
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SATURN: SAMPLE-EFFICIENT GENERATIVE MOLECU-
LAR DESIGN USING MEMORY MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative molecular design for drug discovery has very recently achieved a wave
of experimental validation, with language-based backbones being the most com-
mon architectures employed. The most important factor for downstream success is
whether an in silico oracle is well correlated with the desired end-point. To this end,
current methods use cheaper proxy oracles with higher throughput before evaluating
the most promising subset with high-fidelity oracles. The ability to directly opti-
mize high-fidelity oracles would greatly enhance generative design and be expected
to improve hit rates. However, current models are not efficient enough to consider
such a prospect, exemplifying the sample efficiency problem. In this work, we
introduce Saturn, which demonstrates the first application of the Mamba architec-
ture for generative molecular design. We elucidate how experience replay with data
augmentation improves sample efficiency and how Mamba synergistically exploits
this mechanism. Saturn outperforms 22 models on multi-parameter optimization
tasks relevant to drug discovery and may possess sufficient sample efficiency to
consider the prospect of directly optimizing high-fidelity oracles. The code is
available at https://figshare.com/s/21059896530e222b9cd5.

1 INTRODUCTION

Within the last year, there has been a surge of works reporting experimental validation of generative
molecular design for drug discovery (Du et al., 2024). The fundamental task of generative molecular
design is learn a distribution of molecules with tailored property profiles. All generative models
achieve this in one of two ways: distribution learning, where a base model is subjected to transfer
learning on a set of known positives, and goal-directed generation, which encompasses both condi-
tional generation and using an optimization algorithm to shift the distribution. Experimental validation
has been demonstrated for all methods, but with a notable over-representation from optimization algo-
rithms as of the last 9 months, particularly reinforcement learning (RL) (Du et al., 2024). Algorithmic
molecular optimization always proceeds via the following workflow: generate molecules, assess
desirability using an in silico oracle, update the model, and repeat. When assessing the suitability of
molecules absent experimental validation, the crucial indicator to success is correlation of an in silico
oracle to the actual end-point. All protocols that directly optimize for an oracle without the use of a
surrogate predictor follow a funnel workflow where less resource-intensive oracles are initially used
to prioritize the most promising subset for evaluation with computationally expensive high-fidelity
oracles. A concrete and ubiquitous example is designing molecules with high binding affinity to a
protein target. By far the most common oracle used to estimate binding affinity is molecular docking,
and many works (Guo et al., 2021; Thomas et al., 2022; Shen et al., 2023; Yang et al., 2021; Lee
et al., 2023; 2024; Fu et al., 2022) have demonstrated the ability to generate molecules with improved
docking scores. However, docking scores are often poorly correlated with binding affinity, especially
when applied out-of-the-box (Guo et al., 2021; Crivelli-Decker et al., 2024). Correspondingly, the
most promising candidates from docking are subjected to higher-fidelity oracles, particularly molec-
ular dynamics (MD) simulations, which offer a much more accurate estimation of binding affinity
(Wang et al., 2019; Moore et al., 2022; 2023; Crivelli-Decker et al., 2024), but with industry-standard
methods typically being closed-source (Moore et al., 2023). Directly optimizing high-fidelity oracles
offers the prospect of learning the distribution and can greatly improve the quality of the generated
set (Eckmann et al., 2024). However, doing so is infeasible due to computational cost, exemplifying
the sample efficiency problem. Either simulation protocols become much faster without sacrificing

1

https://figshare.com/s/21059896530e222b9cd5

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

accuracy, or generative models become sufficiently efficient to optimize under an acceptable oracle
budget. We note that QSAR models are often used, which can have great predictive accuracy, but
may suffer from a narrow domain of applicability (within their training data) (Neves et al., 2018).

Recently, more works have explicitly considered sample efficiency by constraining the oracle budget
on various drug discovery optimization tasks (Yang et al., 2021; Fu et al., 2022; Guo & Schwaller,
2024a;b; Lee et al., 2023; 2024; Shen et al., 2023). More recently, Guo et al. (Guo & Schwaller, 2024a)
proposed Augmented Memory which is built on REINVENT (Olivecrona et al., 2017; Blaschke et al.,
2020a). It combines experience replay with SMILES augmentation (Weininger, 1988; Bjerrum, 2017)
and empirically shows that this data augmentation can improve sample efficiency. In this work, we
push towards the prospect of direct optimization of high-fidelity oracles and release Saturn. First, we
elucidate the mechanism of Augmented Memory, which uses an LSTM (Hochreiter & Schmidhuber,
1997) recurrent neural network (RNN) as the language model backbone, and characterize exactly
how data augmentation and experience replay improve sample efficiency. Next, we systematically
assess more advanced generative architectures from just RNNs (Hochreiter & Schmidhuber, 1997) to
decoder transformers (Vaswani et al., 2017; Radford et al., 2019), and the recent Mamba (Gu & Dao,
2023) state space model (SSM). Our results show that the Mamba architecture, in conjunction with
data augmentation and experience replay, displays synergistic behavior to improve sample efficiency
by strategic overfitting. Our contribution is as follows:

1. We show the first application of Mamba for molecular generative design and specifically for
goal-directed generation with reinforcement learning.

2. We elucidate the mechanism into how Augmented Memory improves sample efficiency, as
the original work only showed its empirical benefits.

3. We comprehensively evaluate language model backbones (> 500 experiments, all across 10
seeds) including RNN, decoder transformer, and Mamba, which enables us to characterize
model-intrinsic and scaling properties that lead to improved sample efficiency.

4. Through ablation studies, we demonstrate that local sampling in chemical space is a key
component for sample efficiency. Our results provide discourse on the nature of optimization
landscapes commonly encountered in drug discovery.

5. We propose Saturn, which leverages Mamba and outperforms 22 models on multi-parameter
optimization (MPO) drug discovery tasks under heavily-constrained oracle budgets.

2 RELATED WORK

Sample Efficiency in Goal-directed Molecular Design. The goal of inverse design is to achieve
tailored molecular generation. Existing works have tackled this problem using a variety of architec-
tures, including SMILES (Weininger, 1988)-based RNNs (Olivecrona et al., 2017; Segler et al., 2018;
Popova et al., 2018; Neeser et al., 2023), transformers (Vaswani et al., 2017; Radford et al., 2019;
Bagal et al., 2021; Wang et al., 2023; Feng et al., 2023; Mazuz et al., 2023; Hu et al., 2024; He et al.,
2024), variational autoencoders (VAEs) (Kingma & Welling, 2013; Gómez-Bombarelli et al., 2018;
Jin et al., 2018; Zhavoronkov et al., 2019), adversarial approaches (Goodfellow et al., 2014; Kadurin
et al., 2017; De Cao & Kipf, 2018; Ivanenkov et al., 2023), graph-based models (You et al., 2018;
Jin et al., 2020b; Mercado et al., 2021; Yang et al., 2021; Maziarz et al., 2022; Vignac et al., 2023),
GFlowNets (Bengio et al., 2023; 2021; Shen et al., 2023), genetic algorithms (GAs) (Mitchell, 1998;
Jensen, 2019; Fu et al., 2022; Lee et al., 2024), and diffusion models (Lee et al., 2023; Igashov et al.,
2024; Schneuing et al., 2023). However, many works do not explicitly consider an oracle budget (or
use a very lenient budget) and focus mostly on showing that goal-directed generation is possible. The
release of the PMO benchmark (Gao et al., 2022) highlighted that improvements in sample efficiency
are vital to even consider the prospect of directly optimizing high-fidelity oracles, e.g., MD may
take GPU hours per molecules (Moore et al., 2023). In the benchmark, the oracle budget is 10,000,
but as we push towards high-fidelity oracles, a more stringent budget would be necessary. More
recent works (Yang et al., 2021; Fu et al., 2022; Guo & Schwaller, 2024a;b; Lee et al., 2023; 2024;
Shen et al., 2023) have enforced fixed oracle budgets when comparing performance against other
methods. All the objective functions considered in these works include docking, which is used in
every single experimentally validated structure-based generative design case study (Du et al., 2024)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Saturn generative workflow. All generated SMILES and their rewards are stored in the
Oracle Cache after canonicalization. A genetic algorithm can be optionally applied using the replay
buffer as the parent population. Augmented Memory is used to update the Agent numerous times.

and in commercial drug discovery (Pun et al., 2023). Correspondingly, in this work, we consider a
wide range of docking tasks under heavily-constrained oracle budgets (1,000 or 3,000).

Language-based Molecular Generative Models. Text is one of the most widely used molecular
representations, with common ones being simplified molecular-input line-entry systems (SMILES)
(Weininger, 1988) and self-referencing embedded strings (SELFIES) (Krenn et al., 2020; 2022).
Recent work has shown that the former is generally more performant, despite not enforcing 100%
validity (Gao et al., 2022; Skinnider, 2024). Leveraging advances in natural language processing
(NLP), language-based molecular generative models are amongst the first and still widely used
models, encompassing RNNsOlivecrona et al. (2017); Segler et al. (2018); Popova et al. (2018),
transformers (Vaswani et al., 2017; Radford et al., 2019; Bagal et al., 2021; Wang et al., 2023; Feng
et al., 2023; Mazuz et al., 2023; Hu et al., 2024; He et al., 2024), and recently SSM S4 (Özçelik
et al., 2024). In early benchmarks (GuacaMol (Brown et al., 2019) and MOSES (Polykovskiy et al.,
2020)), language-based models have been shown to essentially solve the validity, uniqueness, and
novelty metrics. Subsequently, the non-injective syntax of SMILES confers advantageous properties
for generative design. Specifically, a single molecule can be expressed as at least N (number of
heavy atoms) SMILES, in a process known as SMILES augmentation, enumeration, or randomization
(Bjerrum, 2017). This mechanism can be exploited to pre-train models under low data regimes to
generalize in chemical space (Arús-Pous et al., 2019; Moret et al., 2020; Skinnider et al., 2021),
improve sample efficiency (Bjerrum et al., 2023; Guo & Schwaller, 2024a), and perform transfer
learning with a single positive example (Ballarotto et al., 2023). Despite the recent trend towards
3D molecular generation (Igashov et al., 2024; Schneuing et al., 2023), language-based models
have demonstrated the ability to generate molecules that satisfy 3D-dependent objectives, such as
docking in a sample-efficient manner (Guo & Schwaller, 2024a;b). This suggests that language-based
models are not entirely 3D-naive and can effectively explore relevant regions of the 3D chemical
space. Finally, language models are amongst the most sample-efficient models (Gao et al., 2022;
Polykovskiy et al., 2020; Brown et al., 2019) and most studies achieving experimental validation of a
generated molecule incorporate SMILES-based models (Du et al., 2024).

3 METHOD

In this section, each component of Saturn (Fig. 1) is described: the language model backbone for
molecular generation, the Augmented Memory (Guo & Schwaller, 2024a) RL algorithm, the GA, and
specific details into key components responsible for sample efficiency and mitigating mode collapse.

Autoregressive Language Model Backbone for Molecular Generation. Molecules are represented
as SMILES (Weininger, 1988) and the task of goal-directed generation is cast as an RL problem. Let

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

St denote the state space representing all intermediate token sequences during molecular generation.
The action space, At(st), is defined as the conditional token distribution induced by the policy, πθ,
and parameterized by a language model backbone. In this work, we investigated RNN, decoder trans-
former, and Mamba backbones with the latter chosen as the default after extensive experimentation.
Therefore θ represents the parameters of the Mamba backbone (Gu & Dao, 2023; Chen, 2024), which
is a state-space model (Gu et al., 2021b;a) and features four learnable matrices to propagate sequence
information: Ā, B̄, C̄, D̄:

ht = Āht−1 + B̄(xt)xt

yt = C̄(xt)ht + D̄xt

where h is the state, x is the input sequence (SMILES in this work), and y is the output. Importantly,
the input-dependent parameters confer a selective mechanism that can handle contextual importance,
and notably differs from previous state-space models (Gu et al., 2021b;a). Like other language
models, a linear projection transforms the Mamba output to a multinomial token distribution. This
enables sequence generation, which we define as a Markov process, and thus, sampling a SMILES, x,
is given by the product of conditional token probabilities (Eq. 1):

P (x) =

T∏
t=1

πθAgent
(at | st) (1)

where πθ is the Mamba backbone and referred to as the Agent to match RL terminology and at and
st are the token selected and token sequence so far, at time-step t, respectively. We couple RL to the
generative process to enable multi-parameter optimization (MPO). The general objective in RL is to
maximize the expected reward (Eq. 2):

J(θ) = Eat∼πθAgent

[
T∑

t=1

R(at, st)

]
(2)

R is the reward function and can represent any arbitrary MPO objective and σ is a scalar factor
modulating its effect. Next, the Augmented Likelihood (Olivecrona et al., 2017) (Eq. 3) is defined,
where the prior is the pre-trained model with frozen weights:

log πAugmented(x) = log πprior(x) + σR(x) (3)

The reward is defined as log πAugmented - log πθAgent
. Following previous works (Olivecrona et al.,

2017; Fialková et al., 2021; Guo & Schwaller, 2024a), maximizing Eq. 2 is equivalent (up to a factor)
to minimizing the squared difference between the Augmented Likelihood and the Agent Likelihood
(Eq. 4):

L(θ) =
1

|B|

[∑
a∈A∗

(log πAugmented − log πθAgent
)

]2

(4)

A∗ is defined as the actions taken across all time-steps in a given batch. During optimization, the
expected reward (Eq. 2) is approximated by sampling a batch, B, of SMILES. The batch size controls
for variance as approximating the expectation with fewer samples is necessarily more noisy. See
Appendix B.5 for full details on the algorithm and pseudo-code.

Augmented Memory. In Saturn, Augmented Memory maintains a replay buffer of the top 100
SMILES ranked by their rewards. At each generation epoch, the Agent is updated N augmentation
rounds times. Each augmentation round involves taking every SMILES in the buffer, augmenting
(randomizing) (Bjerrum, 2017) them, and updating the Agent following Eq. 4. A Diversity Filter
(DF) (Blaschke et al., 2020b) stores the Bemis-Murcko (Bemis & Murcko, 1996) scaffolds of every

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

SMILES generated. If a scaffold is generated more than a permitted threshold (M = 10 in this
work), its reward is truncated to 0. Before executing Augmented Memory, scaffolds associated with
penalized rewards are purged from the buffer, preventing mode collapse.

Genetic Algorithm. Saturn adapts GraphGA (Jensen, 2019) where the replay buffer is treated as the
parent population. The motivation is to generate more high reward SMILES to replace the buffer
SMILES, under the hypothesis that on average, these too, will be high reward (Appendix C.5).

Differences to Previous Works. Saturn adapts Augmented Memory (Guo & Schwaller, 2024a) but
differs in several important ways. Firstly, unlike the original work, we elucidate the mechanism into
why Augmented Memory can improve sample efficiency and explicitly show that it makes generating
the replay buffer molecules likely. The following Results section will show that high sample effi-
ciency can be achieved by local sampling, whereby the modeled distribution is strategically overfit
on these replay buffer molecules. Precisely, this means making the Agent particularly likely, but
not deterministic, to generate any SMILES sequence form of the replay buffer molecules. By nature
of multinomial decoding, stochastic generation means that unique sampled molecules might only
differ by a small number of tokens, which translates to the molecules differing by a small number
of atoms. Secondly, we show that Mamba synergistically enhances this mechanism by nature of
being a proficient distribution learner. Exactly because Mamba can overfit the distribution of replay
buffer molecules, it displays the greatest degree of local sampling. To accommodate repeat generated
molecules, we introduce an oracle cache under the assumption that oracle evaluations are near
deterministic (for docking oracles, we fix the seed). If the same SMILES is generated at a later epoch,
the reward is retrieved from the cache and does not impose an oracle call. Finally, by showing that
strategic overfitting can be beneficial, we further demonstrate that scaling up architectures (Appendix
F.6) can also improve sample efficiency. This offers discourse into benefits of architectural differences
in the small molecule goal-directed generation regime. We show that there are benefits despite the
modeled sequences being relatively short (< 80 tokens).

4 RESULTS AND DISCUSSION

The results section is comprised of three parts: formulating Saturn on a toy MPO task, demonstrating
sample efficiency on an MPO docking (3 targets) task, and benchmarking against 22 models (in-
cluding dataset screening baselines) on another MPO docking (5 targets) task which also considers
synthesizability. Every experiment was run across 10 seeds (0-9 inclusive), comprising > 5,000
experiments.

4.1 PART 1: ELUCIDATING THE OPTIMIZATION DYNAMICS OF SATURN

We begin by identifying the optimal architecture and hyperparameters for Saturn. First, we experiment
with varying the batch size and augmentation rounds of the Augmented Memory algorithm (Guo &
Schwaller, 2024a), and explicitly demonstrate the trade-off between sample efficiency and diversity.
Unlike the original Augmented Memory work, which used an RNN backbone, we investigate more
advanced architectures: decoder transformer (Vaswani et al., 2017; Radford et al., 2019) and Mamba
(Gu & Dao, 2023). Our analysis elucidates how SMILES augmentation, combined with these
architectures, synergistically improves sample efficiency in Saturn. The key mechanism is local
sampling in chemical space, whereby relatively small atomic changes are made to high-reward replay
buffer molecules.

Experimental Details. We define a toy experiment with the following MPO objective: molecular
weight (MW) < 350 Da, number of rings ≥ 2, and maximize topological polar surface area (tPSA)
(Guo & Schwaller, 2024b). Optimizing this objective requires generating molecules with rings
saturated with heteroatoms, which are dissimilar from the training data. Hence, it is also testing out-
of-distribution optimization. All experiments in this section were run across 10 seeds (0-9 inclusive)
with an oracle budget of 1,000, and the models were pre-trained with ChEMBL 33 (Gaulton et al.,
2012) (Appendix C.1).

Metrics. The sample efficiency metrics are Yield and Oracle Burden (OB). Yield is the number of
unique generated molecules above a reward threshold, and OB is the number of oracle calls required

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to generate N unique molecules above a reward threshold. The reward threshold in this experiment is
0.7 as molecules start to possess saturated heteroatom rings. Most configurations generate at least
some molecules passing this threshold within the budget, enabling us to report statistics.

Understanding the Limits of Augmented Memory. Augmented Memory (Guo & Schwaller,
2024a) improves sample efficiency by repeated learning from high reward SMILES. With decreasing
batch size, performance variance increases, as the approximation to the expected reward (Eq. 2)
becomes more noisy. In return, fewer oracle calls are imposed, and the Agent learns from an
increasingly smaller set of unique SMILES. We hypothesize that as long as unique high reward
SMILES are still generated, sample efficiency can improve with decreasing batch size, at the expense
of diversity. We perform a grid search and vary the batch size (64, 32, 16, 8) and augmentation
rounds (0-20 inclusive) using the default RNN architecture (Appendix 5). We make the following
key observations: with increasing augmentation rounds and decreasing batch size, sample efficiency
improves, diversity decreases, and generating repeated SMILES becomes increasingly prevalent but
is tolerable with oracle caching. The optimal augmentation rounds and batch size are 5-10 and 16,
respectively, as pushing further introduces too much variance, such that apparent improvements are
not statistically significant (at the 95% confidence level). In Appendix C.4, we explored the addition
of Beam Enumeration (Guo & Schwaller, 2024b) but improvements were not consistently statistically
significant. In Appendix C.5, we explored allocating a portion of the oracle budget to a GA, which
decreases sample efficiency, but recovers diversity, in agreement with previous works (Liu et al.,
2021; Lee et al., 2024). Finally, see Appendix C.2 for systematic ablation studies on the effect of
every component of Saturn.

Small Molecule Goal-directed Generation: Beyond RNNs. In this section, we move beyond RNN
(5.8M) to Decoder transformer (Vaswani et al., 2017; Radford et al., 2019) (6.3M) and Mamba (Gu
& Dao, 2023) (5.2M) (see Appendix B.2 for Mamba details), and empirically show that varying the
architecture can improve sample efficiency. Complete grid search results are presented in Appendix
C.3. We make the following observations: Increasing augmentation rounds decreases diversity
and inconsistently improves Yield and OB for RNN and transformer. Mamba more consistently
benefits from increasing augmentation rounds to generate more high reward molecules and also faster.
Across the Yield and OB metrics, Mamba consistently outperforms both the RNN and transformer
backbones. Given Mamba’s superior sample efficiency, we focus our analysis on comparing it to the
RNN baseline in the remainder of this section (transformer results are provided in Appendix C.3)

Mamba: Enhanced Maximum Likelihood. Table 15 shows that the Mamba architecture notably
generates repeated SMILES, which can be rationalized with the maximum likelihood objective.
Mamba (5.2M) and RNN (5.8M) have similar parameter counts but during pre-training, the former
converges to a lower loss during pre-training (Appendix C.1), indicating a better match to the data
distribution. Accordingly, and during RL, Eq. 4 aims to make generating high reward SMILES
more likely. Mamba generates repeated SMILES suggesting it overfits the data distribution. We
demonstrate this by cross-referencing Fig. 2a, which shows that with high augmentation rounds, the
average max conditional token probability (during generation) approaches 1, and near collapses to a
Dirac delta function (less so for RNN). This makes it likely, but not deterministic, to generate the
same SMILES repeatedly.

Squeezing the Likelihood of Augmented SMILES. While the original Augmented Memory work
(Guo & Schwaller, 2024a) demonstrated its empirical benefits, we elucidate the underlying mech-
anism. To isolate its effect, we design a sub-experiment as follows: generate molecules until the
buffer is full (100) and then save the Agent state before and after executing Augmented Memory (10
augmentation rounds) and save every augmented SMILES form. After execution, the (End) Agent
becomes more likely to generate the set of augmented SMILES (Fig. 2b). The more improbable the
SMILES (high NLL), the larger the ∆NLL shift (Fig. 2c). According to the loss function (Eq. 4),
a larger difference between the Augmented Likelihood (Eq. 3) and Agent Likelihood results in a
higher loss. When these terms are near equal, the loss approaches 0 (Fig. 2c circles). The purpose of
the Augmented Likelihood is to regularize the Agent, preventing it from deviating too far from the
prior (Olivecrona et al., 2017). Improbable SMILES, which impose a large gradient update, adjust
the Agent towards a higher probability of generating such sequences. However, already probable
(low NLL) SMILES can also impose large loss magnitudes (Fig. 2c), but the ∆NLL shift is small
because the softmax function saturates, causing minimal changes to the softmax output when the
logits are tuned. Taking these observations together, Augmented Memory squeezes the likelihood of
augmented SMILES, making the Agent more likely to generate any SMILES representation of the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: a. Average maximum token probability across Agent states. Augmentation pushes the
Agent action distribution towards a delta distribution. b. Augmented Memory (10 augmentation
rounds) makes the likelihood of generating SMILES in the buffer more likely. c. Top: On average,
augmented forms of the buffer SMILES become more likely. Bottom: Similar loss magnitudes impose
larger changes on improbable sequences and the Agent is driven towards generating these specific
sequences. When the Augmented Likelihood is equal to the Agent likelihood, the loss approaches
0 (circles). d. 3,000 oracle budget test experiment chunked into 300 SMILES. UMAP embedding
of the Agent chemical space traversal (arrows are the centroid of each chunk). Mamba exhibits a
directional traversal while RNN (baseline Augmented Memory) continues to sample globally. e.
Mamba exhibits a "hop-and-locally-explore" behavior where the intra-chunk Tanimoto similarity (top
values) are higher than RNN. The bottom value is the inter-chunk similarity.

same molecular graph. We next demonstrate how the Mamba architecture synergistically leverages
this mechanism to enhance sample efficiency.

Mamba: Hop-and-Locally-Explore. Mamba approaches Dirac delta function collapse (Fig. 2a)
when learning from repeated augmented SMILES and in the previous section, we have shown that
the Agent becomes increasingly likely to generate the buffer molecules. We hypothesized that
Mamba exhibits a "hop-and-locally-explore" behavior: because it is likely to generate some SMILES
representation of these molecules (strategic overfitting), small changes to any tokens in these set of
augmented sequences equates to small changes to the same molecular graph, essentially performing a
local exploration (similar molecules, on average, exhibit similar properties, provided the property
landscape is not too rough (Aldeghi et al., 2022)). We verify our hypothesis with the following
experiment: generate molecules (3,000 oracle budget) and separate the generated set into 10 chunks
(each 300 SMILES). We trace the generation trajectory using UMAP (McInnes et al., 2018) and plot
the chunk centroids, comparing Mamba and the baseline (vanilla Augmented Memory) (Fig. 2d).
Mamba traverses chemical space in an increased directional manner and the chunks are more locally
confined. Further analysis into the intra- and inter-chunk Tanimoto similarity reveals that within
chunks, Mamba exhibits much greater similarity than the baseline, and similarity is always lower
between chunks (Fig. 2e). Taking these observations together, Mamba (batch size 16) with Augmented
Memory (10 augmentation rounds) and oracle caching synergistically improves sample efficiency via
"hop-and-locally-explore" behavior (see Appendix D for further quantitative and qualitative analyses).
From here on, this model configuration will be referred to as Saturn and hyperparameters are fixed
such that all performance metrics in the following sections are out-of-the-box.

4.2 PART 2: TRANSFERABILITY OF SAMPLE EFFICIENCY TO PHYSICS-BASED ORACLES

In this section, we demonstrate that Saturn’s sample efficiency transfers to an MPO objective involving
docking against targets related to neurodegeneration (DRD2 (Wang et al., 2018) and AChE (Kryger
et al., 1999)) and inflammation (MK2 kinase (Argiriadi et al., 2010)). The optimization objective is
to constrain MW < 500 Da, maximize the quantitative estimate of drug-likeness (QED) (Bickerton

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

et al., 2012), and minimize AutoDock Vina (Trott & Olson, 2010) docking score (see Appendix
E.1 for details on the docking protocol). All experiments were run across 10 seeds (0-9 inclusive)
and with a 1,000 oracle budget. We compare Saturn (with and without GA) to baseline Augmented
Memory (Guo & Schwaller, 2024a) using the Yield and OB metrics. Saturn generates more high
reward molecules and faster, given the fixed oracle budget (Table 1). This holds even for the more
challenging MK2 kinase target where the pre-training data (ChEMBL 33 (Gaulton et al., 2012)) is
less suited. Furthermore, in agreement with the results from the test experiments, adding a GA on the
buffer does not improve sample efficiency but recovers diversity, which can be useful in certain cases.

Table 1: Docking MPO with 1,000 oracle budget. Baseline is vanilla Augmented Memory (Guo &
Schwaller, 2024a). IntDiv1 (Polykovskiy et al., 2020) is the internal diversity, Scaffolds is the number
of unique Bemis-Murcko (Bemis & Murcko, 1996) scaffolds, OB is Oracle Burden (oracle calls
required to generate N unique molecules). All metrics are computed at the 0.8 reward threshold. The
number in parentheses in the OB statistics represents how many runs out of 10 were successful. The
mean and standard deviation across 10 seeds (0-9 inclusive) is reported. Best models (statistically
significant at the 95% confidence level) are bolded.

