significant costs, making the AT process harder to tune and slower, without providing clear
benefits, we have decided against incorporating it into our method.

C Evaluation of the Output Sensitivity Loss Term

In tables 8, 9 we present the results of running the MAT-SD algorithm with and without incorporating the
output sensitivity loss term (along with the text-image similarity and classification loss terms); the latter
case corresponds to the proposed methodology we presented in the main text. We consider two different
experiments depending on the base attacks we use to robustify the models (qf3/rnd-ap1 in table 8 and
qf5/rnd-ap2 in table 9).
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Table 8: The performance of the robustified models, with and without the incorporation of the output
sensitivity loss term, against clean and adversarial prompts from the CIFAR100 dataset. For our evaluation
we use the classification accuracy (“CLASS”) and the text-image similarity (“TEXT-IMAGE”) score of the
outputs; higher scores indicate better performance. The adversarially trained model was robustified against
the QF3 and RND-AP1 attacks and its performance is evaluated across the full set of attacks (setting S2).
The results are averaged over 5 different random instances (seeds) of the Stable Diffusion model (v14); the
average value and the full range of values attained over those different instances are reported.

model robust robust (out sensitivity)

attack/evaluation class text-image class text-image

clean 0.960± 0.040 0.237± 0.002 1.0± 0.0 0.244± 0.001

qf3 0.853± 0.063 0.224± 0.002 0.673± 0.043 0.218± 0.005
rnd-ap1 0.333± 0.083 0.175± 0.002 0.250± 0.033 0.167± 0.003

qf5 0.830± 0.030 0.221± 0.001 0.667± 0.100 0.211± 0.007
rnd-ap2 0.483± 0.033 0.185± 0.004 0.243± 0.040 0.165± 0.005

mmp1 0.750± 0.067 0.220± 0.003 0.657± 0.043 0.212± 0.004
mmp2 0.703± 0.097 0.207± 0.002 0.457± 0.093 0.191± 0.003

sdtar1 0.727± 0.077 0.216± 0.003 0.773± 0.140 0.227± 0.008
sdtar2 0.657± 0.093 0.209± 0.004 0.700± 0.150 0.221± 0.005

Table 9: The performance of the robustified models, with and without the incorporation of the output
sensitivity loss term, against clean and adversarial prompts from the CIFAR100 dataset. For our evaluation
we use the classification accuracy (“CLASS”) and the text-image similarity (“TEXT-IMAGE”) score of the
outputs; higher scores indicate better performance. The adversarially trained model was robustified against
the QF5 and RND-AP2 attacks and its performance is evaluated across the full set of attacks (setting S2).
The results are averaged over 5 different random instances (seeds) of the Stable Diffusion model (v14); the
average value and the full range of values attained over those different instances are reported.

model robust robust (out sensitivity)

attack/evaluation class text-image class text-image

clean 0.960± 0.093 0.257± 0.001 1.0± 0.0 0.247± 0.0025

qf5 0.613± 0.087 0.218± 0.004 0.733± 0.050 0.210± 0.002
rnd-ap2 0.367± 0.067 0.195± 0.009 0.457± 0.040 0.185± 0.003

qf3 0.670± 0.063 0.226± 0.007 0.730± 0.030 0.213± 0.003
rnd-ap1 0.300± 0.033 0.194± 0.004 0.357± 0.027 0.177± 0.002

mmp1 0.707± 0.093 0.236± 0.002 0.667± 0.050 0.219± 0.002
mmp2 0.567± 0.033 0.218± 0.003 0.480± 0.063 0.189± 0.004

sdtar1 0.810± 0.077 0.244± 0.001 0.810± 0.090 0.230± 0.004
sdtar2 0.770± 0.037 0.239± 0.001 0.723± 0.127 0.222± 0.003

We note that the incorporation of the output sensitivity loss leads to improvements in certain attacks
compared to the main method. However, similar to the UNet case, these improvements do not occur across
all attacks, and there is no clear pattern regarding when these improvements appear (i.e., under which base
attack set) or on which specific attacks. As the introduction of a third loss term incurs additional costs (e.g.,
hyperparameter tuning becomes more challenging), we decided not to include this loss in our main method.

D The Proposed MAT-SD Algorithm

We restate the convergence theorem from the main text and provide the proof.
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Theorem D.1. Suppose that the functions f, h, g, e, c, ℓsim, ℓcls are twice continuously differentiable, have
Lipschitz continuous and bounded gradients, and Lipschitz continuous and bounded Hessians/Jacobians; also
suppose that L has a lower bound. We linearize the loss L with respect to δ (around δ = 0), i.e.,

L̃((θ, ϕ), δ) = L ((θ, ϕ), 0) + ∇δL ((θ, ϕ), 0) δ,

and apply the HiBSA algorithm (Lu et al., 2020) to solve the min-max problem 1:

min
θ,ϕ

max
δ∈∆

L̃ ((θ, ϕ), δ) . (7)

Then the iterates of HiBSA converge to a stationary solution of the above min-max problem.