Target Model Yield (↑) IntDiv1 (↑) Scaffolds (↑) OB 1 (↓) OB 10 (↓) OB 100 (↓)

Augmented Memory 22 ± 7 0.774 ± 0.019 22 ± 7 143 ± 75(10) 733 ± 120(10) Failed
DRD2 Saturn 369 ± 62 0.671 ± 0.050 310 ± 70 93 ± 53(10) 391 ± 56(10) 663 ± 55(10)

Saturn-GA 209 ± 55 0.745 ± 0.041 189 ± 57 96 ± 56(10) 403 ± 75(10) 806 ± 84(10)

Augmented Memory 173 ± 19 0.843 ± 0.009 170 ± 18 57 ± 2(10) 189 ± 52(10) 776 ± 58(10)
AChE Saturn 480 ± 79 0.757 ± 0.020 400 ± 96 32 ± 24(10) 185 ± 82(10) 508 ± 80(10)

Saturn-GA 343 ± 57 0.809 ± 0.013 287 ± 50 32 ± 25(10) 187 ± 80(10) 565 ± 80(10)

Augmented Memory 0.2 ± 0.4 — 0.2 ± 0.4 836 ± 186(2) Failed Failed
MK2 Saturn 14.9 ± 14.1 0.454 ± 0.212 14.1 ± 13.2 677 ± 186(9) 861 ± 108(6) Failed

Saturn-GA 6.1 ± 6.5 0.415 ± 0.202 5.5 ± 5.5 678 ± 140(9) 911 ± 11(2) Failed

4.3 PART 3: BENCHMARKING SATURN AND DEMONSTRATING ENHANCED OPTIMIZATION

In this section, we compare Saturn’s performance to previous works, including the state-of-the-art
Goal-aware fragment Extraction, Assembly, and Modification (GEAM) proposed by Lee et al. (Lee
et al., 2024), which recently reported impressive results on a docking MPO task that considers
synthesizability, outperforming baselines by a large margin.

Experimental Details. We facilitate an exact comparison with GEAM (Lee et al., 2024) by extracting
their oracle code for our experiments, pre-training on the provided ZINC 250k (Sterling & Irwin,
2015) dataset (Appendix F,) and used their MPO objective function (Eq. 5),

R(x) = D̂S(x)×QED(x)× ŜA(x) ∈ [0, 1], (5)

where D̂S is the normalized QuickVina 2 (Alhossary et al., 2015) docking score and ŜA is the nor-
malized synthetic accessibility score (Ertl & Schuffenhauer, 2009) (see Appendix F for normalization
details). Following GEAM (Lee et al., 2024), docking was performed against 5 targets: parp1, fa7,
5ht1b, braf, and jak2. We ran GEAM and Saturn across 10 seeds (0-9 inclusive) with an oracle
budget of 3,000. We note that GEAM’s pre-training requires the labeled ZINC 250k with all docking
values already pre-computed, so there is a large up-front oracle cost. We also emphasize that we do
not tune Saturn’s hyperparameters for this task and the results in this section are out-of-the-box.

Metrics. Following Lee et al. (Lee et al., 2023; 2024), we assess the Hit Ratio (%) (molecules
with a better docking score than the median of known actives, QED > 0.5, SA < 5) and Novel Hit
Ratio (%) (with the additional constraint of maximum Tanimoto similarity of 0.4 to the training
data). We further propose Strict Hit Ratio (%) and Strict Novel Hit Ratio (%) which filter for the
more stringent criteria of QED > 0.7 (based on DrugStore dataset of marketed drugs (Bickerton et al.,
2012)) and SA < 3 (based on off-the-shelf catalog molecules (Ertl & Schuffenhauer, 2009)). While
drug candidates need not necessarily meet these stricter thresholds, this metric assesses optimization
capability, which becomes pertinent when jointly optimizing all components is especially crucial.
From an optimization perspective, the objective function (Eq. 5) aims to maximize QED and minimize
SA and docking score simultaneously. Therefore, achieving high QED and low SA is part of the goal
itself. We additionally measure molecular diversity using IntDiv1 (Polykovskiy et al., 2020) and
#Circles (Xie et al., 2023) with distance threshold 0.75.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Hit Ratio (%). Results are from Lee et al. (Lee et al., 2023) except Augmented Memory,
GEAM, datasets, and Saturn which we ran across 10 seeds (0-9 inclusive). The mean and standard
deviation are reported. Best results (statistically significant at the 95% confidence level) are bolded.
Method Target Protein

parp1 fa7 5ht1b braf jak2

Datasets
ZINC 250k (Sterling & Irwin, 2015) 3.993 ± 0.355 1.097 ± 0.192 24.260 ± 0.622 1.020 ± 0.193 6.183 ± 0.344
ChEMBL 33 (Gaulton et al., 2012) 6.077 ± 0.453 1.830 ± 0.240 24.163 ± 0.715 2.073 ± 0.181 9.013 ± 0.562

Generative Models
REINVENT (Olivecrona et al., 2017) 4.693 ± 1.776 1.967 ± 0.661 26.047 ± 2.497 2.207 ± 0.800 5.667 ± 1.067
JT-VAE (Jin et al., 2018) 3.200 ± 0.348 0.933 ± 0.152 18.044 ± 0.747 0.644 ± 0.157 5.856 ± 0.204
GraphAF (Shi et al., 2020) 0.822 ± 0.113 0.011 ± 0.016 6.978 ± 0.952 1.422 ± 0.556 1.233 ± 0.284
MORLD (Jeon & Kim, 2020) 0.047 ± 0.050 0.007 ± 0.013 0.893 ± 0.758 0.047 ± 0.040 0.227 ± 0.118
HierVAE (Jin et al., 2020a) 1.180 ± 0.182 0.033 ± 0.030 0.740 ± 0.371 0.367 ± 0.187 0.487 ± 0.183
GraphDF (Luo et al., 2021) 0.044 ± 0.031 0.000 ± 0.000 0.000 ± 0.000 0.011 ± 0.016 0.011 ± 0.016
FREED (Yang et al., 2021) 4.860 ± 1.415 1.487 ± 0.242 14.227 ± 5.116 2.707 ± 0.721 6.067 ± 0.790
FREED-QS (Yang et al., 2021) 5.960 ± 0.902 1.687 ± 0.177 23.140 ± 2.422 3.880 ± 0.623 7.653 ± 1.373
LIMO (Eckmann et al., 2022) 0.456 ± 0.057 0.044 ± 0.016 1.200 ± 0.178 0.278 ± 0.134 0.711 ± 0.329
GDSS (Jo et al., 2022) 2.367 ± 0.316 0.467 ± 0.112 6.267 ± 0.287 0.300 ± 0.198 1.367 ± 0.258
MOOD (Lee et al., 2023) 7.260 ± 0.764 0.787 ± 0.128 21.427 ± 0.502 5.913 ± 0.311 10.367 ± 0.616
Aug. Mem. (Guo & Schwaller, 2024a) 16.966 ± 3.224 2.637 ± 0.860 52.016 ± 2.302 8.307 ± 1.714 21.548 ± 4.938
GEAM (Lee et al., 2024) 45.158 ± 2.408 20.552 ± 2.357 47.664 ± 1.198 30.444 ± 1.610 46.129 ± 2.073

Saturn (ours) 57.981 ± 18.537 14.527 ± 9.961 68.185 ± 3.400 38.999 ± 10.114 60.827 ± 11.502

Table 3: Novel Hit Ratio (%). Results are from Lee et al. (Lee et al., 2024) except GEAM and Saturn
which we ran across 10 seeds (0-9 inclusive). The mean and standard deviation are reported. Best
results (statistically significant at the 95% confidence level) are bolded.
Method Target Protein

parp1 fa7 5ht1b braf jak2

REINVENT (Olivecrona et al., 2017) 0.480 ± 0.344 0.213 ± 0.081 2.453 ± 0.561 0.127 ± 0.088 0.613 ± 0.167
GCPN (You et al., 2018) 0.056 ± 0.016 0.444 ± 0.333 0.444 ± 0.150 0.033 ± 0.027 0.256 ± 0.087
JT-VAE (Jin et al., 2018) 0.856 ± 0.211 0.289 ± 0.016 4.656 ± 1.406 0.144 ± 0.068 0.815 ± 0.044
GraphAF (Shi et al., 2020) 0.689 ± 0.166 0.011 ± 0.016 3.178 ± 0.393 0.956 ± 0.319 0.767 ± 0.098
GraphGA (Jensen, 2019) 4.811 ± 1.661 0.422 ± 0.193 7.011 ± 2.732 3.767 ± 1.498 5.311 ± 1.667
MORLD (Jeon & Kim, 2020) 0.047 ± 0.050 0.007 ± 0.013 0.880 ± 0.735 0.047 ± 0.040 0.227 ± 0.118
HierVAE (Jin et al., 2020a) 0.553 ± 0.214 0.007 ± 0.013 0.507 ± 0.278 0.207 ± 0.220 0.227 ± 0.127
RationaleRL (Jin et al., 2020b) 4.267 ± 0.450 0.900 ± 0.098 2.967 ± 0.307 0.000 ± 0.000 2.967 ± 0.196
GA+D (Nigam et al., 2020) 0.044 ± 0.042 0.011 ± 0.016 1.544 ± 0.273 0.800 ± 0.864 0.756 ± 0.204
MARS (Xie et al., 2021) 1.178 ± 0.299 0.367 ± 0.072 6.833 ± 0.706 0.478 ± 0.083 2.178 ± 0.545
GEGL (Ahn et al., 2020) 0.789 ± 0.150 0.256 ± 0.083 3.167 ± 0.260 0.244 ± 0.016 0.933 ± 0.072
GraphDF (Luo et al., 2021) 0.044 ± 0.031 0.000 ± 0.000 0.000 ± 0.000 0.011 ± 0.016 0.011 ± 0.016
FREED (Yang et al., 2021) 4.627 ± 0.727 1.332 ± 0.113 16.767 ± 0.897 2.940 ± 0.359 5.800 ± 0.295
LIMO (Eckmann et al., 2022) 0.455 ± 0.057 0.044 ± 0.016 1.189 ± 0.181 0.278 ± 0.134 0.689 ± 0.319
GDSS (Jo et al., 2022) 1.933 ± 0.208 0.368 ± 0.103 4.667 ± 0.306 0.167 ± 0.134 1.167 ± 0.281
PS-VAE (Kong et al., 2022) 1.644 ± 0.389 0.478 ± 0.140 12.622 ± 1.437 0.367 ± 0.047 4.178 ± 0.933
MOOD (Lee et al., 2023) 7.017 ± 0.428 0.733 ± 0.141 18.673 ± 0.423 5.240 ± 0.285 9.200 ± 0.524
GEAM (Lee et al., 2024) 39.159 ± 2.790 19.540 ± 2.347 40.123 ± 1.611 27.467 ± 1.374 41.765 ± 3.412

Saturn (ours) 3.839 ± 3.316 0.470 ± 0.272 5.731 ± 6.166 3.652 ± 3.777 6.129 ± 5.449
Saturn-Tanimoto (ours) 50.552 ± 9.530 20.181 ± 5.598 54.260 ± 6.722 19.820 ± 10.120 47.785 ± 14.041

Saturn and GEAM Outperform all Baselines. We evaluate the Hit Ratio and include random
sampling of 3,000 molecules from ZINC 250k (Sterling & Irwin, 2015) and ChEMBL 33 (Gaulton
et al., 2012) as baselines (Table 2). The results show that only Augmented Memory (Guo & Schwaller,
2024a), GEAM (Lee et al., 2024), and Saturn outperform these baselines, with GEAM and Saturn
displaying similar performance. However, Saturn exhibits higher variance, likely due to the small
batch size (16) used to approximate the expected reward (Eq. 2). For the Novel Hit Ratio (Table 3),
Saturn performs worse than GEAM. However, this is expected since the Mamba backbone excels at
maximum likelihood estimation and fits the ZINC 250k training distribution well (Appendix F.1). It
is then unsurprising that generated molecules are not particularly dissimilar to ZINC. We highlight
that this 0.4 threshold is arbitrary and that modeling distributions well is the fundamental goal of
generative models. However, to demonstrate how to satisfy this "Novel" metric, we divide the task
into two phases, akin to curriculum learning (Guo et al., 2022). Firstly, we task the base Saturn model
to generate molecules with high Tanimoto dissimilarity (this is the only optimization objective) to the
training data. We run this process for 1,500 oracle calls (see Appendix F.4 for more details). This new
model checkpoint (Saturn-Tanimoto) now generates molecules that are dissimilar to ZINC 250k and
is the starting point for GEAM’s MPO task. Table 3 shows that performance immediately recovers
and matches GEAM. We believe this is still a fair assessment as computing Tanimoto similarity is
cheap (this process took minutes) and also shows the flexibility of Saturn.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Strict Hit Ratio (%). GEAM and Saturn results are across 10 seeds (0-9 inclusive). OB is
Oracle Burden (oracle calls required to generate N unique molecules). The number in parentheses
in the OB statistics represents how many runs out of 10 were successful. The mean and standard
deviation are reported. Best results (statistically significant at the 95% confidence level) are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM (Lee et al., 2024)
Strict Hit Ratio (↑) 6.510 ± 1.087 2.106 ± 0.958 8.719 ± 0.903 3.685 ± 0.524 7.944 ± 1.157
OB (1) (↓) 250 ± 157(10) 433 ± 209(10) 114 ± 112(10) 355 ± 96(10) 230 ± 117(10)
OB (10) (↓) 743 ± 52(10) 1446 ± 404(10) 531 ± 38(10) 892 ± 144(10) 537 ± 70(10)
OB (100) (↓) 2106 ± 202(10) 2927 ± 0(1) 1527 ± 110(10) 2674 ± 163(6) 1606 ± 218(10)
IntDiv1 (↑) 0.766 ± 0.017 0.709 ± 0.043 0.799 ± 0.017 0.751 ± 0.023 0.763 ± 0.021
#Circles (↑) 14 ± 3 7 ± 2 25 ± 3 11 ± 2 18 ± 2

Saturn (ours)
Strict Hit Ratio 55.102 ± 18.027 13.887 ± 9.723 64.730 ± 3.717 37.250 ± 9.615 55.903 ± 13.613
OB (1) (↓) 139 ± 96(10) 352 ± 206(10) 21 ± 7(10) 291 ± 143(10) 88 ± 56(10)
OB (10) (↓) 518 ± 92(10) 924 ± 247(10) 105 ± 23(10) 581 ± 123(10) 348 ± 96(10)
OB (100) (↓) 956 ± 259(10) 1776 ± 551(10) 441 ± 44(10) 1057 ± 187(10) 785 ± 191(10)
IntDiv1 (↑) 0.596 ± 0.049 0.592 ± 0.066 0.685 ± 0.021 0.597 ± 0.042 0.638 ± 0.034
#Circles (↑) 5 ± 0 3 ± 1 17 ± 3 4 ± 0 7 ± 1

Saturn: Enhanced MPO. Due to the superior performance of Saturn and GEAM, we further
investigate their optimization capability by applying a strict filter for QED > 0.7 and SA < 3 (Table
4). The results show that GEAM’s Hit Ratios drop drastically while Saturn’s remain relatively
unchanged, which demonstrates that Saturn optimizes the MPO objective to a much greater degree
(see Appendix F for Novel Strict Filter results). Importantly, Saturn finds molecules passing this strict
filter with much fewer oracle calls (OB metrics in Table 4), trading off diversity to do so. For fa7
and braf, GEAM does not find 100 molecules passing the strict filter in 9/10 and 4/10 replicates,
respectively, while Saturn is successful in 10/10 for both (Table 4). Finding desirable molecules under
minimal oracle calls is practically relevant when moving to computationally expensive high-fidelity
oracles, so as to identify a small set of excellent candidates satisfying the MPO objective.

5 CONCLUSION

In this work, we present Saturn, a framework for sample-efficient de novo molecular design us-
ing memory manipulation. We demonstrate the first application of the Mamba (Gu & Dao, 2023)
architecture for generative molecular design with reinforcement learning and show how it syner-
gistically leverages SMILES augmentation and experience replay for enhanced sample efficiency.
Through systematic study, we elucidate the mechanism of Augmented Memory (original work only
showed its empirical benefits) and show it squeezes sequence generation likelihoods such that it
becomes increasingly likely to generate some SMILES representation of the replay buffer molecular
graphs. Next, we show how Mamba leverages this mechanism to improve sample efficiency through
"hop-and-locally-explore" behavior. With the optimal architecture and hyperparameters identified for
sample efficiency in a test experiment, we apply Saturn on two sets of MPO tasks relevant to drug
discovery, outperforming all baseline models and the recent GEAM (Lee et al., 2024) model which,
when released, outperformed all baselines by a large margin. Compared to GEAM, we further show
that Saturn achieves superior MPO, finding desirable molecules faster with fewer oracle calls, albeit
with a trade-off in diversity. Our work opens up the prospect of directly optimizing expensive high-
fidelity oracles (beyond docking), which are more correlated with relevant drug discovery end-points.
Recent work has applied multi-fidelity learning (Eckmann et al., 2024) or active learning (Loeffler
et al., 2024a; Dodds et al., 2024) to enable on-the-fly update of a surrogate model to predict such
oracle evaluations for generative design. These workflows can be applied directly with Saturn, but
importantly, we may be sufficiently efficient to directly optimize these oracles, mitigating surrogate
out-of-domain concerns. Moreover, it is straightforward to augment Saturn with known strategies
to improve sample efficiency, such as curriculum learning (Guo et al., 2022) as we have shown in
Part 3. Correspondingly, future work will stress-test Saturn on high-fidelity oracles and interrogate
the prospect of directly optimizing QM/MM and free energy (Wang et al., 2019; Moore et al., 2022;
2023; Crivelli-Decker et al., 2024) protocols with modest computational resources.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY STATEMENT

The code is provided in the figshare link in the Abstract and also provided here: https://
figshare.com/s/21059896530e222b9cd5. The repository contains a README along
with prepared files to reproduce all experiments.

REFERENCES

Schrödinger release 2019-4: Protein preparation wizard; epik, schrödinger, llc, new york, ny, 2019;
impact, schrödinger, llc, new york, ny; prime, schrödinger, llc, new york, ny, 2019.

Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization
with genetic exploration. volume 33, pp. 12008–12021, 2020.

Matteo Aldeghi, David E Graff, Nathan Frey, Joseph A Morrone, Edward O Pyzer-Knapp, Kirk E
Jordan, and Connor W Coley. Roughness of molecular property landscapes and its impact on
modellability. Journal of Chemical Information and Modeling, 62(19):4660–4671, 2022.

Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast, accurate,
and reliable molecular docking with quickvina 2. Bioinformatics, 31(13):2214–2216, 2015.

Maria A Argiriadi, Anna M Ericsson, Christopher M Harris, David L Banach, David W Borhani,
David J Calderwood, Megan D Demers, Jennifer DiMauro, Richard W Dixon, Jennifer Hardman,
et al. 2, 4-diaminopyrimidine mk2 inhibitors. part i: observation of an unexpected inhibitor binding
mode. Bioorganic & medicinal chemistry letters, 20(1):330–333, 2010.

Josep Arús-Pous, Simon Viet Johansson, Oleksii Prykhodko, Esben Jannik Bjerrum, Christian
Tyrchan, Jean-Louis Reymond, Hongming Chen, and Ola Engkvist. Randomized smiles strings
improve the quality of molecular generative models. Journal of cheminformatics, 11:1–13, 2019.

Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. Molgpt: molecular generation
using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9):
2064–2076, 2021.

Marco Ballarotto, Sabine Willems, Tanja Stiller, Felix Nawa, Julian A Marschner, Francesca Grisoni,
and Daniel Merk. De novo design of nurr1 agonists via fragment-augmented generative deep
learning in low-data regime. Journal of Medicinal Chemistry, 66(12):8170–8177, 2023.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887–2893, 1996.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Esben Jannik Bjerrum. Smiles enumeration as data augmentation for neural network modeling of
molecules. arXiv preprint arXiv:1703.07076, 2017.

Esben Jannik Bjerrum, Christian Margreitter, Thomas Blaschke, Simona Kolarova, and Raquel
López-Ríos de Castro. Faster and more diverse de novo molecular optimization with double-loop
reinforcement learning using augmented smiles. Journal of Computer-Aided Molecular Design, 37
(8):373–394, 2023.

Thomas Blaschke, Josep Arús-Pous, Hongming Chen, Christian Margreitter, Christian Tyrchan, Ola
Engkvist, Kostas Papadopoulos, and Atanas Patronov. Reinvent 2.0: an ai tool for de novo drug
design. Journal of chemical information and modeling, 60(12):5918–5922, 2020a.

11

https://figshare.com/s/21059896530e222b9cd5
https://figshare.com/s/21059896530e222b9cd5

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas Blaschke, Ola Engkvist, Jürgen Bajorath, and Hongming Chen. Memory-assisted rein-
forcement learning for diverse molecular de novo design. Journal of cheminformatics, 12(1):68,
2020b.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

James Chen. Mamba no. 5 (a little bit of...). 2024.

Jordan E Crivelli-Decker, Zane Beckwith, Gary Tom, Ly Le, Sheenam Khuttan, Romelia Salomon-
Ferrer, Jackson Beall, Rafael Gómez-Bombarelli, and Andrea Bortolato. Machine learning guided
aqfep: A fast and efficient absolute free energy perturbation solution for virtual screening. Journal
of Chemical Theory and Computation, 2024.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Michael Dodds, Jeff Guo, Thomas Löhr, Alessandro Tibo, Ola Engkvist, and Jon Paul Janet. Sample
efficient reinforcement learning with active learning for molecular design. Chemical Science, 15
(11):4146–4160, 2024.

Yuanqi Du, Arian R Jamasb, Jeff Guo, Tianfan Fu, Charles Harris, Yingheng Wang, Pietro Lio,
Philippe Schwaller, and Tom L Blundell. Machine learning-aided generative molecular design.
Nature Machine Intelligence, 2024.

Peter Eckmann, Kunyang Sun, Bo Zhao, Mudong Feng, Michael K Gilson, and Rose Yu. Limo:
Latent inceptionism for targeted molecule generation. In International conference on machine
learning. PMLR, 2022.

Peter Eckmann, Dongxia Wu, Germano Heinzelmann, Michael K Gilson, and Rose Yu. Mfbind: a
multi-fidelity approach for evaluating drug compounds in practical generative modeling. arXiv
preprint arXiv:2402.10387, 2024.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1:1–11, 2009.

Tao Feng, Pengcheng Xu, Tianfan Fu, Siddhartha Laghuvarapu, and Jimeng Sun. Molecular de novo
design through transformer-based reinforcement learning. arXiv preprint arXiv:2310.05365, 2023.

Vendy Fialková, Jiaxi Zhao, Kostas Papadopoulos, Ola Engkvist, Esben Jannik Bjerrum, Thierry
Kogej, and Atanas Patronov. Libinvent: reaction-based generative scaffold decoration for in silico
library design. Journal of Chemical Information and Modeling, 62(9):2046–2063, 2021.

Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. Language models can learn complex
molecular distributions. Nature Communications, 13(1):3293, 2022.

Tianfan Fu, Wenhao Gao, Connor Coley, and Jimeng Sun. Reinforced genetic algorithm for structure-
based drug design. Advances in Neural Information Processing Systems, 35:12325–12338, 2022.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark
for practical molecular optimization. Advances in neural information processing systems, 35:
21342–21357, 2022.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Albert Gu. Modeling Sequences with Structured State Spaces. Stanford University, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021b.

Jeff Guo and Philippe Schwaller. Augmented memory: Sample-efficient generative molecular design
with reinforcement learning. JACS Au, 2024a.

Jeff Guo and Philippe Schwaller. Beam enumeration: Probabilistic explainability for sample ef-
ficient self-conditioned molecular design. In Proc. 12th International Conference on Learning
Representations, 2024b.

Jeff Guo, Jon Paul Janet, Matthias R Bauer, Eva Nittinger, Kathryn A Giblin, Kostas Papadopoulos,
Alexey Voronov, Atanas Patronov, Ola Engkvist, and Christian Margreitter. Dockstream: a docking
wrapper to enhance de novo molecular design. Journal of cheminformatics, 13:1–21, 2021.

Jeff Guo, Vendy Fialková, Juan Diego Arango, Christian Margreitter, Jon Paul Janet, Kostas Pa-
padopoulos, Ola Engkvist, and Atanas Patronov. Improving de novo molecular design with
curriculum learning. Nature Machine Intelligence, 4(6):555–563, 2022.

Jeff Guo, Franziska Knuth, Christian Margreitter, Jon Paul Janet, Kostas Papadopoulos, Ola Engkvist,
and Atanas Patronov. Link-invent: generative linker design with reinforcement learning. Digital
Discovery, 2(2):392–408, 2023.

Jiazhen He, Huifang You, Emil Sandström, Eva Nittinger, Esben Jannik Bjerrum, Christian Tyrchan,
Werngard Czechtizky, and Ola Engkvist. Molecular optimization by capturing chemist’s intuition
using deep neural networks. Journal of cheminformatics, 13:1–17, 2021.

Jiazhen He, Alessandro Tibo, Jon Paul Janet, Eva Nittinger, Christian Tyrchan, Werngard Czechtizky,
and Engkvist Ola. Evaluation of reinforcement learning in transformer-based molecular design.
2024.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Xiuyuan Hu, Guoqing Liu, Yang Zhao, and Hao Zhang. De novo drug design using reinforcement
learning with multiple gpt agents. Advances in Neural Information Processing Systems, 36, 2024.

Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal Frossard,
Max Welling, Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion model
for molecular linker design. Nature Machine Intelligence, pp. 1–11, 2024.

Yan A Ivanenkov, Daniil Polykovskiy, Dmitry Bezrukov, Bogdan Zagribelnyy, Vladimir Aladinskiy,
Petrina Kamya, Alex Aliper, Feng Ren, and Alex Zhavoronkov. Chemistry42: an ai-driven platform
for molecular design and optimization. Journal of Chemical Information and Modeling, 63(3):
695–701, 2023.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

Woosung Jeon and Dongsup Kim. Autonomous molecule generation using reinforcement learning
and docking to develop potential novel inhibitors. Scientific reports, 10(1):22104, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International conference on machine learning, pp. 4839–4848. PMLR,
2020a.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
interpretable substructures. In International conference on machine learning, pp. 4849–4859.
PMLR, 2020b.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning, pp.
10362–10383. PMLR, 2022.

Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Vanhaelen, Kuzma
Khrabrov, and Alex Zhavoronkov. The cornucopia of meaningful leads: Applying deep adversarial
autoencoders for new molecule development in oncology. Oncotarget, 8(7):10883, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Xiangzhe Kong, Wenbing Huang, Zhixing Tan, and Yang Liu. Molecule generation by principal
subgraph mining and assembling. Advances in Neural Information Processing Systems, 35:
2550–2563, 2022.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (selfies): A 100% robust molecular string representation. Machine
Learning: Science and Technology, 1(4):045024, 2020.

Mario Krenn, Qianxiang Ai, Senja Barthel, Nessa Carson, Angelo Frei, Nathan C Frey, Pascal
Friederich, Théophile Gaudin, Alberto Alexander Gayle, Kevin Maik Jablonka, et al. Selfies and
the future of molecular string representations. Patterns, 3(10), 2022.

Gitay Kryger, Israel Silman, and Joel L Sussman. Structure of acetylcholinesterase complexed
with e2020 (aricept®): implications for the design of new anti-alzheimer drugs. Structure, 7(3):
297–307, 1999.

Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
distribution generation. In International Conference on Machine Learning, pp. 18872–18892.
PMLR, 2023.

Seul Lee, Seanie Lee, and Sung Ju Hwang. Drug discovery with dynamic goal-aware fragments.
International Conference on Machine Learning, 2024.

Xuhan Liu, Kai Ye, Herman WT van Vlijmen, Michael TM Emmerich, Adriaan P IJzerman, and
Gerard JP van Westen. Drugex v2: de novo design of drug molecules by pareto-based multi-
objective reinforcement learning in polypharmacology. Journal of cheminformatics, 13(1):85,
2021.

Hannes Loeffler, Shunzhou Wan, Marco Klähn, Agastya Bhati, and Peter Coveney. Optimal molec-
ular design: Generative active learning combining reinvent with absolute binding free energy
simulations. 2024a.

Hannes H Loeffler, Jiazhen He, Alessandro Tibo, Jon Paul Janet, Alexey Voronov, Lewis H Mervin,
and Ola Engkvist. Reinvent 4: Modern ai–driven generative molecule design. Journal of Chemin-
formatics, 16(1):20, 2024b.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International conference on machine learning, pp. 7192–7203. PMLR, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

G Madhavi Sastry, Matvey Adzhigirey, Tyler Day, Ramakrishna Annabhimoju, and Woody Sher-
man. Protein and ligand preparation: parameters, protocols, and influence on virtual screening
enrichments. Journal of computer-aided molecular design, 27:221–234, 2013.

Krzysztof Maziarz, Henry Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine Schneider,
Nikolaus Stiefl, Marwin Segler, and Marc Brockschmidt. Learning to extend molecular scaffolds
with structural motifs. In Proc. 10th International Conference on Learning Representations, 2022.

Eyal Mazuz, Guy Shtar, Bracha Shapira, and Lior Rokach. Molecule generation using transformers
and policy gradient reinforcement learning. Scientific Reports, 13(1):8799, 2023.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2(2):025023, 2021.

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

J Harry Moore, Matthias R Bauer, Jeff Guo, Atanas Patronov, Ola Engkvist, and Christian Margreitter.
Icolos: a workflow manager for structure-based post-processing of de novo generated small
molecules. Bioinformatics, 38(21):4951–4952, 2022.

J Harry Moore, Christian Margreitter, Jon Paul Janet, Ola Engkvist, Bert L de Groot, and Vytautas
Gapsys. Automated relative binding free energy calculations from smiles to δδg. Communications
Chemistry, 6(1):82, 2023.

Michael Moret, Lukas Friedrich, Francesca Grisoni, Daniel Merk, and Gisbert Schneider. Generative
molecular design in low data regimes. Nature Machine Intelligence, 2(3):171–180, 2020.

Rebecca M Neeser, Bruno Correia, and Philippe Schwaller. Fsscore: A machine learning-based
synthetic feasibility score leveraging human expertise. arXiv preprint arXiv:2312.12737, 2023.

Daniel Neil, Marwin Segler, Laura Guasch, Mohamed Ahmed, Dean Plumbley, Matthew Sellwood,
and Nathan Brown. Exploring deep recurrent models with reinforcement learning for molecule
design. In Proc. 6th International Conference on Learning Representations, 2018.

Bruno J Neves, Rodolpho C Braga, Cleber C Melo-Filho, José Teófilo Moreira-Filho, Eugene N
Muratov, and Carolina Horta Andrade. Qsar-based virtual screening: advances and applications in
drug discovery. Frontiers in pharmacology, 9:1275, 2018.

AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Alán Aspuru-Guzik. Augmenting genetic
algorithms with deep neural networks for exploring the chemical space. In Proc. 8th International
Conference on Learning Representations, 2020.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9:1–14, 2017.

Rıza Özçelik, Sarah de Ruiter, Emanuele Criscuolo, and Francesca Grisoni. Chemical language
modeling with structured state spaces. 2024.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
Frontiers in pharmacology, 11:565644, 2020.

Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de novo
drug design. Science advances, 4(7):eaap7885, 2018.

Frank W Pun, Ivan V Ozerov, and Alex Zhavoronkov. Ai-powered therapeutic target discovery.
Trends in Pharmacological Sciences, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Anthony K Rappé, Carla J Casewit, KS Colwell, William A Goddard III, and W Mason Skiff. Uff,
a full periodic table force field for molecular mechanics and molecular dynamics simulations.
Journal of the American chemical society, 114(25):10024–10035, 1992.

Katarina Roos, Chuanjie Wu, Wolfgang Damm, Mark Reboul, James M Stevenson, Chao Lu,
Markus K Dahlgren, Sayan Mondal, Wei Chen, Lingle Wang, et al. Opls3e: Extending force
field coverage for drug-like small molecules. Journal of chemical theory and computation, 15(3):
1863–1874, 2019.

Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, and Martha White. Importance
resampling for off-policy prediction. Advances in Neural Information Processing Systems, 32,
2019.

Arne Schneuing, Yuanqi Du, Charles Harris, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du,
Carla Gomes, Max Welling, Tom Blundell, et al. Flexible structure-based design of small molecules
with equivariant diffusion models. In PROTEIN SCIENCE, volume 32. WILEY 111 RIVER ST,
HOBOKEN 07030-5774, NJ USA, 2023.

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):
120–131, 2018.

Tony Shen, Mohit Pandey, and Martin Ester. Tacogfn: Target conditioned gflownet for drug design.
In NeurIPS 2023 Generative AI and Biology (GenBio) Workshop, 2023.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf:
a flow-based autoregressive model for molecular graph generation. In Proc. 8th International
Conference on Learning Representations, 2020.

Michael A Skinnider. Invalid smiles are beneficial rather than detrimental to chemical language
models. Nature Machine Intelligence, pp. 1–12, 2024.

Michael A Skinnider, R Greg Stacey, David S Wishart, and Leonard J Foster. Chemical language
models enable navigation in sparsely populated chemical space. Nature Machine Intelligence, 3
(9):759–770, 2021.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

Morgan Thomas, Noel M O’Boyle, Andreas Bender, and Chris De Graaf. Augmented hill-climb
increases reinforcement learning efficiency for language-based de novo molecule generation.
Journal of cheminformatics, 14(1):68, 2022.

Alessandro Tibo, Jiazhen He, Jon Paul Janet, Eva Nittinger, and Ola Engkvist. Exhaustive local
chemical space exploration using a transformer model. 2023.

Austin Tripp and José Miguel Hernández-Lobato. Genetic algorithms are strong baselines for
molecule generation. arXiv preprint arXiv:2310.09267, 2023.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
DiGress: Discrete denoising diffusion for graph generation. In Proc. 11th International Conference
on Learning Representations, 2023.

Lingle Wang, Jennifer Chambers, and Robert Abel. Protein–ligand binding free energy calculations
with fep+. Biomolecular simulations: methods and protocols, pp. 201–232, 2019.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Sheng Wang, Tao Che, Anat Levit, Brian K Shoichet, Daniel Wacker, and Bryan L Roth. Structure of
the d2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 555(7695):
269–273, 2018.

Ye Wang, Honggang Zhao, Simone Sciabola, and Wenlu Wang. cmolgpt: A conditional generative
pre-trained transformer for target-specific de novo molecular generation. Molecules, 28(11):4430,
2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. Mars: Markov
molecular sampling for multi-objective drug discovery. In Proc. 9th International Conference on
Learning Representations, 2021.

Yutong Xie, Ziqiao Xu, Jiaqi Ma, and Qiaozhu Mei. How much space has been explored? measur-
ing the chemical space covered by databases and machine-generated molecules. In Proc. 11th
International Conference on Learning Representations, 2023.

Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead discovery
with explorative rl and fragment-based molecule generation. Advances in Neural Information
Processing Systems, 34:7924–7936, 2021.

Yuyao Yang, Shuangjia Zheng, Shimin Su, Chao Zhao, Jun Xu, and Hongming Chen. Syntalinker:
automatic fragment linking with deep conditional transformer neural networks. Chemical science,
11(31):8312–8322, 2020.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in neural information
processing systems. NeurIPS, 2018.

Alex Zhavoronkov, Yan A Ivanenkov, Alex Aliper, Mark S Veselov, Vladimir A Aladinskiy, Anas-
tasiya V Aladinskaya, Victor A Terentiev, Daniil A Polykovskiy, Maksim D Kuznetsov, Arip
Asadulaev, et al. Deep learning enables rapid identification of potent ddr1 kinase inhibitors. Nature
biotechnology, 37(9):1038–1040, 2019.

A APPENDIX

The Appendix contains full details on Saturn, grid-search results, ablation studies, algorithmic details,
and supplementary results for additional experiments including architecture scaling studies. The code
is available at https://figshare.com/s/21059896530e222b9cd5.

B WHAT IS SATURN?

Saturn is a language-based generative molecular design framework which features minimal imple-
mentations of Augmented Memory (Guo & Schwaller, 2024a) and Beam Enumeration (Guo &
Schwaller, 2024b). These two methods were first implemented here: https://github.com/
schwallergroup/augmented_memory, which in turn was built on REINVENT version 3.2
(Olivecrona et al., 2017; Blaschke et al., 2020a): https://github.com/MolecularAI/
Reinvent. REINVENT is still under active development and version 4 (Loeffler et al., 2024b)
was recently released, supporting a wide range of generative tasks including small molecule design
(Olivecrona et al., 2017; Blaschke et al., 2020a), library design (Fialková et al., 2021), linker design

17

https://figshare.com/s/21059896530e222b9cd5
https://github.com/schwallergroup/augmented_memory
https://github.com/schwallergroup/augmented_memory
https://github.com/MolecularAI/Reinvent
https://github.com/MolecularAI/Reinvent

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(Guo et al., 2023), proposing small modifications (He et al., 2021), and sampling nearest neighbors
(Tibo et al., 2023).

Saturn (at the moment) focuses only on generative small molecule design and research development
is on sample efficiency. It is a much smaller code-base than REINVENT 4 and with focus on
minimal implementation. That being said, the key new additions to Saturn include: extending small
molecule generative architecture from just RNN in REINVENT to Decoder transformer (Vaswani
et al., 2017; Radford et al., 2019) and Mamba (Gu & Dao, 2023). Secondly, allowing oracle caching
to track repeated generations and allow pre-screening specified oracles (in an MPO objective, some
oracle components may be computationally inexpensive and it would be practical to first screen a
molecules through these oracles before any expensive components). Thirdly, implementation of
a genetic algorithm which couples GraphGA (Jensen, 2019) on the replay buffer such that new
molecules can be generated from the replay buffer parent sequences. In the ensuing subsections, we
describe in detail these key new additions.

B.1 GENERATIVE ARCHITECTURE

Many initial language-based molecular generative models were RNN-based (Olivecrona et al., 2017;
Segler et al., 2018; Neil et al., 2018; Popova et al., 2018). Early benchmarks (GuacaMol (Brown
et al., 2019) and MOSES (Polykovskiy et al., 2020)) assessed whether generated molecules were
valid (RDKit parsable), unique, and novel (not in the training data). RNNs satisfy these metrics and
can learn distributions well (Flam-Shepherd et al., 2022). More recently, with the prevalence of the
transformer (Vaswani et al., 2017; Radford et al., 2019) architecture, many works (Bagal et al., 2021;
Wang et al., 2023; Feng et al., 2023; Mazuz et al., 2023; Hu et al., 2024; He et al., 2024; Thomas et al.,
2022; Yang et al., 2020) have suggested a replacement of RNNs for generative design. However, many
performance assessments only focus on validity, uniqueness, novelty, and optimizing for permissive
oracles such as logP, QED (Bickerton et al., 2012) ("drug-likeness"), and the SA score (Ertl &
Schuffenhauer, 2009). Some works show that transformers can learn longer SMILES sequences
better than RNNs (Feng et al., 2023) (such as natural products). However, often, one actually wants
to limit sequence length to constrain design to small molecules. Furthermore, recent works have
coupled transformers with reinforcement learning (RL) (Feng et al., 2023; Mazuz et al., 2023; Hu
et al., 2024; He et al., 2024; Thomas et al., 2022) but the performance is not necessarily better than
RNNs. Consequently, it is unclear whether the benefits of transformers are strictly advantageous for
small molecule generation.

In this work, we extend Augmented Memory (Guo & Schwaller, 2024a) to Decoder transformer
(Vaswani et al., 2017; Radford et al., 2019) and Mamba (Gu & Dao, 2023). Our results show that
transformers display similar performance to RNNs for small molecule generation, in agreement with
previous literature findings (Thomas et al., 2022). We further demonstrate the first application of
Mamba (Gu & Dao, 2023) for goal-directed generation, supplementing recent work investigating S4
models for transfer learning (Özçelik et al., 2024).

B.2 MAMBA ARCHITECTURE

In Saturn, we empirically find that the Mamba (Gu & Dao, 2023) architecture is the most parameter-
efficient in our RL framework when tuning for sample efficiency. Note that in Appendix F.6, we find
that scaling up the decoder transformer (25.3M) Vaswani et al. (2017); Radford et al. (2019) to about
5x the size of the Mamba (5.2M) results in similar performance. However, due to less GPU load for
smaller models, we chose Mamba as the default architecture in Saturn. Mamba was recently proposed
as an alternative to transformers, with linear time training in contrast to the quadratic attention scaling.
In decoder transformers, self-attention is the key component:

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V

where embedded input (SMILES (Weininger, 1988) sequences in our case), X , is multiplied with
the weight matrices, WQ, WK , WV to produce the Query (Q), Key (K), and Value (V) matrices,
respectively. QKT results in an N x N (sequence length) matrix and leads to an overall O(N2)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

scaling. However, an advantage of self-attention is that during inference, the entire context is available
without any compression.

We now contrast the information flow in Mamba, with all information adapted from, and following
the convention in preceding work on state-space models Gu et al. (2021b), structured S4 (Gu et al.,
2021a), the original Mamba (Gu & Dao, 2023) work and a technical blog (Chen, 2024). Mamba
builds on state-space models, which propagate information through four learnable matrices: A, B,
C, and D:

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

where h is the state, x is the input sequence, and y is the output. Therefore A and B dictate how the
state changes as a function of the current state and input, respectively. This is similar for C and D
on the output. As A, B, C, and D are fixed for all t, this is time-invariant. As we are working with
discrete data (SMILES tokens in our case), the continuous form is discretized (Gu et al., 2021b;a):

ht = Āht−1 + B̄xt

yt = C̄ht + D̄xt

The original works (Gu et al., 2021b;a) show that the model can be trained efficiently using a
continuous convolution while offering efficient inference through a recurrent mode. Note that in some
references, D is omitted and does not transform the input, x (Gu, 2023). In the current formulation
which is time-invariant, all states and input are transformed in the same way. However, it would be
advantageous to process information differently depending on whether it is more relevant, similar to
self-attention. Correspondingly, Mamba (Gu & Dao, 2023) extends this framework and removes the
time-invariance constraint by making the B, C, and D matrices dependent on the input (the following
notation follows (Chen, 2024)):

ht = Āht−1 + B̄(xt)xt

yt = C̄(xt)ht + D̄xt

The input-dependent parameters allow Mamba to selectively propagate information. Removing
time-invariance prevents efficient training with continuous convolution and the Mamba (Gu & Dao,
2023) authors propose an efficient recurrent scan in place. In Saturn, we use their optimized training
and inference by adapting the code from the official Mamba repository: https://github.com/
state-spaces/mamba.

We end this section by conveying that we were not particularly worried about the training and
inference speed, since we are working with small molecules with relatively short sequences (typically
< 80 tokens). The bottleneck is the reward computation, especially if the oracle is expensive. We
were interested in studying the optimization dynamics and how efficiently each model can be tuned
via RL.

B.3 ORACLE CACHING

In many reinforcement learning (RL) set-ups, the reward is assumed to be stationary, i.e., it does
not change on repeat evaluation. This is an assumption that is not always true for physics-based
oracles relevant in drug discovery. For example, docking depends on the initial conformer generated,
and even more so for molecular dynamics simulations. However, it is reasonable to assume that the
reward is near deterministic given a reasonably well behaved protein system (in which preliminary
studies were made to verify the oracle stability). In effect, the reward for repeat molecules can be
retrieved from a cache, thus not imposing additional oracle evaluations. In this work, we show that
under this assumption, Saturn can leverage the Mamba (Gu & Dao, 2023) architecture for enhanced
sample efficiency. In particular, Mamba displays low uniqueness, but we show this is not detrimental.

As any given molecule can have numerous SMILES representations (via augmentation (Bjerrum,
2017)), it is important to store the canonical SMILES in the cache, and also to canonicalize sampled

19

https://github.com/state-spaces/mamba
https://github.com/state-spaces/mamba

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

batches when querying the cache. Canonicalization is simply a pre-defined traversal and can differ
depending on the method used. As long as all canonicalization operations are performed with the
same method, consistency can be guaranteed. In this work, we use RDKit.

B.4 GENETIC ALGORITHM

Genetic algorithms (GAs) by themselves can be sample-efficient molecular optimizers (Gao et al.,
2022; Jensen, 2019; Tripp & Hernández-Lobato, 2023). Previous work has shown that GAs can
improve diversity of the generated set (Liu et al., 2021). Recently, Lee et al. (Lee et al., 2024)
proposed Goal-aware fragment Extraction, Assembly, and Modification (GEAM) which combines
RL with a GraphGA (Jensen, 2019) and achieves impressive results on generating diverse hits. In
Saturn, we implement GraphGA on the replay buffer itself, treating the highest rewarding molecules
generated in the entire run so far, as the parent population. Following GEAM (Lee et al., 2024),
sampling the parents is done with probability proportion to their corresponding rewards. New
molecules from crossover and mutation operations are deposited into the Buffer if they are also
high rewarding, essentially refreshing the buffer, such that Augmented Memory (Guo & Schwaller,
2024a) can learn from these new SMILES. The motivation was to leverage the GA to counteract
decreases in diversity and potentially improve sample efficiency. In the results in the main text
and in the following sections, we show that applying the GA does not lead to improved sample
efficiency but does indeed recover diversity. We believe that this can be a useful modification to the
optimization algorithm in cases where relatively expensive oracles are used and diversity is important
due to prevalence of false positives. Concretely, higher-fidelity oracles should in principle model
physical behavior more accurately, such that true positives are more common. This can be shown in
previous works where using free energy simulations provide better correlations with binding affinity
(Eckmann et al., 2024; Crivelli-Decker et al., 2024). In such a case, sample efficiency becomes
increasingly important, as the goal is to simply generate molecules satisfying this simulation and
lower diversity is not detrimental. However, when using lower-fidelity oracles, more false positives
means it is beneficial to have more diverse ideas for downstream triaging. Finally, we note that
applying the GA and generating new molecules strictly means they were generated off-policy (in the
RL context). Therefore, more meaningful updates to the Agent may be achieved with importance
sampling (Schlegel et al., 2019), which we did not explore in the current work.

B.5 FULL ALGORITHM DETAILS AND PSEUDO-CODE

In this section, we derive Saturn’s loss function with particular focus on showing its equivalency to
maximizing the expected reward. The derivation follows previous works (Olivecrona et al., 2017;
Fialková et al., 2021; Guo & Schwaller, 2024a) but with added discussion around implications of
the loss function. Specifically, Saturn adapts the Augmented Memory (Guo & Schwaller, 2024a)
algorithm which is in turn based on REINVENT (Olivecrona et al., 2017; Blaschke et al., 2020a;
Loeffler et al., 2024b). The algorithm itself is reinforcement learning based and can be seen as a
modified REINFORCE (Williams, 1992) algorithm. However, while Saturn (using Mamba with
batch size 16 and 10 augmentation rounds) adapts Augmented Memory, the optimization trajectory
is quite different from the original Augmented Memory work due to the "hop-and-locally-explore"
sampling behavior. We will focus on highlighting specific points related to this.

Saturn’s Loss Function. We begin by presenting how Saturn generates SMILES (Weininger, 1988),
which is the data representation used. SMILES are sequences of alphanumeric characters that can
be parsed and mapped to a molecular graph, i.e., a molecule. As SMILES are text-based, it is
straightforward to tokenize them, and pre-training Saturn follows next-token prediction. Saturn
generates SMILES in an autoregressive manner and thus, SMILES are generated token-by-token
from time-step, t to T . This can be viewed from a reinforcement learning perspective by defining St

as the state space representing all intermediate token sequences during molecular generation. At(st)
is the action space which involves sampling a token from a conditional probability distribution, given
a token sequence so far, i.e., the current state. Mathematically, the probability of sampling a SMILES,
x is given by:

P (x) =

T∏
t=1

πθAgent
(at | st) (6)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Just generating SMILES is often not useful because they should satisfy the target objective. Thus, the
base pre-trained model needs to be tuned somehow to achieve this. The end goal is to find a Policy
(in the reinforcement learning perspective) which dictates with what probability SMILES should be
generated to optimize an objective function. To this end, we define the Prior and the Agent which
share the same architecture (Mamba) and whose weights are exactly the same at the beginning of a
generative experiment. The Prior and Agent are general terms to describe the model states but they
both are policies as they both induce a probability of sampling SMILES. However, what is different
is that the Prior’s weights are frozen so it is never updated. By contrast, the Agent is updated and is
the model that is learning how to generate "good" SMILES. We now discuss how this is achieved.
We define the Augmented Likelihood (Olivecrona et al., 2017) of a SMILES, x, which is a linear
combination between the Prior and a reward term:

log πAugmented(x) = log πPrior(x) + σR(x) (7)

log πPrior(x) is the log-probability of generating a given SMILES, x, under the Prior. Since the
Prior’s weights are fixed, the probability of sampling a given SMILES never changes. Models are
typically parameterized by its weights, θ. We take care here and omit θ because the Prior, as stated
previously, is not updated. Next, R is the reward function which defines the target objective, e.g.,
minimize docking score. Note that the reward function can contain multiple objectives, in which
case, constituting a multi-parameter optimization objective. For example, in Experiment 3 of the
main text, R is comprised of minimizing docking score, maximizing QED score (Bickerton et al.,
2012), and minimizing SA score (Ertl & Schuffenhauer, 2009). R takes as input a SMILES, x, and
returns a scalar reward ∈ [0, 1]. σ is a hyperparameter that scales the contribution of the reward
function. Importantly, given a SMILES, x, a low σ means the Augmented Likelihood converges to
the Prior likelihood while a high σ means the Augmented Likelihood is dominated by the reward. In
this work, σ is never changed and is 128 as this was found to work well in the original REINVENT
work (Olivecrona et al., 2017).

The loss function is defined as the squared difference between the Augmented Likelihood and the
Agent Likelihood:

L(θ) = (log πAugmented(x)− log πθAgent
(x))2 (8)

log πAgent(x) is the log-probability of generating a given SMILES, x, under the Agent. Importantly,
we explicitly include θ here because the Agent is updated. We stop here for a moment to discuss
the implications of the loss function. The loss function tries to minimize the distance between the
Augmented Likelihood and the Agent likelihood. Since the Augmented Likelihood (Eq. 7 is a linear
combination of the Prior likelihood and the reward function, if the Agent generates "bad" SMILES,
then the reward goes to 0 and the Augmented Likelihood converges to the Prior Likelihood. In
this event, the Agent’s weights actually regress back towards the Prior. This is because the Prior is
pre-trained on a general dataset containing bio-active molecules (such as ChEMBL (Gaulton et al.,
2012) and ZINC 250k (Sterling & Irwin, 2015). The implicit assumption during pre-training is that
these general datasets might actually already contain "good" molecules. Therefore, in the event that
"bad" molecules are generated, the Prior acts as a "fall-back". On the other hand, when the reward is
not 0, the Prior still "anchors" the Agent and does not let its weights deviate too far from the Prior
(this is controlled by σ). The reason for this is also because the Prior is assumed to potentially already
contain "good" molecules. In practice, the Agent can deviate quite far from the Prior (Loeffler et al.,
2024b). We now discuss an important implication of this loss function in Saturn. Saturn heavily
leverages SMILES augmentation (Bjerrum, 2017) as a data augmentation method to learn from the
same molecular graph multiple times. Alternative SMILES sequences, while mapping to the same
molecular graph, can have drastically different likelihoods. This is shown in Figure 2 in the main text
where Saturn is trained to make it likely to generate all of these alternative SMILES forms. However,
this does not always work. Because alternative SMILES forms have different likelihoods, there is
the possibility that with the right combination of terms in the Augmented Likelihood, that it equals
the Agent likelihood. In this case, the loss contribution is 0 so the Agent actually is not tuned to
generate that particular SMILES form with higher likelihood. This is a contributing factor to Saturn’s
"hop-and-locally-explore" behavior. Given a set of augmented SMILES, if some of these SMILES
cancel out in the loss function, then there is a smaller set of augmented SMILES that contribute to the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

loss function. With a smaller set, overfitting becomes more prone but we show that this mechanism
actually benefits sample efficiency.

Finally, Saturn does not generate individual SMILES but rather, batches of SMILES. Therefore, the
loss function is a batched loss:

L(θ) =
1

|B|

[∑
a∈A∗

(log πAugmented − log πθAgent
)

]2

(9)

The loss magnitude is the mean loss for a given batch, B, of sampled SMILES constructed following
the actions, a ∈ A∗.

Minimizing the loss function is equivalent to maximizing the expected reward. In reinforcement
learning, the general objective is to maximize the expected reward. In this section, we show how
maximizing the expected reward is equivalent to minimizing the loss function. We first further
define some preliminaries: sampling trajectories means sampling SMILES in our context. While
there are often intermediate rewards during trajectory sampling, e.g., a drone tasked to fly to a
target location might receive various rewards for how balanced it is during the flight, we set all
intermediate rewards to 0. This is because rewards are only meaningful if the SMILES is a valid
molecule. Technically, since the reward is directly the reward from the full trajectory, it is actually
the Return in reinforcement learning terminology, but we use the term reward to match existing
literature. Mathematically, the cost function (in reinforcement learning, J is used and we follow this
convention) describes the expected reward when taking actions from a policy that is parameterized by
a neural network (Mamba in our case):

J(θ) = Eat∼πθAgent

[
T∑

t=1

R(at, st)

]
(10)

Since the expectation is in discrete space (sampling tokens is a discrete action), the cost function can
be rewritten by transforming the expectation to a sum:

J(θ) =

T∑
t=1

∑
a∈At

R(at, st)πθAgent
(at|st) (11)

The double summation is over all time-steps and actions (which token sampled) following the policy,
πθ. Since we want to maximize the cost function, we take the derivative:

∇θJ(θ) =

T∑
t=1

∑
a∈At

R(at, st)∇θπθAgent
(at|st) (12)

Next, the log-derivative trick:

∇θJ(θ) =

T∑
t=1

∑
a∈At

R(at, st)πθAgent
(at|st)∇θ log πθ(at|st) (13)

Using the definition of expectation for discrete space again, the cost function is rewritten:

∇θJ(θ) = Eat∼πθAgent

[
T∑

t=1

R(at, st)∇θ log πθAgent
(at|st)

]
(14)

Computing the expectation exactly is intractable. This would involve sampling every single SMILES
and computing their rewards. Therefore, the expectation is approximated by sampling a batch, B, of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

SMILES. Next, the set of actions taken in a batch at every time-step, is denoted A∗, which yield the
specific SMILES generated:

∇θJ(θ) =
1

|B|

[∑
a∈A∗

R(at, st)∇θ log πθAgent
(at|st)

]
(15)

The reward, R is defined according to previous works (Olivecrona et al., 2017; Fialková et al., 2021;
Guo & Schwaller, 2024a):

R(at, st) = log πAugmented − log πθAgent
(16)

Substituting the reward function:

∇θJ(θ) =
1

|B|

[∑
a∈A∗

log πAugmented − log πθAgent

] ∑
a∈A∗

∇θ log πθAgent
(at|st) (17)

Recalling the loss function:

L(θ) =
1

|B|

[∑
a∈A∗

(log πAugmented − log πθAgent
)

]2

(18)

Minimizing the loss function requires taking the derivative with respect to θ:

∇θL(θ) = −2
1

|B|

[∑
a∈A∗

log πAugmented − log πθAgent

] ∑
a∈A∗

∇θ log πθAgent
(19)

The cost function (Eq. 17) is equivalent to the loss function (Eq. 19) up to a factor.