Proof. To prove the convergence of the HiBSA algorithm (Lu et al., 2020) to a stationary solution of problem
7, we need to ensure that HiBSA’s assumptions hold for the objective L̃((θ, ϕ), δ).

First, we note that the objective L̃((θ, ϕ), δ) is differentiable as a composition of twice continuously differentiable
functions. Second, the linearized objective L̃((θ, ϕ), δ) = L ((θ, ϕ), 0) + ∇δL ((θ, ϕ), 0) δ is non-convex in (θ, δ)
and concave (linear) in δ. Then, it suffices to show that the objective L̃((θ, ϕ), δ) has Lipschitz continuous
gradients. We have that

∇θL̃((θ, ϕ), δ) = ∇θL ((θ, ϕ), 0) + ∇2
θδL ((θ, ϕ), 0) δ

∇ϕL̃((θ, ϕ), δ) = ∇ϕL ((θ, ϕ), 0) + ∇2
ϕδL ((θ, ϕ), 0) δ

∇δL̃((θ, ϕ), δ) = ∇δL ((θ, ϕ), 0)

Therefore, we need to show the Lipschitz continuity of every term in the rhs of the above expressions.
We split this work into two parts. First, we establish the desired property for the first-order terms
∇θL ((θ, ϕ), 0), ∇ϕL ((θ, ϕ), 0), ∇δL ((θ, ϕ), 0). Then, we establish the same property for the second-order
terms ∇2

θδL ((θ, ϕ), 0), ∇2
ϕδL ((θ, ϕ), 0). Finally, in part 3 we combine the results from the previous two parts

to complete the proof.

Part 1: Lipschitz continuity of ∇θL ((θ, ϕ), 0), ∇ϕL ((θ, ϕ), 0), ∇δL ((θ, ϕ), 0)

First, let us focus on the left terms of ∇θL ((θ, ϕ), 0), ∇ϕL ((θ, ϕ), 0), ∇δL ((θ, ϕ), 0). We want to show
that each of those terms is Lipschitz continuous. To do so we compute the gradients of all the involved
expressions. For simplicity assume that the Lipschitz boundedness and continuous gradient constants are L
and L, respectively, i.e., they are the same across all the involved functions. Then, for the gradients of the
involved expression the following hold.

1. L
(
(θ, ϕ), δ; {xi}N

i=1
)

= −
∑N

i=1 Li ((θ, ϕ), δ; xi)

∇L
(
(θ, ϕ), δ; {xi}N

i=1
)

= −
N∑

i=1
∇Li ((θ, ϕ), δ; xi)

2. Li ((θ, ϕ), δ; xi) = λ1 · ℓsim

(
f̂(xi), wi(θ, ϕ, δ)

)
+ λ2 · ℓcls (x̄i, ui(θ, ϕ, δ))

∇(θ,ϕ)Li ((θ, ϕ), δ; xi) = ∇(θ,ϕ)wi(θ, ϕ, δ)∇2ℓsim

(
f̂(xi), wi(θ, ϕ, δ)

)
+ ∇(θ,ϕ)ui(θ, ϕ, δ)∇2ℓcls (x̄i, ui(θ, ϕ, δ))

∇δLi ((θ, ϕ), δ; xi) = ∇δwi(θ, ϕ, δ)∇2ℓsim

(
f̂(xi), wi(θ, ϕ, δ)

)
+ ∇δui(θ, ϕ, δ)∇2ℓcls (x̄i, ui(θ, ϕ, δ))

3. wi(θ, ϕ, δ) := e(zi(θ, ϕ, δ))

∇θwi(θ, ϕ, δ) = ∇θzi(θ, ϕ, δ)∇e(zi(θ, ϕ, δ)), ∇ϕwi(θ, ϕ, δ) = ∇ϕzi(θ, ϕ, δ)∇e(zi(θ, ϕ, δ))
∇δwi(θ, ϕ, δ) = ∇δzi(θ, ϕ, δ)∇e(zi(θ, ϕ, δ))
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4. ui(θ, ϕ, δ) := c(zi(θ, ϕ, δ))

∇θui(θ, ϕ, δ) = ∇θzi(θ, ϕ, δ)∇c(zi(θ, ϕ, δ)), ∇ϕui(θ, ϕ, δ) = ∇ϕzi(θ, ϕ, δ)∇c(zi(θ, ϕ, δ))
∇δui(θ, ϕ, δ) = ∇δzi(θ, ϕ, δ)∇c(zi(θ, ϕ, δ))

5. zi(θ, ϕ, δ) := g(p(θ, δ); ϕ); p(θ, δ) := h(yi(θ, δ))

∇θzi(θ, ϕ, δ) = ∇θp(θ, δ)∇1g(p(θ, δ); ϕ), ∇ϕzi(θ, ϕ, δ) = ∇2g(p(θ, δ); ϕ)
∇δzi(θ, ϕ, δ) = ∇δp(θ, δ)∇1g(p(θ, δ); ϕ)

6. p(θ, δ) := h(yi(θ, δ))

∇θp(θ, δ) = ∇θyi(θ, δ)∇h(yi(θ, δ)), ∇ϕhy(θ, δ) = 0
∇δp(θ, δ) = ∇δyi(θ, δ)∇h(yi(θ, δ))

7. yi(θ, δ) := f(xi; θ) + δ

∇θyi(θ, δ) = ∇θf(xi; θ), ∇ϕyi(θ, δ) = 0
∇δyi(θ, δ) = I

Starting with the expression in item 7 we can show that under the imposed assumption yi(θ, δ) has Lipschitz and
bounded gradients. Specifically, the gradient boundedness of f implies the boundedness of ∥∇θyi(θ, δ)∥ ≤ L;
the boundedness of ∥∇ϕyi(θ, δ)∥ and ∥∇δyi(θ, δ)∥ follows trivially.

Moreover, for the Lipschitz gradient property we have

∥∇θyi(θ1, δ1) − ∇θyi(θ2, δ2)∥ = ∥∇θf(xi; θ1) − ∇θf(xi; θ2)∥ ≤ L∥θ1 − θ2∥ ≤ L∥(θ1, ϕ1, δ1) − (θ2, ϕ2, δ2)∥
∥∇ϕyi(θ1, δ1) − ∇ϕyi(θ2, δ2)∥ = 0 ≤ L∥(θ1, ϕ1, δ1) − (θ2, ϕ2, δ2)∥
∥∇δyi(θ1, δ1) − ∇δyi(θ2, δ2)∥ = 0 ≤ L∥(θ1, ϕ1, δ1) − (θ2, ϕ2, δ2)∥, (8)

where the first expression follows from the Lipschitz gradient property of f .

Next, we consider the expression in item 6.

∥∇θp(θ, δ)∥ = ∥∇θyi(θ, δ)∇h(yi(θ, δ))∥ ≤ ∥∇θyi(θ, δ)∥∥∇h(yi(θ, δ))∥ ≤ L
2

∥∇ϕp(θ, δ)∥ = 0

∥∇δp(θ, δ)∥ = ∥∇δyi(θ, δ)∇h(yi(θ, δ))∥ ≤ ∥∇δyi(θ, δ)∥∥∇h(yi(θ, δ))∥ ≤ L
2

Therefore, the gradients are bounded. Moreover, using the bounded and Lipschitz gradient of h (by assumption)
and yi (from the derivations in 8), we obtain the following:

∥∇θp(θ1, δ1) − ∇θp(θ2, δ2)∥
= ∥∇θyi(θ1, δ1)∇h(yi(θ1, δ1)) − ∇θyi(θ2, δ2)∇h(yi(θ2, δ2))∥ =
= ∥∇θyi(θ1, δ1)∇h(yi(θ1, δ1)) − ∇θyi(θ2, δ2)∇h(yi(θ1, δ1)) + ∇θyi(θ2, δ2)∇h(yi(θ1, δ1)) − ∇θyi(θ2, δ2)∇h(yi(θ2, δ2))∥
≤ ∥∇θyi(θ1, δ1) − ∇θyi(θ2, δ2)∥∥∇h(yi(θ1, δ1))∥ + ∥∇θyi(θ2, δ2)∥∥∇h(yi(θ1, δ1)) − ∇h(yi(θ2, δ2))∥
≤ LL∥(θ1, ϕ1, δ1) − (θ2, ϕ2, δ2)∥
∥∇ϕp(θ1, δ1) − ∇θp(θ2, δ2)∥ = 0 ≤ L∥(θ1, ϕ1, δ1) − (θ2, ϕ2, δ2)∥
∥∇δp(θ1, δ1) − ∇δp(θ2, δ2)∥
= ∥∇δyi(θ1, δ1)∇h(yi(θ1, δ1)) − ∇δyi(θ2, δ2)∇h(yi(θ2, δ2))∥ =
= ∥∇δyi(θ1, δ1)∇h(yi(θ1, δ1)) − ∇δyi(θ2, δ2)∇h(yi(θ1, δ1)) + ∇δyi(θ2, δ2)∇h(yi(θ1, δ1)) − ∇δyi(θ2, δ2)∇h(yi(θ2, δ2))∥
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≤ ∥∇δyi(θ1, δ1) − ∇δyi(θ2, δ2)∥∥∇h(yi(θ1, δ1))∥ + ∥∇δyi(θ2, δ2)∥∥∇h(yi(θ1, δ1)) − ∇h(yi(θ2, δ2))∥
≤ LL∥(θ1, ϕ1, δ1) − (θ2, ϕ2, δ2)∥