Saturn Pseudo-code.

C SATURN: IDENTIFYING OPTIMAL HYPERPARAMETERS AND
ARCHITECTURE

In this section, we present results from all hyperparameter investigations for Saturn. In particular, we
formulated four questions (each devoted to one subsection) which we answer with empirical results
and discussion on the test experiment which has the following multi-parameter optimization (MPO)
objective: molecular weight (MW) < 350 Da, number of rings ≥ 2, and maximize topological polar
surface area (tPSA).

Metrics. Following Guo et al. (Guo & Schwaller, 2024b), the sample efficiency metrics are Yield
and Oracle Burden (OB). Yield (Eq. 20) is the number of unique generated molecules above a
reward threshold, T .

Y ield =

G∑
g=1

I[R(g) > T] (20)

Oracle Burden (Eq. 21) is the number of oracle calls (c) required to generate N unique molecules
above a reward threshold, T .

Oracle Burden = c |
G∑

g=1

I[R(g) > T] = N (21)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 1: Saturn Goal-directed Generation
Input: Oracle Budget Budget, Prior πPrior , Augmentation Rounds A, Reward Function R,

Sigma σ, Replay Buffer Size K, Genetic Algorithm GA
Output: Fine-tuned Agent Policy πθAgent

, Generated Set G
Initialization:

1. Generative Agent πθAgent
= πPrior

2. Diversity Filter DF

3. Replay Buffer RB = {}
4. Oracle Calls Calls = 0

5. Oracle Cache Cache = {}
6. Generated Set G = {}

while C < Budget do
Sample batch of SMILES X = {x1, . . . , xb} with xi ∼ πθAgent

;

(Optionally) Generate SMILES using the Genetic Algorithm XGA = GA(RB);

X = X ∪XGA ;

if X in Cache then
Retrieve rewards RCached

Compute reward for new SMILES R(XNew);

Update Generated Set tracking G = G ∪ (XNew , R(XNew));

Update Oracle Cache Cache = ((XNew , RNew) ∪ Cache);

Update Oracle Calls C = C + |XNew |;

R(X) = RCached ∪R(XNew);

Modify rewards based on the Diversity Filter R(X) = DF (X,R(X));

Update Replay Buffer RB = TopK(X ∪RB);

Compute Augmented Likelihood log πAugmented(X) = log πPrior(X) + σR(X);

Compute loss J(θ) = (log πAugmented − log πθAgent
(X))2;

Update the Agent πθAgent
;

Purge Replay Buffer;

for i← 1 to A do
Augment sampled and Replay Buffer SMILES XAugmented ;

Compute Augmented Likelihood of augmented SMILES (reward is unchanged)
log πAugmented = log πPrior(XAugmented) + σR(XAugmented);

Compute loss J(θ)Augmented = (log πAugmented − log πθAgent
(XAugmented))

2;

Update the Agent πθAgent
;

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The Yield and OB metrics are used to assess sample efficiency at the 0.7 reward threshold. In
all tables, the number after OB parentheses is the number of successful replicates out of 10. All
metrics other than IntDiv1 (Polykovskiy et al., 2020) are rounded to the nearest integer. All
individual experiments were run across 10 seeds (0-9 inclusive) and with a 1,000 oracle budget.
All experiments were run sequentially on a workstation equipped with an NVIDIA RTX 3090
GPU and AMD Ryzen 9 5900X 12-Core CPU.

C.1 DATA PRE-PROCESSING AND PRE-TRAINING

Before presenting grid-search results, we first describe the full data pre-processing pipeline and design
decisions made. The pre-training data for all experiments except Part 3: Benchmarking Physics-
based MPO Objective in the main text (ZINC 250k (Sterling & Irwin, 2015) instead), was ChEMBL
33 (Gaulton et al., 2012). We first downloaded the raw ChEMBL 33 from: https://ftp.ebi.
ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_33/. There was no
particular reason version 33 was chosen, other than it was the latest version at the time of experiments.
We note that very recently (March 2024), version 34 was released.

The exact pre-processing steps along with the SMILES remaining after each step are:

1. Raw ChEMBL 33 - 2,372,674
2. Standardization (charge and isotope handling) based on https://github.com/

MolecularAI/ReinventCommunity/blob/master/notebooks/Data_
Preparation.ipynb. All SMILES that could not be parsed by RDKit were removed -
2,312,459

3. Kept only the unique SMILES - 2,203,884
4. Tokenize all SMILES based on REINVENT’s tokenizer: https://github.

com/MolecularAI/reinvent-models/blob/main/reinvent_models/
reinvent_core/models/vocabulary.py

5. Keep SMILES ≤ 80 tokens - 2,065,099
6. 150 ≤ molecular weight ≤ 600 - 2,016,970
7. Number of heavy atoms ≤ 40 - 1,975,282
8. Number of rings ≤ 8 - 1,974,522
9. Size of largest ring ≤ 8 - 1,961,690

10. Longest aliphatic carbon chain ≤ 5 - 1,950,213
11. Removed SMILES containing the following tokens (due to undesired chemistry and low

token frequency): [S+], [C-], [s+], [O], [S@+], [S@@+], [S-], [o+], [NH+], [n-], [N@],
[N@@], [N@+], [N@@+], [S@@], [C+], [S@], [c+], [NH2+], [SH], [NH-], [cH-], [O+],
[c-], [CH], [SH+], [CH2-], [OH+], [nH+], [SH2] - 1,942,081

The final vocabulary contained 37 tokens (2 extra tokens were added, indicating <START> and
<END>). We note that stereochemistry tokens were kept (this is not the case for REINVENT
(Blaschke et al., 2020a)).

In this work, we investigated LSTM (Hochreiter & Schmidhuber, 1997) RNN, Decoder transformer
(Vaswani et al., 2017; Radford et al., 2019), and Mamba (Gu & Dao, 2023). Given a vocabulary of
37, the model parameters were as follows:

1. RNN: 5,807,909 (based on REINVENT (Blaschke et al., 2020a))
2. Decoder: 6,337,061 (based on recent work (Hu et al., 2024) that applied this model size and

used a similar loss function to REINVENT)
3. Mamba: 5,265,920 (based on similar size to RNN)

The exact hyperparameters of each architecture are the default arguments in the codebase. Each
training step consisted of a full pass through the dataset. The key pre-training parameters were:

1. Max training steps = 20

25

https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_33/
https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_33/
https://github.com/MolecularAI/ReinventCommunity/blob/master/notebooks/Data_Preparation.ipynb
https://github.com/MolecularAI/ReinventCommunity/blob/master/notebooks/Data_Preparation.ipynb
https://github.com/MolecularAI/ReinventCommunity/blob/master/notebooks/Data_Preparation.ipynb
https://github.com/MolecularAI/reinvent-models/blob/main/reinvent_models/reinvent_core/models/vocabulary.py
https://github.com/MolecularAI/reinvent-models/blob/main/reinvent_models/reinvent_core/models/vocabulary.py
https://github.com/MolecularAI/reinvent-models/blob/main/reinvent_models/reinvent_core/models/vocabulary.py

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

2. Seed = 0

3. Batch size = 512

4. Learning rate = 0.0001

5. Randomize (Bjerrum, 2017) every batch of SMILES

The following model checkpoints were used:

1. RNN: Epoch 18, NLL = 34.61, Validity (10k) = 94.48%

2. Decoder: Epoch 20, NLL = 33.38, Validity (10k) = 96.04%

3. Mamba: Epoch 18, NLL = 32.21, Validity (10k) = 95.60%

C.2 UNDERSTANDING THE LIMITS OF AUGMENTED MEMORY

Augmented Memory (Guo & Schwaller, 2024a) improves sample efficiency by repeated learning on
the high reward SMILES stored in the replay buffer (referred to as Buffer from here on). For com-
pleteness, we first describe how repeated learning can be achieved via data augmentation. SMILES
are string representations resulting from performing a depth-first search (DFS) on a molecular graph
(as is done in RDKit). Depending on the starting node (atom in the molecule), a different SMILES
representation results from DFS. In Augmented Memory, SMILES augmentation is performed by
shuffling the atom order and yielding different SMILES representations of the same molecular graph.
This is useful as data augmentation because all of these SMILES representations map to the same
molecule, yet their sequence likelihoods are different. Since they map to the same molecule, the same
reward can be assigned to all augmented SMILES.

In the original work, ablation experiments showed that updating the Agent with only the Buffer re-
sulted in minimal difference. This suggests that a viable way to exploiting the gains from Augmented
Memory is to simply have new examples of high reward SMILES being added to the Buffer. In the
original work, the number of augmentation rounds was capped at two to mitigate mode collapse. In
this work, we assume near deterministic rewards and use caching to handle repeated generations. Un-
der this assumption, our hypothesis in this subsection is: as long as unique high reward SMILES are
generated, increasing augmentation rounds can further improve sample efficiency. Correspondingly,
we perform a grid search using Augmented Memory’s default generator architecture (LSTM (Hochre-
iter & Schmidhuber, 1997) RNN) and vary the batch size (64, 32, 16, 8) and augmentation rounds
(0-20 inclusive except 1) where 0 augmentation rounds is equivalent to REINVENT (Olivecrona
et al., 2017; Blaschke et al., 2020a). The results are shown in Tables 5, 6, 7, and 8.

Increasing augmentation rounds:

1. Decreases diversity, as expected.

2. Increases the number of repeated SMILES.

Decreasing batch size:

1. Monotonically improves sample efficiency (though not always significant at the 95% confi-
dence level).

2. Benefits Augmented memory more than REINVENT (0 augmentation rounds).

3. Increases the number of repeated SMILES.

4. Increases variance, as expected (since the expected reward is being approximated with a
smaller batch size so it is more noisy).

5. Decreases diversity.

Taking these observations together, increasing augmentation rounds and decreasing batch size
can trade-off diversity for sample efficiency (inconsistently and with higher variance).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 5: RNN batch size 64.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

RNN 0 0±0 — 0±0 584±251 (5) Failed (0) Failed (0) 1±1
RNN 2 15±9 0.775±0.073 15±9 644±173 (10) 941±58 (8) Failed (0) 0±0
RNN 3 33±42 0.788±0.043 32±40 613±96 (10) 927±128 (9) 993±0 (1) 0±0
RNN 4 32±16 0.813±0.024 31±16 527±198 (10) 880±90 (10) Failed (0) 0±0
RNN 5 40±14 0.812±0.023 39±13 459±177 (10) 862±68 (10) Failed (0) 0±0
RNN 6 41±32 0.805±0.032 39±28 492±184 (10) 852±99 (9) 1041±0 (1) 0±0
RNN 7 47±25 0.814±0.019 46±24 543±188 (10) 842±93 (10) 1055±0 (1) 0±0
RNN 8 28±16 0.801±0.032 27±16 557±173 (10) 912±82 (9) Failed (0) 0±0
RNN 9 21±13 0.742±0.124 21±13 596±215 (10) 918±61 (8) Failed (0) 1±2
RNN 10 27±18 0.796±0.046 27±18 511±266 (10) 859±65 (8) Failed (0) 0±0
RNN 11 20±14 0.749±0.115 20±14 611±235 (10) 938±85 (8) Failed (0) 1±2
RNN 12 48±18 0.813±0.022 46±18 468±206 (10) 851±55 (10) Failed (0) 1±1
RNN 13 57±43 0.808±0.027 54±39 446±213 (10) 822±144 (10) 952±0 (1) 1±2
RNN 14 33±13 0.801±0.024 32±13 587±175 (10) 884±79 (10) Failed (0) 1±1
RNN 15 47±32 0.797±0.037 46±32 532±196 (10) 836±122 (10) 1052±0 (1) 2±2
RNN 16 34±32 0.783±0.026 33±30 647±208 (10) 918±97 (10) 1034±0 (1) 3±4
RNN 17 31±29 0.769±0.06 30±29 645±176 (10) 870±99 (7) Failed (0) 3±4
RNN 18 35±28 0.774±0.035 32±24 673±125 (10) 898±88 (8) 1053±0 (1) 7±5
RNN 19 43±41 0.781±0.034 40±36 659±183 (10) 875±111 (8) 949±0 (1) 7±9
RNN 20 51±29 0.792±0.03 48±28 583±187 (10) 837±133 (10) 1056±0 (1) 3±2

Table 6: RNN batch size 32.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

RNN 0 0±0 — 0±0 798±101 (5) Failed (0) Failed (0) 1±1
RNN 2 43±25 0.825±0.029 42±24 608±151 (10) 844±90 (9) Failed (0) 0±0
RNN 3 52±34 0.810±0.059 51±32 522±141 (10) 789±100 (9) 1018±0 (2) 0±1
RNN 4 87±33 0.820±0.018 83±31 466±120 (10) 740±77 (10) 987±30 (4) 1±3
RNN 5 98±57 0.817±0.027 89±50 408±184 (10) 714±136 (10) 915±20 (4) 1±2
RNN 6 76±50 0.808±0.028 71±43 476±159 (10) 783±99 (10) 927±30 (2) 1±3
RNN 7 78±40 0.805±0.027 72±40 478±90 (10) 760±70 (10) 942±26 (2) 3±7
RNN 8 89±72 0.798±0.036 78±58 529±165 (10) 767±146 (10) 899±48 (3) 9±13
RNN 9 57±52 0.781±0.046 50±42 608±186 (10) 811±143 (9) 977±36 (3) 5±4
RNN 10 90±65 0.788±0.031 82±55 549±158 (10) 769±142 (10) 977±66 (5) 9±14
RNN 11 60±43 0.755±0.105 57±43 593±207 (10) 781±83 (8) 969±52 (2) 2±2
RNN 12 103±83 0.790±0.021 90±72 534±168 (10) 763±158 (10) 930±105 (4) 10±23
RNN 13 72±57 0.749±0.065 62±52 578±155 (10) 765±134 (8) 958±54 (3) 12±9
RNN 14 95±55 0.779±0.027 83±47 463±173 (10) 758±110 (10) 964±28 (5) 16±15
RNN 15 74±60 0.784±0.036 66±52 554±92 (10) 820±124 (10) 963±54 (4) 22±20
RNN 16 84±60 0.758±0.07 70±44 544±209 (10) 768±105 (9) 957±42 (5) 17±19
RNN 17 112±74 0.765±0.067 96±56 474±131 (10) 729±105 (10) 908±96 (4) 21±21
RNN 18 77±49 0.774±0.039 67±43 533±100 (10) 779±102 (10) 927±12 (2) 35±32
RNN 19 84±56 0.749±0.037 68±50 535±181 (10) 788±127 (10) 951±61 (3) 33±44
RNN 20 76±77 0.717±0.094 64±61 653±200 (10) 810±121 (9) 919±76 (3) 56±64

Table 7: RNN batch size 16.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

RNN 0 8±9 0.700±0.126 8±9 546±263 (8) 837±144 (3) Failed (0) 1±1
RNN 2 86±40 0.819±0.026 82±38 409±158 (10) 709±86 (10) 907±14 (2) 2±4
RNN 3 103±47 0.831±0.027 100±44 406±157 (10) 706±98 (10) 942±45 (5) 2±3
RNN 4 90±62 0.828±0.017 83±53 440±152 (10) 741±102 (10) 916±76 (3) 1±1
RNN 5 107±58 0.814±0.036 101±54 480±118 (10) 721±109 (10) 916±53 (4) 7±7
RNN 6 121±80 0.791±0.040 107±68 493±214 (10) 713±156 (10) 895±107 (5) 12±11
RNN 7 144±107 0.776±0.026 117±86 467±186 (10) 684±136 (10) 871±116 (6) 38±82
RNN 8 120±95 0.734±0.128 104±85 481±288 (10) 653±145 (8) 854±54 (5) 18±28
RNN 9 141±104 0.783±0.048 112±72 453±211 (10) 654±154 (9) 871±104 (6) 59±95
RNN 10 106±76 0.760±0.0560 84±63 510±201 (10) 733±122 (9) 913±64 (5) 43±47
RNN 11 120±105 0.764±0.032 95±81 500±220 (10) 741±199 (10) 829±99 (4) 42±37
RNN 12 171±140 0.769±0.028 124±109 389±209 (10) 662±186 (10) 774±128 (5) 39±30
RNN 13 133±106 0.767±0.038 106±93 510±186 (10) 690±162 (10) 826±131 (4) 83±88
RNN 14 166±130 0.769±0.045 129±93 413±237 (10) 659±195 (10) 777±94 (5) 93±69
RNN 15 154±89 0.732±0.064 127±78 504±162 (10) 647±124 (9) 861±59 (7) 94±75
RNN 16 156±155 0.716±0.094 109±109 517±196 (10) 682±202 (9) 838±182 (6) 143±120
RNN 17 141±82 0.737±0.059 98±49 444±181 (10) 696±128 (10) 894±71 (7) 198±163
RNN 18 189±136 0.727±0.044 152±119 469±212 (10) 657±174 (10) 832±141 (7) 247±210
RNN 19 162±121 0.654±0.165 119±98 507±257 (10) 625±137 (8) 836±109 (7) 210±128
RNN 20 139±110 0.732±0.045 91±67 492±188 (10) 720±157 (10) 847±110 (5) 262±179

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 8: RNN batch size 8.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

RNN 0 21±21 0.645±0.133 17±18 481±291 (10) 826±95 (6) Failed (0) 16±15
RNN 2 136±100 0.807±0.028 113±73 428±169 (10) 665±159 (10) 849±113 (5) 8±9
RNN 3 143±97 0.793±0.037 131±85 395±169 (10) 667±126 (10) 863±109 (6) 27±33
RNN 4 152±115 0.785±0.022 129±96 379±212 (10) 680±179 (10) 865±124 (7) 44±47
RNN 5 164±84 0.786±0.038 123±56 350±158 (10) 643±121 (10) 876±81 (8) 40±41
RNN 6 224±104 0.790±0.041 181±79 352±176 (10) 584±159 (10) 782±56 (8) 49±40
RNN 7 185±111 0.751±0.070 151±96 435±224 (10) 608±127 (9) 814±86 (7) 116±119
RNN 8 159±128 0.775±0.050 128±114 460±195 (10) 646±145 (9) 858±140 (7) 105±77
RNN 9 198±164 0.732±0.072 151±121 451±227 (10) 641±158 (9) 782±168 (6) 285±396
RNN 10 139±127 0.728±0.078 100±73 512±212 (8) 702±124 (7) 867±145 (4) 112±61
RNN 11 205±173 0.753±0.062 151±120 444±267 (10) 652±234 (10) 737±167 (6) 254±320
RNN 12 261±165 0.762±0.057 211±135 320±246 (10) 579±210 (10) 775±168 (9) 518±760
RNN 13 231±198 0.753±0.061 155±101 444±184 (9) 601±235 (9) 790±214 (8) 351±289
RNN 14 158±103 0.718±0.091 108±60 526±208 (10) 681±127 (9) 845±80 (6) 374±308
RNN 15 221±128 0.731±0.043 150±129 439±196 (10) 618±168 (10) 826±153 (9) 461±292
RNN 16 196±145 0.725±0.043 136±101 470±228 (10) 683±198 (10) 813±141 (7) 694±495
RNN 17 258±130 0.689±0.119 193±94 467±210 (10) 576±139 (9) 787±115 (9) 796±600
RNN 18 253±114 0.727±0.047 195±98 394±175 (10) 605±124 (10) 764±82 (8) 1112±974
RNN 19 268±159 0.714±0.052 204±132 418±161 (10) 579±167 (10) 745±153 (8) 817±811
RNN 20 292±153 0.713±0.039 220±121 397±205 (10) 574±188 (10) 776±173 (10) 1406±1391

C.3 DO ARCHITECTURES DIFFER IN BEHAVIOR?

RNNs essentially solve the validity, uniqueness, and novelty metrics (Brown et al., 2019; Polykovskiy
et al., 2020) and can learn molecular distributions well (Flam-Shepherd et al., 2022) for small
molecule design. In this subsection, we extend Augmented Memory to Decoder transformer (Vaswani
et al., 2017; Radford et al., 2019) and Mamba (Gu & Dao, 2023) to investigate the RL dynamics and
empirically investigate potential benefits. Our hypothesis is that since self-attention (Vaswani et al.,
2017) and selective scanning (Gu & Dao, 2023) can capture different structural elements (Özçelik
et al., 2024) (via focusing on different aspects of the sequence), benefits may arise from capturing
and focusing on favorable moieties. Our analysis is focused solely on sample efficiency metrics and
not validity, uniqueness, and novelty.

Similar to the previous subsection, we perform a grid-search over batch size (64, 32, 16, 8) and
augmentation rounds (0-20 inclusive except 1). As the results for RNN were presented in the previous
subsection, this subsection only shows Decoder and Mamba results (Tables 9, 10, 11, 12, 13, 14, 15,
and 16).

The following observations are similar to RNN. Increasing augmentation rounds:

1. Decreases diversity, as expected.

2. Increases the number of repeated SMILES.

Decreasing batch size:

1. Monotonically improves sample efficiency (though not always significant at the 95% confi-
dence level).

2. Benefits Augmented memory more than REINVENT (0 augmentation rounds).

3. Increases the number of repeated SMILES.

4. Increases variance, as expected (since the expected reward is being approximated with a
smaller batch size so it is more noisy).

5. Decreases diversity.

The following observations contrast RNN with Decoder and Mamba:

1. Mamba > Decoder > RNN in terms of NLL convergence (end of Appendix C.1).

2. Propensity to generate repeated SMILES follows the same trend and is further supported
with the IntDiv1 generally being lower than RNN for the same number of augmentation
rounds across all batch sizes.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 9: Decoder batch size 64.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Decoder 0 1±1 0.548±0.129 1±1 691±266 (6) Failed (0) Failed (0) 2±1
Decoder 2 26±19 0.800±0.061 26±18 524±128 (10) 868±76 (8) Failed (0) 0±0
Decoder 3 37±24 0.801±0.031 36±23 629±154 (10) 849±85 (9) Failed (0) 0±0
Decoder 4 49±38 0.797±0.055 48±37 590±142 (10) 851±89 (9) 984±0 (1) 0±0
Decoder 5 63±35 0.821±0.014 62±35 545±136 (10) 814±84 (10) 997±21 (2) 1±1
Decoder 6 43±34 0.794±0.033 40±32 649±155 (10) 881±127 (10) 1045±0 (1) 2±4
Decoder 7 42±29 0.800±0.039 41±29 585±175 (10) 859±116 (9) 1042±0 (1) 4±3
Decoder 8 22±28 0.719±0.119 21±28 717±157 (10) 939±104 (7) 1051±0 (1) 6±6
Decoder 9 23±22 0.704±0.156 19±16 618±233 (10) 889±92 (7) Failed (0) 10±5
Decoder 10 43±48 0.768±0.056 41±47 643±110 (10) 788±104 (6) 980±0 (1) 10±7
Decoder 11 36±45 0.756±0.068 34±44 698±116 (10) 881±108 (8) 891±0 (1) 9±7
Decoder 12 47±28 0.795±0.02 43±27 609±101 (9) 862±74 (9) 1046±0 (1) 16±9
Decoder 13 66±66 0.727±0.109 56±54 641±216 (10) 788±148 (8) 975±75 (2) 37±25
Decoder 14 38±37 0.696±0.139 33±34 679±169 (10) 868±104 (7) 1004±0 (1) 46±28
Decoder 15 38±56 0.671±0.100 25±32 668±241 (9) 809±159 (5) 977±9 (2) 56±28
Decoder 16 33±41 0.716±0.084 25±29 572±221 (10) 900±122 (8) 984±0 (1) 78±38
Decoder 17 50±48 0.707±0.091 37±30 595±250 (10) 797±86 (7) 1007±34 (2) 91±42
Decoder 18 30±36 0.732±0.049 26±32 701±135 (8) 886±101 (6) 1025±0 (1) 124±41
Decoder 19 35±31 0.715±0.056 28±21 640±240 (10) 852±155 (8) 1031±0 (1) 159±64
Decoder 20 51±51 0.733±0.047 39±38 585±277 (9) 862±136 (8) 984±49 (2) 172±69

3. Mamba notably generates many repeated SMILES but sample efficiency improves, thus
it is not detrimental under the assumption that the reward is near deterministic and oracle
evaluations are cached.

4. In general, Decoder does not outperform RNN

Taking these observations together and exactly like RNN results, increasing augmentation
rounds and decreasing batch size can trade-off diversity for sample efficiency (inconsistently
and with higher variance).

However, of difference, is that Mamba at lower batch sizes (particularly 16) and relatively high
augmentation rounds (10) improves sample efficiency in a statistically significant way (at the
95% confidence level).

Further note. We have observed that with low batch size and high augmentation rounds, Mamba
can temporarily lose generative ability. Specifically, the validity of the generated batch can be 0.
Sampling a new batch can recover this validity but we have observed in extremely rare cases, that
validity can be 0 for over 10 successive epochs. We observed this scenario twice in over 5,000
experiments, occurring with a batch size of 8 and augmentation rounds 19 and 20. We speculate the
reason is extreme mode collapse to a chemical space where syntax is sensitive. Consequently, once
the Selective Memory Purge starts penalizing the reward and the Agent is brought back towards the
prior, large gradient updates coupled with sensitive syntax may cause invalid SMILES. This process
often recovers but in practice, with high-fidelity oracles, one would checkpoint models frequently
(even every epoch), as each batch of oracle evaluation would be costly. Alternatively, as all high
reward SMILES (so far) generated can be pre-emptively saved. It would be feasible to even start a
new run with these SMILES seeded in the replay buffer, akin to inception in REINVENT (Olivecrona
et al., 2017) (transfer learning would work too). This would kick-start the optimization and already
guide the Agent to this chemical space, preventing optimization progress from completely "lost".
Moreover, we also do not recommend a batch size of 8 and augmentation rounds above 10 as the
performance variance becomes high. This behavior is likely also highly dependent on the objective
function which affects the optimization landscape. Finally, in the rare cases this occurs, and when
validity recovers, the effect is minimal as sampling is cheap compared to oracle evaluations. We write
this note for full transparency into all the behavior we have observed in our grid-search.