The above prove the Lipschitz gradient property of p.

Following the same reasoning we can show the bounded and Lipschitz gradient property of the expressions in
items 1-5, i.e., we establish the aforementioned properties for zi(θ, ϕ, δ), wi(θ, ϕ, δ), ui(θ, ϕ, δ), Li ((θ, ϕ), δ; xi)
and L ((θ, ϕ), 0).

Part 2: Lipschitz continuity and boundedness of ∇2
θδL ((θ, ϕ), 0), ∇2

ϕδL ((θ, ϕ), 0)

Next, we move into establishing the bounded and Lipschitz gradient properties for the terms ∇2
θδL ((θ, ϕ), 0)

and ∇2
ϕδL ((θ, ϕ), 0); we actually focus only on the former term as the derivations are very similar in both of

them. Also, to simplify the analysis below we consider the notation π = (θ, ϕ, δ). Similar to part 1 we split
the derivation into seven items in order to facilitate the presentation.

1. L
(
π; {xi}N

i=1
)

= −
∑N

i=1 Li (π; xi)

∇2
θδL

(
π; {xi}N

i=1
)

= −
N∑

i=1
∇2

θδLi (π; xi)

2. Li (π; xi) = λ1 · ℓsim

(
f̂(xi), wi(π)

)
+ λ2 · ℓcls (x̄i, ui(π))

We notice that we can rewrite the gradient of this expression in the following way

∇δLi (π; xi)

= λ1∇δwi(π)∇2ℓsim

(
f̂(xi), wi(π)

)
+ λ2∇δui(π)∇2ℓcls (x̄i, ui(π))

= λ1
∑

j

[∇δwi(π)]:,j
[
∇2ℓsim

(
f̂(xi), wi(π)

)]
j

+ λ2
∑

j

[∇δui(π)]:,j [∇2ℓcls (x̄i, ui(π))]j ,

where we denote with the notation [·]:,i the ith column of the respective matrix and with the notation
[·]i the ith element of the respective vector.
Then, we can differentiate the above expression with respect to θ.

∇2
θδLi (π; xi) = λ1

∑
j

{
∇θ [∇δwi(π)]:,j

[
∇2ℓsim

(
f̂(xi), wi(π)

)]
j

+∇θwi(π)
[
∇22ℓsim

(
f̂(xi), wi(π)

)]
:,j

[∇δwi(π)]T:,j

}
+ λ2

∑
j

{
∇θ [∇δui(π)]:,j [∇2ℓcls (x̄i, ui(π))]j +∇θui(θ, ϕ, δ) [∇22ℓcls (x̄i, ui(π))]:,j [∇δui(π)]T:,j

}

Let’s assume (temporarily) that wi(π) and ui(π) have Lipschitz continuous and bounded Jacobians.
Then, for the boundedness of the Jacobian we have the following.

∥∇2
θδLi (π; xi) ∥

≤ λ1
∑

j

{ ∥∥∥∇θ [∇δwi(π)]:,j
∥∥∥ ∥∥∥∥[

∇2ℓsim

(
f̂(xi), wi(π)

)]
j

∥∥∥∥
+ ∥∇θwi(π)∥

∥∥∥∥[
∇22ℓsim

(
f̂(xi), wi(π)

)]
:,j

∥∥∥∥ ∥∥∥[∇δwi(π)]T:,j
∥∥∥ }

+ λ2
∑

j

{ ∥∥∥∇θ [∇δui(π)]:,j
∥∥∥ ∥∥∥[∇2ℓcls (x̄i, ui(π))]j

∥∥∥ + ∥∇θui(π)∥
∥∥∥[∇22ℓcls (x̄i, ui(π))]:,j

∥∥∥ ∥∥∥[∇δui(π)]T:,j
∥∥∥ }

(9)
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The above expression is bounded as all of the involved expressions are bounded. Specifically, the
boundedness of ∇θ [∇δwi(π)]:,j and ∇θ [∇δui(θ, ϕ, δ)]:,j follow from the (temporary) assumptions we
imposed right above (to be proven below). The boundedness of [∇δwi(π)]:,j , [∇δui(π)]:,j , ∇θwi(π),
∇θui(π) follow from the derivations of Part 1. The boundedness of the remaining terms, i.e,[
∇2ℓsim