Fig. C3 shows a 2D heatmap of the sample efficiency (Yield) and diversity (IntDiv1) trade-off, as a
function of augmentation rounds for Mamba with batch size 16.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 10: Decoder batch size 32.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Decoder 0 4±4 0.710±0.023 4±4 647±232 (6) 982±39 (2) Failed (0) 10±13
Decoder 2 45±23 0.813±0.021 43±22 557±174 (10) 844±91 (10) Failed (0) 1±1
Decoder 3 66±44 0.801±0.033 63±43 515±146 (10) 779±70 (9) 918±0 (1) 1±1
Decoder 4 111±88 0.791±0.017 100±80 476±131 (10) 726±133 (10) 908±81 (5) 3±3
Decoder 5 94±70 0.791±0.043 81±53 489±155 (10) 753±112 (9) 897±63 (3) 3±2
Decoder 6 94±66 0.770±0.075 82±60 476±204 (10) 696±126 (9) 921±52 (4) 11±6
Decoder 7 117±87 0.730±0.084 105±84 473±270 (10) 659±99 (8) 936±93 (6) 54±84
Decoder 8 78±69 0.776±0.032 67±52 519±204 (10) 797±147 (10) 926±94 (3) 35±13
Decoder 9 59±35 0.767±0.032 51±32 575±76 (10) 856±83 (10) 968±0 (1) 44±33
Decoder 10 91±75 0.742±0.065 68±52 492±176 (9) 769±121 (9) 879±66 (2) 77±56
Decoder 11 70±46 0.739±0.059 57±36 559±128 (10) 811±96 (10) 974±6 (3) 84±45
Decoder 12 114±58 0.730±0.041 82±45 559±177 (10) 715±59 (9) 942±48 (6) 124±81
Decoder 13 93±83 0.741±0.064 77±68 598±114 (10) 788±129 (9) 874±34 (3) 146±76
Decoder 14 147±112 0.752±0.064 109±84 486±147 (9) 694±152 (9) 791±37 (4) 257±269
Decoder 15 140±100 0.718±0.085 111±78 516±256 (10) 676±143 (9) 916±106 (7) 222±128
Decoder 16 130±142 0.709±0.045 82±66 552±177 (10) 772±164 (10) 851±173 (4) 405±272
Decoder 17 130±125 0.720±0.075 95±89 624±209 (10) 771±186 (10) 841±137 (4) 444±265
Decoder 18 153±165 0.718±0.055 110±130 565±191 (10) 718±197 (9) 668±81 (3) 544±503
Decoder 19 149±94 0.686±0.055 104±69 547±215 (10) 731±113 (9) 897±83 (7) 594±172
Decoder 20 137±135 0.693±0.046 78±56 555±200 (9) 740±181 (9) 855±145 (5) 514±399

Table 11: Decoder batch size 16.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Decoder 0 2±3 0.55±0.1 2±2 810±93 (7) 983±0 (1) Failed (0) 78±25
Decoder 2 66±50 0.796±0.037 59±41 602±158 (10) 799±106 (9) 921±3 (2) 8±7
Decoder 3 84±66 0.77±0.037 64±44 536±170 (10) 769±122 (9) 919±44 (4) 28±24
Decoder 4 71±44 0.74±0.102 62±41 632±118 (10) 780±82 (9) 977±36 (3) 22±12
Decoder 5 154±93 0.748±0.052 122±70 439±151 (10) 679±128 (10) 907±92 (8) 90±90
Decoder 6 116±94 0.748±0.039 86±64 517±165 (10) 728±158 (10) 904±126 (5) 73±42
Decoder 7 108±85 0.747±0.051 71±50 510±222 (10) 740±127 (9) 868±48 (4) 126±63
Decoder 8 108±94 0.708±0.109 72±57 538±164 (10) 742±116 (9) 887±87 (4) 150±72
Decoder 9 78±83 0.687±0.116 51±55 614±244 (10) 790±150 (8) 890±62 (3) 242±139
Decoder 10 120±128 0.691±0.042 74±73 663±170 (9) 768±169 (8) 805±65 (4) 344±218
Decoder 11 146±134 0.727±0.038 110±100 609±169 (9) 725±166 (9) 829±132 (5) 389±199
Decoder 12 119±127 0.704±0.047 76±68 624±185 (9) 779±176 (9) 828±110 (4) 363±256
Decoder 13 183±177 0.696±0.031 97±80 484±227 (9) 671±216 (9) 753±144 (5) 498±412
Decoder 14 146±111 0.673±0.055 88±60 572±240 (10) 737±162 (9) 850±87 (6) 702±387
Decoder 15 146±100 0.64±0.123 108±79 623±141 (10) 772±150 (10) 867±70 (6) 774±414
Decoder 16 209±173 0.688±0.043 155±130 530±124 (9) 654±161 (9) 813±170 (7) 1369±777
Decoder 17 190±168 0.662±0.109 154±149 571±207 (10) 674±179 (9) 746±162 (5) 1096±883
Decoder 18 226±138 0.668±0.052 174±115 550±156 (10) 646±131 (9) 802±118 (8) 1540±986
Decoder 19 232±154 0.648±0.07 168±96 564±152 (10) 681±161 (10) 781±147 (7) 1693±1165
Decoder 20 258±200 0.636±0.077 166±103 448±223 (9) 589±179 (8) 763±177 (8) 1741±1020

Table 12: Decoder batch size 8.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Decoder 0 57±64 0.621±0.222 37±36 554±137 (9) 766±178 (7) 912±52 (3) 368±164
Decoder 2 120±76 0.745±0.055 97±59 497±207 (10) 667±110 (8) 913±62 (7) 39±22
Decoder 3 93±60 0.73±0.06 74±45 530±166 (10) 759±87 (9) 918±22 (4) 128±82
Decoder 4 111±49 0.741±0.036 79±34 467±170 (10) 737±101 (10) 950±32 (7) 173±81
Decoder 5 79±82 0.724±0.044 59±54 609±123 (8) 805±101 (8) 901±72 (3) 283±179
Decoder 6 138±112 0.72±0.062 96±78 608±162 (10) 737±138 (9) 843±81 (5) 400±222
Decoder 7 197±165 0.688±0.064 149±131 502±287 (10) 684±237 (10) 758±112 (6) 820±1051
Decoder 8 219±179 0.68±0.063 132±120 475±201 (8) 581±127 (7) 763±136 (7) 840±900
Decoder 9 194±144 0.651±0.049 153±118 496±157 (8) 627±149 (8) 791±109 (7) 1059±864
Decoder 10 183±200 0.684±0.055 130±130 571±201 (9) 654±217 (8) 789±205 (6) 944±597
Decoder 11 141±123 0.581±0.166 96±84 617±198 (9) 662±142 (7) 801±97 (5) 1715±1380
Decoder 12 133±196 0.574±0.149 92±135 665±291 (9) 699±268 (7) 664±209 (3) 1604±1130
Decoder 13 331±151 0.664±0.095 271±143 418±230 (10) 503±88 (9) 711±107 (9) 2030±1408
Decoder 14 164±152 0.602±0.06 125±109 620±257 (9) 714±194 (8) 825±133 (6) 2628±1665
Decoder 15 281±242 0.661±0.054 230±185 496±243 (9) 589±251 (9) 663±201 (7) 2482±1515
Decoder 16 213±191 0.58±0.143 180±176 512±245 (9) 596±223 (8) 730±186 (6) 3113±2436
Decoder 17 252±186 0.622±0.072 203±167 614±231 (10) 615±169 (8) 735±139 (7) 3278±1894
Decoder 18 81±113 0.595±0.064 69±97 630±232 (7) 759±209 (7) 862±102 (3) 2811±2415
Decoder 19 136±171 0.611±0.062 119±154 645±195 (7) 708±180 (6) 771±142 (4) 2886±2066
Decoder 20 98±139 0.54±0.075 91±136 736±195 (7) 785±160 (6) 813±140 (3) 3190±2113

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 13: Mamba batch size 64.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Mamba 0 0±0 — 0±0 946±41 (2) Failed (0) Failed (0) 0±1
Mamba 2 2±1 0.580±0.086 2±1 817±244 (10) Failed (0) Failed (0) 0±0
Mamba 3 9±6 0.734±0.068 9±6 659±234 (9) 942±34 (4) Failed (0) 1±1
Mamba 4 6±3 0.672±0.114 6±3 652±297 (10) 1040±7 (2) Failed (0) 2±2
Mamba 5 9±5 0.697±0.113 9±5 640±210 (10) 995±30 (5) Failed (0) 3±3
Mamba 6 17±11 0.770±0.041 17±11 656±119 (10) 960±90 (9) Failed (0) 6±4
Mamba 7 19±6 0.769±0.027 18±6 623±152 (10) 957±65 (9) Failed (0) 7±3
Mamba 8 29±15 0.786±0.035 27±15 545±176 (10) 917±82 (10) Failed (0) 12±8
Mamba 9 21±10 0.755±0.075 20±10 585±192 (10) 938±57 (9) Failed (0) 26±23
Mamba 10 34±22 0.785±0.028 28±15 486±176 (10) 884±91 (10) Failed (0) 30±21
Mamba 11 18±8 0.757±0.044 17±7 550±203 (10) 937±31 (8) Failed (0) 37±21
Mamba 12 22±17 0.727±0.051 20±15 629±234 (10) 876±53 (6) Failed (0) 72±68
Mamba 13 33±33 0.739±0.090 29±28 561±222 (10) 915±120 (10) 1020±0 (1) 62±28
Mamba 14 47±39 0.701±0.138 30±15 540±242 (10) 839±94 (8) 980±0 (1) 127±56
Mamba 15 60±88 0.725±0.117 31±17 585±225 (10) 866±143 (10) 726±0 (1) 136±112
Mamba 16 46±40 0.661±0.170 29±22 614±193 (10) 865±104 (9) 978±33 (2) 199±89
Mamba 17 43±24 0.727±0.054 30±13 538±185 (10) 866±101 (10) Failed (0) 174±77
Mamba 18 51±42 0.732±0.056 40±32 621±219 (10) 838±111 (9) 995±34 (2) 262±99
Mamba 19 49±40 0.723±0.048 36±25 633±218 (10) 829±123 (8) 975±0 (1) 241±73
Mamba 20 77±68 0.695±0.088 46±32 549±241 (9) 771±146 (8) 940±76 (3) 385±180

Table 14: Mamba batch size 32.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Mamba 0 0±0 — 0±0 773±189 (4) Failed (0) Failed (0) 4±2
Mamba 2 12±7 0.744±0.060 12±7 644±199 (10) 933±29 (5) Failed (0) 3±2
Mamba 3 16±9 0.759±0.050 15±9 640±158 (10) 912±45 (6) Failed (0) 8±7
Mamba 4 30±15 0.797±0.029 29±15 579±140 (10) 879±86 (10) Failed (0) 11±5
Mamba 5 38±23 0.718±0.151 35±21 695±159 (10) 833±83 (8) Failed (0) 24±9
Mamba 6 44±37 0.770±0.044 41±34 564±145 (10) 861±110 (9) 1000±3 (2) 42±17
Mamba 7 52±43 0.750±0.047 46±37 539±174 (10) 848±123 (10) 996±11 (2) 68±28
Mamba 8 76±51 0.775±0.025 67±45 515±108 (10) 794±85 (10) 923±30 (2) 90±49
Mamba 9 64±47 0.755±0.083 53±38 546±143 (10) 808±116 (10) 959±45 (2) 140±106
Mamba 10 96±76 0.768±0.028 75±54 553±186 (10) 782±161 (10) 949±84 (5) 165±63
Mamba 11 87±60 0.732±0.045 62±40 592±218 (10) 741±105 (8) 936±31 (3) 303±152
Mamba 12 118±60 0.680±0.130 67±21 500±159 (10) 730±132 (10) 932±61 (6) 280±151
Mamba 13 92±60 0.742±0.082 74±43 578±226 (10) 771±98 (9) 940±39 (4) 353±104
Mamba 14 166±75 0.748±0.041 121±54 458±97 (10) 659±64 (10) 901±78 (8) 483±202
Mamba 15 139±94 0.755±0.033 106±72 456±141 (10) 740±127 (10) 847±54 (5) 488±167
Mamba 16 136±75 0.740±0.039 97±54 571±131 (10) 742±119 (10) 899±50 (6) 769±354
Mamba 17 186±88 0.696±0.058 138±83 510±103 (10) 683±88 (10) 871±76 (8) 937±677
Mamba 18 214±87 0.723±0.059 169±81 540±113 (10) 672±88 (10) 862±84 (9) 1027±554
Mamba 19 242±109 0.686±0.041 184±104 493±133 (10) 661±116 (10) 819±109 (9) 1376±596
Mamba 20 187±78 0.706±0.038 152±67 557±101 (10) 714±80 (10) 892±79 (9) 1183±413

Table 15: Mamba batch size 16.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Mamba 0 3±4 0.417±0.161 2±2 545±232 (7) 982±0 (1) Failed (0) 91±32
Mamba 2 39±29 0.761±0.047 34±23 609±165 (10) 829±117 (9) Failed (0) 46±31
Mamba 3 61±51 0.771±0.051 50±39 498±193 (10) 797±118 (9) 953±15 (3) 71±28
Mamba 4 52±33 0.779±0.031 42±23 581±102 (10) 817±112 (10) 970±0 (1) 139±59
Mamba 5 69±38 0.764±0.052 54±28 542±93 (10) 807±76 (10) 988±17 (3) 178±90
Mamba 6 138±46 0.759±0.039 110±42 456±89 (10) 693±75 (10) 919±36 (7) 286±137
Mamba 7 174±95 0.737±0.059 127±83 427±177 (10) 643±102 (10) 858±77 (7) 395±147
Mamba 8 209±95 0.751±0.030 137±60 461±151 (10) 617±135 (10) 817±71 (8) 482±214
Mamba 9 202±98 0.735±0.032 137±80 389±112 (10) 631±102 (10) 841±92 (8) 518±237
Mamba 10 306±57 0.714±0.035 206±34 387±148 (10) 555±66 (10) 761±58 (10) 1110±636
Mamba 11 306±92 0.716±0.039 237±85 403±136 (10) 554±93 (10) 761±100 (10) 1341±596
Mamba 12 266±100 0.723±0.041 199±83 392±126 (10) 590±100 (10) 806±111 (10) 1312±666
Mamba 13 327±108 0.722±0.043 258±101 428±111 (10) 549±111 (10) 741±116 (10) 1508±780
Mamba 14 318±109 0.695±0.061 246±117 416±164 (10) 535±148 (10) 736±123 (10) 1776±912
Mamba 15 284±74 0.691±0.052 219±42 442±67 (10) 584±87 (10) 785±82 (10) 2629±939
Mamba 16 293±112 0.672±0.053 209±77 483±145 (10) 570±136 (10) 767±130 (10) 2284±1011
Mamba 17 344±115 0.656±0.047 278±92 462±113 (10) 563±98 (10) 725±121 (10) 3512±1227
Mamba 18 281±155 0.640±0.082 216±125 464±174 (9) 595±155 (9) 730±93 (8) 2885±1344
Mamba 19 307±115 0.624±0.084 238±102 491±146 (10) 579±133 (10) 750±119 (10) 3318±1347
Mamba 20 352±69 0.673±0.046 294±61 403±102 (10) 525±81 (10) 714±79 (10) 3331±1454

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 16: Mamba batch size 8.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Mamba 0 3±2 0.43±0.133 2±1 498±322 (8) Failed (0) Failed (0) 940±234
Mamba 2 69±32 0.755±0.059 56±28 453±176 (10) 780±78 (10) 992±8 (2) 214±72
Mamba 3 156±113 0.745±0.035 109±70 452±221 (10) 659±143 (9) 792±83 (5) 282±120
Mamba 4 200±117 0.748±0.046 125±64 402±208 (10) 602±150 (10) 859±145 (9) 425±160
Mamba 5 240±102 0.719±0.062 195±102 429±191 (10) 596±136 (10) 805±108 (9) 1195±687
Mamba 6 298±167 0.706±0.052 212±122 405±190 (10) 557±197 (10) 736±170 (9) 1420±632
Mamba 7 328±116 0.662±0.107 246±112 332±142 (10) 489±131 (10) 727±124 (10) 1657±947
Mamba 8 356±142 0.671±0.029 304±119 380±158 (10) 514±144 (10) 699±167 (10) 2340±806
Mamba 9 359±135 0.682±0.054 298±115 439±140 (10) 536±161 (10) 663±102 (9) 2974±1394
Mamba 10 368±164 0.692±0.032 305±154 391±234 (10) 485±99 (9) 658±125 (9) 2829±1290
Mamba 11 321±148 0.636±0.048 280±137 415±154 (10) 561±153 (10) 720±145 (9) 3515±1592
Mamba 12 335±148 0.637±0.055 285±148 425±162 (10) 564±178 (10) 687±135 (9) 4060±1694
Mamba 13 260±158 0.579±0.121 213±139 505±168 (10) 602±141 (9) 744±130 (8) 3691±1790
Mamba 14 290±120 0.608±0.047 235±89 463±213 (10) 583±150 (10) 765±127 (10) 4505±1968
Mamba 15 343±157 0.621±0.069 317±149 367±140 (10) 534±159 (10) 706±166 (10) 4196±1064
Mamba 16 320±214 0.61±0.095 293±199 450±210 (10) 560±241 (9) 602±141 (7) 5035±1995
Mamba 17 233±131 0.611±0.059 219±131 552±165 (10) 665±147 (10) 806±130 (9) 3728±1946
Mamba 18 270±205 0.617±0.061 256±200 516±155 (10) 628±191 (10) 705±201 (7) 5378±2020
Mamba 19 168±164 0.632±0.070 139±121 468±221 (8) 604±233 (8) 805±193 (6) 4740±2181
Mamba 20 256±196 0.539±0.190 245±192 462±225 (9) 531±233 (8) 642±156 (7) 4476±2383

Figure C3: Mamba (batch size 16, augmentation rounds 10) Sample efficiency (Yield) and Diversity
(IntDiv1) trade-off.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

C.4 ARE INCREASED AUGMENTATION ROUNDS STILL SYNERGISTIC WITH BEAM
ENUMERATION?

Beam Enumeration (Guo & Schwaller, 2024b) extracts the most probable substructures for self-
conditioned generation and has been shown to be synergistic with Augmented Memory (Guo &
Schwaller, 2024a) such that the Yield and OB improve. In the original work, the oracle budget in
the experiments was 5,000. In this work, we are interested in minimizing the oracle budget and all
experiments thus far use a 1,000 oracle budget. Beam Enumeration has a Patience criterion which
controls when substructures are extracted: only when the average reward improves for Patience
number of successive epochs. Since we are operating at a much lower oracle budget, it is especially
unclear whether Beam Enumeration can still benefit sample efficiency (we note that the explainability
aspect is still applicable). In the original work, a batch size of 64 was used and a Patience of 5. Under
these parameters, the earliest that Beam Enumeration can execute is 320/1000 oracle calls, which is
almost 1/3 the budget already. Moreover, Beam Enumeration decreases diversity and decreasing batch
size and increasing augmentation rounds also decreases diversity. Too much decrease in diversity
may be detrimental even with oracle caching. In this subsection, we systematically study the effect of
Beam Enumeration when used in conjunction with decreasing batch size and augmentation rounds in
a series of hypotheses.

Based on observations from batch size and augmentation rounds grid-searches, the following
design decisions were made in this subsection:

1. Augmentation rounds capped at 5 as diversity generally decreases more substantially past
this point. Beam Enumeration itself will decrease diversity, so this is a preemptive measure
against detrimental diversity-induced mode collapse.

2. Investigate batch sizes of 64 and 32. Since Beam Enumeration executes on improved reward
over successive epochs, lower batch sizes would likely increase performance variance too
much.

3. Focus only on RNN model as experiments will be the fastest (less repeated SMILES). If
benefits are observed, move to Decoder and Mamba models. For clarity, repeated SMILES
are not detrimental, as we have shown in the previous subsections but they add some wall
time (this is insignificant when compared to expensive oracles).

4. Beam Enumeration can pool improbable substructures. There is a Patience Limit denoting
the number epochs permitted where the entire generated batch is filtered. This limit was
100,000 in this work. This does not add that much wall time and surpassing the limit is not
indicative of the experiment failing. However, we enforce this upper bound in case it occurs
(seldom) to manage wall times since we are performing grid searches.

5. Use Minimum Structure Size = 15, unless otherwise stated. Enforcing larger substructure
extraction was found to improve sample efficiency in the original work (Guo & Schwaller,
2024b)

C.4.1 HYPOTHESIS 1

Beam Enumeration’s Patience parameter is dependent on the mean reward of the sampled batch. With
lower batch sizes, variance increases, such that executing Beam Enumeration may be too variable.

Proposed solution. Increase Beam Enumeration’s default Patience (5) to mitigate lower batch size
variance. We note that increasing Patience means that more of the oracle budget needs to be consumed
before Beam Enumeration executes for the first time. First explore Batch sizes = [64, 32].

Observations. Across batch sizes = [64, 32] and all Patience = [5, 6, 7, 8, 9, 10], sample efficiency
does not improve in a statistically significant manner (Tables 17 and 18). Using Beam Enumeration
also leads to notably higher variance and decreased diversity.

C.4.2 HYPOTHESIS 2

The use of “Structure” substructure is too biased when operating in an already biased environment:
increasing augmentation rounds and under a low oracle budget.

Proposed solution. Investigate “Scaffold” substructure which is less biased.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 17: Beam Enumeration batch size 64 with Structure and Minimum Size 15. Filter Limit is
the number of times that no SMILES contained the pool substructure in 100,000 generation epochs.
Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 584±251 (5) Failed Failed 1±1 N/A
N/A 2 15±9 0.775±0.073 15±9 644±173 (10) 941±58 (8) Failed 0±0 N/A
N/A 3 33±42 0.788±0.043 32±40 613±96 (10) 927±128 (9) 993±0 (1) 0±0 N/A
N/A 4 32±16 0.813±0.024 31±16 527±198 (10) 880±90 (10) Failed 0±0 N/A
N/A 5 40±14 0.812±0.023 39±13 459±177 (10) 862±68 (10) Failed 0±0 N/A

5 0 2±2 — 2±2 687±232 (7) Failed Failed 17±21 0
5 2 29±68 0.688±0.044 22±48 555±185 (8) 887±182 (4) 866±0 (1) 15±27 1
5 3 110±75 0.754±0.024 81±52 488±79 (10) 711±99 (10) 902±79 (4) 20±21 0
5 4 86±82 0.702±0.045 58±53 504±205 (10) 739±193 (9) 912±76 (3) 14±15 0
5 5 94±41 0.745±0.027 68±30 436±167 (10) 739±88 (10) 970±30 (4) 15±17 0

6 0 2±3 — 2±2 581±205 (7) 958±0 (1) Failed 25±29 0
6 2 20±20 0.619±0.168 16±15 659±226 (10) 809±27 (4) Failed 9±10 0
6 3 82±84 0.73±0.039 52±44 520±84 (10) 777±134 (10) 863±131 19±26 0
6 4 83±91 0.723±0.074 62±62 508±233 (9) 737±130 (8) 874±93 19±21 0
6 5 84±52 0.693±0.049 54±30 449±169 (10) 771±131 (10) 973±44 38±56 0

7 0 2±2 — 2±2 599±238 (6) Failed Failed 15±17 0
7 2 40±43 0.661±0.161 32±34 579±137 (10) 836±112 (8) 1000±28 (2) 9±10 0
7 3 121±120 0.719±0.038 80±69 546±66 (10) 735±131 (10) 803±75 (3) 27±30 0
7 4 69±64 0.701±0.098 45±39 560±249 (10) 726±84 (7) 941±55 (2) 12±18 0
7 5 61±34 0.735±0.055 43±21 467±188 (10) 796±77 (10) 1026±4 (2) 11±15 0

8 0 1±2 — 1±1 556±225 (5) 1010±0 (1) Failed 24±32 0
8 2 80±90 0.697±0.074 51±60 604±153 (10) 775±119 (8) 882±94 (3) 8±11 0
8 3 79±86 0.714±0.028 58±67 579±88 (10) 769±131 (9) 920±139 (3) 7±6 0
8 4 68±85 0.671±0.044 45±55 537±202 (10) 786±115 (6) 902±49 (3) 20±23 0
8 5 88±61 0.711±0.098 64±45 459±184 (10) 757±118 (9) 960±33 (4) 15±27 0

9 0 1±1 — 1±1 564±226 (5) Failed Failed 11±11 0
9 2 49±53 0.7±0.119 36±34 620±171 (10) 826±115 (8) 953±12 (2) 2±4 0
9 3 87±81 0.739±0.034 53±38 599±92 (10) 787±100 (10) 935±122 (3) 9±11 0
9 4 65±49 0.688±0.08 48±41 518±187 (10) 798±88 (10) 910±0 (1) 11±17 0
9 5 99±84 0.694±0.098 60±51 459±180 (10) 774±80 (10) 907±93 (3) 19±27 0

10 0 1±1 — 1±1 564±226 (5) Failed Failed 11±11 0
10 2 49±53 0.7±0.119 36±34 620±171 (10) 826±115 (8) 953±12 (2) 2±4 0
10 3 87±81 0.739±0.034 53±38 599±92 (10) 787±100 (10) 935±122 (3) 9±11 0
10 4 65±49 0.688±0.08 48±41 518±187 (10) 798±88 (10) 910±0 (1) 11±17 0
10 5 99±84 0.694±0.098 60±51 459±180 (10) 774±80 (10) 907±93 (3) 19±27 0

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 18: Beam Enumeration batch size 32 with Structure and Minimum Size 15. Filter Limit is
the number of times that no SMILES contained the pool substructure in 100,000 generation epochs.
Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 798±101 (5) Failed Failed 1±1 N/A
N/A 2 43±25 0.825±0.029 42±24 608±151 (10) 844±90 (9) Failed 0±0 N/A
N/A 3 52±34 0.81±0.059 51±32 522±141 (10) 789±100 (9) 1018±0 (2) 0±1 N/A
N/A 4 87±33 0.82±0.018 83±31 466±120 (10) 740±77 (10) 987±30 (4) 1±3 N/A
N/A 5 98±57 0.817±0.027 89±50 408±184 (10) 714±136 (10) 915±20 (4) 1±2 N/A

5 0 2±4 0.611±0.074 2±3 776±155 (4) 983±0 (1) Failed 43±30 0
5 2 18±27 0.666±0.077 15±19 705±173 (8) 857±104 (4) Failed 9±9 0
5 3 26±20 0.652±0.076 19±11 618±88 (10) 850±108 (7) Failed 16±18 0
5 4 65±64 0.695±0.092 54±53 604±214 (10) 742±124 (6) 936±55 (3) 65±90 0
5 5 99±110 0.713±0.046 66±61 452±216 (10) 741±173 (9) 870±146 (4) 64±56 0

6 0 2±5 0.655±0.051 2±4 614±213 (4) 836±0 (1) Failed 39±27 0
6 2 36±49 0.691±0.096 32±47 625±188 (9) 834±139 (7) 943±31 (2) 9±9 0
6 3 60±58 0.662±0.124 47±53 574±148 (10) 811±146 (10) 895±81 (2) 93±220 0
6 4 67±52 0.654±0.185 54±43 592±214 (10) 740±133 (8) 934±50 (3) 114±154 0
6 5 66±70 0.68±0.059 50±44 530±209 (10) 822±141 (9) 933±69 (3) 65±70 0

7 0 1±2 — 1±2 686±161 (6) Failed Failed 83±78 0
7 2 49±60 0.699±0.101 41±56 601±156 (10) 821±152 (8) 923±93 (2) 18±20 0
7 3 47±46 0.67±0.107 37±36 623±198 (9) 810±161 (8) 994±16 (3) 20±21 0
7 4 41±45 0.686±0.058 33±42 588±81 (9) 838±94 (9) 905±0 (1) 53±43 0
7 5 76±76 0.698±0.111 66±74 531±210 (10) 776±128 (8) 866±69 (2) 126±325 0

8 0 16±37 — 14±33 749±210 (8) 668±194 (2) 949±0 (1) 109±163 0
8 2 33±48 0.691±0.049 24±33 692±144 (9) 856±142 (6) 974±35 (2) 15±18 0
8 3 50±30 0.675±0.068 40±22 636±109 (10) 803±84 (8) Failed 39±49 0
8 4 104±104 0.73±0.056 84±96 406±128 (10) 696±149 (9) 879±141 (4) 30±36 0
8 5 42±30 0.7±0.051 32±18 506±186 (10) 848±95 (10) 974±0 (1) 30±45 0

9 0 7±12 — 6±10 713±201 (7) 848±1 (2) Failed 68±50 0
9 2 36±34 0.686±0.052 28±28 559±138 (10) 812±96 (7) 1015±0 (1) 29±28 0
9 3 81±89 0.668±0.102 52±52 598±186 (10) 732±159 (7) 826±49 (3) 23±19 0
9 4 158±103 0.723±0.041 104±63 432±104 (10) 639±115 (10) 868±106 (7) 60±78 0
9 5 91±66 0.707±0.036 57±35 453±194 (10) 763±131 (10) 928±65 (4) 40±29 0