(
f̂(xi), wi(π)

)]
j
,

[
∇22ℓsim

(
f̂(xi), wi(π)

)]
:,j

, [∇2ℓcls (x̄i, ui(π))]j and [∇22ℓcls (x̄i, ui(π))]:,j
follows from the theorem’s assumptions.
Moreover, for the Lipschitz gradient continuity we consider the following derivation

∥∇2
θδLi (π1; xi)−∇2

θδLi (π2; xi) ∥

≤ λ1
∑

j

{ ∥∥∇θ [∇δwi(π1)]:,j
∥∥ [∥∥∥∥[

∇2ℓsim

(
f̂(xi), wi(π1)

)]
j
−

[
∇2ℓsim

(
f̂(xi), wi(π2)

)]
j

∥∥∥∥]
+

∥∥∇θ [∇δwi(π1)]:,j −∇θ [∇δwi(π2)]:,j
∥∥ ∥∥∥∥[
∇2ℓsim

(
f̂(xi), wi(π2)

)]
j

∥∥∥∥
+

∥∥∥∥∇θwi(π1)
[
∇22ℓsim

(
f̂(xi), wi(π1)

)]
:,j

∥∥∥∥ ∥∥[∇δwi(π1)]T:,j − [∇δwi(π2)]T:,j
∥∥

+
∥∥∇θwi(π1) [∇δwi(π2)]T:,j

∥∥ ∥∥∥∥[
∇22ℓsim

(
f̂(xi), wi(π1)

)]
:,j
−

[
∇22ℓsim

(
f̂(xi), wi(π2)

)]
:,j

∥∥∥∥
+

∥∥∥∥[
∇22ℓsim

(
f̂(xi), wi(π2)

)]
:,j

[∇δwi(π2)]T:,j

∥∥∥∥ ∥∇θwi(π1)−∇θwi(π2)∥

}

≤ λ2
∑

j

{ ∥∥∇θ [∇δui(π1)]:,j
∥∥ [∥∥∥∥[

∇2ℓsim

(
f̂(xi), ui(π1)

)]
j
−

[
∇2ℓsim

(
f̂(xi), ui(π2)

)]
j

∥∥∥∥]
+

∥∥∇θ [∇δui(π1)]:,j −∇θ [∇δui(π2)]:,j
∥∥ ∥∥∥∥[
∇2ℓsim

(
f̂(xi), ui(π2)

)]
j

∥∥∥∥
+

∥∥∥∥∇θui(π1)
[
∇22ℓsim

(
f̂(xi), ui(π1)

)]
:,j

∥∥∥∥ ∥∥[∇δui(π1)]T:,j − [∇δui(π2)]T:,j
∥∥

+
∥∥∇θui(π1) [∇δui(π2)]T:,j

∥∥ ∥∥∥∥[
∇22ℓsim

(
f̂(xi), ui(π1)

)]
:,j
−

[
∇22ℓsim

(
f̂(xi), ui(π2)

)]
:,j

∥∥∥∥
+

∥∥∥∥[
∇22ℓsim

(
f̂(xi), ui(π2)

)]
:,j

[∇δui(π2)]T:,j

∥∥∥∥ ∥∇θui(π1)−∇θui(π2)∥

}
≤ L̂1 ∥π1 − π2∥ ,

for some proper Lipschitz constant L̂1 > 0. In the above, all the expressions (within the norms) are
either bounded or have Lipschitz gradients (this follows either from the assumptions or from the
derivations of Part 1).
Then, it suffices to show that wi(π) and ui(π) have Lipschitz continuous and bounded Jacobians
(the items 3 and 4 below, respectively).

3. wi(π) := e(zi(π))
Consider, for instance, the Jacobian of wi(π). It can be rewritten as follows:

∇θ [∇δwi(π)]:,j = ∇θ [∇δzi(π)∇c(zi(π))]:,j
= ∇θ

{
∇δzi(π) [∇c(zi(π))]:,j

}
= ∇θ

{∑
k

[∇δzi(π)]:,k [∇c(zi(π))]k,j

}

22



Under review as submission to TMLR

=
∑

k

{
∇θ [∇δzi(π)]:,k [∇c(zi(π))]k,j + ∇θzi(π)∇ [∇c(zi(π))]k,j [∇δzi(π)]T:,k

}
The structure of the above Jacobian is the same as the structure of the terms in eq. 9. Therefore,
we can prove the Lipschitz boundedness and continuity of ∇θ [∇δwi(π)]:,j by following the same
reasoning used for ∇2

θδLi (π; xi). Similar to this case our derivation will depend on the assumption
that ∇θ [∇δzi(π)]:,j (the item 5 below) has Lipschitz continuous and bounded Jacobians.