10 0 2±3 — 2±3 768±107 (5) 1003±0 (1) Failed 93±97 0
10 2 55±54 0.722±0.027 44±40 559±156 (10) 807±149 (10) 836±0 (1) 26±39 0
10 3 86±46 0.705±0.063 67±36 478±143 (10) 678±114 (9) 962±33 (4) 41±50 0
10 4 99±77 0.705±0.048 63±43 474±162 (10) 693±91 (9) 944±113 (4) 58±86 0
10 5 110±100 0.715±0.039 80±78 430±164 (10) 750±142 (10) 881±107 (4) 57±55 0

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 19: Beam Enumeration batch size 64 with Scaffold and Minimum Size 15. Filter Limit is
the number of times that no SMILES contained the pool substructure in 100,000 generation epochs.
Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 584±251 (5) Failed Failed 1±1 N/A
N/A 2 15±9 0.775±0.073 15±9 644±173 (10) 941±58 (8) Failed 0±0 N/A
N/A 3 33±42 0.788±0.043 32±40 613±96 (10) 927±128 (9) 993±0 (1) 0±0 N/A
N/A 4 32±16 0.813±0.024 31±16 527±198 (10) 880±90 (10) Failed 0±0 N/A
N/A 5 40±14 0.812±0.023 39±13 459±177 (10) 862±68 (10) Failed 0±0 N/A

5 0 5±17 0.726±0.0 5±15 653±275 (3) 819±0 (1) Failed 48±31 0
5 2 14±22 0.616±0.182 13±21 635±226 (7) 850±131 (3) Failed 36±29 0
5 3 21±26 0.675±0.116 18±22 647±198 (8) 852±88 (5) Failed 19±26 0
5 4 20±30 0.6±0.122 18±26 592±262 (9) 869±108 (4) 1038±0 (1) 28±19 0
5 5 33±27 0.692±0.082 29±25 506±208 (10) 875±101 (8) Failed 33±37 0
6 0 0±1 0.399±0.0 0±0 433±98 (4) Failed Failed 98±99 0
6 2 9±16 0.656±0.072 7±13 713±237 (8) 864±82 (2) Failed 30±25 0
6 3 16±19 0.645±0.072 14±18 662±152 (8) 905±103 (5) Failed 27±30 0
6 4 15±23 0.644±0.069 14±22 466±185 (8) 884±137 (4) Failed 23±16 0
6 5 24±28 0.599±0.139 21±22 583±293 (10) 849±83 (5) 1014±0 (1) 35±38 0

7 0 0±1 — 0±1 459±139 (4) Failed Failed 82±47 0
7 2 10±10 0.64±0.072 9±10 666±180 (9) 911±76 (3) Failed 37±59 0
7 3 27±31 0.659±0.119 23±23 648±153 (9) 880±122 (7) 1041±0 (1) 11±8 0
7 4 20±19 0.634±0.125 19±18 575±249 (10) 853±72 (5) Failed 46±59 0
7 5 14±13 0.676±0.096 12±10 519±267 (10) 932±75 (6) Failed 24±32 0

8 0 0±0 — 0±0 383±53 (3) Failed Failed 36±23 0
8 2 10±13 0.665±0.131 10±12 654±201 (8) 910±85 (4) Failed 15±19 0
8 3 30±48 0.693±0.031 29±46 624±164 (9) 863±129 (6) 901±0 (1) 24±21 0
8 4 29±43 0.667±0.095 23±30 571±268 (9) 745±98 (4) 981±0 (1) 20±26 0
8 5 40±47 0.665±0.093 35±45 450±168 (10) 879±95 (9) 920±0 (1) 43±74 0

9 0 0±0 — 0±0 500±207 (4) Failed Failed 31±29 0
9 2 20±36 0.683±0.055 19±36 683±226 (9) 825±84 (3) 1005±0 (1) 8±9 0
9 3 41±34 0.675±0.08 34±28 654±155 (10) 849±134 (8) Failed 25±22 0
9 4 16±14 0.647±0.093 13±11 573±240 (10) 917±39 (5) Failed 10±11 0
9 5 39±24 0.707±0.083 34±22 456±172 (10) 829±67 (9) Failed 8±9 0

10 0 3±8 — 3±7 519±171 (5) 851±0 (1) Failed 16±26 0
10 2 16±19 0.674±0.07 13±15 599±144 (9) 905±95 (5) Failed 17±20 0
10 3 32±38 0.703±0.074 26±27 621±107 (10) 861±129 (8) 961±0 (1) 5±7 0
10 4 18±15 0.682±0.087 16±15 529±202 (10) 876±81 (7) Failed 5±8 0
10 5 37±31 0.711±0.057 30±20 456±172 (10) 829±68 (8) 996±0 (1) 23±42 0

Observations. Across batch sizes = [64, 32] and all Patience = [5, 6, 7, 8, 9, 10], sample efficiency
does not improve in a statistically significant manner (Tables 19 and 20). Variance decreases relative
to "Structure" which is in agreement with the hypothesis that "Structure" is more biased.

C.4.3 HYPOTHESIS 3

In the original Beam Enumeration (Guo & Schwaller, 2024b) work, enforcing a Structure Minimum
Size for extracted substructures improves sample efficiency across all hyperparameter combinations
(and is statistically significant). The results so far suggest that this observation does not hold when
optimizing under a particularly low oracle budget (1000 calls). Thus far, experiments were aimed at
mitigating the Beam Enumeration bias either by tuning the Patience parameter or by changing the
Substructure Type. Another method to mitigate bias is by not enforcing a Structure Minimum Size.
In this scenario, Scaffold substructure should be used as Structure substructure tends to extract small
functional groups (as observed in the original work).

Proposed solution. Investigate “Scaffold” substructure without enforcing Structure Minimum Size.

Observations. Across batch sizes = [64, 32] and all Patience = [5, 6, 7, 8, 9, 10], sample efficiency
sometimes improves (Tables 21 and 22). Variance is also manageable but the performance improve-
ments, when observed, is much less than with lower batch size and higher augmentation rounds (for
instance Mamba batch size 16 and augmentation rounds 10).

Conclusions. Based on the grid-search results, Beam Enumeration can sometimes improve sample
efficiency when using "Scaffold" structure and without enforcing Structure Minimum Size. How-
ever, the improvements are minor, such that it would be better to use small batch sizes with high
augmentation rounds. Thus, we do not further experiment with Beam Enumeration in this work.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 20: Beam Enumeration batch size 32 with Scaffold and Minimum Size 15. Filter Limit is
the number of times that no SMILES contained the pool substructure in 100,000 generation epochs.
Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 798±101 (5) Failed Failed 1±1 N/A
N/A 2 43±25 0.825±0.029 42±24 608±151 (10) 844±90 (9) Failed 0±0 N/A
N/A 3 52±34 0.81±0.059 51±32 522±141 (10) 789±100 (9) 1018±0 (2) 0±1 N/A
N/A 4 87±33 0.82±0.018 83±31 466±120 (10) 740±77 (10) 987±30 (4) 1±3 N/A
N/A 5 98±57 0.817±0.027 89±50 408±184 (10) 714±136 (10) 915±20 (4) 1±2 N/A

5 0 0±0 — 0±0 852±141 (2) Failed Failed 119±78 0
5 2 25±38 0.65±0.109 23±35 698±191 (8) 779±127 (4) 959±0 (1) 57±67 0
5 3 33±59 0.629±0.073 26±44 636±148 (8) 867±133 (6) 871±0 (1) 88±123 1
5 4 57±68 0.666±0.032 44±51 648±163 (9) 834±128 (7) 952±70 (3) 118±104 0
5 5 50±69 0.649±0.038 33±39 498±268 (9) 855±170 (8) 890±3 (2) 89±46 0

6 0 2±6 — 2±6 788±161 (3) 840±0 (1) Failed 174±112 0
6 2 25±59 0.618±0.148 16±36 672±240 (7) 694±238 (3) 706±0 (1) 53±55 1
6 3 35±47 0.667±0.119 27±35 702±189 (8) 789±93 (5) 974±0 (2) 52±43 0
6 4 46±66 0.653±0.068 39±56 656±127 (9) 831±144 (6) 945±67 (2) 135±206 0
6 5 57±76 0.584±0.157 45±59 571±274 (8) 668±83 (4) 907±7 (3) 101±113 0

7 0 14±27 0.551±0.116 10±17 663±109 (5) 814±130 (3) Failed 106±58 0
7 2 19±41 0.657±0.121 12±24 660±127 (6) 894±136 (5) 929±0 (1) 34±23 0
7 3 38±51 0.636±0.115 28±30 650±161 (10) 812±131 (6) 863±0 (1) 45±33 0
7 4 36±36 0.652±0.109 26±21 700±151 (10) 811±76 (7) 981±0 (1) 67±49 0
7 5 46±45 0.608±0.108 39±40 485±204 (9) 810±50 (6) 991±5 (2) 237±244 0

8 0 0±0 — 0±0 794±302 (4) Failed Failed 149±100 0
8 2 34±45 0.625±0.105 30±39 696±175 (9) 777±105 (5) 901±0 (1) 57±46 0
8 3 53±77 0.543±0.174 42±61 652±213 (9) 715±141 (5) 836±6 (2) 57±87 1
8 4 30±53 0.631±0.092 24±39 684±235 (9) 781±165 (3) 957±51 (2) 54±43 0
8 5 90±101 0.632±0.124 70±74 556±248 (9) 706±127 (6) 879±78 (4) 179±158 0

9 0 0±0 — 0±0 733±157 (3) Failed Failed 175±142 0
9 2 20±37 0.61±0.124 15±25 643±237 (8) 849±152 (4) 967±0 (1) 61±69 0
9 3 28±25 0.639±0.09 23±20 661±121 (10) 819±78 (6) Failed 53±60 0
9 4 67±63 0.66±0.105 55±56 605±203 (9) 783±126 (8) 906±58 (2) 92±65 0
9 5 55±73 0.618±0.13 36±41 513±225 (9) 779±149 (6) 877±74 (2) 150±206 0

10 0 2±5 — 1±3 835±154 (4) 890±0 (1) Failed 93±68 0
10 2 5±4 — 4±3 680±196 (8) 960±0 (1) Failed 58±52 0
10 3 32±48 0.636±0.143 31±47 572±171 (10) 880±130 (7) 900±0 (1) 30±36 0
10 4 44±32 0.693±0.059 34±26 503±195 (10) 811±126 (9) 965±0 (1) 107±125 0
10 5 51±55 0.581±0.206 36±37 584±317 (9) 712±88 (5) 949±34 (2) 156±239 1

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 21: Beam Enumeration batch size 64 with Scaffold and no Minimum Size enforced. Filter
Limit is the number of times that no SMILES contained the pool substructure in 100,000 generation
epochs. Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 584±251 (5) Failed Failed 1±1 0
N/A 2 15±9 0.775±0.073 15±9 644±173 (10) 941±58 (8) Failed 0±0 0
N/A 3 33±42 0.788±0.043 32±40 613±96 (10) 927±128 (9) 993±0 (1) 0±0 0
N/A 4 32±16 0.813±0.024 31±16 527±198 (10) 880±90 (10) Failed 0±0 0
N/A 5 40±14 0.812±0.023 39±13 459±177 (10) 862±68 (10) Failed 0±0 0

5 0 0±0 — 0±0 307±0 (1) Failed Failed 0±0 0
5 2 15±12 0.744±0.068 14±11 678±227 (10) 930±70 (5) Failed 0±0 0
5 3 38±14 0.791±0.026 37±14 552±70 (10) 824±44 (9) Failed 0±0 0
5 4 43±45 0.791±0.021 42±43 516±230 (10) 839±132 (9) 918±0 (1) 0±0 0
5 5 55±33 0.77±0.073 50±30 467±197 (10) 811±81 (9) 961±0 (1) 0±1 0

6 0 0±0 — 0±0 594±268 (5) Failed Failed 0±0 0
6 2 28±23 0.752±0.053 26±21 671±190 (10) 880±72 (6) Failed 0±0 0
6 3 44±28 0.782±0.032 42±24 584±120 (10) 832±64 (9) 1006±0 (1) 0±0 0
6 4 41±37 0.778±0.028 39±36 571±241 (10) 874±118 (9) 959±0 (1) 0±0 0
6 5 54±21 0.794±0.025 49±17 453±169 (10) 827±72 (10) Failed 0±0 0

7 0 0±0 — 0±0 567±234 (5) Failed Failed 0±1 0
7 2 27±13 0.778±0.072 27±13 603±148 (10) 880±80 (9) Failed 0±0 0
7 3 47±33 0.797±0.027 44±30 586±73 (10) 859±113 (10) 1035±1 (2) 0±0 0
7 4 48±23 0.799±0.017 45±20 498±176 (10) 828±87 (10) Failed 0±0 0
7 5 51±23 0.793±0.023 48±21 463±190 (10) 854±72 (10) Failed 0±0 0

8 0 0±0 — 0±0 383±53 (3) Failed Failed 0±0 0
8 2 20±12 0.755±0.072 20±12 637±153 (10) 929±62 (8) Failed 0±0 0
8 3 39±32 0.793±0.021 38±31 593±85 (10) 882±111 (10) 962±0 (1) 0±0 0
8 4 47±30 0.793±0.024 45±29 544±208 (10) 873±75 (10) 1013±0 (1) 0±0 0
8 5 69±28 0.803±0.019 64±22 446±162 (10) 789±73 (10) 991±0 (1) 0±0 0

9 0 0±0 — 0±0 656±281 (6) Failed Failed 0±0 0
9 2 16±10 0.761±0.041 16±10 640±166 (10) 946±48 (6) Failed 0±0 0
9 3 52±60 0.798±0.021 49±55 619±106 (10) 847±107 (10) 847±0 (1) 0±0 0
9 4 50±25 0.802±0.01 48±22 505±177 (10) 846±79 (10) 1004±0 (1) 0±0 0
9 5 54±26 0.792±0.024 50±24 450±165 (10) 809±55 (9) Failed 0±0 0

10 0 0±0 — 0±0 636±260 (6) Failed Failed 0±0 0
10 2 21±17 0.739±0.091 21±17 643±178 (10) 920±78 (8) Failed 0±0 0
10 3 46±48 0.791±0.024 43±43 613±99 (10) 853±115 (9) 899±0 (1) 0±0 0
10 4 44±35 0.783±0.041 42±33 541±222 (10) 858±89 (9) 990±0 (1) 0±0 0
10 5 48±18 0.792±0.024 45±15 456±173 (10) 853±50 (10) Failed 0±0 0

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 22: Beam Enumeration batch size 32 with Scaffold and no Minimum Size enforced. Filter
Limit is the number of times that no SMILES contained the pool substructure in 100,000 generation
epochs. Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 798±101 (5) Failed Failed 1±1 0
N/A 2 43±25 0.825±0.029 42±24 608±151 (10) 844±90 (9) Failed 0±0 0
N/A 3 52±34 0.81±0.059 51±32 522±141 (10) 789±100 (9) 1018±0 (2) 0±1 0
N/A 4 87±33 0.82±0.018 83±31 466±120 (10) 740±77 (10) 987±30 (4) 1±3 0
N/A 5 98±57 0.817±0.027 89±50 408±184 (10) 714±136 (10) 915±20 (4) 1±2 0

5 0 0±1 — 0±1 783±134 (3) Failed Failed 0±1 0
5 2 38±28 0.796±0.03 35±25 504±111 (9) 828±115 (9) Failed 1±1 0
5 3 63±44 0.762±0.073 57±38 593±170 (10) 763±82 (8) 988±29 (3) 1±2 0
5 4 87±57 0.779±0.038 72±43 540±145 (10) 764±139 (10) 958±48 (5) 2±4 0
5 5 106±61 0.784±0.031 84±41 467±187 (10) 718±109 (10) 960±41 (6) 1±2 0

6 0 1±3 — 1±3 837±135 (3) 998±0 (1) Failed 2±2 0
6 2 40±33 0.761±0.078 36±29 609±149 (9) 811±64 (7) 1014±0 (1) 1±2 0
6 3 49±23 0.796±0.03 46±21 585±104 (10) 839±101 (10) Failed 1±2 0
6 4 57±41 0.783±0.031 53±37 557±187 (10) 771±82 (8) 987±10 (3) 1±2 0
6 5 106±85 0.776±0.05 85±55 508±241 (10) 718±151 (9) 927±94 (5) 3±6 0

7 0 0±0 — 0±0 741±222 (5) Failed Failed 1±1 0
7 2 43±27 0.79±0.037 41±26 631±182 (10) 799±77 (8) Failed 0±0 0
7 3 84±67 0.79±0.021 73±56 578±188 (10) 781±117 (9) 937±42 (4) 0±1 0
7 4 74±43 0.785±0.041 69±37 574±149 (10) 789±111 (10) 948±39 (2) 1±3 0
7 5 121±52 0.786±0.033 105±39 422±155 (10) 673±90 (10) 898±52 (5) 4±9 0

8 0 3±5 — 3±5 683±213 (5) 882±0 (1) Failed 2±3 0
8 2 44±39 0.713±0.166 40±30 629±177 (10) 778±97 (7) 995±0 (1) 1±4 0
8 3 69±43 0.794±0.039 65±40 530±183 (10) 778±104 (9) 975±8 (3) 0±2 0
8 4 75±39 0.795±0.033 66±30 547±142 (10) 770±118 (10) 981±29 (3) 1±1 0
8 5 103±55 0.761±0.091 90±49 488±221 (10) 693±142 (9) 961±39 (7) 4±5 0

9 0 2±4 — 2±4 805±127 (4) 915±0 (1) Failed 1±1 0
9 2 41±23 0.79±0.022 40±22 572±132 (10) 839±95 (10) Failed 0±0 0
9 3 59±34 0.81±0.021 54±31 520±110 (9) 778±68 (9) 993±0 (1) 0±1 0
9 4 101±60 0.799±0.025 89±45 515±142 (10) 725±104 (10) 944±91 (4) 1±1 0
9 5 128±61 0.792±0.022 102±41 425±179 (10) 684±93 (10) 919±51 (6) 2±2 0

10 0 0±1 — 0±1 822±160 (4) Failed Failed 1±1 0
10 2 53±45 0.795±0.025 49±44 515±129 (9) 793±106 (9) 973±30 (2) 2±5 0
10 3 86±63 0.759±0.119 73±46 553±179 (10) 720±62 (8) 956±69 (4) 0±1 0
10 4 89±35 0.794±0.034 77±26 464±132 (10) 743±51 (10) 984±27 (4) 3±5 0
10 5 123±58 0.795±0.031 105±44 434±177 (10) 704±102 (10) 949±59 (8) 2±2 0

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

C.5 HALLUCINATED MEMORY: IS IT BENEFICIAL TO ALLOCATE A PORTION OF THE ORACLE
BUDGET TO HALLUCINATION?

In this section, we investigate coupling GraphGA (Jensen, 2019) to Saturn. GraphGA in itself a
sample-efficient generative algorithm (Gao et al., 2022) and was recently used in the GEAM model
proposed by Lee et al. (Lee et al., 2024) which achieves impressive MPO performance. Previously
work (Liu et al., 2021) found that coupling a GA in RL can encourage diverse sampling. In the
previous sections, we have identified Mamba with batch size 16 and 10 augmentation rounds as the
best hyperparameters so far. The improved sample efficiency comes at a trade-off in diversity. The
objective in the experiments to follow is to investigate whether allocating a portion of the oracle
budget to GraphGA generation (which we call "hallucinating") is beneficial in recovering diversity
while maintaining sample efficiency.

Before presenting the grid-search results, we describe the GraphGA integration further. GraphGA
is only activated when the replay buffer is full (100 SMILES). Once full, at every epoch thereafter,
the replay buffer itself is treated as the parent population to generate new SMILES. These new
SMILES are then concatenated with the sampled batch (16 SMILES) and used to update the Agent.
Importantly, these hallucinated SMILES are also deposited into the replay buffer (if they possess
higher reward). Finally, 100 SMILES are hallucinated and either 5 or 10 are selected. The selection
criteria are Random or Tanimoto Distance. Random selects at random while Tanimoto Distance
selects via maximum fingerprint dissimilarity to the replay buffer. Our rationale is that dissimilar new
SMILES will help encourage diversity since Augmented Memory heavily biases towards the replay
buffer SMILES.

The grid-search investigated the following hyperparameter settings:

1. Fix Mamba with batch size 16
2. Augmentation Rounds = [5,20]
3. GA with Random and Tanimoto Distance selection criterion
4. Select 5 or 10 hallucinations at every epoch

The reason we increased the augmentation rounds back to 20 in our grid-search is because if indeed
the GA recovers diversity, then the "augmentation tolerability" of Saturn would probably be increased.
Higher augmentation rounds lead to more repeated SMILES precisely due to overfitting. If new
high reward SMILES refresh the replay buffer, Saturn may be more tolerable to higher augmentation
rounds to potentially further improve sample efficiency. The results of the grid-search are presented
in Tables 23 and 24.

Observations. The results show that coupling a GA to the replay buffer does not improve sample
efficiency. However, we make several interesting observations. Firstly, the number of repeated
SMILES notably drops and IntDiv1 (Polykovskiy et al., 2020) recovers. This is in agreement with
our hypothesis and previous work (Liu et al., 2021) that coupling a GA to RL can recover diversity.
Secondly, hallucinating SMILES does indeed lead to some replacement of the replay buffer, and
hence, these SMILES are necessarily are high reward. Thirdly, rarely are the hallucinated SMILES
the best in the buffer. Finally, we note that hallucinated SMILES are generated off-policy and Agent
updates may be more meaningful with importance sampling (Schlegel et al., 2019), which we did not
explore this this work.

C.6 SATURN: FINAL HYPERPARAMETERS

The most sample-efficient hyperparameter settings, on average, are: Mamba with batch size 16
and 10 augmentation rounds. The results in the immediate previous section shows that the GA can
recover diversity, which can be a useful setting that can easily be activated on and off depending on
the oracle setting.

D MECHANISM OF AUGMENTED MEMORY AND MAMBA

In this subsection, we show additional results supporting our statement on Augmented Memory’s
(Guo & Schwaller, 2024a) mechanism: Augmented Memory squeezes the likelihood of generating

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 23: Mamba batch size 16 with GraphGA (Jensen, 2019) applied on the replay buffer. The
hallucinated SMILES were selected at Random. Hall. Yield is the yield from GraphGA. Buf.
Replace is the number of times a hallucinated SMILES replaced another SMILES in the buffer. This
means that it was better than the top-100 SMILES generated in the run so far. Buf. Best is the number
of times the hallucinated SMILES was better than the top-1 in the buffer.

GA Aug. Hall. Total Buffer Buffer IntDiv1 Scaffolds OB 1 OB 10 OB 100 Sampled Hall.
Random Rounds Yield Yield Replace Best Repeats Repeats

5 5 9±7 54±43 91±13 2±1 0.756±0.043 45±33 538±212 (10) 812±114 (9) 989±27 (3) 58±39 5±3
5 6 21±10 88±56 92±11 3±1 0.773±0.046 68±41 457±122 (10) 729±103 (10) 936±83 (3) 57±29 6±3
5 7 11±9 57±42 90±17 3±2 0.73±0.063 49±37 619±125 (10) 795±116 (9) 988±13 (3) 122±50 6±3
5 8 14±11 63±42 95±15 3±2 0.758±0.044 49±25 574±166 (10) 793±96 (10) 916±0 (1) 177±80 6±3
5 9 20±15 106±75 92±14 2±1 0.767±0.03 86±55 531±128 (10) 733±121 (10) 833±57 (3) 207±101 9±5
5 10 21±11 113±61 93±19 2±1 0.742±0.04 83±38 496±158 (10) 690±118 (10) 910±59 (5) 257±143 7±3
5 11 15±11 102±69 89±13 3±2 0.739±0.031 69±43 552±141 (10) 730±116 (10) 887±62 (4) 308±116 7±3
5 12 29±17 139±83 101±13 3±1 0.781±0.025 101±55 488±104 (10) 666±92 (10) 856±76 (5) 339±153 9±4
5 13 25±14 144±97 97±15 3±1 0.727±0.048 94±50 463±209 (10) 658±155 (10) 843±99 (6) 511±226 10±4
5 14 36±22 176±82 102±18 3±2 0.742±0.038 133±56 475±121 (10) 640±110 (10) 863±92 (8) 691±333 13±7
5 15 42±17 208±65 104±18 4±2 0.746±0.06 167±58 401±115 (10) 595±89 (10) 844±91 (10) 693±319 13±8
5 16 34±9 187±77 100±20 5±2 0.744±0.055 150±59 421±119 (10) 624±106 (10) 829±83 (8) 789±465 10±5
5 17 33±25 181±95 99±14 3±1 0.750±0.042 127±64 469±142 (10) 664±132 (10) 838±86 (8) 830±417 10±6
5 18 35±18 164±57 102±24 4±2 0.727±0.038 133±54 459±105 (10) 637±76 (10) 872±66 (8) 881±389 16±16
5 19 30±16 190±76 103±16 3±1 0.744±0.046 145±51 467±123 (10) 630±113 (10) 822±59 (8) 1072±465 12±9
5 20 44±18 247±83 96±10 3±1 0.748±0.034 185±60 380±144 (10) 566±115 (10) 761±59 (9) 1310±512 14±6

10 5 12±10 44±44 141±13 3±1 0.77±0.066 35±29 478±206 (10) 802±133 (9) 888±0 (1) 24±14 8±5
10 6 16±13 44±34 139±7 4±2 0.784±0.023 37±29 534±139 (10) 812±87 (9) 936±0 (1) 38±19 8±4
10 7 14±9 43±27 139±23 4±2 0.739±0.109 37±23 594±117 (10) 800±54 (9) Failed 61±34 9±4
10 8 20±16 55±41 148±13 4±2 0.771±0.026 46±30 520±114 (10) 805±129 (10) 924±0 (1) 71±30 9±4
10 9 22±18 70±51 143±19 4±2 0.753±0.04 57±42 520±174 (10) 788±149 (10) 952±44 (3) 113±58 11±7
10 10 17±16 65±63 148±19 4±2 0.714±0.104 48±37 539±183 (10) 758±141 (9) 773±0 (1) 138±69 11±6
10 11 18±11 57±47 140±21 5±1 0.761±0.031 42±29 605±139 (10) 789±104 (9) 931±38 (2) 192±90 10±7
10 12 37±37 88±79 165±26 4±1 0.734±0.092 70±59 591±142 (10) 716±119 (9) 882±110 (3) 222±106 17±14
10 13 29±25 84±84 150±22 3±1 0.727±0.078 61±51 502±195 (10) 737±169 (9) 842±52 (3) 260±134 13±7
10 14 29±16 97±64 149±14 5±2 0.756±0.046 72±44 456±217 (10) 733±164 (10) 908±9 (5) 271±116 9±6
10 15 37±24 102±64 161±13 4±1 0.759±0.03 85±48 480±184 (10) 688±162 (10) 913±77 (5) 336±182 19±10
10 16 40±22 110±60 157±18 5±3 0.754±0.028 91±50 432±200 (10) 691±149 (10) 913±55 (6) 361±185 15±10
10 17 34±22 103±62 156±28 5±2 0.75±0.048 80±47 529±154 (10) 704±117 (9) 916±45 (6) 467±214 15±8
10 18 25±15 91±52 148±22 5±1 0.745±0.03 64±31 562±102 (10) 750±88 (10) 927±42 (4) 572±322 17±10
10 19 25±14 88±46 145±17 6±2 0.750±0.036 71±39 563±127 (10) 751±114 (10) 948±33 (5) 603±236 16±9
10 20 38±24 136±80 148±19 6±1 0.748±0.059 95±48 444±150 (10) 626±117 (9) 867±90 (6) 781±360 13±5

Table 24: Mamba batch size 16 with GraphGA (Jensen, 2019) applied on the replay buffer. The
hallucinated SMILES were selected by highest Tanimoto Distance. Hall. Yield is the yield from
GraphGA. Buf. Replace is the number of times a hallucinated SMILES replaced another SMILES in
the buffer. This means that it was better than the top-100 SMILES generated in the run so far. Buf.
Best is the number of times the hallucinated SMILES was better than the top-1 in the buffer.