4. ui(π) := c(zi(π))
Similarly to the case of the above item, we have the following expression for the Jacobian of ui(π)

∇θ [∇δui(π)]:,j = ∇θ [∇δzi(π)∇c(zi(π))]:,j
= ∇θ

{
∇δzi(π) [∇c(zi(π))]:,j

}
= ∇θ

{∑
k

[∇δzi(π)]:,k [∇c(zi(π))]k,j

}
=

∑
k

{
∇θ [∇δzi(π)]:,k [∇c(zi(π))]k,j + ∇θzi(π)∇ [∇c(zi(π))]k,j [∇δzi(π)]T:,k

}
5. zi(π) := g(p(π); ϕ); p(π) := h(yi(π))

Similarly to the case of the above item, we have the following expression for the Jacobian of zi(π)

∇θ [∇δzi(π)]:,k = ∇θ [∇δp(π)∇g(p(π))]:,k
= ∇θ

{
∇δp(π) [∇g(p(π))]:,k

}
= ∇θ

{∑
l

[∇δp(π)]:,l [∇g(p(π))]l,k

}
=

∑
l

{
∇θ [∇δp(π)]:,l [∇g(p(π))]l,k + ∇θp(π)∇ [∇g(p(π))]l,k [∇δp(π)]T:,l

}
6. p(π) := h(yi(π))

Similarly to the case of the above item, we have the following expression for the Jacobian of p(π).

∇θ [∇δp(π)]:,l = ∇θ [∇δyi(π)∇h(yi(π))]:,l
= ∇θ

{
∇δyi(π) [∇h(yi(π))]:,l

}
= ∇θ

{∑
r

[∇δyi(π)]:,r [∇h(yi(π))]r,l

}
=

∑
r

{
∇θ [∇δyi(π)]:,r [∇h(yi(π))]r,l + ∇θyi(π)∇ [∇h(yi(π))]r,l [∇δyi(π)]T:,r

}
7. yi(π) := f(xi; θ) + δ

For the Jacobian of yi(π) the following holds.

∇θ [∇δyi(π)]:,r = 0

To establish the Lipschitzness and boundedness of the expression in items 3-7, we follow the same steps
and reasoning we used for the case of item 2. Ultimately, we can show that the function L

(
π; {xi}N

i=1
)

has
bounded and Lipschitz Hessians/Jacobians.

Part 3: Lipschitz continuity of ∇θL̃((θ, ϕ), δ), ∇ϕL̃((θ, ϕ), δ),∇δL̃((θ, ϕ), δ)
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Table 10: The outputs of the original (denoted as “OR”) and the robustified model (denoted as “RO”) on
both the clean and the adversarial prompt of a given word. The words were obtained from the ImageNet-1K
dataset.

qf3[dam] qf5[dishwasher] rnd-ap1[parachute] rnd-ap2[church]
clean adversar. clean adversar. clean adversar. clean adversar.

or

ro

mmp1[harp] mmp2[flute] sdtar1[broom] sdtar2[envelope]
clean adversar. clean adversar. clean adversarial clean adversar.

or

ro

Finally, for ∇θL̃((θ, ϕ), δ) (and similarly for ∇ϕL̃((θ, ϕ), δ) and ∇δL̃((θ, ϕ), δ)) and by using the results we
developed in parts 1 and 2 (about the gradient boundedness and Lipschitz gradient continuity) we have

∥∇θL̃((θ1, ϕ1), δ1) − ∇θL̃((θ2, ϕ2), δ2)∥
= ∥∇θL ((θ1, ϕ1), 0) + ∇2

θδL ((θ1, ϕ1), 0) δ1 − ∇θL ((θ2, ϕ2), 0) − ∇2
θδL ((θ2, ϕ2), 0) δ2∥

≤ ∥∇θL ((θ1, ϕ1), 0) − ∇θL ((θ2, ϕ2), 0) ∥
+ ∥∇2

θδL ((θ1, ϕ1), 0) δ1 − ∇2
θδL ((θ1, ϕ1), 0) δ2 + ∇2

θδL ((θ1, ϕ1), 0) δ2 − ∇2
θδL ((θ2, ϕ2), 0) δ2∥

≤ ∥∇θL ((θ1, ϕ1), 0) − ∇θL ((θ2, ϕ2), 0) ∥
+ ∥∇2

θδL ((θ1, ϕ1), 0) ∥∥δ1 − δ2∥ + ∥∇2
θδL ((θ1, ϕ1), 0) − ∇2

θδL ((θ2, ϕ2), 0) ∥∥δ2∥
≤ L̂2∥(θ1, ϕ1, δ1) − (θ2, ϕ2, δ2)∥,

for some proper Lipschitz constant L̂2 > 0.

The proof is complete.

E Additional Results and Experiments

E.1 Image Outputs Of The Original And The Robustified Model.

In Tables 10, 11 we present some image outputs from both the original and the robustified models across
different attack configurations. The original model consistently fails to produce the correct image in every
scenario. Conversely, the robustified model successfully generates the correct concept, i.e., the one that aligns
with the clean prompt, under all the attacks considered in this work. Additionally, it is noteworthy that the
robustified model can still produce the correct image when given a clean prompt as input.
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Table 11: The outputs of the original (denoted as “OR”) and the robustified model (denoted as “RO”) on
both clean and adversarial prompt across different attacks and words. The words were obtained from the
CIFAR100 dataset.

qf5 [“orange”] rnd-ap2 [“bus”] mmp2 [“bowl”] sdtar2 [“rocket”]
clean adversar. clean adversar. clean adversar. clean adversar.

or

ro

Table 12: The FID score of the original and two of the robustified models, used in the experiments of table
2 (CIFAR100) and table 4 (ImageNet-1K). We note that the FID scores of the robustified models and the
original one are close, which indicates that the former retain their ability to output accurate images when
given as inputs the clean prompts.

Models Original robust (cifar100) robust (imagenet-1k)

FID Score 149 148 159

E.2 FID Scores

In table 12 we report the FID score of the generated outputs of the original and two of the robustified
models of our previous experiments, on clean prompts. Specifically, the robustified models used in tables 2
(CIFAR100) and 4 (ImageNet-1K). We stress that this set of clean prompts consists of all the words of the
ImageNet dataset we provide in table 16, around 80 words, and not only the selected prompts we used in the
rest of the experiments. The reason for performing the evaluation over a wider set is the need of having a
large dataset for obtaining a reliable FID estimate; in fact, we generate 25 images per word over 80 words for
the purpose of FID computation. Note that the FID scores attained by the robustified models are close to
the score of the original one, which implies that the former maintain their ability to output accurate images
on the clean prompts.

E.3 Different Hyperparameter Configurations

In this section, we study the effect of using of different hyperparameter configurations. Specifically, we repeat
the experimental process of Sec. 4.1, however this time we fix the values of certain hyperparameters that
were previously tuned and we optimize the rest. We consider two additional hyperparameter configurations:
1) we set the number of ascent and descent steps to 1, i.e., K = L = 1; 2) we fix the weights assigned to the
loss terms to 1, i.e., λ1 = λ2 = 1. In Table 13 we report the performance of the robustified model across four
attacks on the three different configurations (i.e., the configuration of Sec 4.1 and the two new configurations)

We observe that the performance of the three different hyperparameter configurations on any specific attack
(or the clean data) are relatively close, and there is no configuration that is clearly better than the others.
We can, therefore, conclude that the method is robust to hyperparameter changes, as even if we fix some
hyperparameters, the hyperparameter optimization process will find a satisfactory configuration with the
remaining hyperparameters.

E.4 Training and Model Parameters and Implementation Details

The majority of the model and training parameters are determined through a hyperparameter optimization
process. These include the steps sizes µatt, µdef and the number of iterations K, L for the ascent and descent
steps, respectively, the weights λ1, λ2 of the loss 5, the number of inference steps over which backpropagation

25



Under review as submission to TMLR

Table 13: The performance of the robustified model on different hyperparameter configurations. For our evaluation
we use the classification accuracy (“CLASS”) and the text-image similarity (“TEXT-IMAGE”) score of the outputs;
higher scores indicate better performance. The adversarially trained models were robustified against the QF5 attack
and their performance is evaluated on three additional attacks (setting S2). The results are averaged over 5 different
random instances (seeds) of the Stable Diffusion model; the average value and the full range of values attained over
those different instances are reported.

config. model robust
attack/evaluation class text-image

main exp.