GA Aug. Hall. Total Buffer Buffer IntDiv1 Scaffolds OB 1 OB 10 OB 100 Sampled Hall.
Random Rounds Yield Yield Replace Best Repeats Repeats

5 5 12±11 68±60 84±16 2±1 0.770±0.050 57±46 532±244 (10) 752±125 (8) 913±51 (3) 50±35 17±7
5 6 8±8 61±73 83±13 1±1 0.763±0.041 51±57 602±171 (10) 834±151 (10) 890±110 (2) 62±36 17±11
5 7 15±8 68±46 90±10 4±2 0.776±0.035 60±38 610±62 (10) 797±86 (10) 855±0 (1) 122±59 17±8
5 8 11±8 89±61 77±13 2±1 0.765±0.031 72±45 473±120 (10) 753±116 (10) 888±42 (3) 156±84 14±8
5 9 22±17 123±86 88±8 2±1 0.757±0.049 97±66 471±187 (10) 712±164 (10) 872±96 5) 309±150 16±7
5 10 18±15 97±79 87±14 2±1 0.758±0.045 78±57 544±183 (10) 748±158 (10) 901±107 (4) 317±133 16±9
5 11 18±14 92±60 84±15 2±2 0.785±0.031 78±49 560±130 (10) 749±97 (10) 846±42 (2) 314±126 20±9
5 12 26±17 146±101 90±10 2±1 0.772±0.043 109±70 491±165 (10) 684±184 (10) 838±124 (6) 418±220 22±15
5 13 21±15 114±77 90±19 2±1 0.74±0.053 97±62 494±200 (10) 706±134 (9) 912±71 (6) 494±218 19±13
5 14 28±24 158±95 91±21 2±1 0.756±0.042 131±82 505±152 (10) 681±152 (10) 846±85 (7) 682±355 27±20
5 15 39±20 189±98 97±8 3±1 0.752±0.074 151±76 415±159 (10) 600±176 (10) 818±103 (8) 698±382 28±14
5 16 45±30 189±110 100±29 2±2 0.788±0.042 152±91 456±171 (10) 630±168 (10) 784±98 (7) 771±329 33±16
5 17 29±22 166±89 95±13 3±1 0.760±0.053 124±58 506±145 (10) 652±130 (10) 874±102 (8) 733±343 26±15
5 18 17±12 114±75 88±16 3±2 0.686±0.104 87±50 549±154 (10) 668±86 (8) 913±65 (6) 911±412 30±20
5 19 16±14 117±86 73±22 2±2 0.708±0.101 94±70 559±169 (10) 706±153 (9) 862±117 (5) 1287±520 24±23
5 20 32±16 183±72 85±17 3±2 0.752±0.072 151±60 417±161 (10) 628±111 (10) 878±102 (10) 1241±508 22±13

10 5 13±13 39±39 127±17 3±2 0.768±0.065 35±34 551±214 (9) 765±155 (7) 942±0 (1) 34±15 19±8
10 6 11±10 43±34 128±17 2±1 0.76±0.064 41±32 556±156 (10) 777±99 (7) Failed 34±20 16±8
10 7 13±8 41±28 138±12 3±2 0.767±0.066 38±27 550±140 (10) 835±106 (9) 997±0 (1) 62±43 19±9
10 8 12±9 41±26 138±13 2±2 0.751±0.093 36±22 575±156 (10) 786±123 (9) Failed 75±41 21±9
10 9 18±12 56±35 129±20 3±2 0.764±0.072 48±30 527±156 (10) 732±79 (8) 991±0 (1) 117±78 19±9
10 10 10±12 42±46 133±14 3±2 0.775±0.055 32±31 660±225 (10) 797±127 (7) 870±0 (1) 158±80 15±7
10 11 10±8 39±39 124±18 3±1 0.713±0.109 32±30 626±173 (10) 828±124 (7) 964±0 (1) 181±93 30±23
10 12 16±19 63±64 139±18 3±1 0.733±0.123 53±56 534±207 (10) 731±113 (8) 897±107 (2) 236±106 29±23
10 13 20±19 67±63 140±21 3±2 0.732±0.117 50±41 542±228 (9) 746±139 (8) 902±38 (3) 300±150 30±19
10 14 15±13 61±50 128±21 2±1 0.714±0.114 49±41 589±175 (10) 770±102 (8) 924±22 (2) 365±210 26±15
10 15 28±25 80±71 144±22 5±1 0.762±0.033 68±58 599±160 (10) 741±129 (8) 925±100 (4) 366±228 32±19
10 16 30±28 89±77 152±28 5±2 0.765±0.07 74±63 563±186 (10) 719±167 (9) 832±34 (3) 376±188 35±24
10 17 30±25 101±80 147±16 3±1 0.787±0.028 77±58 532±182 (9) 719±173 (9) 880±45 (5) 503±237 42±25
10 18 16±13 54±39 137±33 3±2 0.721±0.071 43±31 543±152 (10) 811±112 (9) 926±0 (1) 609±309 48±59
10 19 21±12 83±54 129±15 3±2 0.761±0.034 64±41 495±135 (9) 738±121 (9) 920±40 (4) 620±259 30±17
10 20 16±17 54±44 133±24 2±1 0.761±0.044 46±34 524±206 (9) 796±86 (8) 925±0 (1) 747±416 32±17

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

e

Figure D4: Mamba (batch size 16, augmentation rounds 10) after running for 500 oracle calls of the
illustrative example and isolating the effect of Augmented Memory. a. Augmented Memory makes
the likelihood of generating SMILES in the Buffer more likely. b. Augmented forms of the Buffer
SMILES become more likely, but still regularized by the prior.

the Buffer molecules such that it becomes probable to generate some SMILES representation of
them. In the main text, the experiment to show likelihood squeezing was as follows: starting from
the pre-trained Mamba model, generate molecules until the Buffer is full and then save the Agent
state before and after Augmented Memory. Every augmented Buffer SMILES was also saved. This
experiment isolates the effect of Augmented Memory on a clean pre-trained model.

The first set of additional results we show is the same experiment but we first allow the Agent 500
oracle calls of optimization on the test experiment. Our intention is to show that later in the run,
Augmented Memory still makes generating the Buffer molecules more likely (Fig. D4). There are
cases when a large loss magnitude does not make the sequence more likely to be generated. This
could occur for instance when the likelihood under the prior is extremely low (large NLL) where the
intended behavior is actually to regress the Agent back towards the prior. In these cases, the large
loss could make the update less stable for the parameter updates.

Next, the main text results showed that Mamba (batch size 16, augmentation rounds 10) exhibits
"hop-and-locally-explore" behavior but what about RNN (batch size 16, augmentation rounds 10)?
We show that the RNN model also begins to exhibit this behavior but to a lesser extent (Fig. D5), in
agreement with the enhanced likelihood convergence observed for Mamba (Appendix C.1).

We now focus on Mamba (batch size 16, augmentation rounds 10) and present additional results
to qualitatively and quantitatively demonstrate "hop-and-locally-explore" behavior. Firstly, we
supplement the main text Fig. 2e. The figure shows the intra- and inter-chunk similarities across
chunks of generated molecules. Specifically, the test experiment was run with an oracle budget of
3,000 and this generated set is chunked. To provide a more granular inspection into the generative
behavior, we chunk this set into 30 chunks (each 100 SMILES) instead of 10 chunks (each 300
SMILES) in the main text. Mamba (batch size 16, augmentation rounds) exhibits notably higher
intra-chunk similarity and even inter-chunk similarity at this more granular chunking level (Fig. D6a).
We further supplement these quantitative results with a qualitative inspection. Looking at unique
molecules generated at adjacent epochs, common substructures are shared (Fig. D6b highlights),
displaying a "neighborhood-like" exploration.

D.1 IS "HOP-AND-LOCALLY-EXPLORE" Always GOOD?

The results in the main text and this section so far provide evidence that Mamba with batch size 16 and
10 augmentation rounds exhibits local exploration behavior. We hypothesize that sample efficiency
improves because "similar molecules, on average, exhibit similar properties". But is this always
true? In the test experiment, it is straightforward to see that this indeed holds true. Cross-referencing
Fig. D6b, small changes to the molecular graphs should still display high polar surface area which
is the objective. However, oracles we care about are physics-based simulations. In the main text
results and later in the Appendix for Part 2 and Part 3 additional results, we show that this behavior
is beneficial for sample efficiency. The physics-based oracles used in this work are AutoDock Vina
(Trott & Olson, 2010) and QuickVina 2 (Alhossary et al., 2015) which run molecular docking. The
question we pose is: are these oracles too permissive? Such that the optimization landscape is smooth

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Figure D5: Mamba and RNN (both batch size 16, augmentation rounds 10) and baseline Augmented
Memory (batch size 64, augmentation rounds 2). a. 3,000 oracle budget test experiment chunked
into 300 SMILES. UMAP embedding of the Agent chemical space traversal (arrows are the centroid
of each chunk). b. Mamba exhibits a "hop-and-locally-explore" behavior where the intra-chunk
Tanimoto similarity (top values) are higher than RNN. The bottom value is the inter-chunk similarity.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Figure D6: Mamba (batch size 16, augmentation rounds 10) and baseline Augmented Memory
(batch size 64, augmentation rounds 2) which is labelled as RNN. a. 3,000 oracle budget test
experiment chunked into 100 SMILES. Mamba exhibits a "hop-and-locally-explore" behavior
where the intra-chunk Tanimoto similarity (top values) are higher than RNN. The bottom value is the
inter-chunk similarity. b. Qualitative examples of unique molecules generated at adjacent epochs.
Many substructures are shared and the model generates in the local neighborhood. Yellow highlights
are exact substructures shared while green indicates a portion.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Figure D7: Mamba (batch size 16, augmentation rounds 10) with and without GA (Jensen, 2019)
activated. The experiment is the Part 3 MPO objective (docking against parp1).

(Aldeghi et al., 2022). As we push towards higher-fidelity oracles such as QM/MM and free energy
simulations (Moore et al., 2023; Crivelli-Decker et al., 2024), it is expected that they will be more
stringent and demand more specificity. This means that the current hypothesis of "similar molecules,
on average, exhibit similar properties" may be loosened. Whether this turns out to be detrimental or
not in high-fidelity oracle settings remains to be empirically tested which we leave for future work.
By characterizing the behavior of Saturn and understanding what exactly Augmented Memory is
doing, it is possible to adapt the current model accordingly. For example, decreasing augmentation
rounds relaxes the "hop-and-locally-explore" behavior, which could be advantageous for high-fidelity
oracles.

D.2 GENETIC ALGORITHM LOOSENS "HOP-AND-LOCALLY-EXPLORE BEHAVIOR"

In our investigations to applying a GA on the replay buffer, we show that while sample efficiency
does not improve, diversity recovers. To quantitatively show why, we plot the chunk similarity for
an experiment from Part 3 on the parp1 target with and without the GA activated (Fig. D7). The
Mamba model in both cases uses batch size 16 and 10 augmentation rounds. With the GA activated,
the intra-chunk similarities decrease, thus loosening the locally exploration behavior and is the reason
why diversity recovers.

E PART 2: TRANSFERABILITY OF SAMPLE EFFICIENCY TO PHYSICS-BASED
ORACLES

This section contains information on the Autodock VinaTrott & Olson (2010) docking protocol and
additional results. All results are averaged across 10 seeds (0-9 inclusive).

E.1 DOCKING PROTOCOL

All protein receptor structures were pre-processed from the raw PDB.

The following were removed:

1. Duplicate protein chains and duplicate ligands.
2. Co-factors.
3. Ions.
4. All waters.

Next, Schrödinger’s Protein Preparation Wizard (Madhavi Sastry et al., 2013; sch) with default
parameters was used to pre-process the structure. PROPKA hydrogen-bond network optimization was
performed at pH 7.4 and energy minimization with OPLS3e force-field (Roos et al., 2019). Below
are details on the docking grids generated from the pre-processed PDBs.

DRD2 - Dopamine Type 2 Receptor. The PDB ID is 6CM4Wang et al. (2018) and the docking grid
was centered at (x, y, z) = (9.93, 5.85, -9.58).

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Table 25: Docking MPO with 1,000 oracle budget. Baseline is vanilla Augmented Memory (Guo
& Schwaller, 2024a). All metrics are computed at the 0.7 reward threshold. IntDiv1 is the internal
diversity, scaffolds is the number of unique Bemis-Murcko scaffolds, OB is Oracle Burden (oracle
calls required to generate N unique molecules). The number in parentheses in the OB statistics
represent how many runs out of 10 were successful. The mean and standard deviation across 10 seeds
(0-9 inclusive) is reported. Saturn-RNN is RNN with batch size 16 and augmentation rounds 10.

Model Yield (↑) IntDiv1 (↑) Scaffolds (↑) OB 1 (↓) OB 10 (↓) OB 100 (↓)

DRD2

Baseline 630 ± 45 0.858 ± 0.006 585 ± 43 57 ± 2(10) 57 ± 2(10) 279 ± 32(10)
Saturn-RNN 818 ± 22 0.821 ± 0.011 671 ± 56 14 ± 1(10) 31 ± 6(10) 219 ± 16(10)

Saturn 850 ± 23 0.784 ± 0.015 677 ± 51 14 ± 1(10) 35 ± 7(10) 199 ± 20(10)
Saturn-GA 804 ± 26 0.817 ± 0.022 685 ± 56 14 ± 1(10) 35 ± 7(10) 199 ± 19(10)

MK2 Kinase

Baseline 431 ± 32 0.863 ± 0.005 406 ± 26 57 ± 2(10) 74 ± 26(10) 396 ± 37(10)
Saturn-RNN 704 ± 25 0.833 ± 0.013 525 ± 32 14 ± 1(10) 43 ± 9(10) 282 ± 19(10)

Saturn 702 ± 43 0.811 ± 0.022 519 ± 69 17 ± 6(10) 52 ± 12(10) 282 ± 31(10)
Saturn-GA 636 ± 29 0.827 ± 0.019 506 ± 68 17 ± 6(10) 52 ± 12(10) 291 ± 31(10)

AChE

Baseline 801 ± 27 0.867 ± 0.006 759 ± 30 57 ± 2(10) 57 ± 2(10) 201 ± 29(10)
Saturn-RNN 909 ± 21 0.842 ± 0.006 772 ± 73 14 ± 1(10) 25 ± 6(10) 163 ± 19(10)

Saturn 906 ± 15 0.816 ± 0.014 742 ± 76 14 ± 1(10) 27 ± 4(10) 158 ± 13(10)
Saturn-GA 874 ± 21 0.841 ± 0.008 732 ± 48 14 ± 1(10) 27 ± 4(10) 158 ± 14(10)

MK2 - MK2 Kinase. The PDB ID is 3KC3Argiriadi et al. (2010) and the docking grid for the
extracted monomer was centered at (x, y, z) = (-61.62, 30.31, -21.9).

AChE - Acetylcholinesterase. The PDB ID is 1EVEKryger et al. (1999) and the docking grid was
centered at (x, y, z) = (2.78, 64.38, 67.97).

Docking. The search box for all grids was 15Å x 15Å x 15Å and docking was executed through
DockStream (Guo et al., 2021). All generated molecules were first embedded using the RDKit
Universal Force Field (UFF) (Rappé et al., 1992) with the maximum convergence set to 600 iterations.
Docking was parallelized over 16 CPU cores (since the generative model’s batch size was 16). The
cores were Intel(R) Xeon(R) Platinum 8360Y processors.

E.2 ADDITIONAL RESULTS

In the main text, results were shown at the 0.8 reward threshold. In this section, we also show
results for Saturn-RNN (batch size 16, augmentation rounds 10) and for the 0.7 reward threshold
(Tables 25 and 26). At the 0.7 reward threshold, Saturn-RNN’s performance is almost identical
to Saturn. However, at the 0.8 reward threshold, Saturn (using Mamba) is more performant. We
highlight that although at times, the difference may be small, it can be highly practically relevant when
using expensive oracles, e.g., 50 docking calls may be inconsequential but 50 molecular dynamics
simulations can be costly. Both Saturn-RNN and Saturn outperform baseline Augmented Memory.
Finally, adding a GA on top of Saturn recovers diversity but sample efficiency decreases.

E.3 COMPUTE TIME

Due to insufficient GPU resources, we ran all experiments in this section on CPU. Averaged across
all targets and across all 10 replicates, the wall time were as follows: 172 minutes (approximately
3 hours) for Augmented Memory, 246 minutes (approximately 4 hours) for Saturn-RNN, 1,426
minutes (approximately 24 hours) for Saturn, and 1,111 minutes (approximately 18.5 hours) for
Saturn-GA. There is such a large discrepancy in run time due to repeated SMILES (which do not
impose additional oracle calls) that still require backpropagation. Moreover, the runs with Mamba
take so much longer because the GPU implementation is highly optimized. When run on GPU, the
difference in wall time between Saturn-RNN and Saturn (Mamba) are not significant.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Table 26: Docking MPO with 1,000 oracle budget. Baseline is vanilla Augmented Memory (Guo
& Schwaller, 2024a). All metrics are computed at the 0.8 reward threshold. IntDiv1 is the internal
diversity, scaffolds is the number of unique Bemis-Murcko scaffolds, OB is Oracle Burden (oracle
calls required to generate N unique molecules). The number in parentheses in the OB statistics
represent how many runs out of 10 were successful. The mean and standard deviation across 10 seeds
(0-9 inclusive) is reported. Saturn-RNN is RNN with batch size 16 and augmentation rounds 10.

Model Yield (↑) IntDiv1 (↑) Scaffolds (↑) OB 1 (↓) OB 10 (↓) OB 100 (↓)

DRD2

Baseline 22 ± 7 0.774 ± 0.019 22 ± 7 143 ± 75(10) 733 ± 120(10) Failed
Saturn-RNN 185 ± 40 0.745 ± 0.022 148 ± 47 128 ± 94(10) 440 ± 72(10) 854 ± 63(10)

Saturn 369 ± 62 0.671 ± 0.050 310 ± 70 93 ± 53(10) 391 ± 56(10) 663 ± 55(10)
Saturn-GA 209 ± 55 0.745 ± 0.041 189 ± 57 96 ± 56(10) 403 ± 75(10) 806 ± 84(10)

MK2 Kinase

Baseline 0.2 ± 0.4 — 0.2 ± 0.4 836 ± 186(2) Failed Failed
Saturn-RNN 2.5 ± 3.4 0.414 ± 0.213 2.5 ± 3.4 642 ± 91(6) 999 ± 0(1) Failed

Saturn 14.9 ± 14.1 0.454 ± 0.212 14.1 ± 13.2 677 ± 186(9) 861 ± 108(6) Failed
Saturn-GA 6.1 ± 6.5 0.415 ± 0.202 5.5 ± 5.5 678 ± 140(9) 911 ± 11(2) Failed

AChE

Baseline 173 ± 19 0.843 ± 0.009 170 ± 18 57 ± 2(10) 189 ± 52(10) 776 ± 58(10)
Saturn-RNN 419 ± 38 0.804 ± 0.019 338 ± 55 21 ± 11(10) 165 ± 60(10) 531 ± 36(10)

Saturn 480 ± 79 0.757 ± 0.020 400 ± 96 32 ± 24(10) 185 ± 82(10) 508 ± 80(10)
Saturn-GA 343 ± 57 0.809 ± 0.013 287 ± 50 32 ± 25(10) 187 ± 80(10) 565 ± 80(10)

F PART 3: PART 3: BENCHMARKING SATURN

In this section, we detail how Saturn was pre-trained for benchmarking, the procedure we followed
to reproduce GEAM (Lee et al., 2024), and additional results. We ensured exact reproducibility by
using GEAM’s official code: https://anonymous.4open.science/r/GEAM-45EF. For
running Saturn with GEAM’s objective function, all the oracle code was taken, without modification,
from the same repository.

F.1 SATURN ZINC 250K PRE-TRAINING

GEAM pre-trained on ZINC 250k (Sterling & Irwin, 2015) and provide the dataset in their repository.
We used this dataset as is for Saturn pre-training (Mamba model).

The pre-training parameters were:

1. Training steps = 50 (each training step entails a full pass through the dataset)

2. Seed = 0

3. Batch size = 512

4. Learning rate = 0.0001

5. Train with SMILES randomization (Bjerrum, 2017) (all SMILES in each batch was random-
ized)

Mamba model:

1. Vocabulary size = 66 (including the 2 added tokens for <START> and <END>)

2. 5,272,832 parameters

3. Used checkpoint from epoch 50 (NLL = 28.10, Validity (10k) = 95.2%)

All Saturn experiments were run on a single workstation equipped with an NVIDIA RTX A6000
GPU and AMD Ryzen 9 5900X 12-Core CPU. The total run time for Saturn across all targets was
41.5 hours (total of 50 runs: 5 targets, 10 seeds each).

47

https://anonymous.4open.science/r/GEAM-45EF

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

F.2 REPRODUCING GEAM’S RESULTS

We followed the instructions directly in GEAM’s README: https://anonymous.4open.
science/r/GEAM-45EF/README.md. We trained the FGIB with seed 0. Everything else was
run with their default parameters. In the original work, 3 replicates were run but the seeds were not
specified. In our comparisons, we run GEAM across 10 seeds (0-9 inclusive) using an NVIDIA V100
GPU with a Xeon-Gold processor (2.1 GHz and 20 cores) CPU. The reason why a different GPU was
used in GEAM experiments compared to Saturn is due to CUDA compatibility in GEAM’s code. For
GEAM, the wall times were:

1. parp1: 3.02±0.19 hours
2. fa7: 3.38±0.04 hours
3. 5ht1b: 3.17±0.08 hours
4. braf: 3.02±0.19 hours
5. jak2: 3.28±0.04 hours

Except for parp1, the wall times are the mean and standard deviation across 10 seeds. For parp1, the
wall times are across 7 seeds (3-9 inclusive). Seeds 0-2 inclusive were run on CPU due to insufficient
GPU resources. CPU runs take much longer so we only report GPU times.

F.3 GEAM’S MPO OBJECTIVE

GEAM optimized for the following objective:

R(x) = D̂S(x)×QED(x)× ŜA(x) ∈ [0, 1] (22)

D̂S is the normalized QuickVina 2 (Alhossary et al., 2015) docking score (Eq. 23), QED (Bickerton
et al., 2012) is the quantitative estimate of drug-likeness, and ŜA is the normalized synthetic
accessibility score (Ertl & Schuffenhauer, 2009) (Eq. 24).

D̂S = −DS
20

(23)

ŜA =
10− SA

9
(24)

F.4 SATURN-TANIMOTO

In GEAM (Lee et al., 2024), the "Novel" in Novel Hit Ratio enforces molecules to possess <
0.4 Tanimoto similarity to ZINC 250k (Sterling & Irwin, 2015). GEAM achieves this by use of
their fragment assembly and genetic algorithm which directly uses GraphGA (Jensen, 2019). The
crossover and mutation operations promote diversityLiu et al. (2021). Otherwise, generative models
are pre-trained to model the training data distribution. This means that generated molecules would
not necessarily be particularly dissimilar to the training data, especially if the training data actually
possesses "good" molecules already. By virtue of pre-training on a selected dataset, we implicitly
assume that the pre-training dataset is "good" for our task, otherwise, we probably should not pre-train
on this data. This is the rationale on why ChEMBL (Gaulton et al., 2012) and ZINC 250k (Sterling &
Irwin, 2015) are popular pre-training datasets: they contain bio-active molecules. To satisfy GEAM’s
"Novel" criterion, we take the base Saturn model and first teach it to generate molecules that are
dissimilar to the ZINC 250k dataset which was used for pre-training. The objective function is then
defined as minimizing the max Tanimoto similarity to any molecule in ZINC 250k. This experiment
was run with an oracle budget of 1,500 and took about 10 minutes. The resulting Saturn-Tanimoto
model generates molecules with low Tanimoto similarity to ZINC 250k. Starting from this model,
we run GEAM’s case study and the results from this are reported in the main text and here in the
Appendix. We finally note that this criterion is somewhat arbitrary and we do it so we can exactly
match GEAM’s experiments.

48

https://anonymous.4open.science/r/GEAM-45EF/README.md
https://anonymous.4open.science/r/GEAM-45EF/README.md

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

F.5 QUANTITATIVE SUPPLEMENTARY RESULTS

In this section, we present supplementary benchmarking results and show additional results for
Saturn-GA.