clean 1 ± 0 0.249 ± 0.004
qf5 0.690 ± 0.060 0.210 ± 0.006
qf3 0.660 ± 0.073 0.210 ± 0.008

mmp1 0.700 ± 0.067 0.224 ± 0.004
mmp2 0.463 ± 0.030 0.198 ± 0.002

K = L = 1

clean 0.989 ± 0.056 0.237 ± 0.001
qf5 0.575 ± 0.091 0.190 ± 0.003
qf3 0.675 ± 0.108 0.200 ± 0.004

mmp1 0.730 ± 0.086 0.216 ± 0.003
mmp2 0.531 ± 0.053 0.191 ± 0.003

λ1 = λ2 = 1

clean 0.978 ± 0.044 0.245 ± 0.001
qf5 0.722 ± 0.077 0.220 ± 0.004
qf3 0.706 ± 0.061 0.219 ± 0.004

mmp1 0.677 ± 0.028 0.216 ± 0.001
mmp2 0.531 ± 0.064 0.200 ± 0.004

is performed, etc. The rest of them are preselected. The fixed parameter values for the latter case and the
range of parameter values for the former are provided in Table 14.

Table 14: The values or range of values of the model and training parameters used in the experiments.

Hyperparameter Hyperparameter Value/Range

Inference Steps 16 or 20
Image Height & Width 512

µatt [10−1, 5]
µdef [10−6, 10−4]
λ1 [0.1, 20]
λ2 [0.1, 20]

# backpropagation steps {6, 7, 8}
# additional tokens (in perturbation) {0, 1, 2}

# descent steps K {1, . . . , 5}
# ascent steps L {1, . . . , 5}

∥∆∥0 [10−3, 10−1]

In the experiments, we utilized the clip-vit-large-patch14 CLIP text and image encoders, the runwayml/stable-
diffusion-v1-5 Stable Diffusion model, and the resnet-18 classifier that are available from Hugging Face (hug).
The implementation of these models was carried out using the PyTorch and Hugging Face (Transformers,
Diffusers) (hug) libraries. The robustification of each model was conducted on a single Nvidia A100 GPU
with 40GB of memory.
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E.5 Word/Concept Lists

In our experiments, we utilize two distinct lists of words. From these lists, we select specific subsets to
robustify and evaluate the Stable Diffusion model. These word lists are derived from a subset of the class
labels in the CIFAR100 (Krizhevsky, 2009) and ImageNet-1K (Deng et al., 2009) datasets. More precisely,
they were selected such that they correspond to high-level concepts (e.g., we favor concepts such as “dog”
rather than “German shepherd”) and their generated images can be unambiguously identified correctly by
the classifier and by visual inspection. For example, there are class names for which the prompt “a photo of a
[class name]” results in an image in the output (of the original model) that does not correspond correctly to
the prompt. Such class names are excluded from our experimental evaluation to avoid misleading results.
For example, in the case where the output of the robustified model is misclassified, we cannot state with
certainty whether the source of failure is the adversarial training procedure, the T2I model, or the classifier.

Table 15: The CIFAR100 word list.

CIFAR100 Word List

apple, aquarium fish, bear, beaver, bed, bee, beetle, bicycle, bottle, bowl, bridge, bus,
butterfly, camel, castle, cattle, chair, chimpanzee, clock, cockroach, couch,

crocodile, cup, dinosaur, elephant, fox, hamster, kangaroo, keyboard, lawn mower,
leopard, lion, lizard, lobster, motorcycle, mouse, mushroom, orange, otter, pickup truck,

plate, porcupine, rabbit, ray, rocket, sea, shark, skunk, snail, snake, spider, squirrel,
streetcar, sweet pepper, table, tank, telephone, television, tiger, tractor, train,

turtle, wardrobe, whale, wolf

Table 16: The ImageNet-1K word list.

ImageNet-1K Word List

aircraft carrier, ambulance, balloon, banana, basketball, binoculars, boathouse,
bookcase, broom, bubble, candle, CD player, cellular telephone, chain saw, church,

cinema, cliff, container ship, dam, dishwasher, doormat, drilling platform, drum,
electric guitar, envelope, espresso, espresso maker, flute, fountain, frying pan,

garbage truck, geyser, golfcart, gondola, grand piano, greenhouse, harp, hatchet,
hourglass, ice cream, iPod, joystick, laptop, lemon, library, lifeboat, lighter,

loudspeaker, missile, monastery, mouse, oscilloscope,
paintbrush, palace, parachute, pencil box, Petri dish, photocopier, pineapple, pizza,

plane, printer, prison, radiator, radio, radio telescope, red wine, restaurant, rifle,
soccer ball, sock, space shuttle, speedboat, stethoscope, stove,

strawberry, submarine, suit, sunglasses, syringe, tennis ball, throne, torch,
tow truck, umbrella, valley, violin, volcano, wallet, water bottle, water tower
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