Table 27: Hit Ratio (%). Results are from Lee et al. (Lee et al., 2023) except GEAM, datasets, and
Saturn which we ran across 10 seeds (0-9 inclusive). The mean and standard deviation are reported.
Best results (statistically significant at the 95% confidence level) are bolded.
Method Target Protein

parp1 fa7 5ht1b braf jak2

Datasets
ZINC 250k (Sterling & Irwin, 2015) 3.993 ± 0.355 1.097 ± 0.192 24.260 ± 0.622 1.020 ± 0.193 6.183 ± 0.344
ChEMBL 33 (Gaulton et al., 2012) 6.077 ± 0.453 1.830 ± 0.240 24.163 ± 0.715 2.073 ± 0.181 9.013 ± 0.562

Generative Models
REINVENT (Olivecrona et al., 2017) 4.693 ± 1.776 1.967 ± 0.661 26.047 ± 2.497 2.207 ± 0.800 5.667 ± 1.067
JT-VAE (Jin et al., 2018) 3.200 ± 0.348 0.933 ± 0.152 18.044 ± 0.747 0.644 ± 0.157 5.856 ± 0.204
GraphAF (Shi et al., 2020) 0.822 ± 0.113 0.011 ± 0.016 6.978 ± 0.952 1.422 ± 0.556 1.233 ± 0.284
MORLD (Jeon & Kim, 2020) 0.047 ± 0.050 0.007 ± 0.013 0.893 ± 0.758 0.047 ± 0.040 0.227 ± 0.118
HierVAE (Jin et al., 2020a) 1.180 ± 0.182 0.033 ± 0.030 0.740 ± 0.371 0.367 ± 0.187 0.487 ± 0.183
GraphDF (Luo et al., 2021) 0.044 ± 0.031 0.000 ± 0.000 0.000 ± 0.000 0.011 ± 0.016 0.011 ± 0.016
FREED (Yang et al., 2021) 4.860 ± 1.415 1.487 ± 0.242 14.227 ± 5.116 2.707 ± 0.721 6.067 ± 0.790
FREED-QS (Yang et al., 2021) 5.960 ± 0.902 1.687 ± 0.177 23.140 ± 2.422 3.880 ± 0.623 7.653 ± 1.373
LIMO (Eckmann et al., 2022) 0.456 ± 0.057 0.044 ± 0.016 1.200 ± 0.178 0.278 ± 0.134 0.711 ± 0.329
GDSS (Jo et al., 2022) 2.367 ± 0.316 0.467 ± 0.112 6.267 ± 0.287 0.300 ± 0.198 1.367 ± 0.258
MOOD (Lee et al., 2023) 7.260 ± 0.764 0.787 ± 0.128 21.427 ± 0.502 5.913 ± 0.311 10.367 ± 0.616
Augmented Memory (Guo & Schwaller, 2024a) 16.966 ± 3.224 2.637 ± 0.860 52.016 ± 2.302 8.307 ± 1.714 21.548 ± 4.938
GEAM (Lee et al., 2024) 45.158 ± 2.408 20.552 ± 2.357 47.664 ± 1.198 30.444 ± 1.610 46.129 ± 2.073

Ours
Saturn 57.981 ± 18.537 14.527 ± 9.961 68.185 ± 3.400 38.999 ± 10.114 60.827 ± 11.502
Saturn-GA 55.597 ± 5.617 16.711 ± 6.761 63.112 ± 4.316 34.284 ± 10.345 58.625 ± 6.982
Saturn-Tanimoto 77.674 ± 7.127 23.119 ± 6.852 78.433 ± 1.029 30.258 ± 12.315 83.012 ± 6.678

Table 28: Strict Hit Ratio (%) (QED > 0.7 and SA < 3) additional results. GEAM and Saturn results
are across 10 seeds (0-9 inclusive). OB is Oracle Burden (oracle calls required to generate N unique
molecules). The number in parentheses in the OB statistics represent how many runs out of 10 were
successful. The mean and standard deviation are reported. Best results (statistically significant at the
95% confidence level) are bolded.
Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM (Lee et al., 2024) - Presented in Main Text
Strict Hit Ratio (↑) 6.510 ± 1.087 2.106 ± 0.958 8.719 ± 0.903 3.685 ± 0.524 7.944 ± 1.157
IntDiv1 (↑) 0.766 ± 0.017 0.709 ± 0.043 0.799 ± 0.017 0.751 ± 0.023 0.763 ± 0.021
#Circles (↑) 14 ± 3 7 ± 2 25 ± 3 11 ± 2 18 ± 2
OB (1) (↓) 250 ± 157(10) 433 ± 209(10) 114 ± 112(10) 355 ± 96(10) 230 ± 117(10)
OB (10) (↓) 743 ± 52(10) 1446 ± 404(10) 531 ± 38(10) 892 ± 144(10) 537 ± 70(10)
OB (100) (↓) 2106 ± 202(10) 2927 ± 0(1) 1527 ± 110(10) 2674 ± 163(6) 1606 ± 218(10)

Saturn (ours) - Presented in Main Text
Strict Hit Ratio 55.102 ± 18.027 13.887 ± 9.723 64.730 ± 3.717 37.250 ± 9.615 55.903 ± 13.613
IntDiv1 (↑) 0.596 ± 0.049 0.592 ± 0.066 0.685 ± 0.021 0.597 ± 0.042 0.638 ± 0.034
#Circles (↑) 5 ± 0 3 ± 1 17 ± 3 4 ± 0 7 ± 1
OB (1) (↓) 139 ± 96(10) 352 ± 206(10) 21 ± 7(10) 291 ± 143(10) 88 ± 56(10)
OB (10) (↓) 518 ± 92(10) 924 ± 247(10) 105 ± 23(10) 581 ± 123(10) 348 ± 96(10)
OB (100) (↓) 956 ± 259(10) 1776 ± 551(10) 441 ± 44(10) 1057 ± 187(10) 785 ± 191(10)

Saturn-GA (ours) - Newly presented here
Strict Hit Ratio 47.146 ± 4.952 13.187 ± 6.340 53.055 ± 3.764 28.377 ± 9.703 49.528 ± 5.463
IntDiv1 (↑) 0.659 ± 0.023 0.636 ± 0.039 0.724 ± 0.022 0.625 ± 0.047 0.676 ± 0.041
#Circles (↑) 8 ± 2 4 ± 1 22 ± 4 6 ± 1 12 ± 2
OB (1) (↓) 121 ± 71(10) 350 ± 203(10) 20 ± 6(10) 242 ± 194(10) 91 ± 43(10)
OB (10) (↓) 467 ± 114(10) 912 ± 168(10) 110 ± 36(10) 582 ± 177(10) 375 ± 120(10)
OB (100) (↓) 937 ± 136(10) 1852 ± 349(10) 499 ± 85(10) 1266 ± 486(10) 861 ± 123(10)

Hit Ratio (%). Table 27 shows the Hit Ratio (%) results. Random sampling of 3,000 molecules from
common datasets (ZINC 250k (Sterling & Irwin, 2015) and ChEMBL 33 (Gaulton et al., 2012)) are
included as baselines. The results show that only GEAM (Lee et al., 2024) and Saturn outperform
these baselines with both methods performing similarly overall. With the exception of a few targets
where performance differs (significant at the 95% confidence level), Saturn notably exhibits higher
variance which is expected given the small batch size (16). One way to mitigate high variance is to
use a larger batch size, as this makes the approximation for the expected reward less noisy. Next,
we show that the Saturn-Tanimoto Agent displays notably high Hit Ratios but do not present this
in the main results as the purpose of the Tanimoto Agent is to generate hits that have less than 0.4
Tanimoto similarity to the ZINC 250k (Sterling & Irwin, 2015) training dataset. It is difficult to
predict a priori a favorable chemical space to move the Agent. However, this result is interesting as it

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

suggests that this simple additional pre-training which took minutes via curriculum learning (CL),
makes the Agent more suited for the docking tasks. Finally, we show that using the GA (Saturn-GA)
is a straightforward solution to recover diversity. From Part 1 and Part 2 experiments, activating
the GA comes at the expense of some sample efficiency but interestingly, this is not the case here
(Table 28). Moreover, Saturn-GA also decreases variance in this case study (Table 27). Based on
these results, it would actually be beneficial to activate the GA in this case, but it is difficult to know
a priori the best configuration, thus we report the out-of-the-box hyperparameters (without GA) in
the main text based on tuning on the test experiment in Part 1.

Table 29: Strict Novel Hit Ratio (%) (QED > 0.7 and SA < 3). GEAM and Saturn results are
across 10 seeds (0-9 inclusive). OB is Oracle Burden (oracle calls required to generate N unique
molecules). The number in parentheses in the OB statistics represent how many runs out of 10 were
successful. The mean and standard deviation are reported. Best results (statistically significant at the
95% confidence level) are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM (Lee et al., 2024)
Strict Hit Ratio (↑) 4.018 ± 0.849 1.676 ± 0.836 5.338 ± 0.789 2.621 ± 0.464 5.930 ± 1.151
IntDiv1 (↑) 0.768 ± 0.019 0.710 ± 0.047 0.793 ± 0.019 0.753 ± 0.026 0.763 ± 0.026
#Circles (↑) 13 ± 2 5 ± 2 21 ± 3 11 ± 2 16 ± 3
OB (1) (↓) 319 ± 175(10) 502 ± 209(10) 253 ± 159(10) 419 ± 102(10) 242 ± 124(10)
OB (10) (↓) 857 ± 86(10) 1625 ± 380(10) 689 ± 77(10) 1047 ± 136(10) 616 ± 83(10)
OB (100) (↓) 2633 ± 202(9) Failed 2221 ± 224(10) 2942 ± 0(1) 2005 ± 268(10)

Saturn-Tanimoto (ours)
Strict Novel Hit Rate 47.405 ± 8.593 17.130 ± 5.538 50.445 ± 6.334 18.228 ± 9.438 45.185 ± 13.321
IntDiv1 (↑) 0.595 ± 0.029 0.600 ± 0.030 0.559 ± 0.032 0.520 ± 0.040 0.567 ± 0.041
#Circles (↑) 2 ± 0 2 ± 0 2 ± 0 1 ± 0 1 ± 0
OB (1) (↓) 26 ± 17(10) 98 ± 53(10) 15 ± 0(10) 164 ± 137(10) 18 ± 7(10)
OB (10) (↓) 177 ± 38(10) 320 ± 69(10) 31 ± 5(10) 388 ± 156(10) 70 ± 13(10)
OB (100) (↓) 562 ± 94(10) 1051 ± 251(10) 223 ± 50(10) 1041 ± 585(9) 402 ± 196(10)

Saturn-Tanimoto-GA (ours)
Strict Novel Hit Rate 29.801 ± 11.603 11.895 ± 5.197 40.261 ± 8.168 17.845 ± 7.943 37.498 ± 11.200
IntDiv1 (↑) 0.621 ± 0.041 0.596 ± 0.030 0.613 ± 0.042 0.640 ± 0.040 0.606 ± 0.034
#Circles (↑) 3 ± 1 2 ± 1 3 ± 1 3 ± 1 3 ± 1
OB (1) (↓) 36 ± 38(10) 216 ± 232(10) 15 ± 0(10) 181 ± 122(10) 17 ± 5(10)
OB (10) (↓) 205 ± 65(10) 556 ± 275(10) 27 ± 5(10) 472 ± 135(10) 96 ± 13(10)
OB (100) (↓) 703 ± 113(10) 1490 ± 460(9) 272 ± 39(10) 1367 ± 561(10) 480 ± 84(10)

Novel Hit Ratio (%). Table 29 shows the Novel Hit Ratio (%) results with all additional metrics,
mirroring the main text table. Similar to the main text results, Mamba-Tanimoto Agent generates
significantly more molecules passing the strict filter and also much faster (fewer oracle calls).
However, the diversity notably drops (much more than the Mamba Agent without Tanimoto distance
training presented in the main text). However, diversity is particularly low. We first not that when
moving to high-fidelity oracles where satisfying the objective function equates to higher true positive
hit rates, low diversity need not be detrimental. We additionally run an experiment with the GA
activated and we see diversity recovers, but is still notably lower than GEAM. Moreover, the sample
efficiency drops notably here compared to without GA, but is still much more performant than GEAM
in finding hits faster. Finally, to recover more diversity, one could make the Diversity Filter (Blaschke
et al., 2020b) more stringent. In this work, a bucket size of 10 was used (allow 10 of the same scaffold
to be generated before truncating the reward to 0). Decreasing the bucket size to 5 or even lower, may
recover more diversity.

F.6 SATURN: ARCHITECTURE SCALING.

In the main text Part 1, we investigated why Mamba (5.2M) outperforms LSTM (Hochreiter &
Schmidhuber, 1997) RNN (5.8M) and Decoder transformer (Vaswani et al., 2017; Radford et al.,
2019) (6.3M). Augmented Memory (Guo & Schwaller, 2024a) squeezes the likelihood of generating
augmented forms of any replay buffer molecules. Increased capacity to match this distribution directly
leads to the "hop-and-locally-explore" behavior which improves sample efficiency. We note that our
observations are for optimization landscapes that are not too rough (Guo et al., 2022; Aldeghi et al.,
2022). It is difficult to know a priori the roughness of optimization and also whether the benefits of
"hop-and-locally-explore" behavior is beneficial in higher-fidelity oracle settings. We leave this for
future work.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Based on these observations, we investigate scaling benefits for the LSTM RNN and Decoder
transformer models. Increasing model size can lead to lower loss convergence, which in this case,
means modeling the conditional token distribution of the SMILES (Weininger, 1988). One may argue
that this is simply a hyperparameter tuning which we missed. However, the purpose of this work is in
the goal-directed learning setting where we want to tune the model’s distribution towards desirable
molecules. If desirable molecules are already in the training data, minimal optimization is required.
Moreover, it is difficult to know a priori whether matching the training distribution very closely is
strictly advantageous for an arbitrary MPO objective, unless we have an enormous amount of data,
by the law of large numbers. Therefore, all pre-trained models (priors) in this work were trained until
loss flattens out and Validity (fraction of valid SMILES generated) is high.

In this section, we scale up the LSTM RNN and Decoder transformer models to around 25M to make
the distribution learning capability approach Mamba (5.2M). We use the training loss for this, where
similar loss convergence is taken as the proxy. We first present the exact model parameter counts,
hyperparameters, and training details.

LSTM RNN 24.7M:

1. Seed = 0

2. Parameters = 24,741,442

3. Vocabulary Size = 66

4. Embedding Dimension = 256

5. Hidden Dimension = 512

6. Number of Layers = 12

7. Dropout = 0.0

8. Layer Normalization = False

9. Train Epochs = 300

10. Batch Size = 512

11. Learning Rate = 0.0001

12. Final NLL Loss at Epoch 300 = 29.318

Decoder 25.3M:

1. Seed = 0

2. Parameters = 25,306,178

3. Vocabulary Size = 66

4. Embedding Dimension = 256

5. Hidden Dimension = 1024

6. Number of Layers = 32

7. Number of Heads = 16

8. Dropout = 0.0

9. Train Epochs = 100

10. Batch Size = 512

11. Learning Rate = 0.0001

12. Final NLL Loss at Epoch 100 = 26.963

In addition, we scale up Mamba to 16M and 21M and also present the exact model parameter counts,
hyperparameters, and training details. For these two models, we intentionally train until the loss is at
similar values (NLL = 26) which suggests both models have learned the training distribution to a
similar extent. Optimization then starts from a similar distribution.

Mamba 15.8M:

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

1. Seed = 0
2. Parameters = 15,785,728
3. Vocabulary Size = 66
4. Embedding Dimension = 256
5. Number of Layers = 36
6. Use RMSNorm = True
7. Residual in fp32 = True
8. Fused AddNorm = True
9. Train Epochs = 100

10. Batch Size = 512
11. Learning Rate = 0.0001
12. Final NLL Loss at Epoch 92 = 26.003

Mamba 21.0M:

1. Seed = 0
2. Parameters = 21,041,920
3. Vocabulary Size = 66
4. Embedding Dimension = 256
5. Number of Layers = 48
6. Use RMSNorm = True
7. Residual in fp32 = True
8. Fused AddNorm = True
9. Train Epochs = 100

10. Batch Size = 512
11. Learning Rate = 0.0001
12. Final NLL Loss at Epoch 75 = 25.993

Table 30: Architecture scaling experiments: Hit Ratio (%) metrics. GEAM (Lee et al., 2024) and
Saturn results are across 10 seeds (0-9 inclusive). The mean and standard deviation are reported.
Method Target Protein

parp1 fa7 5ht1b braf jak2

Datasets
ZINC 250k (Sterling & Irwin, 2015) 3.993 ± 0.355 1.097 ± 0.192 24.26 ± 0.622 1.020 ± 0.193 6.183 ± 0.344
ChEMBL 33 (Gaulton et al., 2012) 6.077 ± 0.453 1.830 ± 0.240 24.163 ± 0.715 2.073 ± 0.181 9.013 ± 0.562

Generative Models
Augmented Memory (Guo & Schwaller, 2024a) 16.983 ± 3.221 2.641 ± 0.868 52.046 ± 2.327 8.354 ± 1.727 21.604 ± 4.958
GEAM (Lee et al., 2024) 49.597 ± 3.078 21.988 ± 2.968 51.765 ± 1.463 33.086 ± 1.673 51.228 ± 3.132

Ours
Saturn-Mamba 5.2M 57.981 ± 18.537 14.527 ± 9.961 68.185 ± 3.400 38.999 ± 10.114 60.827 ± 11.502
Saturn-Mamba 15.8M 56.088 ± 9.899 18.804 ± 13.980 68.322 ± 3.885 38.699 ± 19.841 61.320 ± 18.673
Saturn-Mamba 21.0M 56.299 ± 16.583 23.764 ± 19.280 65.015 ± 6.060 32.018 ± 12.584 59.175 ± 20.689
Saturn-Decoder 25.3M 61.732 ± 16.032 21.058 ± 13.940 68.340 ± 5.094 37.399 ± 12.632 65.470 ± 12.628
Saturn-RNN 24.7M 52.914 ± 9.955 13.254 ± 7.276 63.799 ± 3.249 33.805 ± 8.694 54.165 ± 7.445

Hit Ratios (%). Table 30 shows the Hit Ratios of compared models. Saturn outperforms baseline
Augmented Memory and GEAM. In terms of architecture scaling, we show decoder transformer
and RNN approach Mamba performance but are still less performant. Scaling up Mamba does not
necessarily lead to better results, as there is notably even higher variance.

Sample Efficiency Metrics Table 31 presents the Strict Hit Ratios for compared models. While
GEAM outperforms baseline Augmented Memory for the Hit Ratio, the results here show that the
optimization capability of baseline Augmented Memory exceeds that of GEAM. Saturn outperforms
both Augmented Memory and GEAM to generate more hits and also finds them faster (lower

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Table 31: Architecture scaling experiments: Strict Hit Ratio (%) (QED > 0.7 and SA < 3). GEAM
and Saturn results are across 10 seeds (0-9 inclusive). OB is Oracle Burden (oracle calls required to
generate N unique molecules). The number in parentheses in the OB statistics represent how many
runs out of 10 were successful. The mean and standard deviation are reported.
Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM (Lee et al., 2024)
Strict Hit Ratio (↑) 6.510 ± 1.087 2.106 ± 0.958 8.719 ± 0.903 3.685 ± 0.524 7.944 ± 1.157
IntDiv1 (↑) 0.766 ± 0.017 0.709 ± 0.043 0.799 ± 0.017 0.751 ± 0.023 0.763 ± 0.021
#Circles (↑) 14 ± 3 7 ± 2 25 ± 3 11 ± 2 18 ± 2
OB (1) (↓) 250 ± 157(10) 433 ± 209(10) 114 ± 112(10) 355 ± 96(10) 230 ± 117(10)
OB (10) (↓) 743 ± 52(10) 1446 ± 404(10) 531 ± 38(10) 892 ± 144(10) 537 ± 70(10)
OB (100) (↓) 2106 ± 202(10) 2927 ± 0(1) 1527 ± 110(10) 2674 ± 163(6) 1606 ± 218(10)
Augmented Memory (Guo & Schwaller, 2024a)
Strict Hit Ratio 13.486 ± 3.033 1.757 ± 0.805 43.824 ± 2.124 6.920 ± 1.734 17.884 ± 4.636
IntDiv1 (↑) 0.748 ± 0.019 0.718 ± 0.047 0.779 ± 0.007 0.685 ± 0.022 0.772 ± 0.013
#Circles (↑) 20 ± 5 9 ± 2 54 ± 6 8 ± 1 27 ± 3
OB (1) (↓) 173 ± 149(10) 503 ± 313 61 ± 1(10) 329 ± 152 80 ± 28(10)
OB (10) (↓) 686 ± 214(10) 1776 ± 257(10) 117 ± 51(10) 1173 ± 375(10) 420 ± 54(10)
OB (100) (↓) 1836 ± 174(10) 2867 ± 0(1) 657 ± 80(10) 2396 ± 139(9) 1499 ± 109(10)

Ours
Saturn-Mamba 5.2M
Strict Hit Ratio 55.102 ± 18.027 13.887 ± 9.723 64.730 ± 3.717 37.250 ± 9.615 55.903 ± 13.613
IntDiv1 (↑) 0.596 ± 0.049 0.592 ± 0.066 0.685 ± 0.021 0.597 ± 0.042 0.638 ± 0.034
#Circles (↑) 5 ± 0 3 ± 1 17 ± 3 4 ± 0 7 ± 1
OB (1) (↓) 139 ± 96(10) 352 ± 206(10) 21 ± 7(10) 291 ± 143(10) 88 ± 56(10)
OB (10) (↓) 518 ± 92(10) 924 ± 247(10) 105 ± 23(10) 581 ± 123(10) 348 ± 96(10)
OB (100) (↓) 956 ± 259(10) 1776 ± 551(10) 441 ± 44(10) 1057 ± 187(10) 785 ± 191(10)

Saturn-Mamba 15.8M
Strict Hit Ratio 52.093 ± 12.503 18.064 ± 13.932 63.740 ± 5.623 37.350 ± 19.173 59.372 ± 18.465
IntDiv1 (↑) 0.587 ± 0.033 0.587 ± 0.068 0.662 ± 0.042 0.568 ± 0.064 0.633 ± 0.035
#Circles (↑) 6 ± 2 3 ± 1 18 ± 3 4 ± 1 9 ± 2
OB (1) (↓) 157 ± 112(10) 223 ± 167(10) 25 ± 10(10) 204 ± 115(10) 54 ± 43(10)
OB (10) (↓) 406 ± 111(10) 691 ± 151(10) 108 ± 31(10) 634 ± 180(10) 266 ± 50(10)
OB (100) (↓) 905 ± 204(10) 1491 ± 389(8) 421 ± 61(10) 1220 ± 410(10) 786 ± 254(10)

Saturn-Mamba 21.0M
Strict Hit Ratio 54.297 ± 16.480 23.021 ± 19.064 61.307 ± 5.991 30.972 ± 12.605 57.013 ± 20.601
IntDiv1 (↑) 0.590 ± 0.041 0.535 ± 0.056 0.655 ± 0.042 0.560 ± 0.060 0.605 ± 0.046
#Circles (↑) 6 ± 1 4 ± 1 17 ± 3 4 ± 1 8 ± 1
OB (1) (↓) 167 ± 73(10) 316 ± 236(10) 28 ± 13(10) 235 ± 138(10) 68 ± 78(10)
OB (10) (↓) 425 ± 91(10) 710 ± 314(10) 115 ± 44(10) 556 ± 147(10) 335 ± 118(10)
OB (100) (↓) 831 ± 147(10) 1446 ± 629(9) 432 ± 69(10) 1134 ± 282(10) 798 ± 340(10)

Saturn-Decoder 25.3M
Strict Hit Ratio 59.560 ± 15.480 20.195 ± 13.394 65.202 ± 5.847 35.857 ± 12.228 62.874 ± 11.810
IntDiv1 (↑) 0.615 ± 0.034 0.575 ± 0.078 0.658 ± 0.031 0.614 ± 0.045 0.590 ± 0.062
#Circles (↑) 6 ± 1 3 ± 1 13 ± 3 4 ± 1 6 ± 1
OB (1) (↓) 98 ± 81(10) 242 ± 160(10) 18 ± 5(10) 248 ± 81(10) 52 ± 37(10)
OB (10) (↓) 375 ± 131(10) 797 ± 227(10) 92 ± 29(10) 515 ± 98(10) 320 ± 63(10)
OB (100) (↓) 769 ± 165(10) 1698 ± 507(10) 378 ± 43(10) 1101 ± 216(10) 722 ± 140(10)

Saturn-RNN 24.7M
Strict Hit Ratio 50.586 ± 9.574 12.731 ± 7.211 60.331 ± 3.294 32.380 ± 8.503 51.819 ± 7.247
IntDiv1 (↑) 0.654 ± 0.023 0.642 ± 0.042 0.719 ± 0.018 0.636 ± 0.030 0.693 ± 0.027
#Circles (↑) 8 ± 2 4 ± 1 25 ± 5 7 ± 1 12 ± 2
OB (1) (↓) 126 ± 99(10) 384 ± 289(10) 27 ± 19(10) 186 ± 170(10) 50 ± 52(10)
OB (10) (↓) 465 ± 71(10) 1243 ± 273(10) 111 ± 41(10) 714 ± 214(10) 305 ± 100(10)
OB (100) (↓) 1045 ± 148(10) 2150 ± 311(10) 487 ± 61(10) 1404 ± 269(10) 935 ± 130(10)

OB). Next, we investigate architecture scaling again, but this time, under the strict filter. Decoder
transformer (25.3M) approaches Mamba (5.2M) performance and outperforms it in many tasks (Fig.
31), trading off even more diversity. Variance is also higher. However, we believe this is an interesting
observation as Augmented Memory’s mechanism is squeezing the likelihood of augmented sequences.
By simply scaling up the architecture and enabling the model to converge to this distribution, sample
efficiency improves. This directly draws parallel to NLP LLMs where scaling improves downstream
performance on many tasks, when trained on next token prediction (Wei et al., 2022). Finally, while
scaling up the architecture to the parameter counts we have investigated adds negligible generation
time, Mamba (5.2M) is parameter-efficient in its synergistic behavior with Augmented Memory.

F.7 QUALITATIVE SUPPLEMENTARY RESULTS

In this section, we show random generated molecules from Saturn that pass the Strict Filter (Fig. F8).
All molecules possess QuickVina 2 (Alhossary et al., 2015) docking scores better than the median
of known actives (Lee et al., 2023) while possessing QED (Bickerton et al., 2012) > 0.7 and SA
score (Ertl & Schuffenhauer, 2009) < 3. We further highlight two points: firstly, there may be some

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Figure F8: Example Saturn generated molecules passing the Strict Filter for all 5 targets: parp1, fa7,
5ht1b, braf, and jak2. The scores are annotated from top to bottom, QuickVina 2 (Alhossary et al.,
2015) docking score, QED (Bickerton et al., 2012), and SA score (Ertl & Schuffenhauer, 2009).

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

particularly large rings that are undesirable from a chemistry perspective, even though QED and SA
score permits them. Saturn is an optimization engine and if specific chemistry is desired, including it
into the MPO objective will steer the Agent away from this chemical space. In this work, a concrete
example of this is in the main text Part 3 experiments where the Saturn pre-trained model was
additionally pre-trained via curriculum learning (Guo et al., 2022) to generate molecules dissimilar to
the ZINC 250k (Sterling & Irwin, 2015) training data to satisfy the Novel metric defined Lee et al
(Lee et al., 2023; 2024). This example shows the flexibility of Saturn. Secondly, as stereochemistry
was not purged from the vocabulary, Saturn can generate stereoisomers.

G POTENTIAL CHALLENGES WHEN PUSHING TOWARDS HIGH-FIDELITY
ORACLES

Throughout the main text and Appendix, we have made an effort to demonstrate Saturn’s broad
applicability. However, it remains to be seen whether performance will carry over to high-fidelity
oracles with rougher optimization landscapes (Aldeghi et al., 2022), where the "hop-and-locally-
explore" behavior may be disadvantageous. However, as we have identified why this behavior
manifests, we can tailor the sampling behavior for the optimization landscape, if required. For
example, activating the genetic algorithm and lowering augmentation rounds loosens the local
sampling behavior, as shown in Appendix D.2.

55

	Introduction
	Related Work
	Method
	Results and Discussion
	Part 1: Elucidating the Optimization Dynamics of Saturn
	Part 2: Transferability of Sample Efficiency to Physics-based Oracles
	Part 3: Benchmarking Saturn and Demonstrating Enhanced Optimization

	Conclusion
	Reproducibility Statement
	Appendix
	What is Saturn?
	Generative Architecture
	Mamba Architecture
	Oracle Caching
	Genetic Algorithm
	Full Algorithm Details and Pseudo-code

	Saturn: Identifying Optimal Hyperparameters and Architecture
	Data Pre-processing and Pre-training
	Understanding the Limits of Augmented Memory
	Do Architectures Differ in Behavior?
	Are Increased Augmentation Rounds still Synergistic with Beam Enumeration?
	Hypothesis 1
	Hypothesis 2
	Hypothesis 3

	Hallucinated Memory: Is it beneficial to allocate a portion of the oracle budget to hallucination?
	Saturn: Final Hyperparameters

	Mechanism of Augmented Memory and Mamba
	Is "Hop-and-Locally-Explore" Always Good?
	Genetic Algorithm Loosens "Hop-and-Locally-Explore Behavior"

	Part 2: Transferability of Sample Efficiency to Physics-based Oracles
	Docking Protocol
	Additional Results
	Compute Time

	Part 3: Part 3: Benchmarking Saturn
	Saturn ZINC 250k Pre-training
	Reproducing GEAM's Results
	GEAM's MPO Objective
	Saturn-Tanimoto
	Quantitative Supplementary Results
	Saturn: Architecture Scaling.
	Qualitative Supplementary Results

	Potential Challenges when Pushing Towards High-fidelity Oracles

